1 /* Support routines for building symbol tables in GDB's internal format. 2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, 4 2010 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 /* This module provides subroutines used for creating and adding to 22 the symbol table. These routines are called from various symbol- 23 file-reading routines. 24 25 Routines to support specific debugging information formats (stabs, 26 DWARF, etc) belong somewhere else. */ 27 28 #include "defs.h" 29 #include "bfd.h" 30 #include "gdb_obstack.h" 31 #include "symtab.h" 32 #include "symfile.h" 33 #include "objfiles.h" 34 #include "gdbtypes.h" 35 #include "gdb_assert.h" 36 #include "complaints.h" 37 #include "gdb_string.h" 38 #include "expression.h" /* For "enum exp_opcode" used by... */ 39 #include "bcache.h" 40 #include "filenames.h" /* For DOSish file names */ 41 #include "macrotab.h" 42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */ 43 #include "block.h" 44 #include "cp-support.h" 45 #include "dictionary.h" 46 #include "addrmap.h" 47 48 /* Ask buildsym.h to define the vars it normally declares `extern'. */ 49 #define EXTERN 50 /**/ 51 #include "buildsym.h" /* Our own declarations */ 52 #undef EXTERN 53 54 /* For cleanup_undefined_types and finish_global_stabs (somewhat 55 questionable--see comment where we call them). */ 56 57 #include "stabsread.h" 58 59 /* List of subfiles. */ 60 61 static struct subfile *subfiles; 62 63 /* List of free `struct pending' structures for reuse. */ 64 65 static struct pending *free_pendings; 66 67 /* Non-zero if symtab has line number info. This prevents an 68 otherwise empty symtab from being tossed. */ 69 70 static int have_line_numbers; 71 72 /* The mutable address map for the compilation unit whose symbols 73 we're currently reading. The symtabs' shared blockvector will 74 point to a fixed copy of this. */ 75 static struct addrmap *pending_addrmap; 76 77 /* The obstack on which we allocate pending_addrmap. 78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is 79 initialized (and holds pending_addrmap). */ 80 static struct obstack pending_addrmap_obstack; 81 82 /* Non-zero if we recorded any ranges in the addrmap that are 83 different from those in the blockvector already. We set this to 84 zero when we start processing a symfile, and if it's still zero at 85 the end, then we just toss the addrmap. */ 86 static int pending_addrmap_interesting; 87 88 89 static int compare_line_numbers (const void *ln1p, const void *ln2p); 90 91 92 /* Initial sizes of data structures. These are realloc'd larger if 93 needed, and realloc'd down to the size actually used, when 94 completed. */ 95 96 #define INITIAL_CONTEXT_STACK_SIZE 10 97 #define INITIAL_LINE_VECTOR_LENGTH 1000 98 99 100 /* maintain the lists of symbols and blocks */ 101 102 /* Add a pending list to free_pendings. */ 103 void 104 add_free_pendings (struct pending *list) 105 { 106 struct pending *link = list; 107 108 if (list) 109 { 110 while (link->next) link = link->next; 111 link->next = free_pendings; 112 free_pendings = list; 113 } 114 } 115 116 /* Add a symbol to one of the lists of symbols. While we're at it, if 117 we're in the C++ case and don't have full namespace debugging info, 118 check to see if it references an anonymous namespace; if so, add an 119 appropriate using directive. */ 120 121 void 122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead) 123 { 124 struct pending *link; 125 126 /* If this is an alias for another symbol, don't add it. */ 127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#') 128 return; 129 130 /* We keep PENDINGSIZE symbols in each link of the list. If we 131 don't have a link with room in it, add a new link. */ 132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE) 133 { 134 if (free_pendings) 135 { 136 link = free_pendings; 137 free_pendings = link->next; 138 } 139 else 140 { 141 link = (struct pending *) xmalloc (sizeof (struct pending)); 142 } 143 144 link->next = *listhead; 145 *listhead = link; 146 link->nsyms = 0; 147 } 148 149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol; 150 } 151 152 /* Find a symbol named NAME on a LIST. NAME need not be 153 '\0'-terminated; LENGTH is the length of the name. */ 154 155 struct symbol * 156 find_symbol_in_list (struct pending *list, char *name, int length) 157 { 158 int j; 159 char *pp; 160 161 while (list != NULL) 162 { 163 for (j = list->nsyms; --j >= 0;) 164 { 165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]); 166 if (*pp == *name && strncmp (pp, name, length) == 0 167 && pp[length] == '\0') 168 { 169 return (list->symbol[j]); 170 } 171 } 172 list = list->next; 173 } 174 return (NULL); 175 } 176 177 /* At end of reading syms, or in case of quit, really free as many 178 `struct pending's as we can easily find. */ 179 180 void 181 really_free_pendings (void *dummy) 182 { 183 struct pending *next, *next1; 184 185 for (next = free_pendings; next; next = next1) 186 { 187 next1 = next->next; 188 xfree ((void *) next); 189 } 190 free_pendings = NULL; 191 192 free_pending_blocks (); 193 194 for (next = file_symbols; next != NULL; next = next1) 195 { 196 next1 = next->next; 197 xfree ((void *) next); 198 } 199 file_symbols = NULL; 200 201 for (next = global_symbols; next != NULL; next = next1) 202 { 203 next1 = next->next; 204 xfree ((void *) next); 205 } 206 global_symbols = NULL; 207 208 if (pending_macros) 209 free_macro_table (pending_macros); 210 211 if (pending_addrmap) 212 { 213 obstack_free (&pending_addrmap_obstack, NULL); 214 pending_addrmap = NULL; 215 } 216 } 217 218 /* This function is called to discard any pending blocks. */ 219 220 void 221 free_pending_blocks (void) 222 { 223 /* The links are made in the objfile_obstack, so we only need to 224 reset PENDING_BLOCKS. */ 225 pending_blocks = NULL; 226 } 227 228 /* Take one of the lists of symbols and make a block from it. Keep 229 the order the symbols have in the list (reversed from the input 230 file). Put the block on the list of pending blocks. */ 231 232 struct block * 233 finish_block (struct symbol *symbol, struct pending **listhead, 234 struct pending_block *old_blocks, 235 CORE_ADDR start, CORE_ADDR end, 236 struct objfile *objfile) 237 { 238 struct gdbarch *gdbarch = get_objfile_arch (objfile); 239 struct pending *next, *next1; 240 struct block *block; 241 struct pending_block *pblock; 242 struct pending_block *opblock; 243 244 block = allocate_block (&objfile->objfile_obstack); 245 246 if (symbol) 247 { 248 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack, 249 *listhead); 250 } 251 else 252 { 253 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack, 254 *listhead); 255 } 256 257 BLOCK_START (block) = start; 258 BLOCK_END (block) = end; 259 /* Superblock filled in when containing block is made */ 260 BLOCK_SUPERBLOCK (block) = NULL; 261 BLOCK_NAMESPACE (block) = NULL; 262 263 /* Put the block in as the value of the symbol that names it. */ 264 265 if (symbol) 266 { 267 struct type *ftype = SYMBOL_TYPE (symbol); 268 struct dict_iterator iter; 269 SYMBOL_BLOCK_VALUE (symbol) = block; 270 BLOCK_FUNCTION (block) = symbol; 271 272 if (TYPE_NFIELDS (ftype) <= 0) 273 { 274 /* No parameter type information is recorded with the 275 function's type. Set that from the type of the 276 parameter symbols. */ 277 int nparams = 0, iparams; 278 struct symbol *sym; 279 ALL_BLOCK_SYMBOLS (block, iter, sym) 280 { 281 if (SYMBOL_IS_ARGUMENT (sym)) 282 nparams++; 283 } 284 if (nparams > 0) 285 { 286 TYPE_NFIELDS (ftype) = nparams; 287 TYPE_FIELDS (ftype) = (struct field *) 288 TYPE_ALLOC (ftype, nparams * sizeof (struct field)); 289 290 iparams = 0; 291 ALL_BLOCK_SYMBOLS (block, iter, sym) 292 { 293 if (iparams == nparams) 294 break; 295 296 if (SYMBOL_IS_ARGUMENT (sym)) 297 { 298 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym); 299 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0; 300 iparams++; 301 } 302 } 303 } 304 } 305 } 306 else 307 { 308 BLOCK_FUNCTION (block) = NULL; 309 } 310 311 /* Now "free" the links of the list, and empty the list. */ 312 313 for (next = *listhead; next; next = next1) 314 { 315 next1 = next->next; 316 next->next = free_pendings; 317 free_pendings = next; 318 } 319 *listhead = NULL; 320 321 /* Check to be sure that the blocks have an end address that is 322 greater than starting address */ 323 324 if (BLOCK_END (block) < BLOCK_START (block)) 325 { 326 if (symbol) 327 { 328 complaint (&symfile_complaints, 329 _("block end address less than block start address in %s (patched it)"), 330 SYMBOL_PRINT_NAME (symbol)); 331 } 332 else 333 { 334 complaint (&symfile_complaints, 335 _("block end address %s less than block start address %s (patched it)"), 336 paddress (gdbarch, BLOCK_END (block)), 337 paddress (gdbarch, BLOCK_START (block))); 338 } 339 /* Better than nothing */ 340 BLOCK_END (block) = BLOCK_START (block); 341 } 342 343 /* Install this block as the superblock of all blocks made since the 344 start of this scope that don't have superblocks yet. */ 345 346 opblock = NULL; 347 for (pblock = pending_blocks; 348 pblock && pblock != old_blocks; 349 pblock = pblock->next) 350 { 351 if (BLOCK_SUPERBLOCK (pblock->block) == NULL) 352 { 353 /* Check to be sure the blocks are nested as we receive 354 them. If the compiler/assembler/linker work, this just 355 burns a small amount of time. 356 357 Skip blocks which correspond to a function; they're not 358 physically nested inside this other blocks, only 359 lexically nested. */ 360 if (BLOCK_FUNCTION (pblock->block) == NULL 361 && (BLOCK_START (pblock->block) < BLOCK_START (block) 362 || BLOCK_END (pblock->block) > BLOCK_END (block))) 363 { 364 if (symbol) 365 { 366 complaint (&symfile_complaints, 367 _("inner block not inside outer block in %s"), 368 SYMBOL_PRINT_NAME (symbol)); 369 } 370 else 371 { 372 complaint (&symfile_complaints, 373 _("inner block (%s-%s) not inside outer block (%s-%s)"), 374 paddress (gdbarch, BLOCK_START (pblock->block)), 375 paddress (gdbarch, BLOCK_END (pblock->block)), 376 paddress (gdbarch, BLOCK_START (block)), 377 paddress (gdbarch, BLOCK_END (block))); 378 } 379 if (BLOCK_START (pblock->block) < BLOCK_START (block)) 380 BLOCK_START (pblock->block) = BLOCK_START (block); 381 if (BLOCK_END (pblock->block) > BLOCK_END (block)) 382 BLOCK_END (pblock->block) = BLOCK_END (block); 383 } 384 BLOCK_SUPERBLOCK (pblock->block) = block; 385 } 386 opblock = pblock; 387 } 388 389 block_set_using (block, using_directives, &objfile->objfile_obstack); 390 using_directives = NULL; 391 392 record_pending_block (objfile, block, opblock); 393 394 return block; 395 } 396 397 398 /* Record BLOCK on the list of all blocks in the file. Put it after 399 OPBLOCK, or at the beginning if opblock is NULL. This puts the 400 block in the list after all its subblocks. 401 402 Allocate the pending block struct in the objfile_obstack to save 403 time. This wastes a little space. FIXME: Is it worth it? */ 404 405 void 406 record_pending_block (struct objfile *objfile, struct block *block, 407 struct pending_block *opblock) 408 { 409 struct pending_block *pblock; 410 411 pblock = (struct pending_block *) 412 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block)); 413 pblock->block = block; 414 if (opblock) 415 { 416 pblock->next = opblock->next; 417 opblock->next = pblock; 418 } 419 else 420 { 421 pblock->next = pending_blocks; 422 pending_blocks = pblock; 423 } 424 } 425 426 427 /* Record that the range of addresses from START to END_INCLUSIVE 428 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end 429 addresses must be set already. You must apply this function to all 430 BLOCK's children before applying it to BLOCK. 431 432 If a call to this function complicates the picture beyond that 433 already provided by BLOCK_START and BLOCK_END, then we create an 434 address map for the block. */ 435 void 436 record_block_range (struct block *block, 437 CORE_ADDR start, CORE_ADDR end_inclusive) 438 { 439 /* If this is any different from the range recorded in the block's 440 own BLOCK_START and BLOCK_END, then note that the address map has 441 become interesting. Note that even if this block doesn't have 442 any "interesting" ranges, some later block might, so we still 443 need to record this block in the addrmap. */ 444 if (start != BLOCK_START (block) 445 || end_inclusive + 1 != BLOCK_END (block)) 446 pending_addrmap_interesting = 1; 447 448 if (! pending_addrmap) 449 { 450 obstack_init (&pending_addrmap_obstack); 451 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack); 452 } 453 454 addrmap_set_empty (pending_addrmap, start, end_inclusive, block); 455 } 456 457 458 static struct blockvector * 459 make_blockvector (struct objfile *objfile) 460 { 461 struct pending_block *next; 462 struct blockvector *blockvector; 463 int i; 464 465 /* Count the length of the list of blocks. */ 466 467 for (next = pending_blocks, i = 0; next; next = next->next, i++) 468 {; 469 } 470 471 blockvector = (struct blockvector *) 472 obstack_alloc (&objfile->objfile_obstack, 473 (sizeof (struct blockvector) 474 + (i - 1) * sizeof (struct block *))); 475 476 /* Copy the blocks into the blockvector. This is done in reverse 477 order, which happens to put the blocks into the proper order 478 (ascending starting address). finish_block has hair to insert 479 each block into the list after its subblocks in order to make 480 sure this is true. */ 481 482 BLOCKVECTOR_NBLOCKS (blockvector) = i; 483 for (next = pending_blocks; next; next = next->next) 484 { 485 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block; 486 } 487 488 free_pending_blocks (); 489 490 /* If we needed an address map for this symtab, record it in the 491 blockvector. */ 492 if (pending_addrmap && pending_addrmap_interesting) 493 BLOCKVECTOR_MAP (blockvector) 494 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack); 495 else 496 BLOCKVECTOR_MAP (blockvector) = 0; 497 498 /* Some compilers output blocks in the wrong order, but we depend on 499 their being in the right order so we can binary search. Check the 500 order and moan about it. */ 501 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1) 502 { 503 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) 504 { 505 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1)) 506 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i))) 507 { 508 CORE_ADDR start 509 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)); 510 511 complaint (&symfile_complaints, _("block at %s out of order"), 512 hex_string ((LONGEST) start)); 513 } 514 } 515 } 516 517 return (blockvector); 518 } 519 520 /* Start recording information about source code that came from an 521 included (or otherwise merged-in) source file with a different 522 name. NAME is the name of the file (cannot be NULL), DIRNAME is 523 the directory in which the file was compiled (or NULL if not known). */ 524 525 void 526 start_subfile (char *name, char *dirname) 527 { 528 struct subfile *subfile; 529 530 /* See if this subfile is already known as a subfile of the current 531 main source file. */ 532 533 for (subfile = subfiles; subfile; subfile = subfile->next) 534 { 535 char *subfile_name; 536 537 /* If NAME is an absolute path, and this subfile is not, then 538 attempt to create an absolute path to compare. */ 539 if (IS_ABSOLUTE_PATH (name) 540 && !IS_ABSOLUTE_PATH (subfile->name) 541 && subfile->dirname != NULL) 542 subfile_name = concat (subfile->dirname, SLASH_STRING, 543 subfile->name, (char *) NULL); 544 else 545 subfile_name = subfile->name; 546 547 if (FILENAME_CMP (subfile_name, name) == 0) 548 { 549 current_subfile = subfile; 550 if (subfile_name != subfile->name) 551 xfree (subfile_name); 552 return; 553 } 554 if (subfile_name != subfile->name) 555 xfree (subfile_name); 556 } 557 558 /* This subfile is not known. Add an entry for it. Make an entry 559 for this subfile in the list of all subfiles of the current main 560 source file. */ 561 562 subfile = (struct subfile *) xmalloc (sizeof (struct subfile)); 563 memset ((char *) subfile, 0, sizeof (struct subfile)); 564 subfile->next = subfiles; 565 subfiles = subfile; 566 current_subfile = subfile; 567 568 /* Save its name and compilation directory name */ 569 subfile->name = (name == NULL) ? NULL : xstrdup (name); 570 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname); 571 572 /* Initialize line-number recording for this subfile. */ 573 subfile->line_vector = NULL; 574 575 /* Default the source language to whatever can be deduced from the 576 filename. If nothing can be deduced (such as for a C/C++ include 577 file with a ".h" extension), then inherit whatever language the 578 previous subfile had. This kludgery is necessary because there 579 is no standard way in some object formats to record the source 580 language. Also, when symtabs are allocated we try to deduce a 581 language then as well, but it is too late for us to use that 582 information while reading symbols, since symtabs aren't allocated 583 until after all the symbols have been processed for a given 584 source file. */ 585 586 subfile->language = deduce_language_from_filename (subfile->name); 587 if (subfile->language == language_unknown 588 && subfile->next != NULL) 589 { 590 subfile->language = subfile->next->language; 591 } 592 593 /* Initialize the debug format string to NULL. We may supply it 594 later via a call to record_debugformat. */ 595 subfile->debugformat = NULL; 596 597 /* Similarly for the producer. */ 598 subfile->producer = NULL; 599 600 /* If the filename of this subfile ends in .C, then change the 601 language of any pending subfiles from C to C++. We also accept 602 any other C++ suffixes accepted by deduce_language_from_filename. */ 603 /* Likewise for f2c. */ 604 605 if (subfile->name) 606 { 607 struct subfile *s; 608 enum language sublang = deduce_language_from_filename (subfile->name); 609 610 if (sublang == language_cplus || sublang == language_fortran) 611 for (s = subfiles; s != NULL; s = s->next) 612 if (s->language == language_c) 613 s->language = sublang; 614 } 615 616 /* And patch up this file if necessary. */ 617 if (subfile->language == language_c 618 && subfile->next != NULL 619 && (subfile->next->language == language_cplus 620 || subfile->next->language == language_fortran)) 621 { 622 subfile->language = subfile->next->language; 623 } 624 } 625 626 /* For stabs readers, the first N_SO symbol is assumed to be the 627 source file name, and the subfile struct is initialized using that 628 assumption. If another N_SO symbol is later seen, immediately 629 following the first one, then the first one is assumed to be the 630 directory name and the second one is really the source file name. 631 632 So we have to patch up the subfile struct by moving the old name 633 value to dirname and remembering the new name. Some sanity 634 checking is performed to ensure that the state of the subfile 635 struct is reasonable and that the old name we are assuming to be a 636 directory name actually is (by checking for a trailing '/'). */ 637 638 void 639 patch_subfile_names (struct subfile *subfile, char *name) 640 { 641 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL 642 && subfile->name[strlen (subfile->name) - 1] == '/') 643 { 644 subfile->dirname = subfile->name; 645 subfile->name = xstrdup (name); 646 last_source_file = name; 647 648 /* Default the source language to whatever can be deduced from 649 the filename. If nothing can be deduced (such as for a C/C++ 650 include file with a ".h" extension), then inherit whatever 651 language the previous subfile had. This kludgery is 652 necessary because there is no standard way in some object 653 formats to record the source language. Also, when symtabs 654 are allocated we try to deduce a language then as well, but 655 it is too late for us to use that information while reading 656 symbols, since symtabs aren't allocated until after all the 657 symbols have been processed for a given source file. */ 658 659 subfile->language = deduce_language_from_filename (subfile->name); 660 if (subfile->language == language_unknown 661 && subfile->next != NULL) 662 { 663 subfile->language = subfile->next->language; 664 } 665 } 666 } 667 668 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for 669 switching source files (different subfiles, as we call them) within 670 one object file, but using a stack rather than in an arbitrary 671 order. */ 672 673 void 674 push_subfile (void) 675 { 676 struct subfile_stack *tem 677 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack)); 678 679 tem->next = subfile_stack; 680 subfile_stack = tem; 681 if (current_subfile == NULL || current_subfile->name == NULL) 682 { 683 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); 684 } 685 tem->name = current_subfile->name; 686 } 687 688 char * 689 pop_subfile (void) 690 { 691 char *name; 692 struct subfile_stack *link = subfile_stack; 693 694 if (link == NULL) 695 { 696 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); 697 } 698 name = link->name; 699 subfile_stack = link->next; 700 xfree ((void *) link); 701 return (name); 702 } 703 704 /* Add a linetable entry for line number LINE and address PC to the 705 line vector for SUBFILE. */ 706 707 void 708 record_line (struct subfile *subfile, int line, CORE_ADDR pc) 709 { 710 struct linetable_entry *e; 711 712 /* Ignore the dummy line number in libg.o */ 713 if (line == 0xffff) 714 { 715 return; 716 } 717 718 /* Make sure line vector exists and is big enough. */ 719 if (!subfile->line_vector) 720 { 721 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH; 722 subfile->line_vector = (struct linetable *) 723 xmalloc (sizeof (struct linetable) 724 + subfile->line_vector_length * sizeof (struct linetable_entry)); 725 subfile->line_vector->nitems = 0; 726 have_line_numbers = 1; 727 } 728 729 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length) 730 { 731 subfile->line_vector_length *= 2; 732 subfile->line_vector = (struct linetable *) 733 xrealloc ((char *) subfile->line_vector, 734 (sizeof (struct linetable) 735 + (subfile->line_vector_length 736 * sizeof (struct linetable_entry)))); 737 } 738 739 /* Normally, we treat lines as unsorted. But the end of sequence 740 marker is special. We sort line markers at the same PC by line 741 number, so end of sequence markers (which have line == 0) appear 742 first. This is right if the marker ends the previous function, 743 and there is no padding before the next function. But it is 744 wrong if the previous line was empty and we are now marking a 745 switch to a different subfile. We must leave the end of sequence 746 marker at the end of this group of lines, not sort the empty line 747 to after the marker. The easiest way to accomplish this is to 748 delete any empty lines from our table, if they are followed by 749 end of sequence markers. All we lose is the ability to set 750 breakpoints at some lines which contain no instructions 751 anyway. */ 752 if (line == 0 && subfile->line_vector->nitems > 0) 753 { 754 e = subfile->line_vector->item + subfile->line_vector->nitems - 1; 755 while (subfile->line_vector->nitems > 0 && e->pc == pc) 756 { 757 e--; 758 subfile->line_vector->nitems--; 759 } 760 } 761 762 e = subfile->line_vector->item + subfile->line_vector->nitems++; 763 e->line = line; 764 e->pc = pc; 765 } 766 767 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */ 768 769 static int 770 compare_line_numbers (const void *ln1p, const void *ln2p) 771 { 772 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p; 773 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p; 774 775 /* Note: this code does not assume that CORE_ADDRs can fit in ints. 776 Please keep it that way. */ 777 if (ln1->pc < ln2->pc) 778 return -1; 779 780 if (ln1->pc > ln2->pc) 781 return 1; 782 783 /* If pc equal, sort by line. I'm not sure whether this is optimum 784 behavior (see comment at struct linetable in symtab.h). */ 785 return ln1->line - ln2->line; 786 } 787 788 /* Start a new symtab for a new source file. Called, for example, 789 when a stabs symbol of type N_SO is seen, or when a DWARF 790 TAG_compile_unit DIE is seen. It indicates the start of data for 791 one original source file. 792 793 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in 794 which the file was compiled (or NULL if not known). START_ADDR is the 795 lowest address of objects in the file (or 0 if not known). */ 796 797 void 798 start_symtab (char *name, char *dirname, CORE_ADDR start_addr) 799 { 800 last_source_file = name; 801 last_source_start_addr = start_addr; 802 file_symbols = NULL; 803 global_symbols = NULL; 804 within_function = 0; 805 have_line_numbers = 0; 806 807 /* Context stack is initially empty. Allocate first one with room 808 for 10 levels; reuse it forever afterward. */ 809 if (context_stack == NULL) 810 { 811 context_stack_size = INITIAL_CONTEXT_STACK_SIZE; 812 context_stack = (struct context_stack *) 813 xmalloc (context_stack_size * sizeof (struct context_stack)); 814 } 815 context_stack_depth = 0; 816 817 /* We shouldn't have any address map at this point. */ 818 gdb_assert (! pending_addrmap); 819 820 /* Initialize the list of sub source files with one entry for this 821 file (the top-level source file). */ 822 823 subfiles = NULL; 824 current_subfile = NULL; 825 start_subfile (name, dirname); 826 } 827 828 /* Subroutine of end_symtab to simplify it. 829 Look for a subfile that matches the main source file's basename. 830 If there is only one, and if the main source file doesn't have any 831 symbol or line number information, then copy this file's symtab and 832 line_vector to the main source file's subfile and discard the other subfile. 833 This can happen because of a compiler bug or from the user playing games 834 with #line or from things like a distributed build system that manipulates 835 the debug info. */ 836 837 static void 838 watch_main_source_file_lossage (void) 839 { 840 struct subfile *mainsub, *subfile; 841 842 /* Find the main source file. 843 This loop could be eliminated if start_symtab saved it for us. */ 844 mainsub = NULL; 845 for (subfile = subfiles; subfile; subfile = subfile->next) 846 { 847 /* The main subfile is guaranteed to be the last one. */ 848 if (subfile->next == NULL) 849 mainsub = subfile; 850 } 851 852 /* If the main source file doesn't have any line number or symbol info, 853 look for an alias in another subfile. 854 We have to watch for mainsub == NULL here. It's a quirk of end_symtab, 855 it can return NULL so there may not be a main subfile. */ 856 857 if (mainsub 858 && mainsub->line_vector == NULL 859 && mainsub->symtab == NULL) 860 { 861 const char *mainbase = lbasename (mainsub->name); 862 int nr_matches = 0; 863 struct subfile *prevsub; 864 struct subfile *mainsub_alias = NULL; 865 struct subfile *prev_mainsub_alias = NULL; 866 867 prevsub = NULL; 868 for (subfile = subfiles; 869 /* Stop before we get to the last one. */ 870 subfile->next; 871 subfile = subfile->next) 872 { 873 if (strcmp (lbasename (subfile->name), mainbase) == 0) 874 { 875 ++nr_matches; 876 mainsub_alias = subfile; 877 prev_mainsub_alias = prevsub; 878 } 879 prevsub = subfile; 880 } 881 882 if (nr_matches == 1) 883 { 884 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub); 885 886 /* Found a match for the main source file. 887 Copy its line_vector and symtab to the main subfile 888 and then discard it. */ 889 890 mainsub->line_vector = mainsub_alias->line_vector; 891 mainsub->line_vector_length = mainsub_alias->line_vector_length; 892 mainsub->symtab = mainsub_alias->symtab; 893 894 if (prev_mainsub_alias == NULL) 895 subfiles = mainsub_alias->next; 896 else 897 prev_mainsub_alias->next = mainsub_alias->next; 898 xfree (mainsub_alias); 899 } 900 } 901 } 902 903 /* Helper function for qsort. Parametes are `struct block *' pointers, 904 function sorts them in descending order by their BLOCK_START. */ 905 906 static int 907 block_compar (const void *ap, const void *bp) 908 { 909 const struct block *a = *(const struct block **) ap; 910 const struct block *b = *(const struct block **) bp; 911 912 return ((BLOCK_START (b) > BLOCK_START (a)) 913 - (BLOCK_START (b) < BLOCK_START (a))); 914 } 915 916 /* Finish the symbol definitions for one main source file, close off 917 all the lexical contexts for that file (creating struct block's for 918 them), then make the struct symtab for that file and put it in the 919 list of all such. 920 921 END_ADDR is the address of the end of the file's text. SECTION is 922 the section number (in objfile->section_offsets) of the blockvector 923 and linetable. 924 925 Note that it is possible for end_symtab() to return NULL. In 926 particular, for the DWARF case at least, it will return NULL when 927 it finds a compilation unit that has exactly one DIE, a 928 TAG_compile_unit DIE. This can happen when we link in an object 929 file that was compiled from an empty source file. Returning NULL 930 is probably not the correct thing to do, because then gdb will 931 never know about this empty file (FIXME). */ 932 933 struct symtab * 934 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section) 935 { 936 struct symtab *symtab = NULL; 937 struct blockvector *blockvector; 938 struct subfile *subfile; 939 struct context_stack *cstk; 940 struct subfile *nextsub; 941 942 /* Finish the lexical context of the last function in the file; pop 943 the context stack. */ 944 945 if (context_stack_depth > 0) 946 { 947 cstk = pop_context (); 948 /* Make a block for the local symbols within. */ 949 finish_block (cstk->name, &local_symbols, cstk->old_blocks, 950 cstk->start_addr, end_addr, objfile); 951 952 if (context_stack_depth > 0) 953 { 954 /* This is said to happen with SCO. The old coffread.c 955 code simply emptied the context stack, so we do the 956 same. FIXME: Find out why it is happening. This is not 957 believed to happen in most cases (even for coffread.c); 958 it used to be an abort(). */ 959 complaint (&symfile_complaints, 960 _("Context stack not empty in end_symtab")); 961 context_stack_depth = 0; 962 } 963 } 964 965 /* Reordered executables may have out of order pending blocks; if 966 OBJF_REORDERED is true, then sort the pending blocks. */ 967 if ((objfile->flags & OBJF_REORDERED) && pending_blocks) 968 { 969 unsigned count = 0; 970 struct pending_block *pb; 971 struct block **barray, **bp; 972 struct cleanup *back_to; 973 974 for (pb = pending_blocks; pb != NULL; pb = pb->next) 975 count++; 976 977 barray = xmalloc (sizeof (*barray) * count); 978 back_to = make_cleanup (xfree, barray); 979 980 bp = barray; 981 for (pb = pending_blocks; pb != NULL; pb = pb->next) 982 *bp++ = pb->block; 983 984 qsort (barray, count, sizeof (*barray), block_compar); 985 986 bp = barray; 987 for (pb = pending_blocks; pb != NULL; pb = pb->next) 988 pb->block = *bp++; 989 990 do_cleanups (back_to); 991 } 992 993 /* Cleanup any undefined types that have been left hanging around 994 (this needs to be done before the finish_blocks so that 995 file_symbols is still good). 996 997 Both cleanup_undefined_types and finish_global_stabs are stabs 998 specific, but harmless for other symbol readers, since on gdb 999 startup or when finished reading stabs, the state is set so these 1000 are no-ops. FIXME: Is this handled right in case of QUIT? Can 1001 we make this cleaner? */ 1002 1003 cleanup_undefined_types (objfile); 1004 finish_global_stabs (objfile); 1005 1006 if (pending_blocks == NULL 1007 && file_symbols == NULL 1008 && global_symbols == NULL 1009 && have_line_numbers == 0 1010 && pending_macros == NULL) 1011 { 1012 /* Ignore symtabs that have no functions with real debugging 1013 info. */ 1014 blockvector = NULL; 1015 } 1016 else 1017 { 1018 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the 1019 blockvector. */ 1020 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr, 1021 objfile); 1022 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr, 1023 objfile); 1024 blockvector = make_blockvector (objfile); 1025 } 1026 1027 /* Read the line table if it has to be read separately. */ 1028 if (objfile->sf->sym_read_linetable != NULL) 1029 objfile->sf->sym_read_linetable (); 1030 1031 /* Handle the case where the debug info specifies a different path 1032 for the main source file. It can cause us to lose track of its 1033 line number information. */ 1034 watch_main_source_file_lossage (); 1035 1036 /* Now create the symtab objects proper, one for each subfile. */ 1037 /* (The main file is the last one on the chain.) */ 1038 1039 for (subfile = subfiles; subfile; subfile = nextsub) 1040 { 1041 int linetablesize = 0; 1042 symtab = NULL; 1043 1044 /* If we have blocks of symbols, make a symtab. Otherwise, just 1045 ignore this file and any line number info in it. */ 1046 if (blockvector) 1047 { 1048 if (subfile->line_vector) 1049 { 1050 linetablesize = sizeof (struct linetable) + 1051 subfile->line_vector->nitems * sizeof (struct linetable_entry); 1052 1053 /* Like the pending blocks, the line table may be 1054 scrambled in reordered executables. Sort it if 1055 OBJF_REORDERED is true. */ 1056 if (objfile->flags & OBJF_REORDERED) 1057 qsort (subfile->line_vector->item, 1058 subfile->line_vector->nitems, 1059 sizeof (struct linetable_entry), compare_line_numbers); 1060 } 1061 1062 /* Now, allocate a symbol table. */ 1063 if (subfile->symtab == NULL) 1064 symtab = allocate_symtab (subfile->name, objfile); 1065 else 1066 symtab = subfile->symtab; 1067 1068 /* Fill in its components. */ 1069 symtab->blockvector = blockvector; 1070 symtab->macro_table = pending_macros; 1071 if (subfile->line_vector) 1072 { 1073 /* Reallocate the line table on the symbol obstack */ 1074 symtab->linetable = (struct linetable *) 1075 obstack_alloc (&objfile->objfile_obstack, linetablesize); 1076 memcpy (symtab->linetable, subfile->line_vector, linetablesize); 1077 } 1078 else 1079 { 1080 symtab->linetable = NULL; 1081 } 1082 symtab->block_line_section = section; 1083 if (subfile->dirname) 1084 { 1085 /* Reallocate the dirname on the symbol obstack */ 1086 symtab->dirname = (char *) 1087 obstack_alloc (&objfile->objfile_obstack, 1088 strlen (subfile->dirname) + 1); 1089 strcpy (symtab->dirname, subfile->dirname); 1090 } 1091 else 1092 { 1093 symtab->dirname = NULL; 1094 } 1095 symtab->free_code = free_linetable; 1096 symtab->free_func = NULL; 1097 1098 /* Use whatever language we have been using for this 1099 subfile, not the one that was deduced in allocate_symtab 1100 from the filename. We already did our own deducing when 1101 we created the subfile, and we may have altered our 1102 opinion of what language it is from things we found in 1103 the symbols. */ 1104 symtab->language = subfile->language; 1105 1106 /* Save the debug format string (if any) in the symtab */ 1107 if (subfile->debugformat != NULL) 1108 { 1109 symtab->debugformat = obsavestring (subfile->debugformat, 1110 strlen (subfile->debugformat), 1111 &objfile->objfile_obstack); 1112 } 1113 1114 /* Similarly for the producer. */ 1115 if (subfile->producer != NULL) 1116 symtab->producer = obsavestring (subfile->producer, 1117 strlen (subfile->producer), 1118 &objfile->objfile_obstack); 1119 1120 /* All symtabs for the main file and the subfiles share a 1121 blockvector, so we need to clear primary for everything 1122 but the main file. */ 1123 1124 symtab->primary = 0; 1125 } 1126 else 1127 { 1128 if (subfile->symtab) 1129 { 1130 /* Since we are ignoring that subfile, we also need 1131 to unlink the associated empty symtab that we created. 1132 Otherwise, we can into trouble because various parts 1133 such as the block-vector are uninitialized whereas 1134 the rest of the code assumes that they are. 1135 1136 We can only unlink the symtab because it was allocated 1137 on the objfile obstack. */ 1138 struct symtab *s; 1139 1140 if (objfile->symtabs == subfile->symtab) 1141 objfile->symtabs = objfile->symtabs->next; 1142 else 1143 ALL_OBJFILE_SYMTABS (objfile, s) 1144 if (s->next == subfile->symtab) 1145 { 1146 s->next = s->next->next; 1147 break; 1148 } 1149 subfile->symtab = NULL; 1150 } 1151 } 1152 if (subfile->name != NULL) 1153 { 1154 xfree ((void *) subfile->name); 1155 } 1156 if (subfile->dirname != NULL) 1157 { 1158 xfree ((void *) subfile->dirname); 1159 } 1160 if (subfile->line_vector != NULL) 1161 { 1162 xfree ((void *) subfile->line_vector); 1163 } 1164 if (subfile->debugformat != NULL) 1165 { 1166 xfree ((void *) subfile->debugformat); 1167 } 1168 if (subfile->producer != NULL) 1169 xfree (subfile->producer); 1170 1171 nextsub = subfile->next; 1172 xfree ((void *) subfile); 1173 } 1174 1175 /* Set this for the main source file. */ 1176 if (symtab) 1177 { 1178 symtab->primary = 1; 1179 } 1180 1181 /* Default any symbols without a specified symtab to the primary 1182 symtab. */ 1183 if (blockvector) 1184 { 1185 int block_i; 1186 1187 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++) 1188 { 1189 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i); 1190 struct symbol *sym; 1191 struct dict_iterator iter; 1192 1193 /* Inlined functions may have symbols not in the global or static 1194 symbol lists. */ 1195 if (BLOCK_FUNCTION (block) != NULL) 1196 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL) 1197 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab; 1198 1199 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter); 1200 sym != NULL; 1201 sym = dict_iterator_next (&iter)) 1202 if (SYMBOL_SYMTAB (sym) == NULL) 1203 SYMBOL_SYMTAB (sym) = symtab; 1204 } 1205 } 1206 1207 last_source_file = NULL; 1208 current_subfile = NULL; 1209 pending_macros = NULL; 1210 if (pending_addrmap) 1211 { 1212 obstack_free (&pending_addrmap_obstack, NULL); 1213 pending_addrmap = NULL; 1214 } 1215 1216 return symtab; 1217 } 1218 1219 /* Push a context block. Args are an identifying nesting level 1220 (checkable when you pop it), and the starting PC address of this 1221 context. */ 1222 1223 struct context_stack * 1224 push_context (int desc, CORE_ADDR valu) 1225 { 1226 struct context_stack *new; 1227 1228 if (context_stack_depth == context_stack_size) 1229 { 1230 context_stack_size *= 2; 1231 context_stack = (struct context_stack *) 1232 xrealloc ((char *) context_stack, 1233 (context_stack_size * sizeof (struct context_stack))); 1234 } 1235 1236 new = &context_stack[context_stack_depth++]; 1237 new->depth = desc; 1238 new->locals = local_symbols; 1239 new->params = param_symbols; 1240 new->old_blocks = pending_blocks; 1241 new->start_addr = valu; 1242 new->using_directives = using_directives; 1243 new->name = NULL; 1244 1245 local_symbols = NULL; 1246 param_symbols = NULL; 1247 using_directives = NULL; 1248 1249 return new; 1250 } 1251 1252 /* Pop a context block. Returns the address of the context block just 1253 popped. */ 1254 1255 struct context_stack * 1256 pop_context (void) 1257 { 1258 gdb_assert (context_stack_depth > 0); 1259 return (&context_stack[--context_stack_depth]); 1260 } 1261 1262 1263 1264 /* Compute a small integer hash code for the given name. */ 1265 1266 int 1267 hashname (char *name) 1268 { 1269 return (hash(name,strlen(name)) % HASHSIZE); 1270 } 1271 1272 1273 void 1274 record_debugformat (char *format) 1275 { 1276 current_subfile->debugformat = xstrdup (format); 1277 } 1278 1279 void 1280 record_producer (const char *producer) 1281 { 1282 /* The producer is not always provided in the debugging info. 1283 Do nothing if PRODUCER is NULL. */ 1284 if (producer == NULL) 1285 return; 1286 1287 current_subfile->producer = xstrdup (producer); 1288 } 1289 1290 /* Merge the first symbol list SRCLIST into the second symbol list 1291 TARGETLIST by repeated calls to add_symbol_to_list(). This 1292 procedure "frees" each link of SRCLIST by adding it to the 1293 free_pendings list. Caller must set SRCLIST to a null list after 1294 calling this function. 1295 1296 Void return. */ 1297 1298 void 1299 merge_symbol_lists (struct pending **srclist, struct pending **targetlist) 1300 { 1301 int i; 1302 1303 if (!srclist || !*srclist) 1304 return; 1305 1306 /* Merge in elements from current link. */ 1307 for (i = 0; i < (*srclist)->nsyms; i++) 1308 add_symbol_to_list ((*srclist)->symbol[i], targetlist); 1309 1310 /* Recurse on next. */ 1311 merge_symbol_lists (&(*srclist)->next, targetlist); 1312 1313 /* "Free" the current link. */ 1314 (*srclist)->next = free_pendings; 1315 free_pendings = (*srclist); 1316 } 1317 1318 /* Initialize anything that needs initializing when starting to read a 1319 fresh piece of a symbol file, e.g. reading in the stuff 1320 corresponding to a psymtab. */ 1321 1322 void 1323 buildsym_init (void) 1324 { 1325 free_pendings = NULL; 1326 file_symbols = NULL; 1327 global_symbols = NULL; 1328 pending_blocks = NULL; 1329 pending_macros = NULL; 1330 1331 /* We shouldn't have any address map at this point. */ 1332 gdb_assert (! pending_addrmap); 1333 pending_addrmap_interesting = 0; 1334 } 1335 1336 /* Initialize anything that needs initializing when a completely new 1337 symbol file is specified (not just adding some symbols from another 1338 file, e.g. a shared library). */ 1339 1340 void 1341 buildsym_new_init (void) 1342 { 1343 buildsym_init (); 1344 } 1345