xref: /dflybsd-src/contrib/gdb-7/gdb/buildsym.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
4    2010 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 /* This module provides subroutines used for creating and adding to
22    the symbol table.  These routines are called from various symbol-
23    file-reading routines.
24 
25    Routines to support specific debugging information formats (stabs,
26    DWARF, etc) belong somewhere else. */
27 
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h"		/* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h"		/* For DOSish file names */
41 #include "macrotab.h"
42 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47 
48 /* Ask buildsym.h to define the vars it normally declares `extern'.  */
49 #define	EXTERN
50 /**/
51 #include "buildsym.h"		/* Our own declarations */
52 #undef	EXTERN
53 
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55    questionable--see comment where we call them).  */
56 
57 #include "stabsread.h"
58 
59 /* List of subfiles.  */
60 
61 static struct subfile *subfiles;
62 
63 /* List of free `struct pending' structures for reuse.  */
64 
65 static struct pending *free_pendings;
66 
67 /* Non-zero if symtab has line number info.  This prevents an
68    otherwise empty symtab from being tossed.  */
69 
70 static int have_line_numbers;
71 
72 /* The mutable address map for the compilation unit whose symbols
73    we're currently reading.  The symtabs' shared blockvector will
74    point to a fixed copy of this.  */
75 static struct addrmap *pending_addrmap;
76 
77 /* The obstack on which we allocate pending_addrmap.
78    If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79    initialized (and holds pending_addrmap).  */
80 static struct obstack pending_addrmap_obstack;
81 
82 /* Non-zero if we recorded any ranges in the addrmap that are
83    different from those in the blockvector already.  We set this to
84    zero when we start processing a symfile, and if it's still zero at
85    the end, then we just toss the addrmap.  */
86 static int pending_addrmap_interesting;
87 
88 
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 
91 
92 /* Initial sizes of data structures.  These are realloc'd larger if
93    needed, and realloc'd down to the size actually used, when
94    completed.  */
95 
96 #define	INITIAL_CONTEXT_STACK_SIZE	10
97 #define	INITIAL_LINE_VECTOR_LENGTH	1000
98 
99 
100 /* maintain the lists of symbols and blocks */
101 
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
105 {
106   struct pending *link = list;
107 
108   if (list)
109     {
110       while (link->next) link = link->next;
111       link->next = free_pendings;
112       free_pendings = list;
113     }
114 }
115 
116 /* Add a symbol to one of the lists of symbols.  While we're at it, if
117    we're in the C++ case and don't have full namespace debugging info,
118    check to see if it references an anonymous namespace; if so, add an
119    appropriate using directive.  */
120 
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
123 {
124   struct pending *link;
125 
126   /* If this is an alias for another symbol, don't add it.  */
127   if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128     return;
129 
130   /* We keep PENDINGSIZE symbols in each link of the list. If we
131      don't have a link with room in it, add a new link.  */
132   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
133     {
134       if (free_pendings)
135 	{
136 	  link = free_pendings;
137 	  free_pendings = link->next;
138 	}
139       else
140 	{
141 	  link = (struct pending *) xmalloc (sizeof (struct pending));
142 	}
143 
144       link->next = *listhead;
145       *listhead = link;
146       link->nsyms = 0;
147     }
148 
149   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
150 }
151 
152 /* Find a symbol named NAME on a LIST.  NAME need not be
153    '\0'-terminated; LENGTH is the length of the name.  */
154 
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
157 {
158   int j;
159   char *pp;
160 
161   while (list != NULL)
162     {
163       for (j = list->nsyms; --j >= 0;)
164 	{
165 	  pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 	  if (*pp == *name && strncmp (pp, name, length) == 0
167 	      && pp[length] == '\0')
168 	    {
169 	      return (list->symbol[j]);
170 	    }
171 	}
172       list = list->next;
173     }
174   return (NULL);
175 }
176 
177 /* At end of reading syms, or in case of quit, really free as many
178    `struct pending's as we can easily find. */
179 
180 void
181 really_free_pendings (void *dummy)
182 {
183   struct pending *next, *next1;
184 
185   for (next = free_pendings; next; next = next1)
186     {
187       next1 = next->next;
188       xfree ((void *) next);
189     }
190   free_pendings = NULL;
191 
192   free_pending_blocks ();
193 
194   for (next = file_symbols; next != NULL; next = next1)
195     {
196       next1 = next->next;
197       xfree ((void *) next);
198     }
199   file_symbols = NULL;
200 
201   for (next = global_symbols; next != NULL; next = next1)
202     {
203       next1 = next->next;
204       xfree ((void *) next);
205     }
206   global_symbols = NULL;
207 
208   if (pending_macros)
209     free_macro_table (pending_macros);
210 
211   if (pending_addrmap)
212     {
213       obstack_free (&pending_addrmap_obstack, NULL);
214       pending_addrmap = NULL;
215     }
216 }
217 
218 /* This function is called to discard any pending blocks. */
219 
220 void
221 free_pending_blocks (void)
222 {
223   /* The links are made in the objfile_obstack, so we only need to
224      reset PENDING_BLOCKS.  */
225   pending_blocks = NULL;
226 }
227 
228 /* Take one of the lists of symbols and make a block from it.  Keep
229    the order the symbols have in the list (reversed from the input
230    file).  Put the block on the list of pending blocks.  */
231 
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 	      struct pending_block *old_blocks,
235 	      CORE_ADDR start, CORE_ADDR end,
236 	      struct objfile *objfile)
237 {
238   struct gdbarch *gdbarch = get_objfile_arch (objfile);
239   struct pending *next, *next1;
240   struct block *block;
241   struct pending_block *pblock;
242   struct pending_block *opblock;
243 
244   block = allocate_block (&objfile->objfile_obstack);
245 
246   if (symbol)
247     {
248       BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
249 					       *listhead);
250     }
251   else
252     {
253       BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
254 					       *listhead);
255     }
256 
257   BLOCK_START (block) = start;
258   BLOCK_END (block) = end;
259   /* Superblock filled in when containing block is made */
260   BLOCK_SUPERBLOCK (block) = NULL;
261   BLOCK_NAMESPACE (block) = NULL;
262 
263   /* Put the block in as the value of the symbol that names it.  */
264 
265   if (symbol)
266     {
267       struct type *ftype = SYMBOL_TYPE (symbol);
268       struct dict_iterator iter;
269       SYMBOL_BLOCK_VALUE (symbol) = block;
270       BLOCK_FUNCTION (block) = symbol;
271 
272       if (TYPE_NFIELDS (ftype) <= 0)
273 	{
274 	  /* No parameter type information is recorded with the
275 	     function's type.  Set that from the type of the
276 	     parameter symbols. */
277 	  int nparams = 0, iparams;
278 	  struct symbol *sym;
279 	  ALL_BLOCK_SYMBOLS (block, iter, sym)
280 	    {
281 	      if (SYMBOL_IS_ARGUMENT (sym))
282 		nparams++;
283 	    }
284 	  if (nparams > 0)
285 	    {
286 	      TYPE_NFIELDS (ftype) = nparams;
287 	      TYPE_FIELDS (ftype) = (struct field *)
288 		TYPE_ALLOC (ftype, nparams * sizeof (struct field));
289 
290 	      iparams = 0;
291 	      ALL_BLOCK_SYMBOLS (block, iter, sym)
292 		{
293 		  if (iparams == nparams)
294 		    break;
295 
296 		  if (SYMBOL_IS_ARGUMENT (sym))
297 		    {
298 		      TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
299 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
300 		      iparams++;
301 		    }
302 		}
303 	    }
304 	}
305     }
306   else
307     {
308       BLOCK_FUNCTION (block) = NULL;
309     }
310 
311   /* Now "free" the links of the list, and empty the list.  */
312 
313   for (next = *listhead; next; next = next1)
314     {
315       next1 = next->next;
316       next->next = free_pendings;
317       free_pendings = next;
318     }
319   *listhead = NULL;
320 
321   /* Check to be sure that the blocks have an end address that is
322      greater than starting address */
323 
324   if (BLOCK_END (block) < BLOCK_START (block))
325     {
326       if (symbol)
327 	{
328 	  complaint (&symfile_complaints,
329 		     _("block end address less than block start address in %s (patched it)"),
330 		     SYMBOL_PRINT_NAME (symbol));
331 	}
332       else
333 	{
334 	  complaint (&symfile_complaints,
335 		     _("block end address %s less than block start address %s (patched it)"),
336 		     paddress (gdbarch, BLOCK_END (block)),
337 		     paddress (gdbarch, BLOCK_START (block)));
338 	}
339       /* Better than nothing */
340       BLOCK_END (block) = BLOCK_START (block);
341     }
342 
343   /* Install this block as the superblock of all blocks made since the
344      start of this scope that don't have superblocks yet.  */
345 
346   opblock = NULL;
347   for (pblock = pending_blocks;
348        pblock && pblock != old_blocks;
349        pblock = pblock->next)
350     {
351       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
352 	{
353 	  /* Check to be sure the blocks are nested as we receive
354 	     them. If the compiler/assembler/linker work, this just
355 	     burns a small amount of time.
356 
357 	     Skip blocks which correspond to a function; they're not
358 	     physically nested inside this other blocks, only
359 	     lexically nested.  */
360 	  if (BLOCK_FUNCTION (pblock->block) == NULL
361 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
362 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
363 	    {
364 	      if (symbol)
365 		{
366 		  complaint (&symfile_complaints,
367 			     _("inner block not inside outer block in %s"),
368 			     SYMBOL_PRINT_NAME (symbol));
369 		}
370 	      else
371 		{
372 		  complaint (&symfile_complaints,
373 			     _("inner block (%s-%s) not inside outer block (%s-%s)"),
374 			     paddress (gdbarch, BLOCK_START (pblock->block)),
375 			     paddress (gdbarch, BLOCK_END (pblock->block)),
376 			     paddress (gdbarch, BLOCK_START (block)),
377 			     paddress (gdbarch, BLOCK_END (block)));
378 		}
379 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
380 		BLOCK_START (pblock->block) = BLOCK_START (block);
381 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
382 		BLOCK_END (pblock->block) = BLOCK_END (block);
383 	    }
384 	  BLOCK_SUPERBLOCK (pblock->block) = block;
385 	}
386       opblock = pblock;
387     }
388 
389   block_set_using (block, using_directives, &objfile->objfile_obstack);
390   using_directives = NULL;
391 
392   record_pending_block (objfile, block, opblock);
393 
394   return block;
395 }
396 
397 
398 /* Record BLOCK on the list of all blocks in the file.  Put it after
399    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
400    block in the list after all its subblocks.
401 
402    Allocate the pending block struct in the objfile_obstack to save
403    time.  This wastes a little space.  FIXME: Is it worth it?  */
404 
405 void
406 record_pending_block (struct objfile *objfile, struct block *block,
407 		      struct pending_block *opblock)
408 {
409   struct pending_block *pblock;
410 
411   pblock = (struct pending_block *)
412     obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
413   pblock->block = block;
414   if (opblock)
415     {
416       pblock->next = opblock->next;
417       opblock->next = pblock;
418     }
419   else
420     {
421       pblock->next = pending_blocks;
422       pending_blocks = pblock;
423     }
424 }
425 
426 
427 /* Record that the range of addresses from START to END_INCLUSIVE
428    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
429    addresses must be set already.  You must apply this function to all
430    BLOCK's children before applying it to BLOCK.
431 
432    If a call to this function complicates the picture beyond that
433    already provided by BLOCK_START and BLOCK_END, then we create an
434    address map for the block.  */
435 void
436 record_block_range (struct block *block,
437                     CORE_ADDR start, CORE_ADDR end_inclusive)
438 {
439   /* If this is any different from the range recorded in the block's
440      own BLOCK_START and BLOCK_END, then note that the address map has
441      become interesting.  Note that even if this block doesn't have
442      any "interesting" ranges, some later block might, so we still
443      need to record this block in the addrmap.  */
444   if (start != BLOCK_START (block)
445       || end_inclusive + 1 != BLOCK_END (block))
446     pending_addrmap_interesting = 1;
447 
448   if (! pending_addrmap)
449     {
450       obstack_init (&pending_addrmap_obstack);
451       pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
452     }
453 
454   addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
455 }
456 
457 
458 static struct blockvector *
459 make_blockvector (struct objfile *objfile)
460 {
461   struct pending_block *next;
462   struct blockvector *blockvector;
463   int i;
464 
465   /* Count the length of the list of blocks.  */
466 
467   for (next = pending_blocks, i = 0; next; next = next->next, i++)
468     {;
469     }
470 
471   blockvector = (struct blockvector *)
472     obstack_alloc (&objfile->objfile_obstack,
473 		   (sizeof (struct blockvector)
474 		    + (i - 1) * sizeof (struct block *)));
475 
476   /* Copy the blocks into the blockvector. This is done in reverse
477      order, which happens to put the blocks into the proper order
478      (ascending starting address). finish_block has hair to insert
479      each block into the list after its subblocks in order to make
480      sure this is true.  */
481 
482   BLOCKVECTOR_NBLOCKS (blockvector) = i;
483   for (next = pending_blocks; next; next = next->next)
484     {
485       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
486     }
487 
488   free_pending_blocks ();
489 
490   /* If we needed an address map for this symtab, record it in the
491      blockvector.  */
492   if (pending_addrmap && pending_addrmap_interesting)
493     BLOCKVECTOR_MAP (blockvector)
494       = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
495   else
496     BLOCKVECTOR_MAP (blockvector) = 0;
497 
498   /* Some compilers output blocks in the wrong order, but we depend on
499      their being in the right order so we can binary search. Check the
500      order and moan about it.  */
501   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
502     {
503       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
504 	{
505 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
506 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
507 	    {
508 	      CORE_ADDR start
509 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
510 
511 	      complaint (&symfile_complaints, _("block at %s out of order"),
512 			 hex_string ((LONGEST) start));
513 	    }
514 	}
515     }
516 
517   return (blockvector);
518 }
519 
520 /* Start recording information about source code that came from an
521    included (or otherwise merged-in) source file with a different
522    name.  NAME is the name of the file (cannot be NULL), DIRNAME is
523    the directory in which the file was compiled (or NULL if not known).  */
524 
525 void
526 start_subfile (char *name, char *dirname)
527 {
528   struct subfile *subfile;
529 
530   /* See if this subfile is already known as a subfile of the current
531      main source file.  */
532 
533   for (subfile = subfiles; subfile; subfile = subfile->next)
534     {
535       char *subfile_name;
536 
537       /* If NAME is an absolute path, and this subfile is not, then
538 	 attempt to create an absolute path to compare.  */
539       if (IS_ABSOLUTE_PATH (name)
540 	  && !IS_ABSOLUTE_PATH (subfile->name)
541 	  && subfile->dirname != NULL)
542 	subfile_name = concat (subfile->dirname, SLASH_STRING,
543 			       subfile->name, (char *) NULL);
544       else
545 	subfile_name = subfile->name;
546 
547       if (FILENAME_CMP (subfile_name, name) == 0)
548 	{
549 	  current_subfile = subfile;
550 	  if (subfile_name != subfile->name)
551 	    xfree (subfile_name);
552 	  return;
553 	}
554       if (subfile_name != subfile->name)
555 	xfree (subfile_name);
556     }
557 
558   /* This subfile is not known.  Add an entry for it. Make an entry
559      for this subfile in the list of all subfiles of the current main
560      source file.  */
561 
562   subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
563   memset ((char *) subfile, 0, sizeof (struct subfile));
564   subfile->next = subfiles;
565   subfiles = subfile;
566   current_subfile = subfile;
567 
568   /* Save its name and compilation directory name */
569   subfile->name = (name == NULL) ? NULL : xstrdup (name);
570   subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
571 
572   /* Initialize line-number recording for this subfile.  */
573   subfile->line_vector = NULL;
574 
575   /* Default the source language to whatever can be deduced from the
576      filename.  If nothing can be deduced (such as for a C/C++ include
577      file with a ".h" extension), then inherit whatever language the
578      previous subfile had.  This kludgery is necessary because there
579      is no standard way in some object formats to record the source
580      language.  Also, when symtabs are allocated we try to deduce a
581      language then as well, but it is too late for us to use that
582      information while reading symbols, since symtabs aren't allocated
583      until after all the symbols have been processed for a given
584      source file. */
585 
586   subfile->language = deduce_language_from_filename (subfile->name);
587   if (subfile->language == language_unknown
588       && subfile->next != NULL)
589     {
590       subfile->language = subfile->next->language;
591     }
592 
593   /* Initialize the debug format string to NULL.  We may supply it
594      later via a call to record_debugformat. */
595   subfile->debugformat = NULL;
596 
597   /* Similarly for the producer.  */
598   subfile->producer = NULL;
599 
600   /* If the filename of this subfile ends in .C, then change the
601      language of any pending subfiles from C to C++.  We also accept
602      any other C++ suffixes accepted by deduce_language_from_filename.  */
603   /* Likewise for f2c.  */
604 
605   if (subfile->name)
606     {
607       struct subfile *s;
608       enum language sublang = deduce_language_from_filename (subfile->name);
609 
610       if (sublang == language_cplus || sublang == language_fortran)
611 	for (s = subfiles; s != NULL; s = s->next)
612 	  if (s->language == language_c)
613 	    s->language = sublang;
614     }
615 
616   /* And patch up this file if necessary.  */
617   if (subfile->language == language_c
618       && subfile->next != NULL
619       && (subfile->next->language == language_cplus
620 	  || subfile->next->language == language_fortran))
621     {
622       subfile->language = subfile->next->language;
623     }
624 }
625 
626 /* For stabs readers, the first N_SO symbol is assumed to be the
627    source file name, and the subfile struct is initialized using that
628    assumption.  If another N_SO symbol is later seen, immediately
629    following the first one, then the first one is assumed to be the
630    directory name and the second one is really the source file name.
631 
632    So we have to patch up the subfile struct by moving the old name
633    value to dirname and remembering the new name.  Some sanity
634    checking is performed to ensure that the state of the subfile
635    struct is reasonable and that the old name we are assuming to be a
636    directory name actually is (by checking for a trailing '/'). */
637 
638 void
639 patch_subfile_names (struct subfile *subfile, char *name)
640 {
641   if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
642       && subfile->name[strlen (subfile->name) - 1] == '/')
643     {
644       subfile->dirname = subfile->name;
645       subfile->name = xstrdup (name);
646       last_source_file = name;
647 
648       /* Default the source language to whatever can be deduced from
649          the filename.  If nothing can be deduced (such as for a C/C++
650          include file with a ".h" extension), then inherit whatever
651          language the previous subfile had.  This kludgery is
652          necessary because there is no standard way in some object
653          formats to record the source language.  Also, when symtabs
654          are allocated we try to deduce a language then as well, but
655          it is too late for us to use that information while reading
656          symbols, since symtabs aren't allocated until after all the
657          symbols have been processed for a given source file. */
658 
659       subfile->language = deduce_language_from_filename (subfile->name);
660       if (subfile->language == language_unknown
661 	  && subfile->next != NULL)
662 	{
663 	  subfile->language = subfile->next->language;
664 	}
665     }
666 }
667 
668 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
669    switching source files (different subfiles, as we call them) within
670    one object file, but using a stack rather than in an arbitrary
671    order.  */
672 
673 void
674 push_subfile (void)
675 {
676   struct subfile_stack *tem
677     = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
678 
679   tem->next = subfile_stack;
680   subfile_stack = tem;
681   if (current_subfile == NULL || current_subfile->name == NULL)
682     {
683       internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
684     }
685   tem->name = current_subfile->name;
686 }
687 
688 char *
689 pop_subfile (void)
690 {
691   char *name;
692   struct subfile_stack *link = subfile_stack;
693 
694   if (link == NULL)
695     {
696       internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
697     }
698   name = link->name;
699   subfile_stack = link->next;
700   xfree ((void *) link);
701   return (name);
702 }
703 
704 /* Add a linetable entry for line number LINE and address PC to the
705    line vector for SUBFILE.  */
706 
707 void
708 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
709 {
710   struct linetable_entry *e;
711 
712   /* Ignore the dummy line number in libg.o */
713   if (line == 0xffff)
714     {
715       return;
716     }
717 
718   /* Make sure line vector exists and is big enough.  */
719   if (!subfile->line_vector)
720     {
721       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
722       subfile->line_vector = (struct linetable *)
723 	xmalloc (sizeof (struct linetable)
724 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
725       subfile->line_vector->nitems = 0;
726       have_line_numbers = 1;
727     }
728 
729   if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
730     {
731       subfile->line_vector_length *= 2;
732       subfile->line_vector = (struct linetable *)
733 	xrealloc ((char *) subfile->line_vector,
734 		  (sizeof (struct linetable)
735 		   + (subfile->line_vector_length
736 		      * sizeof (struct linetable_entry))));
737     }
738 
739   /* Normally, we treat lines as unsorted.  But the end of sequence
740      marker is special.  We sort line markers at the same PC by line
741      number, so end of sequence markers (which have line == 0) appear
742      first.  This is right if the marker ends the previous function,
743      and there is no padding before the next function.  But it is
744      wrong if the previous line was empty and we are now marking a
745      switch to a different subfile.  We must leave the end of sequence
746      marker at the end of this group of lines, not sort the empty line
747      to after the marker.  The easiest way to accomplish this is to
748      delete any empty lines from our table, if they are followed by
749      end of sequence markers.  All we lose is the ability to set
750      breakpoints at some lines which contain no instructions
751      anyway.  */
752   if (line == 0 && subfile->line_vector->nitems > 0)
753     {
754       e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
755       while (subfile->line_vector->nitems > 0 && e->pc == pc)
756 	{
757 	  e--;
758 	  subfile->line_vector->nitems--;
759 	}
760     }
761 
762   e = subfile->line_vector->item + subfile->line_vector->nitems++;
763   e->line = line;
764   e->pc = pc;
765 }
766 
767 /* Needed in order to sort line tables from IBM xcoff files.  Sigh!  */
768 
769 static int
770 compare_line_numbers (const void *ln1p, const void *ln2p)
771 {
772   struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
773   struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
774 
775   /* Note: this code does not assume that CORE_ADDRs can fit in ints.
776      Please keep it that way.  */
777   if (ln1->pc < ln2->pc)
778     return -1;
779 
780   if (ln1->pc > ln2->pc)
781     return 1;
782 
783   /* If pc equal, sort by line.  I'm not sure whether this is optimum
784      behavior (see comment at struct linetable in symtab.h).  */
785   return ln1->line - ln2->line;
786 }
787 
788 /* Start a new symtab for a new source file.  Called, for example,
789    when a stabs symbol of type N_SO is seen, or when a DWARF
790    TAG_compile_unit DIE is seen.  It indicates the start of data for
791    one original source file.
792 
793    NAME is the name of the file (cannot be NULL).  DIRNAME is the directory in
794    which the file was compiled (or NULL if not known).  START_ADDR is the
795    lowest address of objects in the file (or 0 if not known).  */
796 
797 void
798 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
799 {
800   last_source_file = name;
801   last_source_start_addr = start_addr;
802   file_symbols = NULL;
803   global_symbols = NULL;
804   within_function = 0;
805   have_line_numbers = 0;
806 
807   /* Context stack is initially empty.  Allocate first one with room
808      for 10 levels; reuse it forever afterward.  */
809   if (context_stack == NULL)
810     {
811       context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
812       context_stack = (struct context_stack *)
813 	xmalloc (context_stack_size * sizeof (struct context_stack));
814     }
815   context_stack_depth = 0;
816 
817   /* We shouldn't have any address map at this point.  */
818   gdb_assert (! pending_addrmap);
819 
820   /* Initialize the list of sub source files with one entry for this
821      file (the top-level source file).  */
822 
823   subfiles = NULL;
824   current_subfile = NULL;
825   start_subfile (name, dirname);
826 }
827 
828 /* Subroutine of end_symtab to simplify it.
829    Look for a subfile that matches the main source file's basename.
830    If there is only one, and if the main source file doesn't have any
831    symbol or line number information, then copy this file's symtab and
832    line_vector to the main source file's subfile and discard the other subfile.
833    This can happen because of a compiler bug or from the user playing games
834    with #line or from things like a distributed build system that manipulates
835    the debug info.  */
836 
837 static void
838 watch_main_source_file_lossage (void)
839 {
840   struct subfile *mainsub, *subfile;
841 
842   /* Find the main source file.
843      This loop could be eliminated if start_symtab saved it for us.  */
844   mainsub = NULL;
845   for (subfile = subfiles; subfile; subfile = subfile->next)
846     {
847       /* The main subfile is guaranteed to be the last one.  */
848       if (subfile->next == NULL)
849 	mainsub = subfile;
850     }
851 
852   /* If the main source file doesn't have any line number or symbol info,
853      look for an alias in another subfile.
854      We have to watch for mainsub == NULL here.  It's a quirk of end_symtab,
855      it can return NULL so there may not be a main subfile.  */
856 
857   if (mainsub
858       && mainsub->line_vector == NULL
859       && mainsub->symtab == NULL)
860     {
861       const char *mainbase = lbasename (mainsub->name);
862       int nr_matches = 0;
863       struct subfile *prevsub;
864       struct subfile *mainsub_alias = NULL;
865       struct subfile *prev_mainsub_alias = NULL;
866 
867       prevsub = NULL;
868       for (subfile = subfiles;
869 	   /* Stop before we get to the last one.  */
870 	   subfile->next;
871 	   subfile = subfile->next)
872 	{
873 	  if (strcmp (lbasename (subfile->name), mainbase) == 0)
874 	    {
875 	      ++nr_matches;
876 	      mainsub_alias = subfile;
877 	      prev_mainsub_alias = prevsub;
878 	    }
879 	  prevsub = subfile;
880 	}
881 
882       if (nr_matches == 1)
883 	{
884 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
885 
886 	  /* Found a match for the main source file.
887 	     Copy its line_vector and symtab to the main subfile
888 	     and then discard it.  */
889 
890 	  mainsub->line_vector = mainsub_alias->line_vector;
891 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
892 	  mainsub->symtab = mainsub_alias->symtab;
893 
894 	  if (prev_mainsub_alias == NULL)
895 	    subfiles = mainsub_alias->next;
896 	  else
897 	    prev_mainsub_alias->next = mainsub_alias->next;
898 	  xfree (mainsub_alias);
899 	}
900     }
901 }
902 
903 /* Helper function for qsort.  Parametes are `struct block *' pointers,
904    function sorts them in descending order by their BLOCK_START.  */
905 
906 static int
907 block_compar (const void *ap, const void *bp)
908 {
909   const struct block *a = *(const struct block **) ap;
910   const struct block *b = *(const struct block **) bp;
911 
912   return ((BLOCK_START (b) > BLOCK_START (a))
913 	  - (BLOCK_START (b) < BLOCK_START (a)));
914 }
915 
916 /* Finish the symbol definitions for one main source file, close off
917    all the lexical contexts for that file (creating struct block's for
918    them), then make the struct symtab for that file and put it in the
919    list of all such.
920 
921    END_ADDR is the address of the end of the file's text.  SECTION is
922    the section number (in objfile->section_offsets) of the blockvector
923    and linetable.
924 
925    Note that it is possible for end_symtab() to return NULL.  In
926    particular, for the DWARF case at least, it will return NULL when
927    it finds a compilation unit that has exactly one DIE, a
928    TAG_compile_unit DIE.  This can happen when we link in an object
929    file that was compiled from an empty source file.  Returning NULL
930    is probably not the correct thing to do, because then gdb will
931    never know about this empty file (FIXME). */
932 
933 struct symtab *
934 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
935 {
936   struct symtab *symtab = NULL;
937   struct blockvector *blockvector;
938   struct subfile *subfile;
939   struct context_stack *cstk;
940   struct subfile *nextsub;
941 
942   /* Finish the lexical context of the last function in the file; pop
943      the context stack.  */
944 
945   if (context_stack_depth > 0)
946     {
947       cstk = pop_context ();
948       /* Make a block for the local symbols within.  */
949       finish_block (cstk->name, &local_symbols, cstk->old_blocks,
950 		    cstk->start_addr, end_addr, objfile);
951 
952       if (context_stack_depth > 0)
953 	{
954 	  /* This is said to happen with SCO.  The old coffread.c
955 	     code simply emptied the context stack, so we do the
956 	     same.  FIXME: Find out why it is happening.  This is not
957 	     believed to happen in most cases (even for coffread.c);
958 	     it used to be an abort().  */
959 	  complaint (&symfile_complaints,
960 	             _("Context stack not empty in end_symtab"));
961 	  context_stack_depth = 0;
962 	}
963     }
964 
965   /* Reordered executables may have out of order pending blocks; if
966      OBJF_REORDERED is true, then sort the pending blocks.  */
967   if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
968     {
969       unsigned count = 0;
970       struct pending_block *pb;
971       struct block **barray, **bp;
972       struct cleanup *back_to;
973 
974       for (pb = pending_blocks; pb != NULL; pb = pb->next)
975 	count++;
976 
977       barray = xmalloc (sizeof (*barray) * count);
978       back_to = make_cleanup (xfree, barray);
979 
980       bp = barray;
981       for (pb = pending_blocks; pb != NULL; pb = pb->next)
982 	*bp++ = pb->block;
983 
984       qsort (barray, count, sizeof (*barray), block_compar);
985 
986       bp = barray;
987       for (pb = pending_blocks; pb != NULL; pb = pb->next)
988 	pb->block = *bp++;
989 
990       do_cleanups (back_to);
991     }
992 
993   /* Cleanup any undefined types that have been left hanging around
994      (this needs to be done before the finish_blocks so that
995      file_symbols is still good).
996 
997      Both cleanup_undefined_types and finish_global_stabs are stabs
998      specific, but harmless for other symbol readers, since on gdb
999      startup or when finished reading stabs, the state is set so these
1000      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
1001      we make this cleaner?  */
1002 
1003   cleanup_undefined_types (objfile);
1004   finish_global_stabs (objfile);
1005 
1006   if (pending_blocks == NULL
1007       && file_symbols == NULL
1008       && global_symbols == NULL
1009       && have_line_numbers == 0
1010       && pending_macros == NULL)
1011     {
1012       /* Ignore symtabs that have no functions with real debugging
1013          info.  */
1014       blockvector = NULL;
1015     }
1016   else
1017     {
1018       /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1019          blockvector.  */
1020       finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
1021 		    objfile);
1022       finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
1023 		    objfile);
1024       blockvector = make_blockvector (objfile);
1025     }
1026 
1027   /* Read the line table if it has to be read separately.  */
1028   if (objfile->sf->sym_read_linetable != NULL)
1029     objfile->sf->sym_read_linetable ();
1030 
1031   /* Handle the case where the debug info specifies a different path
1032      for the main source file.  It can cause us to lose track of its
1033      line number information.  */
1034   watch_main_source_file_lossage ();
1035 
1036   /* Now create the symtab objects proper, one for each subfile.  */
1037   /* (The main file is the last one on the chain.)  */
1038 
1039   for (subfile = subfiles; subfile; subfile = nextsub)
1040     {
1041       int linetablesize = 0;
1042       symtab = NULL;
1043 
1044       /* If we have blocks of symbols, make a symtab. Otherwise, just
1045          ignore this file and any line number info in it.  */
1046       if (blockvector)
1047 	{
1048 	  if (subfile->line_vector)
1049 	    {
1050 	      linetablesize = sizeof (struct linetable) +
1051 	        subfile->line_vector->nitems * sizeof (struct linetable_entry);
1052 
1053 	      /* Like the pending blocks, the line table may be
1054 	         scrambled in reordered executables.  Sort it if
1055 	         OBJF_REORDERED is true.  */
1056 	      if (objfile->flags & OBJF_REORDERED)
1057 		qsort (subfile->line_vector->item,
1058 		       subfile->line_vector->nitems,
1059 		     sizeof (struct linetable_entry), compare_line_numbers);
1060 	    }
1061 
1062 	  /* Now, allocate a symbol table.  */
1063 	  if (subfile->symtab == NULL)
1064 	    symtab = allocate_symtab (subfile->name, objfile);
1065 	  else
1066 	    symtab = subfile->symtab;
1067 
1068 	  /* Fill in its components.  */
1069 	  symtab->blockvector = blockvector;
1070           symtab->macro_table = pending_macros;
1071 	  if (subfile->line_vector)
1072 	    {
1073 	      /* Reallocate the line table on the symbol obstack */
1074 	      symtab->linetable = (struct linetable *)
1075 		obstack_alloc (&objfile->objfile_obstack, linetablesize);
1076 	      memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1077 	    }
1078 	  else
1079 	    {
1080 	      symtab->linetable = NULL;
1081 	    }
1082 	  symtab->block_line_section = section;
1083 	  if (subfile->dirname)
1084 	    {
1085 	      /* Reallocate the dirname on the symbol obstack */
1086 	      symtab->dirname = (char *)
1087 		obstack_alloc (&objfile->objfile_obstack,
1088 			       strlen (subfile->dirname) + 1);
1089 	      strcpy (symtab->dirname, subfile->dirname);
1090 	    }
1091 	  else
1092 	    {
1093 	      symtab->dirname = NULL;
1094 	    }
1095 	  symtab->free_code = free_linetable;
1096 	  symtab->free_func = NULL;
1097 
1098 	  /* Use whatever language we have been using for this
1099 	     subfile, not the one that was deduced in allocate_symtab
1100 	     from the filename.  We already did our own deducing when
1101 	     we created the subfile, and we may have altered our
1102 	     opinion of what language it is from things we found in
1103 	     the symbols. */
1104 	  symtab->language = subfile->language;
1105 
1106 	  /* Save the debug format string (if any) in the symtab */
1107 	  if (subfile->debugformat != NULL)
1108 	    {
1109 	      symtab->debugformat = obsavestring (subfile->debugformat,
1110 					      strlen (subfile->debugformat),
1111 						  &objfile->objfile_obstack);
1112 	    }
1113 
1114 	  /* Similarly for the producer.  */
1115 	  if (subfile->producer != NULL)
1116 	    symtab->producer = obsavestring (subfile->producer,
1117 					     strlen (subfile->producer),
1118 					     &objfile->objfile_obstack);
1119 
1120 	  /* All symtabs for the main file and the subfiles share a
1121 	     blockvector, so we need to clear primary for everything
1122 	     but the main file.  */
1123 
1124 	  symtab->primary = 0;
1125 	}
1126       else
1127         {
1128           if (subfile->symtab)
1129             {
1130               /* Since we are ignoring that subfile, we also need
1131                  to unlink the associated empty symtab that we created.
1132                  Otherwise, we can into trouble because various parts
1133                  such as the block-vector are uninitialized whereas
1134                  the rest of the code assumes that they are.
1135 
1136                  We can only unlink the symtab because it was allocated
1137                  on the objfile obstack.  */
1138               struct symtab *s;
1139 
1140               if (objfile->symtabs == subfile->symtab)
1141                 objfile->symtabs = objfile->symtabs->next;
1142               else
1143                 ALL_OBJFILE_SYMTABS (objfile, s)
1144                   if (s->next == subfile->symtab)
1145                     {
1146                       s->next = s->next->next;
1147                       break;
1148                     }
1149               subfile->symtab = NULL;
1150             }
1151         }
1152       if (subfile->name != NULL)
1153 	{
1154 	  xfree ((void *) subfile->name);
1155 	}
1156       if (subfile->dirname != NULL)
1157 	{
1158 	  xfree ((void *) subfile->dirname);
1159 	}
1160       if (subfile->line_vector != NULL)
1161 	{
1162 	  xfree ((void *) subfile->line_vector);
1163 	}
1164       if (subfile->debugformat != NULL)
1165 	{
1166 	  xfree ((void *) subfile->debugformat);
1167 	}
1168       if (subfile->producer != NULL)
1169 	xfree (subfile->producer);
1170 
1171       nextsub = subfile->next;
1172       xfree ((void *) subfile);
1173     }
1174 
1175   /* Set this for the main source file.  */
1176   if (symtab)
1177     {
1178       symtab->primary = 1;
1179     }
1180 
1181   /* Default any symbols without a specified symtab to the primary
1182      symtab.  */
1183   if (blockvector)
1184     {
1185       int block_i;
1186 
1187       for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1188 	{
1189 	  struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1190 	  struct symbol *sym;
1191 	  struct dict_iterator iter;
1192 
1193 	  /* Inlined functions may have symbols not in the global or static
1194 	     symbol lists.  */
1195 	  if (BLOCK_FUNCTION (block) != NULL)
1196 	    if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1197 	      SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1198 
1199 	  for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1200 	       sym != NULL;
1201 	       sym = dict_iterator_next (&iter))
1202 	    if (SYMBOL_SYMTAB (sym) == NULL)
1203 	      SYMBOL_SYMTAB (sym) = symtab;
1204 	}
1205     }
1206 
1207   last_source_file = NULL;
1208   current_subfile = NULL;
1209   pending_macros = NULL;
1210   if (pending_addrmap)
1211     {
1212       obstack_free (&pending_addrmap_obstack, NULL);
1213       pending_addrmap = NULL;
1214     }
1215 
1216   return symtab;
1217 }
1218 
1219 /* Push a context block.  Args are an identifying nesting level
1220    (checkable when you pop it), and the starting PC address of this
1221    context.  */
1222 
1223 struct context_stack *
1224 push_context (int desc, CORE_ADDR valu)
1225 {
1226   struct context_stack *new;
1227 
1228   if (context_stack_depth == context_stack_size)
1229     {
1230       context_stack_size *= 2;
1231       context_stack = (struct context_stack *)
1232 	xrealloc ((char *) context_stack,
1233 		  (context_stack_size * sizeof (struct context_stack)));
1234     }
1235 
1236   new = &context_stack[context_stack_depth++];
1237   new->depth = desc;
1238   new->locals = local_symbols;
1239   new->params = param_symbols;
1240   new->old_blocks = pending_blocks;
1241   new->start_addr = valu;
1242   new->using_directives = using_directives;
1243   new->name = NULL;
1244 
1245   local_symbols = NULL;
1246   param_symbols = NULL;
1247   using_directives = NULL;
1248 
1249   return new;
1250 }
1251 
1252 /* Pop a context block.  Returns the address of the context block just
1253    popped. */
1254 
1255 struct context_stack *
1256 pop_context (void)
1257 {
1258   gdb_assert (context_stack_depth > 0);
1259   return (&context_stack[--context_stack_depth]);
1260 }
1261 
1262 
1263 
1264 /* Compute a small integer hash code for the given name. */
1265 
1266 int
1267 hashname (char *name)
1268 {
1269     return (hash(name,strlen(name)) % HASHSIZE);
1270 }
1271 
1272 
1273 void
1274 record_debugformat (char *format)
1275 {
1276   current_subfile->debugformat = xstrdup (format);
1277 }
1278 
1279 void
1280 record_producer (const char *producer)
1281 {
1282   /* The producer is not always provided in the debugging info.
1283      Do nothing if PRODUCER is NULL.  */
1284   if (producer == NULL)
1285     return;
1286 
1287   current_subfile->producer = xstrdup (producer);
1288 }
1289 
1290 /* Merge the first symbol list SRCLIST into the second symbol list
1291    TARGETLIST by repeated calls to add_symbol_to_list().  This
1292    procedure "frees" each link of SRCLIST by adding it to the
1293    free_pendings list.  Caller must set SRCLIST to a null list after
1294    calling this function.
1295 
1296    Void return. */
1297 
1298 void
1299 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1300 {
1301   int i;
1302 
1303   if (!srclist || !*srclist)
1304     return;
1305 
1306   /* Merge in elements from current link.  */
1307   for (i = 0; i < (*srclist)->nsyms; i++)
1308     add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1309 
1310   /* Recurse on next.  */
1311   merge_symbol_lists (&(*srclist)->next, targetlist);
1312 
1313   /* "Free" the current link.  */
1314   (*srclist)->next = free_pendings;
1315   free_pendings = (*srclist);
1316 }
1317 
1318 /* Initialize anything that needs initializing when starting to read a
1319    fresh piece of a symbol file, e.g. reading in the stuff
1320    corresponding to a psymtab.  */
1321 
1322 void
1323 buildsym_init (void)
1324 {
1325   free_pendings = NULL;
1326   file_symbols = NULL;
1327   global_symbols = NULL;
1328   pending_blocks = NULL;
1329   pending_macros = NULL;
1330 
1331   /* We shouldn't have any address map at this point.  */
1332   gdb_assert (! pending_addrmap);
1333   pending_addrmap_interesting = 0;
1334 }
1335 
1336 /* Initialize anything that needs initializing when a completely new
1337    symbol file is specified (not just adding some symbols from another
1338    file, e.g. a shared library).  */
1339 
1340 void
1341 buildsym_new_init (void)
1342 {
1343   buildsym_init ();
1344 }
1345