1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C) 2 3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, 4 2009 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 22 #include "defs.h" 23 #include <stdio.h> 24 #include "gdb_string.h" 25 #include <ctype.h> 26 #include <stdarg.h> 27 #include "demangle.h" 28 #include "gdb_regex.h" 29 #include "frame.h" 30 #include "symtab.h" 31 #include "gdbtypes.h" 32 #include "gdbcmd.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 #include "language.h" 36 #include "c-lang.h" 37 #include "inferior.h" 38 #include "symfile.h" 39 #include "objfiles.h" 40 #include "breakpoint.h" 41 #include "gdbcore.h" 42 #include "hashtab.h" 43 #include "gdb_obstack.h" 44 #include "ada-lang.h" 45 #include "completer.h" 46 #include "gdb_stat.h" 47 #ifdef UI_OUT 48 #include "ui-out.h" 49 #endif 50 #include "block.h" 51 #include "infcall.h" 52 #include "dictionary.h" 53 #include "exceptions.h" 54 #include "annotate.h" 55 #include "valprint.h" 56 #include "source.h" 57 #include "observer.h" 58 #include "vec.h" 59 #include "stack.h" 60 61 #include "psymtab.h" 62 63 /* Define whether or not the C operator '/' truncates towards zero for 64 differently signed operands (truncation direction is undefined in C). 65 Copied from valarith.c. */ 66 67 #ifndef TRUNCATION_TOWARDS_ZERO 68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) 69 #endif 70 71 static void modify_general_field (struct type *, char *, LONGEST, int, int); 72 73 static struct type *desc_base_type (struct type *); 74 75 static struct type *desc_bounds_type (struct type *); 76 77 static struct value *desc_bounds (struct value *); 78 79 static int fat_pntr_bounds_bitpos (struct type *); 80 81 static int fat_pntr_bounds_bitsize (struct type *); 82 83 static struct type *desc_data_target_type (struct type *); 84 85 static struct value *desc_data (struct value *); 86 87 static int fat_pntr_data_bitpos (struct type *); 88 89 static int fat_pntr_data_bitsize (struct type *); 90 91 static struct value *desc_one_bound (struct value *, int, int); 92 93 static int desc_bound_bitpos (struct type *, int, int); 94 95 static int desc_bound_bitsize (struct type *, int, int); 96 97 static struct type *desc_index_type (struct type *, int); 98 99 static int desc_arity (struct type *); 100 101 static int ada_type_match (struct type *, struct type *, int); 102 103 static int ada_args_match (struct symbol *, struct value **, int); 104 105 static struct value *ensure_lval (struct value *, 106 struct gdbarch *, CORE_ADDR *); 107 108 static struct value *make_array_descriptor (struct type *, struct value *, 109 struct gdbarch *, CORE_ADDR *); 110 111 static void ada_add_block_symbols (struct obstack *, 112 struct block *, const char *, 113 domain_enum, struct objfile *, int); 114 115 static int is_nonfunction (struct ada_symbol_info *, int); 116 117 static void add_defn_to_vec (struct obstack *, struct symbol *, 118 struct block *); 119 120 static int num_defns_collected (struct obstack *); 121 122 static struct ada_symbol_info *defns_collected (struct obstack *, int); 123 124 static struct value *resolve_subexp (struct expression **, int *, int, 125 struct type *); 126 127 static void replace_operator_with_call (struct expression **, int, int, int, 128 struct symbol *, struct block *); 129 130 static int possible_user_operator_p (enum exp_opcode, struct value **); 131 132 static char *ada_op_name (enum exp_opcode); 133 134 static const char *ada_decoded_op_name (enum exp_opcode); 135 136 static int numeric_type_p (struct type *); 137 138 static int integer_type_p (struct type *); 139 140 static int scalar_type_p (struct type *); 141 142 static int discrete_type_p (struct type *); 143 144 static enum ada_renaming_category parse_old_style_renaming (struct type *, 145 const char **, 146 int *, 147 const char **); 148 149 static struct symbol *find_old_style_renaming_symbol (const char *, 150 struct block *); 151 152 static struct type *ada_lookup_struct_elt_type (struct type *, char *, 153 int, int, int *); 154 155 static struct value *evaluate_subexp_type (struct expression *, int *); 156 157 static struct type *ada_find_parallel_type_with_name (struct type *, 158 const char *); 159 160 static int is_dynamic_field (struct type *, int); 161 162 static struct type *to_fixed_variant_branch_type (struct type *, 163 const gdb_byte *, 164 CORE_ADDR, struct value *); 165 166 static struct type *to_fixed_array_type (struct type *, struct value *, int); 167 168 static struct type *to_fixed_range_type (struct type *, struct value *); 169 170 static struct type *to_static_fixed_type (struct type *); 171 static struct type *static_unwrap_type (struct type *type); 172 173 static struct value *unwrap_value (struct value *); 174 175 static struct type *constrained_packed_array_type (struct type *, long *); 176 177 static struct type *decode_constrained_packed_array_type (struct type *); 178 179 static long decode_packed_array_bitsize (struct type *); 180 181 static struct value *decode_constrained_packed_array (struct value *); 182 183 static int ada_is_packed_array_type (struct type *); 184 185 static int ada_is_unconstrained_packed_array_type (struct type *); 186 187 static struct value *value_subscript_packed (struct value *, int, 188 struct value **); 189 190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); 191 192 static struct value *coerce_unspec_val_to_type (struct value *, 193 struct type *); 194 195 static struct value *get_var_value (char *, char *); 196 197 static int lesseq_defined_than (struct symbol *, struct symbol *); 198 199 static int equiv_types (struct type *, struct type *); 200 201 static int is_name_suffix (const char *); 202 203 static int wild_match (const char *, int, const char *); 204 205 static struct value *ada_coerce_ref (struct value *); 206 207 static LONGEST pos_atr (struct value *); 208 209 static struct value *value_pos_atr (struct type *, struct value *); 210 211 static struct value *value_val_atr (struct type *, struct value *); 212 213 static struct symbol *standard_lookup (const char *, const struct block *, 214 domain_enum); 215 216 static struct value *ada_search_struct_field (char *, struct value *, int, 217 struct type *); 218 219 static struct value *ada_value_primitive_field (struct value *, int, int, 220 struct type *); 221 222 static int find_struct_field (char *, struct type *, int, 223 struct type **, int *, int *, int *, int *); 224 225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, 226 struct value *); 227 228 static int ada_resolve_function (struct ada_symbol_info *, int, 229 struct value **, int, const char *, 230 struct type *); 231 232 static struct value *ada_coerce_to_simple_array (struct value *); 233 234 static int ada_is_direct_array_type (struct type *); 235 236 static void ada_language_arch_info (struct gdbarch *, 237 struct language_arch_info *); 238 239 static void check_size (const struct type *); 240 241 static struct value *ada_index_struct_field (int, struct value *, int, 242 struct type *); 243 244 static struct value *assign_aggregate (struct value *, struct value *, 245 struct expression *, int *, enum noside); 246 247 static void aggregate_assign_from_choices (struct value *, struct value *, 248 struct expression *, 249 int *, LONGEST *, int *, 250 int, LONGEST, LONGEST); 251 252 static void aggregate_assign_positional (struct value *, struct value *, 253 struct expression *, 254 int *, LONGEST *, int *, int, 255 LONGEST, LONGEST); 256 257 258 static void aggregate_assign_others (struct value *, struct value *, 259 struct expression *, 260 int *, LONGEST *, int, LONGEST, LONGEST); 261 262 263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); 264 265 266 static struct value *ada_evaluate_subexp (struct type *, struct expression *, 267 int *, enum noside); 268 269 static void ada_forward_operator_length (struct expression *, int, int *, 270 int *); 271 272 273 274 /* Maximum-sized dynamic type. */ 275 static unsigned int varsize_limit; 276 277 /* FIXME: brobecker/2003-09-17: No longer a const because it is 278 returned by a function that does not return a const char *. */ 279 static char *ada_completer_word_break_characters = 280 #ifdef VMS 281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; 282 #else 283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; 284 #endif 285 286 /* The name of the symbol to use to get the name of the main subprogram. */ 287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] 288 = "__gnat_ada_main_program_name"; 289 290 /* Limit on the number of warnings to raise per expression evaluation. */ 291 static int warning_limit = 2; 292 293 /* Number of warning messages issued; reset to 0 by cleanups after 294 expression evaluation. */ 295 static int warnings_issued = 0; 296 297 static const char *known_runtime_file_name_patterns[] = { 298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL 299 }; 300 301 static const char *known_auxiliary_function_name_patterns[] = { 302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL 303 }; 304 305 /* Space for allocating results of ada_lookup_symbol_list. */ 306 static struct obstack symbol_list_obstack; 307 308 /* Inferior-specific data. */ 309 310 /* Per-inferior data for this module. */ 311 312 struct ada_inferior_data 313 { 314 /* The ada__tags__type_specific_data type, which is used when decoding 315 tagged types. With older versions of GNAT, this type was directly 316 accessible through a component ("tsd") in the object tag. But this 317 is no longer the case, so we cache it for each inferior. */ 318 struct type *tsd_type; 319 }; 320 321 /* Our key to this module's inferior data. */ 322 static const struct inferior_data *ada_inferior_data; 323 324 /* A cleanup routine for our inferior data. */ 325 static void 326 ada_inferior_data_cleanup (struct inferior *inf, void *arg) 327 { 328 struct ada_inferior_data *data; 329 330 data = inferior_data (inf, ada_inferior_data); 331 if (data != NULL) 332 xfree (data); 333 } 334 335 /* Return our inferior data for the given inferior (INF). 336 337 This function always returns a valid pointer to an allocated 338 ada_inferior_data structure. If INF's inferior data has not 339 been previously set, this functions creates a new one with all 340 fields set to zero, sets INF's inferior to it, and then returns 341 a pointer to that newly allocated ada_inferior_data. */ 342 343 static struct ada_inferior_data * 344 get_ada_inferior_data (struct inferior *inf) 345 { 346 struct ada_inferior_data *data; 347 348 data = inferior_data (inf, ada_inferior_data); 349 if (data == NULL) 350 { 351 data = XZALLOC (struct ada_inferior_data); 352 set_inferior_data (inf, ada_inferior_data, data); 353 } 354 355 return data; 356 } 357 358 /* Perform all necessary cleanups regarding our module's inferior data 359 that is required after the inferior INF just exited. */ 360 361 static void 362 ada_inferior_exit (struct inferior *inf) 363 { 364 ada_inferior_data_cleanup (inf, NULL); 365 set_inferior_data (inf, ada_inferior_data, NULL); 366 } 367 368 /* Utilities */ 369 370 /* Given DECODED_NAME a string holding a symbol name in its 371 decoded form (ie using the Ada dotted notation), returns 372 its unqualified name. */ 373 374 static const char * 375 ada_unqualified_name (const char *decoded_name) 376 { 377 const char *result = strrchr (decoded_name, '.'); 378 379 if (result != NULL) 380 result++; /* Skip the dot... */ 381 else 382 result = decoded_name; 383 384 return result; 385 } 386 387 /* Return a string starting with '<', followed by STR, and '>'. 388 The result is good until the next call. */ 389 390 static char * 391 add_angle_brackets (const char *str) 392 { 393 static char *result = NULL; 394 395 xfree (result); 396 result = xstrprintf ("<%s>", str); 397 return result; 398 } 399 400 static char * 401 ada_get_gdb_completer_word_break_characters (void) 402 { 403 return ada_completer_word_break_characters; 404 } 405 406 /* Print an array element index using the Ada syntax. */ 407 408 static void 409 ada_print_array_index (struct value *index_value, struct ui_file *stream, 410 const struct value_print_options *options) 411 { 412 LA_VALUE_PRINT (index_value, stream, options); 413 fprintf_filtered (stream, " => "); 414 } 415 416 /* Assuming VECT points to an array of *SIZE objects of size 417 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, 418 updating *SIZE as necessary and returning the (new) array. */ 419 420 void * 421 grow_vect (void *vect, size_t *size, size_t min_size, int element_size) 422 { 423 if (*size < min_size) 424 { 425 *size *= 2; 426 if (*size < min_size) 427 *size = min_size; 428 vect = xrealloc (vect, *size * element_size); 429 } 430 return vect; 431 } 432 433 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing 434 suffix of FIELD_NAME beginning "___". */ 435 436 static int 437 field_name_match (const char *field_name, const char *target) 438 { 439 int len = strlen (target); 440 441 return 442 (strncmp (field_name, target, len) == 0 443 && (field_name[len] == '\0' 444 || (strncmp (field_name + len, "___", 3) == 0 445 && strcmp (field_name + strlen (field_name) - 6, 446 "___XVN") != 0))); 447 } 448 449 450 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to 451 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, 452 and return its index. This function also handles fields whose name 453 have ___ suffixes because the compiler sometimes alters their name 454 by adding such a suffix to represent fields with certain constraints. 455 If the field could not be found, return a negative number if 456 MAYBE_MISSING is set. Otherwise raise an error. */ 457 458 int 459 ada_get_field_index (const struct type *type, const char *field_name, 460 int maybe_missing) 461 { 462 int fieldno; 463 struct type *struct_type = check_typedef ((struct type *) type); 464 465 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) 466 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) 467 return fieldno; 468 469 if (!maybe_missing) 470 error (_("Unable to find field %s in struct %s. Aborting"), 471 field_name, TYPE_NAME (struct_type)); 472 473 return -1; 474 } 475 476 /* The length of the prefix of NAME prior to any "___" suffix. */ 477 478 int 479 ada_name_prefix_len (const char *name) 480 { 481 if (name == NULL) 482 return 0; 483 else 484 { 485 const char *p = strstr (name, "___"); 486 487 if (p == NULL) 488 return strlen (name); 489 else 490 return p - name; 491 } 492 } 493 494 /* Return non-zero if SUFFIX is a suffix of STR. 495 Return zero if STR is null. */ 496 497 static int 498 is_suffix (const char *str, const char *suffix) 499 { 500 int len1, len2; 501 502 if (str == NULL) 503 return 0; 504 len1 = strlen (str); 505 len2 = strlen (suffix); 506 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); 507 } 508 509 /* The contents of value VAL, treated as a value of type TYPE. The 510 result is an lval in memory if VAL is. */ 511 512 static struct value * 513 coerce_unspec_val_to_type (struct value *val, struct type *type) 514 { 515 type = ada_check_typedef (type); 516 if (value_type (val) == type) 517 return val; 518 else 519 { 520 struct value *result; 521 522 /* Make sure that the object size is not unreasonable before 523 trying to allocate some memory for it. */ 524 check_size (type); 525 526 result = allocate_value (type); 527 set_value_component_location (result, val); 528 set_value_bitsize (result, value_bitsize (val)); 529 set_value_bitpos (result, value_bitpos (val)); 530 set_value_address (result, value_address (val)); 531 if (value_lazy (val) 532 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) 533 set_value_lazy (result, 1); 534 else 535 memcpy (value_contents_raw (result), value_contents (val), 536 TYPE_LENGTH (type)); 537 return result; 538 } 539 } 540 541 static const gdb_byte * 542 cond_offset_host (const gdb_byte *valaddr, long offset) 543 { 544 if (valaddr == NULL) 545 return NULL; 546 else 547 return valaddr + offset; 548 } 549 550 static CORE_ADDR 551 cond_offset_target (CORE_ADDR address, long offset) 552 { 553 if (address == 0) 554 return 0; 555 else 556 return address + offset; 557 } 558 559 /* Issue a warning (as for the definition of warning in utils.c, but 560 with exactly one argument rather than ...), unless the limit on the 561 number of warnings has passed during the evaluation of the current 562 expression. */ 563 564 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior 565 provided by "complaint". */ 566 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); 567 568 static void 569 lim_warning (const char *format, ...) 570 { 571 va_list args; 572 573 va_start (args, format); 574 warnings_issued += 1; 575 if (warnings_issued <= warning_limit) 576 vwarning (format, args); 577 578 va_end (args); 579 } 580 581 /* Issue an error if the size of an object of type T is unreasonable, 582 i.e. if it would be a bad idea to allocate a value of this type in 583 GDB. */ 584 585 static void 586 check_size (const struct type *type) 587 { 588 if (TYPE_LENGTH (type) > varsize_limit) 589 error (_("object size is larger than varsize-limit")); 590 } 591 592 /* Maximum value of a SIZE-byte signed integer type. */ 593 static LONGEST 594 max_of_size (int size) 595 { 596 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); 597 598 return top_bit | (top_bit - 1); 599 } 600 601 /* Minimum value of a SIZE-byte signed integer type. */ 602 static LONGEST 603 min_of_size (int size) 604 { 605 return -max_of_size (size) - 1; 606 } 607 608 /* Maximum value of a SIZE-byte unsigned integer type. */ 609 static ULONGEST 610 umax_of_size (int size) 611 { 612 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); 613 614 return top_bit | (top_bit - 1); 615 } 616 617 /* Maximum value of integral type T, as a signed quantity. */ 618 static LONGEST 619 max_of_type (struct type *t) 620 { 621 if (TYPE_UNSIGNED (t)) 622 return (LONGEST) umax_of_size (TYPE_LENGTH (t)); 623 else 624 return max_of_size (TYPE_LENGTH (t)); 625 } 626 627 /* Minimum value of integral type T, as a signed quantity. */ 628 static LONGEST 629 min_of_type (struct type *t) 630 { 631 if (TYPE_UNSIGNED (t)) 632 return 0; 633 else 634 return min_of_size (TYPE_LENGTH (t)); 635 } 636 637 /* The largest value in the domain of TYPE, a discrete type, as an integer. */ 638 LONGEST 639 ada_discrete_type_high_bound (struct type *type) 640 { 641 switch (TYPE_CODE (type)) 642 { 643 case TYPE_CODE_RANGE: 644 return TYPE_HIGH_BOUND (type); 645 case TYPE_CODE_ENUM: 646 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); 647 case TYPE_CODE_BOOL: 648 return 1; 649 case TYPE_CODE_CHAR: 650 case TYPE_CODE_INT: 651 return max_of_type (type); 652 default: 653 error (_("Unexpected type in ada_discrete_type_high_bound.")); 654 } 655 } 656 657 /* The largest value in the domain of TYPE, a discrete type, as an integer. */ 658 LONGEST 659 ada_discrete_type_low_bound (struct type *type) 660 { 661 switch (TYPE_CODE (type)) 662 { 663 case TYPE_CODE_RANGE: 664 return TYPE_LOW_BOUND (type); 665 case TYPE_CODE_ENUM: 666 return TYPE_FIELD_BITPOS (type, 0); 667 case TYPE_CODE_BOOL: 668 return 0; 669 case TYPE_CODE_CHAR: 670 case TYPE_CODE_INT: 671 return min_of_type (type); 672 default: 673 error (_("Unexpected type in ada_discrete_type_low_bound.")); 674 } 675 } 676 677 /* The identity on non-range types. For range types, the underlying 678 non-range scalar type. */ 679 680 static struct type * 681 base_type (struct type *type) 682 { 683 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) 684 { 685 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) 686 return type; 687 type = TYPE_TARGET_TYPE (type); 688 } 689 return type; 690 } 691 692 693 /* Language Selection */ 694 695 /* If the main program is in Ada, return language_ada, otherwise return LANG 696 (the main program is in Ada iif the adainit symbol is found). */ 697 698 enum language 699 ada_update_initial_language (enum language lang) 700 { 701 if (lookup_minimal_symbol ("adainit", (const char *) NULL, 702 (struct objfile *) NULL) != NULL) 703 return language_ada; 704 705 return lang; 706 } 707 708 /* If the main procedure is written in Ada, then return its name. 709 The result is good until the next call. Return NULL if the main 710 procedure doesn't appear to be in Ada. */ 711 712 char * 713 ada_main_name (void) 714 { 715 struct minimal_symbol *msym; 716 static char *main_program_name = NULL; 717 718 /* For Ada, the name of the main procedure is stored in a specific 719 string constant, generated by the binder. Look for that symbol, 720 extract its address, and then read that string. If we didn't find 721 that string, then most probably the main procedure is not written 722 in Ada. */ 723 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); 724 725 if (msym != NULL) 726 { 727 CORE_ADDR main_program_name_addr; 728 int err_code; 729 730 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); 731 if (main_program_name_addr == 0) 732 error (_("Invalid address for Ada main program name.")); 733 734 xfree (main_program_name); 735 target_read_string (main_program_name_addr, &main_program_name, 736 1024, &err_code); 737 738 if (err_code != 0) 739 return NULL; 740 return main_program_name; 741 } 742 743 /* The main procedure doesn't seem to be in Ada. */ 744 return NULL; 745 } 746 747 /* Symbols */ 748 749 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair 750 of NULLs. */ 751 752 const struct ada_opname_map ada_opname_table[] = { 753 {"Oadd", "\"+\"", BINOP_ADD}, 754 {"Osubtract", "\"-\"", BINOP_SUB}, 755 {"Omultiply", "\"*\"", BINOP_MUL}, 756 {"Odivide", "\"/\"", BINOP_DIV}, 757 {"Omod", "\"mod\"", BINOP_MOD}, 758 {"Orem", "\"rem\"", BINOP_REM}, 759 {"Oexpon", "\"**\"", BINOP_EXP}, 760 {"Olt", "\"<\"", BINOP_LESS}, 761 {"Ole", "\"<=\"", BINOP_LEQ}, 762 {"Ogt", "\">\"", BINOP_GTR}, 763 {"Oge", "\">=\"", BINOP_GEQ}, 764 {"Oeq", "\"=\"", BINOP_EQUAL}, 765 {"One", "\"/=\"", BINOP_NOTEQUAL}, 766 {"Oand", "\"and\"", BINOP_BITWISE_AND}, 767 {"Oor", "\"or\"", BINOP_BITWISE_IOR}, 768 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, 769 {"Oconcat", "\"&\"", BINOP_CONCAT}, 770 {"Oabs", "\"abs\"", UNOP_ABS}, 771 {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, 772 {"Oadd", "\"+\"", UNOP_PLUS}, 773 {"Osubtract", "\"-\"", UNOP_NEG}, 774 {NULL, NULL} 775 }; 776 777 /* The "encoded" form of DECODED, according to GNAT conventions. 778 The result is valid until the next call to ada_encode. */ 779 780 char * 781 ada_encode (const char *decoded) 782 { 783 static char *encoding_buffer = NULL; 784 static size_t encoding_buffer_size = 0; 785 const char *p; 786 int k; 787 788 if (decoded == NULL) 789 return NULL; 790 791 GROW_VECT (encoding_buffer, encoding_buffer_size, 792 2 * strlen (decoded) + 10); 793 794 k = 0; 795 for (p = decoded; *p != '\0'; p += 1) 796 { 797 if (*p == '.') 798 { 799 encoding_buffer[k] = encoding_buffer[k + 1] = '_'; 800 k += 2; 801 } 802 else if (*p == '"') 803 { 804 const struct ada_opname_map *mapping; 805 806 for (mapping = ada_opname_table; 807 mapping->encoded != NULL 808 && strncmp (mapping->decoded, p, 809 strlen (mapping->decoded)) != 0; mapping += 1) 810 ; 811 if (mapping->encoded == NULL) 812 error (_("invalid Ada operator name: %s"), p); 813 strcpy (encoding_buffer + k, mapping->encoded); 814 k += strlen (mapping->encoded); 815 break; 816 } 817 else 818 { 819 encoding_buffer[k] = *p; 820 k += 1; 821 } 822 } 823 824 encoding_buffer[k] = '\0'; 825 return encoding_buffer; 826 } 827 828 /* Return NAME folded to lower case, or, if surrounded by single 829 quotes, unfolded, but with the quotes stripped away. Result good 830 to next call. */ 831 832 char * 833 ada_fold_name (const char *name) 834 { 835 static char *fold_buffer = NULL; 836 static size_t fold_buffer_size = 0; 837 838 int len = strlen (name); 839 GROW_VECT (fold_buffer, fold_buffer_size, len + 1); 840 841 if (name[0] == '\'') 842 { 843 strncpy (fold_buffer, name + 1, len - 2); 844 fold_buffer[len - 2] = '\000'; 845 } 846 else 847 { 848 int i; 849 850 for (i = 0; i <= len; i += 1) 851 fold_buffer[i] = tolower (name[i]); 852 } 853 854 return fold_buffer; 855 } 856 857 /* Return nonzero if C is either a digit or a lowercase alphabet character. */ 858 859 static int 860 is_lower_alphanum (const char c) 861 { 862 return (isdigit (c) || (isalpha (c) && islower (c))); 863 } 864 865 /* Remove either of these suffixes: 866 . .{DIGIT}+ 867 . ${DIGIT}+ 868 . ___{DIGIT}+ 869 . __{DIGIT}+. 870 These are suffixes introduced by the compiler for entities such as 871 nested subprogram for instance, in order to avoid name clashes. 872 They do not serve any purpose for the debugger. */ 873 874 static void 875 ada_remove_trailing_digits (const char *encoded, int *len) 876 { 877 if (*len > 1 && isdigit (encoded[*len - 1])) 878 { 879 int i = *len - 2; 880 881 while (i > 0 && isdigit (encoded[i])) 882 i--; 883 if (i >= 0 && encoded[i] == '.') 884 *len = i; 885 else if (i >= 0 && encoded[i] == '$') 886 *len = i; 887 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) 888 *len = i - 2; 889 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) 890 *len = i - 1; 891 } 892 } 893 894 /* Remove the suffix introduced by the compiler for protected object 895 subprograms. */ 896 897 static void 898 ada_remove_po_subprogram_suffix (const char *encoded, int *len) 899 { 900 /* Remove trailing N. */ 901 902 /* Protected entry subprograms are broken into two 903 separate subprograms: The first one is unprotected, and has 904 a 'N' suffix; the second is the protected version, and has 905 the 'P' suffix. The second calls the first one after handling 906 the protection. Since the P subprograms are internally generated, 907 we leave these names undecoded, giving the user a clue that this 908 entity is internal. */ 909 910 if (*len > 1 911 && encoded[*len - 1] == 'N' 912 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) 913 *len = *len - 1; 914 } 915 916 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ 917 918 static void 919 ada_remove_Xbn_suffix (const char *encoded, int *len) 920 { 921 int i = *len - 1; 922 923 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) 924 i--; 925 926 if (encoded[i] != 'X') 927 return; 928 929 if (i == 0) 930 return; 931 932 if (isalnum (encoded[i-1])) 933 *len = i; 934 } 935 936 /* If ENCODED follows the GNAT entity encoding conventions, then return 937 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is 938 replaced by ENCODED. 939 940 The resulting string is valid until the next call of ada_decode. 941 If the string is unchanged by decoding, the original string pointer 942 is returned. */ 943 944 const char * 945 ada_decode (const char *encoded) 946 { 947 int i, j; 948 int len0; 949 const char *p; 950 char *decoded; 951 int at_start_name; 952 static char *decoding_buffer = NULL; 953 static size_t decoding_buffer_size = 0; 954 955 /* The name of the Ada main procedure starts with "_ada_". 956 This prefix is not part of the decoded name, so skip this part 957 if we see this prefix. */ 958 if (strncmp (encoded, "_ada_", 5) == 0) 959 encoded += 5; 960 961 /* If the name starts with '_', then it is not a properly encoded 962 name, so do not attempt to decode it. Similarly, if the name 963 starts with '<', the name should not be decoded. */ 964 if (encoded[0] == '_' || encoded[0] == '<') 965 goto Suppress; 966 967 len0 = strlen (encoded); 968 969 ada_remove_trailing_digits (encoded, &len0); 970 ada_remove_po_subprogram_suffix (encoded, &len0); 971 972 /* Remove the ___X.* suffix if present. Do not forget to verify that 973 the suffix is located before the current "end" of ENCODED. We want 974 to avoid re-matching parts of ENCODED that have previously been 975 marked as discarded (by decrementing LEN0). */ 976 p = strstr (encoded, "___"); 977 if (p != NULL && p - encoded < len0 - 3) 978 { 979 if (p[3] == 'X') 980 len0 = p - encoded; 981 else 982 goto Suppress; 983 } 984 985 /* Remove any trailing TKB suffix. It tells us that this symbol 986 is for the body of a task, but that information does not actually 987 appear in the decoded name. */ 988 989 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) 990 len0 -= 3; 991 992 /* Remove any trailing TB suffix. The TB suffix is slightly different 993 from the TKB suffix because it is used for non-anonymous task 994 bodies. */ 995 996 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) 997 len0 -= 2; 998 999 /* Remove trailing "B" suffixes. */ 1000 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ 1001 1002 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) 1003 len0 -= 1; 1004 1005 /* Make decoded big enough for possible expansion by operator name. */ 1006 1007 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); 1008 decoded = decoding_buffer; 1009 1010 /* Remove trailing __{digit}+ or trailing ${digit}+. */ 1011 1012 if (len0 > 1 && isdigit (encoded[len0 - 1])) 1013 { 1014 i = len0 - 2; 1015 while ((i >= 0 && isdigit (encoded[i])) 1016 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) 1017 i -= 1; 1018 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') 1019 len0 = i - 1; 1020 else if (encoded[i] == '$') 1021 len0 = i; 1022 } 1023 1024 /* The first few characters that are not alphabetic are not part 1025 of any encoding we use, so we can copy them over verbatim. */ 1026 1027 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) 1028 decoded[j] = encoded[i]; 1029 1030 at_start_name = 1; 1031 while (i < len0) 1032 { 1033 /* Is this a symbol function? */ 1034 if (at_start_name && encoded[i] == 'O') 1035 { 1036 int k; 1037 1038 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) 1039 { 1040 int op_len = strlen (ada_opname_table[k].encoded); 1041 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, 1042 op_len - 1) == 0) 1043 && !isalnum (encoded[i + op_len])) 1044 { 1045 strcpy (decoded + j, ada_opname_table[k].decoded); 1046 at_start_name = 0; 1047 i += op_len; 1048 j += strlen (ada_opname_table[k].decoded); 1049 break; 1050 } 1051 } 1052 if (ada_opname_table[k].encoded != NULL) 1053 continue; 1054 } 1055 at_start_name = 0; 1056 1057 /* Replace "TK__" with "__", which will eventually be translated 1058 into "." (just below). */ 1059 1060 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) 1061 i += 2; 1062 1063 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually 1064 be translated into "." (just below). These are internal names 1065 generated for anonymous blocks inside which our symbol is nested. */ 1066 1067 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' 1068 && encoded [i+2] == 'B' && encoded [i+3] == '_' 1069 && isdigit (encoded [i+4])) 1070 { 1071 int k = i + 5; 1072 1073 while (k < len0 && isdigit (encoded[k])) 1074 k++; /* Skip any extra digit. */ 1075 1076 /* Double-check that the "__B_{DIGITS}+" sequence we found 1077 is indeed followed by "__". */ 1078 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') 1079 i = k; 1080 } 1081 1082 /* Remove _E{DIGITS}+[sb] */ 1083 1084 /* Just as for protected object subprograms, there are 2 categories 1085 of subprograms created by the compiler for each entry. The first 1086 one implements the actual entry code, and has a suffix following 1087 the convention above; the second one implements the barrier and 1088 uses the same convention as above, except that the 'E' is replaced 1089 by a 'B'. 1090 1091 Just as above, we do not decode the name of barrier functions 1092 to give the user a clue that the code he is debugging has been 1093 internally generated. */ 1094 1095 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' 1096 && isdigit (encoded[i+2])) 1097 { 1098 int k = i + 3; 1099 1100 while (k < len0 && isdigit (encoded[k])) 1101 k++; 1102 1103 if (k < len0 1104 && (encoded[k] == 'b' || encoded[k] == 's')) 1105 { 1106 k++; 1107 /* Just as an extra precaution, make sure that if this 1108 suffix is followed by anything else, it is a '_'. 1109 Otherwise, we matched this sequence by accident. */ 1110 if (k == len0 1111 || (k < len0 && encoded[k] == '_')) 1112 i = k; 1113 } 1114 } 1115 1116 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by 1117 the GNAT front-end in protected object subprograms. */ 1118 1119 if (i < len0 + 3 1120 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') 1121 { 1122 /* Backtrack a bit up until we reach either the begining of 1123 the encoded name, or "__". Make sure that we only find 1124 digits or lowercase characters. */ 1125 const char *ptr = encoded + i - 1; 1126 1127 while (ptr >= encoded && is_lower_alphanum (ptr[0])) 1128 ptr--; 1129 if (ptr < encoded 1130 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) 1131 i++; 1132 } 1133 1134 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) 1135 { 1136 /* This is a X[bn]* sequence not separated from the previous 1137 part of the name with a non-alpha-numeric character (in other 1138 words, immediately following an alpha-numeric character), then 1139 verify that it is placed at the end of the encoded name. If 1140 not, then the encoding is not valid and we should abort the 1141 decoding. Otherwise, just skip it, it is used in body-nested 1142 package names. */ 1143 do 1144 i += 1; 1145 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); 1146 if (i < len0) 1147 goto Suppress; 1148 } 1149 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') 1150 { 1151 /* Replace '__' by '.'. */ 1152 decoded[j] = '.'; 1153 at_start_name = 1; 1154 i += 2; 1155 j += 1; 1156 } 1157 else 1158 { 1159 /* It's a character part of the decoded name, so just copy it 1160 over. */ 1161 decoded[j] = encoded[i]; 1162 i += 1; 1163 j += 1; 1164 } 1165 } 1166 decoded[j] = '\000'; 1167 1168 /* Decoded names should never contain any uppercase character. 1169 Double-check this, and abort the decoding if we find one. */ 1170 1171 for (i = 0; decoded[i] != '\0'; i += 1) 1172 if (isupper (decoded[i]) || decoded[i] == ' ') 1173 goto Suppress; 1174 1175 if (strcmp (decoded, encoded) == 0) 1176 return encoded; 1177 else 1178 return decoded; 1179 1180 Suppress: 1181 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); 1182 decoded = decoding_buffer; 1183 if (encoded[0] == '<') 1184 strcpy (decoded, encoded); 1185 else 1186 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); 1187 return decoded; 1188 1189 } 1190 1191 /* Table for keeping permanent unique copies of decoded names. Once 1192 allocated, names in this table are never released. While this is a 1193 storage leak, it should not be significant unless there are massive 1194 changes in the set of decoded names in successive versions of a 1195 symbol table loaded during a single session. */ 1196 static struct htab *decoded_names_store; 1197 1198 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it 1199 in the language-specific part of GSYMBOL, if it has not been 1200 previously computed. Tries to save the decoded name in the same 1201 obstack as GSYMBOL, if possible, and otherwise on the heap (so that, 1202 in any case, the decoded symbol has a lifetime at least that of 1203 GSYMBOL). 1204 The GSYMBOL parameter is "mutable" in the C++ sense: logically 1205 const, but nevertheless modified to a semantically equivalent form 1206 when a decoded name is cached in it. 1207 */ 1208 1209 char * 1210 ada_decode_symbol (const struct general_symbol_info *gsymbol) 1211 { 1212 char **resultp = 1213 (char **) &gsymbol->language_specific.cplus_specific.demangled_name; 1214 1215 if (*resultp == NULL) 1216 { 1217 const char *decoded = ada_decode (gsymbol->name); 1218 1219 if (gsymbol->obj_section != NULL) 1220 { 1221 struct objfile *objf = gsymbol->obj_section->objfile; 1222 1223 *resultp = obsavestring (decoded, strlen (decoded), 1224 &objf->objfile_obstack); 1225 } 1226 /* Sometimes, we can't find a corresponding objfile, in which 1227 case, we put the result on the heap. Since we only decode 1228 when needed, we hope this usually does not cause a 1229 significant memory leak (FIXME). */ 1230 if (*resultp == NULL) 1231 { 1232 char **slot = (char **) htab_find_slot (decoded_names_store, 1233 decoded, INSERT); 1234 1235 if (*slot == NULL) 1236 *slot = xstrdup (decoded); 1237 *resultp = *slot; 1238 } 1239 } 1240 1241 return *resultp; 1242 } 1243 1244 static char * 1245 ada_la_decode (const char *encoded, int options) 1246 { 1247 return xstrdup (ada_decode (encoded)); 1248 } 1249 1250 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing 1251 suffixes that encode debugging information or leading _ada_ on 1252 SYM_NAME (see is_name_suffix commentary for the debugging 1253 information that is ignored). If WILD, then NAME need only match a 1254 suffix of SYM_NAME minus the same suffixes. Also returns 0 if 1255 either argument is NULL. */ 1256 1257 static int 1258 ada_match_name (const char *sym_name, const char *name, int wild) 1259 { 1260 if (sym_name == NULL || name == NULL) 1261 return 0; 1262 else if (wild) 1263 return wild_match (name, strlen (name), sym_name); 1264 else 1265 { 1266 int len_name = strlen (name); 1267 1268 return (strncmp (sym_name, name, len_name) == 0 1269 && is_name_suffix (sym_name + len_name)) 1270 || (strncmp (sym_name, "_ada_", 5) == 0 1271 && strncmp (sym_name + 5, name, len_name) == 0 1272 && is_name_suffix (sym_name + len_name + 5)); 1273 } 1274 } 1275 1276 1277 /* Arrays */ 1278 1279 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure 1280 generated by the GNAT compiler to describe the index type used 1281 for each dimension of an array, check whether it follows the latest 1282 known encoding. If not, fix it up to conform to the latest encoding. 1283 Otherwise, do nothing. This function also does nothing if 1284 INDEX_DESC_TYPE is NULL. 1285 1286 The GNAT encoding used to describle the array index type evolved a bit. 1287 Initially, the information would be provided through the name of each 1288 field of the structure type only, while the type of these fields was 1289 described as unspecified and irrelevant. The debugger was then expected 1290 to perform a global type lookup using the name of that field in order 1291 to get access to the full index type description. Because these global 1292 lookups can be very expensive, the encoding was later enhanced to make 1293 the global lookup unnecessary by defining the field type as being 1294 the full index type description. 1295 1296 The purpose of this routine is to allow us to support older versions 1297 of the compiler by detecting the use of the older encoding, and by 1298 fixing up the INDEX_DESC_TYPE to follow the new one (at this point, 1299 we essentially replace each field's meaningless type by the associated 1300 index subtype). */ 1301 1302 void 1303 ada_fixup_array_indexes_type (struct type *index_desc_type) 1304 { 1305 int i; 1306 1307 if (index_desc_type == NULL) 1308 return; 1309 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); 1310 1311 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient 1312 to check one field only, no need to check them all). If not, return 1313 now. 1314 1315 If our INDEX_DESC_TYPE was generated using the older encoding, 1316 the field type should be a meaningless integer type whose name 1317 is not equal to the field name. */ 1318 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL 1319 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), 1320 TYPE_FIELD_NAME (index_desc_type, 0)) == 0) 1321 return; 1322 1323 /* Fixup each field of INDEX_DESC_TYPE. */ 1324 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) 1325 { 1326 char *name = TYPE_FIELD_NAME (index_desc_type, i); 1327 struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); 1328 1329 if (raw_type) 1330 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; 1331 } 1332 } 1333 1334 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ 1335 1336 static char *bound_name[] = { 1337 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", 1338 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" 1339 }; 1340 1341 /* Maximum number of array dimensions we are prepared to handle. */ 1342 1343 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) 1344 1345 /* Like modify_field, but allows bitpos > wordlength. */ 1346 1347 static void 1348 modify_general_field (struct type *type, char *addr, 1349 LONGEST fieldval, int bitpos, int bitsize) 1350 { 1351 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize); 1352 } 1353 1354 1355 /* The desc_* routines return primitive portions of array descriptors 1356 (fat pointers). */ 1357 1358 /* The descriptor or array type, if any, indicated by TYPE; removes 1359 level of indirection, if needed. */ 1360 1361 static struct type * 1362 desc_base_type (struct type *type) 1363 { 1364 if (type == NULL) 1365 return NULL; 1366 type = ada_check_typedef (type); 1367 if (type != NULL 1368 && (TYPE_CODE (type) == TYPE_CODE_PTR 1369 || TYPE_CODE (type) == TYPE_CODE_REF)) 1370 return ada_check_typedef (TYPE_TARGET_TYPE (type)); 1371 else 1372 return type; 1373 } 1374 1375 /* True iff TYPE indicates a "thin" array pointer type. */ 1376 1377 static int 1378 is_thin_pntr (struct type *type) 1379 { 1380 return 1381 is_suffix (ada_type_name (desc_base_type (type)), "___XUT") 1382 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); 1383 } 1384 1385 /* The descriptor type for thin pointer type TYPE. */ 1386 1387 static struct type * 1388 thin_descriptor_type (struct type *type) 1389 { 1390 struct type *base_type = desc_base_type (type); 1391 1392 if (base_type == NULL) 1393 return NULL; 1394 if (is_suffix (ada_type_name (base_type), "___XVE")) 1395 return base_type; 1396 else 1397 { 1398 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); 1399 1400 if (alt_type == NULL) 1401 return base_type; 1402 else 1403 return alt_type; 1404 } 1405 } 1406 1407 /* A pointer to the array data for thin-pointer value VAL. */ 1408 1409 static struct value * 1410 thin_data_pntr (struct value *val) 1411 { 1412 struct type *type = value_type (val); 1413 struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); 1414 1415 data_type = lookup_pointer_type (data_type); 1416 1417 if (TYPE_CODE (type) == TYPE_CODE_PTR) 1418 return value_cast (data_type, value_copy (val)); 1419 else 1420 return value_from_longest (data_type, value_address (val)); 1421 } 1422 1423 /* True iff TYPE indicates a "thick" array pointer type. */ 1424 1425 static int 1426 is_thick_pntr (struct type *type) 1427 { 1428 type = desc_base_type (type); 1429 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT 1430 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); 1431 } 1432 1433 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a 1434 pointer to one, the type of its bounds data; otherwise, NULL. */ 1435 1436 static struct type * 1437 desc_bounds_type (struct type *type) 1438 { 1439 struct type *r; 1440 1441 type = desc_base_type (type); 1442 1443 if (type == NULL) 1444 return NULL; 1445 else if (is_thin_pntr (type)) 1446 { 1447 type = thin_descriptor_type (type); 1448 if (type == NULL) 1449 return NULL; 1450 r = lookup_struct_elt_type (type, "BOUNDS", 1); 1451 if (r != NULL) 1452 return ada_check_typedef (r); 1453 } 1454 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 1455 { 1456 r = lookup_struct_elt_type (type, "P_BOUNDS", 1); 1457 if (r != NULL) 1458 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); 1459 } 1460 return NULL; 1461 } 1462 1463 /* If ARR is an array descriptor (fat or thin pointer), or pointer to 1464 one, a pointer to its bounds data. Otherwise NULL. */ 1465 1466 static struct value * 1467 desc_bounds (struct value *arr) 1468 { 1469 struct type *type = ada_check_typedef (value_type (arr)); 1470 1471 if (is_thin_pntr (type)) 1472 { 1473 struct type *bounds_type = 1474 desc_bounds_type (thin_descriptor_type (type)); 1475 LONGEST addr; 1476 1477 if (bounds_type == NULL) 1478 error (_("Bad GNAT array descriptor")); 1479 1480 /* NOTE: The following calculation is not really kosher, but 1481 since desc_type is an XVE-encoded type (and shouldn't be), 1482 the correct calculation is a real pain. FIXME (and fix GCC). */ 1483 if (TYPE_CODE (type) == TYPE_CODE_PTR) 1484 addr = value_as_long (arr); 1485 else 1486 addr = value_address (arr); 1487 1488 return 1489 value_from_longest (lookup_pointer_type (bounds_type), 1490 addr - TYPE_LENGTH (bounds_type)); 1491 } 1492 1493 else if (is_thick_pntr (type)) 1494 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, 1495 _("Bad GNAT array descriptor")); 1496 else 1497 return NULL; 1498 } 1499 1500 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1501 position of the field containing the address of the bounds data. */ 1502 1503 static int 1504 fat_pntr_bounds_bitpos (struct type *type) 1505 { 1506 return TYPE_FIELD_BITPOS (desc_base_type (type), 1); 1507 } 1508 1509 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1510 size of the field containing the address of the bounds data. */ 1511 1512 static int 1513 fat_pntr_bounds_bitsize (struct type *type) 1514 { 1515 type = desc_base_type (type); 1516 1517 if (TYPE_FIELD_BITSIZE (type, 1) > 0) 1518 return TYPE_FIELD_BITSIZE (type, 1); 1519 else 1520 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); 1521 } 1522 1523 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a 1524 pointer to one, the type of its array data (a array-with-no-bounds type); 1525 otherwise, NULL. Use ada_type_of_array to get an array type with bounds 1526 data. */ 1527 1528 static struct type * 1529 desc_data_target_type (struct type *type) 1530 { 1531 type = desc_base_type (type); 1532 1533 /* NOTE: The following is bogus; see comment in desc_bounds. */ 1534 if (is_thin_pntr (type)) 1535 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); 1536 else if (is_thick_pntr (type)) 1537 { 1538 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); 1539 1540 if (data_type 1541 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) 1542 return TYPE_TARGET_TYPE (data_type); 1543 } 1544 1545 return NULL; 1546 } 1547 1548 /* If ARR is an array descriptor (fat or thin pointer), a pointer to 1549 its array data. */ 1550 1551 static struct value * 1552 desc_data (struct value *arr) 1553 { 1554 struct type *type = value_type (arr); 1555 1556 if (is_thin_pntr (type)) 1557 return thin_data_pntr (arr); 1558 else if (is_thick_pntr (type)) 1559 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, 1560 _("Bad GNAT array descriptor")); 1561 else 1562 return NULL; 1563 } 1564 1565 1566 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1567 position of the field containing the address of the data. */ 1568 1569 static int 1570 fat_pntr_data_bitpos (struct type *type) 1571 { 1572 return TYPE_FIELD_BITPOS (desc_base_type (type), 0); 1573 } 1574 1575 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1576 size of the field containing the address of the data. */ 1577 1578 static int 1579 fat_pntr_data_bitsize (struct type *type) 1580 { 1581 type = desc_base_type (type); 1582 1583 if (TYPE_FIELD_BITSIZE (type, 0) > 0) 1584 return TYPE_FIELD_BITSIZE (type, 0); 1585 else 1586 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); 1587 } 1588 1589 /* If BOUNDS is an array-bounds structure (or pointer to one), return 1590 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1591 bound, if WHICH is 1. The first bound is I=1. */ 1592 1593 static struct value * 1594 desc_one_bound (struct value *bounds, int i, int which) 1595 { 1596 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, 1597 _("Bad GNAT array descriptor bounds")); 1598 } 1599 1600 /* If BOUNDS is an array-bounds structure type, return the bit position 1601 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1602 bound, if WHICH is 1. The first bound is I=1. */ 1603 1604 static int 1605 desc_bound_bitpos (struct type *type, int i, int which) 1606 { 1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); 1608 } 1609 1610 /* If BOUNDS is an array-bounds structure type, return the bit field size 1611 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1612 bound, if WHICH is 1. The first bound is I=1. */ 1613 1614 static int 1615 desc_bound_bitsize (struct type *type, int i, int which) 1616 { 1617 type = desc_base_type (type); 1618 1619 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) 1620 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); 1621 else 1622 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); 1623 } 1624 1625 /* If TYPE is the type of an array-bounds structure, the type of its 1626 Ith bound (numbering from 1). Otherwise, NULL. */ 1627 1628 static struct type * 1629 desc_index_type (struct type *type, int i) 1630 { 1631 type = desc_base_type (type); 1632 1633 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 1634 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); 1635 else 1636 return NULL; 1637 } 1638 1639 /* The number of index positions in the array-bounds type TYPE. 1640 Return 0 if TYPE is NULL. */ 1641 1642 static int 1643 desc_arity (struct type *type) 1644 { 1645 type = desc_base_type (type); 1646 1647 if (type != NULL) 1648 return TYPE_NFIELDS (type) / 2; 1649 return 0; 1650 } 1651 1652 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or 1653 an array descriptor type (representing an unconstrained array 1654 type). */ 1655 1656 static int 1657 ada_is_direct_array_type (struct type *type) 1658 { 1659 if (type == NULL) 1660 return 0; 1661 type = ada_check_typedef (type); 1662 return (TYPE_CODE (type) == TYPE_CODE_ARRAY 1663 || ada_is_array_descriptor_type (type)); 1664 } 1665 1666 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer 1667 * to one. */ 1668 1669 static int 1670 ada_is_array_type (struct type *type) 1671 { 1672 while (type != NULL 1673 && (TYPE_CODE (type) == TYPE_CODE_PTR 1674 || TYPE_CODE (type) == TYPE_CODE_REF)) 1675 type = TYPE_TARGET_TYPE (type); 1676 return ada_is_direct_array_type (type); 1677 } 1678 1679 /* Non-zero iff TYPE is a simple array type or pointer to one. */ 1680 1681 int 1682 ada_is_simple_array_type (struct type *type) 1683 { 1684 if (type == NULL) 1685 return 0; 1686 type = ada_check_typedef (type); 1687 return (TYPE_CODE (type) == TYPE_CODE_ARRAY 1688 || (TYPE_CODE (type) == TYPE_CODE_PTR 1689 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); 1690 } 1691 1692 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ 1693 1694 int 1695 ada_is_array_descriptor_type (struct type *type) 1696 { 1697 struct type *data_type = desc_data_target_type (type); 1698 1699 if (type == NULL) 1700 return 0; 1701 type = ada_check_typedef (type); 1702 return (data_type != NULL 1703 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY 1704 && desc_arity (desc_bounds_type (type)) > 0); 1705 } 1706 1707 /* Non-zero iff type is a partially mal-formed GNAT array 1708 descriptor. FIXME: This is to compensate for some problems with 1709 debugging output from GNAT. Re-examine periodically to see if it 1710 is still needed. */ 1711 1712 int 1713 ada_is_bogus_array_descriptor (struct type *type) 1714 { 1715 return 1716 type != NULL 1717 && TYPE_CODE (type) == TYPE_CODE_STRUCT 1718 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL 1719 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) 1720 && !ada_is_array_descriptor_type (type); 1721 } 1722 1723 1724 /* If ARR has a record type in the form of a standard GNAT array descriptor, 1725 (fat pointer) returns the type of the array data described---specifically, 1726 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled 1727 in from the descriptor; otherwise, they are left unspecified. If 1728 the ARR denotes a null array descriptor and BOUNDS is non-zero, 1729 returns NULL. The result is simply the type of ARR if ARR is not 1730 a descriptor. */ 1731 struct type * 1732 ada_type_of_array (struct value *arr, int bounds) 1733 { 1734 if (ada_is_constrained_packed_array_type (value_type (arr))) 1735 return decode_constrained_packed_array_type (value_type (arr)); 1736 1737 if (!ada_is_array_descriptor_type (value_type (arr))) 1738 return value_type (arr); 1739 1740 if (!bounds) 1741 { 1742 struct type *array_type = 1743 ada_check_typedef (desc_data_target_type (value_type (arr))); 1744 1745 if (ada_is_unconstrained_packed_array_type (value_type (arr))) 1746 TYPE_FIELD_BITSIZE (array_type, 0) = 1747 decode_packed_array_bitsize (value_type (arr)); 1748 1749 return array_type; 1750 } 1751 else 1752 { 1753 struct type *elt_type; 1754 int arity; 1755 struct value *descriptor; 1756 1757 elt_type = ada_array_element_type (value_type (arr), -1); 1758 arity = ada_array_arity (value_type (arr)); 1759 1760 if (elt_type == NULL || arity == 0) 1761 return ada_check_typedef (value_type (arr)); 1762 1763 descriptor = desc_bounds (arr); 1764 if (value_as_long (descriptor) == 0) 1765 return NULL; 1766 while (arity > 0) 1767 { 1768 struct type *range_type = alloc_type_copy (value_type (arr)); 1769 struct type *array_type = alloc_type_copy (value_type (arr)); 1770 struct value *low = desc_one_bound (descriptor, arity, 0); 1771 struct value *high = desc_one_bound (descriptor, arity, 1); 1772 1773 arity -= 1; 1774 create_range_type (range_type, value_type (low), 1775 longest_to_int (value_as_long (low)), 1776 longest_to_int (value_as_long (high))); 1777 elt_type = create_array_type (array_type, elt_type, range_type); 1778 1779 if (ada_is_unconstrained_packed_array_type (value_type (arr))) 1780 TYPE_FIELD_BITSIZE (elt_type, 0) = 1781 decode_packed_array_bitsize (value_type (arr)); 1782 } 1783 1784 return lookup_pointer_type (elt_type); 1785 } 1786 } 1787 1788 /* If ARR does not represent an array, returns ARR unchanged. 1789 Otherwise, returns either a standard GDB array with bounds set 1790 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard 1791 GDB array. Returns NULL if ARR is a null fat pointer. */ 1792 1793 struct value * 1794 ada_coerce_to_simple_array_ptr (struct value *arr) 1795 { 1796 if (ada_is_array_descriptor_type (value_type (arr))) 1797 { 1798 struct type *arrType = ada_type_of_array (arr, 1); 1799 1800 if (arrType == NULL) 1801 return NULL; 1802 return value_cast (arrType, value_copy (desc_data (arr))); 1803 } 1804 else if (ada_is_constrained_packed_array_type (value_type (arr))) 1805 return decode_constrained_packed_array (arr); 1806 else 1807 return arr; 1808 } 1809 1810 /* If ARR does not represent an array, returns ARR unchanged. 1811 Otherwise, returns a standard GDB array describing ARR (which may 1812 be ARR itself if it already is in the proper form). */ 1813 1814 static struct value * 1815 ada_coerce_to_simple_array (struct value *arr) 1816 { 1817 if (ada_is_array_descriptor_type (value_type (arr))) 1818 { 1819 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); 1820 1821 if (arrVal == NULL) 1822 error (_("Bounds unavailable for null array pointer.")); 1823 check_size (TYPE_TARGET_TYPE (value_type (arrVal))); 1824 return value_ind (arrVal); 1825 } 1826 else if (ada_is_constrained_packed_array_type (value_type (arr))) 1827 return decode_constrained_packed_array (arr); 1828 else 1829 return arr; 1830 } 1831 1832 /* If TYPE represents a GNAT array type, return it translated to an 1833 ordinary GDB array type (possibly with BITSIZE fields indicating 1834 packing). For other types, is the identity. */ 1835 1836 struct type * 1837 ada_coerce_to_simple_array_type (struct type *type) 1838 { 1839 if (ada_is_constrained_packed_array_type (type)) 1840 return decode_constrained_packed_array_type (type); 1841 1842 if (ada_is_array_descriptor_type (type)) 1843 return ada_check_typedef (desc_data_target_type (type)); 1844 1845 return type; 1846 } 1847 1848 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ 1849 1850 static int 1851 ada_is_packed_array_type (struct type *type) 1852 { 1853 if (type == NULL) 1854 return 0; 1855 type = desc_base_type (type); 1856 type = ada_check_typedef (type); 1857 return 1858 ada_type_name (type) != NULL 1859 && strstr (ada_type_name (type), "___XP") != NULL; 1860 } 1861 1862 /* Non-zero iff TYPE represents a standard GNAT constrained 1863 packed-array type. */ 1864 1865 int 1866 ada_is_constrained_packed_array_type (struct type *type) 1867 { 1868 return ada_is_packed_array_type (type) 1869 && !ada_is_array_descriptor_type (type); 1870 } 1871 1872 /* Non-zero iff TYPE represents an array descriptor for a 1873 unconstrained packed-array type. */ 1874 1875 static int 1876 ada_is_unconstrained_packed_array_type (struct type *type) 1877 { 1878 return ada_is_packed_array_type (type) 1879 && ada_is_array_descriptor_type (type); 1880 } 1881 1882 /* Given that TYPE encodes a packed array type (constrained or unconstrained), 1883 return the size of its elements in bits. */ 1884 1885 static long 1886 decode_packed_array_bitsize (struct type *type) 1887 { 1888 char *raw_name = ada_type_name (ada_check_typedef (type)); 1889 char *tail; 1890 long bits; 1891 1892 if (!raw_name) 1893 raw_name = ada_type_name (desc_base_type (type)); 1894 1895 if (!raw_name) 1896 return 0; 1897 1898 tail = strstr (raw_name, "___XP"); 1899 1900 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) 1901 { 1902 lim_warning 1903 (_("could not understand bit size information on packed array")); 1904 return 0; 1905 } 1906 1907 return bits; 1908 } 1909 1910 /* Given that TYPE is a standard GDB array type with all bounds filled 1911 in, and that the element size of its ultimate scalar constituents 1912 (that is, either its elements, or, if it is an array of arrays, its 1913 elements' elements, etc.) is *ELT_BITS, return an identical type, 1914 but with the bit sizes of its elements (and those of any 1915 constituent arrays) recorded in the BITSIZE components of its 1916 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size 1917 in bits. */ 1918 1919 static struct type * 1920 constrained_packed_array_type (struct type *type, long *elt_bits) 1921 { 1922 struct type *new_elt_type; 1923 struct type *new_type; 1924 LONGEST low_bound, high_bound; 1925 1926 type = ada_check_typedef (type); 1927 if (TYPE_CODE (type) != TYPE_CODE_ARRAY) 1928 return type; 1929 1930 new_type = alloc_type_copy (type); 1931 new_elt_type = 1932 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), 1933 elt_bits); 1934 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); 1935 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; 1936 TYPE_NAME (new_type) = ada_type_name (type); 1937 1938 if (get_discrete_bounds (TYPE_INDEX_TYPE (type), 1939 &low_bound, &high_bound) < 0) 1940 low_bound = high_bound = 0; 1941 if (high_bound < low_bound) 1942 *elt_bits = TYPE_LENGTH (new_type) = 0; 1943 else 1944 { 1945 *elt_bits *= (high_bound - low_bound + 1); 1946 TYPE_LENGTH (new_type) = 1947 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 1948 } 1949 1950 TYPE_FIXED_INSTANCE (new_type) = 1; 1951 return new_type; 1952 } 1953 1954 /* The array type encoded by TYPE, where 1955 ada_is_constrained_packed_array_type (TYPE). */ 1956 1957 static struct type * 1958 decode_constrained_packed_array_type (struct type *type) 1959 { 1960 char *raw_name = ada_type_name (ada_check_typedef (type)); 1961 char *name; 1962 char *tail; 1963 struct type *shadow_type; 1964 long bits; 1965 1966 if (!raw_name) 1967 raw_name = ada_type_name (desc_base_type (type)); 1968 1969 if (!raw_name) 1970 return NULL; 1971 1972 name = (char *) alloca (strlen (raw_name) + 1); 1973 tail = strstr (raw_name, "___XP"); 1974 type = desc_base_type (type); 1975 1976 memcpy (name, raw_name, tail - raw_name); 1977 name[tail - raw_name] = '\000'; 1978 1979 shadow_type = ada_find_parallel_type_with_name (type, name); 1980 1981 if (shadow_type == NULL) 1982 { 1983 lim_warning (_("could not find bounds information on packed array")); 1984 return NULL; 1985 } 1986 CHECK_TYPEDEF (shadow_type); 1987 1988 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) 1989 { 1990 lim_warning (_("could not understand bounds information on packed array")); 1991 return NULL; 1992 } 1993 1994 bits = decode_packed_array_bitsize (type); 1995 return constrained_packed_array_type (shadow_type, &bits); 1996 } 1997 1998 /* Given that ARR is a struct value *indicating a GNAT constrained packed 1999 array, returns a simple array that denotes that array. Its type is a 2000 standard GDB array type except that the BITSIZEs of the array 2001 target types are set to the number of bits in each element, and the 2002 type length is set appropriately. */ 2003 2004 static struct value * 2005 decode_constrained_packed_array (struct value *arr) 2006 { 2007 struct type *type; 2008 2009 arr = ada_coerce_ref (arr); 2010 2011 /* If our value is a pointer, then dererence it. Make sure that 2012 this operation does not cause the target type to be fixed, as 2013 this would indirectly cause this array to be decoded. The rest 2014 of the routine assumes that the array hasn't been decoded yet, 2015 so we use the basic "value_ind" routine to perform the dereferencing, 2016 as opposed to using "ada_value_ind". */ 2017 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) 2018 arr = value_ind (arr); 2019 2020 type = decode_constrained_packed_array_type (value_type (arr)); 2021 if (type == NULL) 2022 { 2023 error (_("can't unpack array")); 2024 return NULL; 2025 } 2026 2027 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) 2028 && ada_is_modular_type (value_type (arr))) 2029 { 2030 /* This is a (right-justified) modular type representing a packed 2031 array with no wrapper. In order to interpret the value through 2032 the (left-justified) packed array type we just built, we must 2033 first left-justify it. */ 2034 int bit_size, bit_pos; 2035 ULONGEST mod; 2036 2037 mod = ada_modulus (value_type (arr)) - 1; 2038 bit_size = 0; 2039 while (mod > 0) 2040 { 2041 bit_size += 1; 2042 mod >>= 1; 2043 } 2044 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; 2045 arr = ada_value_primitive_packed_val (arr, NULL, 2046 bit_pos / HOST_CHAR_BIT, 2047 bit_pos % HOST_CHAR_BIT, 2048 bit_size, 2049 type); 2050 } 2051 2052 return coerce_unspec_val_to_type (arr, type); 2053 } 2054 2055 2056 /* The value of the element of packed array ARR at the ARITY indices 2057 given in IND. ARR must be a simple array. */ 2058 2059 static struct value * 2060 value_subscript_packed (struct value *arr, int arity, struct value **ind) 2061 { 2062 int i; 2063 int bits, elt_off, bit_off; 2064 long elt_total_bit_offset; 2065 struct type *elt_type; 2066 struct value *v; 2067 2068 bits = 0; 2069 elt_total_bit_offset = 0; 2070 elt_type = ada_check_typedef (value_type (arr)); 2071 for (i = 0; i < arity; i += 1) 2072 { 2073 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY 2074 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) 2075 error 2076 (_("attempt to do packed indexing of something other than a packed array")); 2077 else 2078 { 2079 struct type *range_type = TYPE_INDEX_TYPE (elt_type); 2080 LONGEST lowerbound, upperbound; 2081 LONGEST idx; 2082 2083 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) 2084 { 2085 lim_warning (_("don't know bounds of array")); 2086 lowerbound = upperbound = 0; 2087 } 2088 2089 idx = pos_atr (ind[i]); 2090 if (idx < lowerbound || idx > upperbound) 2091 lim_warning (_("packed array index %ld out of bounds"), (long) idx); 2092 bits = TYPE_FIELD_BITSIZE (elt_type, 0); 2093 elt_total_bit_offset += (idx - lowerbound) * bits; 2094 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); 2095 } 2096 } 2097 elt_off = elt_total_bit_offset / HOST_CHAR_BIT; 2098 bit_off = elt_total_bit_offset % HOST_CHAR_BIT; 2099 2100 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, 2101 bits, elt_type); 2102 return v; 2103 } 2104 2105 /* Non-zero iff TYPE includes negative integer values. */ 2106 2107 static int 2108 has_negatives (struct type *type) 2109 { 2110 switch (TYPE_CODE (type)) 2111 { 2112 default: 2113 return 0; 2114 case TYPE_CODE_INT: 2115 return !TYPE_UNSIGNED (type); 2116 case TYPE_CODE_RANGE: 2117 return TYPE_LOW_BOUND (type) < 0; 2118 } 2119 } 2120 2121 2122 /* Create a new value of type TYPE from the contents of OBJ starting 2123 at byte OFFSET, and bit offset BIT_OFFSET within that byte, 2124 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then 2125 assigning through the result will set the field fetched from. 2126 VALADDR is ignored unless OBJ is NULL, in which case, 2127 VALADDR+OFFSET must address the start of storage containing the 2128 packed value. The value returned in this case is never an lval. 2129 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ 2130 2131 struct value * 2132 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, 2133 long offset, int bit_offset, int bit_size, 2134 struct type *type) 2135 { 2136 struct value *v; 2137 int src, /* Index into the source area */ 2138 targ, /* Index into the target area */ 2139 srcBitsLeft, /* Number of source bits left to move */ 2140 nsrc, ntarg, /* Number of source and target bytes */ 2141 unusedLS, /* Number of bits in next significant 2142 byte of source that are unused */ 2143 accumSize; /* Number of meaningful bits in accum */ 2144 unsigned char *bytes; /* First byte containing data to unpack */ 2145 unsigned char *unpacked; 2146 unsigned long accum; /* Staging area for bits being transferred */ 2147 unsigned char sign; 2148 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; 2149 /* Transmit bytes from least to most significant; delta is the direction 2150 the indices move. */ 2151 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; 2152 2153 type = ada_check_typedef (type); 2154 2155 if (obj == NULL) 2156 { 2157 v = allocate_value (type); 2158 bytes = (unsigned char *) (valaddr + offset); 2159 } 2160 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) 2161 { 2162 v = value_at (type, 2163 value_address (obj) + offset); 2164 bytes = (unsigned char *) alloca (len); 2165 read_memory (value_address (v), bytes, len); 2166 } 2167 else 2168 { 2169 v = allocate_value (type); 2170 bytes = (unsigned char *) value_contents (obj) + offset; 2171 } 2172 2173 if (obj != NULL) 2174 { 2175 CORE_ADDR new_addr; 2176 2177 set_value_component_location (v, obj); 2178 new_addr = value_address (obj) + offset; 2179 set_value_bitpos (v, bit_offset + value_bitpos (obj)); 2180 set_value_bitsize (v, bit_size); 2181 if (value_bitpos (v) >= HOST_CHAR_BIT) 2182 { 2183 ++new_addr; 2184 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); 2185 } 2186 set_value_address (v, new_addr); 2187 } 2188 else 2189 set_value_bitsize (v, bit_size); 2190 unpacked = (unsigned char *) value_contents (v); 2191 2192 srcBitsLeft = bit_size; 2193 nsrc = len; 2194 ntarg = TYPE_LENGTH (type); 2195 sign = 0; 2196 if (bit_size == 0) 2197 { 2198 memset (unpacked, 0, TYPE_LENGTH (type)); 2199 return v; 2200 } 2201 else if (gdbarch_bits_big_endian (get_type_arch (type))) 2202 { 2203 src = len - 1; 2204 if (has_negatives (type) 2205 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) 2206 sign = ~0; 2207 2208 unusedLS = 2209 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) 2210 % HOST_CHAR_BIT; 2211 2212 switch (TYPE_CODE (type)) 2213 { 2214 case TYPE_CODE_ARRAY: 2215 case TYPE_CODE_UNION: 2216 case TYPE_CODE_STRUCT: 2217 /* Non-scalar values must be aligned at a byte boundary... */ 2218 accumSize = 2219 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; 2220 /* ... And are placed at the beginning (most-significant) bytes 2221 of the target. */ 2222 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; 2223 ntarg = targ + 1; 2224 break; 2225 default: 2226 accumSize = 0; 2227 targ = TYPE_LENGTH (type) - 1; 2228 break; 2229 } 2230 } 2231 else 2232 { 2233 int sign_bit_offset = (bit_size + bit_offset - 1) % 8; 2234 2235 src = targ = 0; 2236 unusedLS = bit_offset; 2237 accumSize = 0; 2238 2239 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) 2240 sign = ~0; 2241 } 2242 2243 accum = 0; 2244 while (nsrc > 0) 2245 { 2246 /* Mask for removing bits of the next source byte that are not 2247 part of the value. */ 2248 unsigned int unusedMSMask = 2249 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - 2250 1; 2251 /* Sign-extend bits for this byte. */ 2252 unsigned int signMask = sign & ~unusedMSMask; 2253 2254 accum |= 2255 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; 2256 accumSize += HOST_CHAR_BIT - unusedLS; 2257 if (accumSize >= HOST_CHAR_BIT) 2258 { 2259 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); 2260 accumSize -= HOST_CHAR_BIT; 2261 accum >>= HOST_CHAR_BIT; 2262 ntarg -= 1; 2263 targ += delta; 2264 } 2265 srcBitsLeft -= HOST_CHAR_BIT - unusedLS; 2266 unusedLS = 0; 2267 nsrc -= 1; 2268 src += delta; 2269 } 2270 while (ntarg > 0) 2271 { 2272 accum |= sign << accumSize; 2273 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); 2274 accumSize -= HOST_CHAR_BIT; 2275 accum >>= HOST_CHAR_BIT; 2276 ntarg -= 1; 2277 targ += delta; 2278 } 2279 2280 return v; 2281 } 2282 2283 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to 2284 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must 2285 not overlap. */ 2286 static void 2287 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, 2288 int src_offset, int n, int bits_big_endian_p) 2289 { 2290 unsigned int accum, mask; 2291 int accum_bits, chunk_size; 2292 2293 target += targ_offset / HOST_CHAR_BIT; 2294 targ_offset %= HOST_CHAR_BIT; 2295 source += src_offset / HOST_CHAR_BIT; 2296 src_offset %= HOST_CHAR_BIT; 2297 if (bits_big_endian_p) 2298 { 2299 accum = (unsigned char) *source; 2300 source += 1; 2301 accum_bits = HOST_CHAR_BIT - src_offset; 2302 2303 while (n > 0) 2304 { 2305 int unused_right; 2306 2307 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; 2308 accum_bits += HOST_CHAR_BIT; 2309 source += 1; 2310 chunk_size = HOST_CHAR_BIT - targ_offset; 2311 if (chunk_size > n) 2312 chunk_size = n; 2313 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); 2314 mask = ((1 << chunk_size) - 1) << unused_right; 2315 *target = 2316 (*target & ~mask) 2317 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); 2318 n -= chunk_size; 2319 accum_bits -= chunk_size; 2320 target += 1; 2321 targ_offset = 0; 2322 } 2323 } 2324 else 2325 { 2326 accum = (unsigned char) *source >> src_offset; 2327 source += 1; 2328 accum_bits = HOST_CHAR_BIT - src_offset; 2329 2330 while (n > 0) 2331 { 2332 accum = accum + ((unsigned char) *source << accum_bits); 2333 accum_bits += HOST_CHAR_BIT; 2334 source += 1; 2335 chunk_size = HOST_CHAR_BIT - targ_offset; 2336 if (chunk_size > n) 2337 chunk_size = n; 2338 mask = ((1 << chunk_size) - 1) << targ_offset; 2339 *target = (*target & ~mask) | ((accum << targ_offset) & mask); 2340 n -= chunk_size; 2341 accum_bits -= chunk_size; 2342 accum >>= chunk_size; 2343 target += 1; 2344 targ_offset = 0; 2345 } 2346 } 2347 } 2348 2349 /* Store the contents of FROMVAL into the location of TOVAL. 2350 Return a new value with the location of TOVAL and contents of 2351 FROMVAL. Handles assignment into packed fields that have 2352 floating-point or non-scalar types. */ 2353 2354 static struct value * 2355 ada_value_assign (struct value *toval, struct value *fromval) 2356 { 2357 struct type *type = value_type (toval); 2358 int bits = value_bitsize (toval); 2359 2360 toval = ada_coerce_ref (toval); 2361 fromval = ada_coerce_ref (fromval); 2362 2363 if (ada_is_direct_array_type (value_type (toval))) 2364 toval = ada_coerce_to_simple_array (toval); 2365 if (ada_is_direct_array_type (value_type (fromval))) 2366 fromval = ada_coerce_to_simple_array (fromval); 2367 2368 if (!deprecated_value_modifiable (toval)) 2369 error (_("Left operand of assignment is not a modifiable lvalue.")); 2370 2371 if (VALUE_LVAL (toval) == lval_memory 2372 && bits > 0 2373 && (TYPE_CODE (type) == TYPE_CODE_FLT 2374 || TYPE_CODE (type) == TYPE_CODE_STRUCT)) 2375 { 2376 int len = (value_bitpos (toval) 2377 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 2378 int from_size; 2379 char *buffer = (char *) alloca (len); 2380 struct value *val; 2381 CORE_ADDR to_addr = value_address (toval); 2382 2383 if (TYPE_CODE (type) == TYPE_CODE_FLT) 2384 fromval = value_cast (type, fromval); 2385 2386 read_memory (to_addr, buffer, len); 2387 from_size = value_bitsize (fromval); 2388 if (from_size == 0) 2389 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; 2390 if (gdbarch_bits_big_endian (get_type_arch (type))) 2391 move_bits (buffer, value_bitpos (toval), 2392 value_contents (fromval), from_size - bits, bits, 1); 2393 else 2394 move_bits (buffer, value_bitpos (toval), 2395 value_contents (fromval), 0, bits, 0); 2396 write_memory (to_addr, buffer, len); 2397 observer_notify_memory_changed (to_addr, len, buffer); 2398 2399 val = value_copy (toval); 2400 memcpy (value_contents_raw (val), value_contents (fromval), 2401 TYPE_LENGTH (type)); 2402 deprecated_set_value_type (val, type); 2403 2404 return val; 2405 } 2406 2407 return value_assign (toval, fromval); 2408 } 2409 2410 2411 /* Given that COMPONENT is a memory lvalue that is part of the lvalue 2412 * CONTAINER, assign the contents of VAL to COMPONENTS's place in 2413 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not 2414 * COMPONENT, and not the inferior's memory. The current contents 2415 * of COMPONENT are ignored. */ 2416 static void 2417 value_assign_to_component (struct value *container, struct value *component, 2418 struct value *val) 2419 { 2420 LONGEST offset_in_container = 2421 (LONGEST) (value_address (component) - value_address (container)); 2422 int bit_offset_in_container = 2423 value_bitpos (component) - value_bitpos (container); 2424 int bits; 2425 2426 val = value_cast (value_type (component), val); 2427 2428 if (value_bitsize (component) == 0) 2429 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); 2430 else 2431 bits = value_bitsize (component); 2432 2433 if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) 2434 move_bits (value_contents_writeable (container) + offset_in_container, 2435 value_bitpos (container) + bit_offset_in_container, 2436 value_contents (val), 2437 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, 2438 bits, 1); 2439 else 2440 move_bits (value_contents_writeable (container) + offset_in_container, 2441 value_bitpos (container) + bit_offset_in_container, 2442 value_contents (val), 0, bits, 0); 2443 } 2444 2445 /* The value of the element of array ARR at the ARITY indices given in IND. 2446 ARR may be either a simple array, GNAT array descriptor, or pointer 2447 thereto. */ 2448 2449 struct value * 2450 ada_value_subscript (struct value *arr, int arity, struct value **ind) 2451 { 2452 int k; 2453 struct value *elt; 2454 struct type *elt_type; 2455 2456 elt = ada_coerce_to_simple_array (arr); 2457 2458 elt_type = ada_check_typedef (value_type (elt)); 2459 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY 2460 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) 2461 return value_subscript_packed (elt, arity, ind); 2462 2463 for (k = 0; k < arity; k += 1) 2464 { 2465 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) 2466 error (_("too many subscripts (%d expected)"), k); 2467 elt = value_subscript (elt, pos_atr (ind[k])); 2468 } 2469 return elt; 2470 } 2471 2472 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the 2473 value of the element of *ARR at the ARITY indices given in 2474 IND. Does not read the entire array into memory. */ 2475 2476 static struct value * 2477 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, 2478 struct value **ind) 2479 { 2480 int k; 2481 2482 for (k = 0; k < arity; k += 1) 2483 { 2484 LONGEST lwb, upb; 2485 2486 if (TYPE_CODE (type) != TYPE_CODE_ARRAY) 2487 error (_("too many subscripts (%d expected)"), k); 2488 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 2489 value_copy (arr)); 2490 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); 2491 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); 2492 type = TYPE_TARGET_TYPE (type); 2493 } 2494 2495 return value_ind (arr); 2496 } 2497 2498 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the 2499 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 2500 elements starting at index LOW. The lower bound of this array is LOW, as 2501 per Ada rules. */ 2502 static struct value * 2503 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, 2504 int low, int high) 2505 { 2506 CORE_ADDR base = value_as_address (array_ptr) 2507 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type))) 2508 * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); 2509 struct type *index_type = 2510 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), 2511 low, high); 2512 struct type *slice_type = 2513 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); 2514 2515 return value_at_lazy (slice_type, base); 2516 } 2517 2518 2519 static struct value * 2520 ada_value_slice (struct value *array, int low, int high) 2521 { 2522 struct type *type = value_type (array); 2523 struct type *index_type = 2524 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); 2525 struct type *slice_type = 2526 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); 2527 2528 return value_cast (slice_type, value_slice (array, low, high - low + 1)); 2529 } 2530 2531 /* If type is a record type in the form of a standard GNAT array 2532 descriptor, returns the number of dimensions for type. If arr is a 2533 simple array, returns the number of "array of"s that prefix its 2534 type designation. Otherwise, returns 0. */ 2535 2536 int 2537 ada_array_arity (struct type *type) 2538 { 2539 int arity; 2540 2541 if (type == NULL) 2542 return 0; 2543 2544 type = desc_base_type (type); 2545 2546 arity = 0; 2547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 2548 return desc_arity (desc_bounds_type (type)); 2549 else 2550 while (TYPE_CODE (type) == TYPE_CODE_ARRAY) 2551 { 2552 arity += 1; 2553 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 2554 } 2555 2556 return arity; 2557 } 2558 2559 /* If TYPE is a record type in the form of a standard GNAT array 2560 descriptor or a simple array type, returns the element type for 2561 TYPE after indexing by NINDICES indices, or by all indices if 2562 NINDICES is -1. Otherwise, returns NULL. */ 2563 2564 struct type * 2565 ada_array_element_type (struct type *type, int nindices) 2566 { 2567 type = desc_base_type (type); 2568 2569 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 2570 { 2571 int k; 2572 struct type *p_array_type; 2573 2574 p_array_type = desc_data_target_type (type); 2575 2576 k = ada_array_arity (type); 2577 if (k == 0) 2578 return NULL; 2579 2580 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ 2581 if (nindices >= 0 && k > nindices) 2582 k = nindices; 2583 while (k > 0 && p_array_type != NULL) 2584 { 2585 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); 2586 k -= 1; 2587 } 2588 return p_array_type; 2589 } 2590 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) 2591 { 2592 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 2593 { 2594 type = TYPE_TARGET_TYPE (type); 2595 nindices -= 1; 2596 } 2597 return type; 2598 } 2599 2600 return NULL; 2601 } 2602 2603 /* The type of nth index in arrays of given type (n numbering from 1). 2604 Does not examine memory. Throws an error if N is invalid or TYPE 2605 is not an array type. NAME is the name of the Ada attribute being 2606 evaluated ('range, 'first, 'last, or 'length); it is used in building 2607 the error message. */ 2608 2609 static struct type * 2610 ada_index_type (struct type *type, int n, const char *name) 2611 { 2612 struct type *result_type; 2613 2614 type = desc_base_type (type); 2615 2616 if (n < 0 || n > ada_array_arity (type)) 2617 error (_("invalid dimension number to '%s"), name); 2618 2619 if (ada_is_simple_array_type (type)) 2620 { 2621 int i; 2622 2623 for (i = 1; i < n; i += 1) 2624 type = TYPE_TARGET_TYPE (type); 2625 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); 2626 /* FIXME: The stabs type r(0,0);bound;bound in an array type 2627 has a target type of TYPE_CODE_UNDEF. We compensate here, but 2628 perhaps stabsread.c would make more sense. */ 2629 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) 2630 result_type = NULL; 2631 } 2632 else 2633 { 2634 result_type = desc_index_type (desc_bounds_type (type), n); 2635 if (result_type == NULL) 2636 error (_("attempt to take bound of something that is not an array")); 2637 } 2638 2639 return result_type; 2640 } 2641 2642 /* Given that arr is an array type, returns the lower bound of the 2643 Nth index (numbering from 1) if WHICH is 0, and the upper bound if 2644 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an 2645 array-descriptor type. It works for other arrays with bounds supplied 2646 by run-time quantities other than discriminants. */ 2647 2648 static LONGEST 2649 ada_array_bound_from_type (struct type * arr_type, int n, int which) 2650 { 2651 struct type *type, *elt_type, *index_type_desc, *index_type; 2652 int i; 2653 2654 gdb_assert (which == 0 || which == 1); 2655 2656 if (ada_is_constrained_packed_array_type (arr_type)) 2657 arr_type = decode_constrained_packed_array_type (arr_type); 2658 2659 if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) 2660 return (LONGEST) - which; 2661 2662 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) 2663 type = TYPE_TARGET_TYPE (arr_type); 2664 else 2665 type = arr_type; 2666 2667 elt_type = type; 2668 for (i = n; i > 1; i--) 2669 elt_type = TYPE_TARGET_TYPE (type); 2670 2671 index_type_desc = ada_find_parallel_type (type, "___XA"); 2672 ada_fixup_array_indexes_type (index_type_desc); 2673 if (index_type_desc != NULL) 2674 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), 2675 NULL); 2676 else 2677 index_type = TYPE_INDEX_TYPE (elt_type); 2678 2679 return 2680 (LONGEST) (which == 0 2681 ? ada_discrete_type_low_bound (index_type) 2682 : ada_discrete_type_high_bound (index_type)); 2683 } 2684 2685 /* Given that arr is an array value, returns the lower bound of the 2686 nth index (numbering from 1) if WHICH is 0, and the upper bound if 2687 WHICH is 1. This routine will also work for arrays with bounds 2688 supplied by run-time quantities other than discriminants. */ 2689 2690 static LONGEST 2691 ada_array_bound (struct value *arr, int n, int which) 2692 { 2693 struct type *arr_type = value_type (arr); 2694 2695 if (ada_is_constrained_packed_array_type (arr_type)) 2696 return ada_array_bound (decode_constrained_packed_array (arr), n, which); 2697 else if (ada_is_simple_array_type (arr_type)) 2698 return ada_array_bound_from_type (arr_type, n, which); 2699 else 2700 return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); 2701 } 2702 2703 /* Given that arr is an array value, returns the length of the 2704 nth index. This routine will also work for arrays with bounds 2705 supplied by run-time quantities other than discriminants. 2706 Does not work for arrays indexed by enumeration types with representation 2707 clauses at the moment. */ 2708 2709 static LONGEST 2710 ada_array_length (struct value *arr, int n) 2711 { 2712 struct type *arr_type = ada_check_typedef (value_type (arr)); 2713 2714 if (ada_is_constrained_packed_array_type (arr_type)) 2715 return ada_array_length (decode_constrained_packed_array (arr), n); 2716 2717 if (ada_is_simple_array_type (arr_type)) 2718 return (ada_array_bound_from_type (arr_type, n, 1) 2719 - ada_array_bound_from_type (arr_type, n, 0) + 1); 2720 else 2721 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) 2722 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); 2723 } 2724 2725 /* An empty array whose type is that of ARR_TYPE (an array type), 2726 with bounds LOW to LOW-1. */ 2727 2728 static struct value * 2729 empty_array (struct type *arr_type, int low) 2730 { 2731 struct type *index_type = 2732 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), 2733 low, low - 1); 2734 struct type *elt_type = ada_array_element_type (arr_type, 1); 2735 2736 return allocate_value (create_array_type (NULL, elt_type, index_type)); 2737 } 2738 2739 2740 /* Name resolution */ 2741 2742 /* The "decoded" name for the user-definable Ada operator corresponding 2743 to OP. */ 2744 2745 static const char * 2746 ada_decoded_op_name (enum exp_opcode op) 2747 { 2748 int i; 2749 2750 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) 2751 { 2752 if (ada_opname_table[i].op == op) 2753 return ada_opname_table[i].decoded; 2754 } 2755 error (_("Could not find operator name for opcode")); 2756 } 2757 2758 2759 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol 2760 references (marked by OP_VAR_VALUE nodes in which the symbol has an 2761 undefined namespace) and converts operators that are 2762 user-defined into appropriate function calls. If CONTEXT_TYPE is 2763 non-null, it provides a preferred result type [at the moment, only 2764 type void has any effect---causing procedures to be preferred over 2765 functions in calls]. A null CONTEXT_TYPE indicates that a non-void 2766 return type is preferred. May change (expand) *EXP. */ 2767 2768 static void 2769 resolve (struct expression **expp, int void_context_p) 2770 { 2771 struct type *context_type = NULL; 2772 int pc = 0; 2773 2774 if (void_context_p) 2775 context_type = builtin_type ((*expp)->gdbarch)->builtin_void; 2776 2777 resolve_subexp (expp, &pc, 1, context_type); 2778 } 2779 2780 /* Resolve the operator of the subexpression beginning at 2781 position *POS of *EXPP. "Resolving" consists of replacing 2782 the symbols that have undefined namespaces in OP_VAR_VALUE nodes 2783 with their resolutions, replacing built-in operators with 2784 function calls to user-defined operators, where appropriate, and, 2785 when DEPROCEDURE_P is non-zero, converting function-valued variables 2786 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions 2787 are as in ada_resolve, above. */ 2788 2789 static struct value * 2790 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, 2791 struct type *context_type) 2792 { 2793 int pc = *pos; 2794 int i; 2795 struct expression *exp; /* Convenience: == *expp. */ 2796 enum exp_opcode op = (*expp)->elts[pc].opcode; 2797 struct value **argvec; /* Vector of operand types (alloca'ed). */ 2798 int nargs; /* Number of operands. */ 2799 int oplen; 2800 2801 argvec = NULL; 2802 nargs = 0; 2803 exp = *expp; 2804 2805 /* Pass one: resolve operands, saving their types and updating *pos, 2806 if needed. */ 2807 switch (op) 2808 { 2809 case OP_FUNCALL: 2810 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE 2811 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 2812 *pos += 7; 2813 else 2814 { 2815 *pos += 3; 2816 resolve_subexp (expp, pos, 0, NULL); 2817 } 2818 nargs = longest_to_int (exp->elts[pc + 1].longconst); 2819 break; 2820 2821 case UNOP_ADDR: 2822 *pos += 1; 2823 resolve_subexp (expp, pos, 0, NULL); 2824 break; 2825 2826 case UNOP_QUAL: 2827 *pos += 3; 2828 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); 2829 break; 2830 2831 case OP_ATR_MODULUS: 2832 case OP_ATR_SIZE: 2833 case OP_ATR_TAG: 2834 case OP_ATR_FIRST: 2835 case OP_ATR_LAST: 2836 case OP_ATR_LENGTH: 2837 case OP_ATR_POS: 2838 case OP_ATR_VAL: 2839 case OP_ATR_MIN: 2840 case OP_ATR_MAX: 2841 case TERNOP_IN_RANGE: 2842 case BINOP_IN_BOUNDS: 2843 case UNOP_IN_RANGE: 2844 case OP_AGGREGATE: 2845 case OP_OTHERS: 2846 case OP_CHOICES: 2847 case OP_POSITIONAL: 2848 case OP_DISCRETE_RANGE: 2849 case OP_NAME: 2850 ada_forward_operator_length (exp, pc, &oplen, &nargs); 2851 *pos += oplen; 2852 break; 2853 2854 case BINOP_ASSIGN: 2855 { 2856 struct value *arg1; 2857 2858 *pos += 1; 2859 arg1 = resolve_subexp (expp, pos, 0, NULL); 2860 if (arg1 == NULL) 2861 resolve_subexp (expp, pos, 1, NULL); 2862 else 2863 resolve_subexp (expp, pos, 1, value_type (arg1)); 2864 break; 2865 } 2866 2867 case UNOP_CAST: 2868 *pos += 3; 2869 nargs = 1; 2870 break; 2871 2872 case BINOP_ADD: 2873 case BINOP_SUB: 2874 case BINOP_MUL: 2875 case BINOP_DIV: 2876 case BINOP_REM: 2877 case BINOP_MOD: 2878 case BINOP_EXP: 2879 case BINOP_CONCAT: 2880 case BINOP_LOGICAL_AND: 2881 case BINOP_LOGICAL_OR: 2882 case BINOP_BITWISE_AND: 2883 case BINOP_BITWISE_IOR: 2884 case BINOP_BITWISE_XOR: 2885 2886 case BINOP_EQUAL: 2887 case BINOP_NOTEQUAL: 2888 case BINOP_LESS: 2889 case BINOP_GTR: 2890 case BINOP_LEQ: 2891 case BINOP_GEQ: 2892 2893 case BINOP_REPEAT: 2894 case BINOP_SUBSCRIPT: 2895 case BINOP_COMMA: 2896 *pos += 1; 2897 nargs = 2; 2898 break; 2899 2900 case UNOP_NEG: 2901 case UNOP_PLUS: 2902 case UNOP_LOGICAL_NOT: 2903 case UNOP_ABS: 2904 case UNOP_IND: 2905 *pos += 1; 2906 nargs = 1; 2907 break; 2908 2909 case OP_LONG: 2910 case OP_DOUBLE: 2911 case OP_VAR_VALUE: 2912 *pos += 4; 2913 break; 2914 2915 case OP_TYPE: 2916 case OP_BOOL: 2917 case OP_LAST: 2918 case OP_INTERNALVAR: 2919 *pos += 3; 2920 break; 2921 2922 case UNOP_MEMVAL: 2923 *pos += 3; 2924 nargs = 1; 2925 break; 2926 2927 case OP_REGISTER: 2928 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); 2929 break; 2930 2931 case STRUCTOP_STRUCT: 2932 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); 2933 nargs = 1; 2934 break; 2935 2936 case TERNOP_SLICE: 2937 *pos += 1; 2938 nargs = 3; 2939 break; 2940 2941 case OP_STRING: 2942 break; 2943 2944 default: 2945 error (_("Unexpected operator during name resolution")); 2946 } 2947 2948 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); 2949 for (i = 0; i < nargs; i += 1) 2950 argvec[i] = resolve_subexp (expp, pos, 1, NULL); 2951 argvec[i] = NULL; 2952 exp = *expp; 2953 2954 /* Pass two: perform any resolution on principal operator. */ 2955 switch (op) 2956 { 2957 default: 2958 break; 2959 2960 case OP_VAR_VALUE: 2961 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) 2962 { 2963 struct ada_symbol_info *candidates; 2964 int n_candidates; 2965 2966 n_candidates = 2967 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME 2968 (exp->elts[pc + 2].symbol), 2969 exp->elts[pc + 1].block, VAR_DOMAIN, 2970 &candidates); 2971 2972 if (n_candidates > 1) 2973 { 2974 /* Types tend to get re-introduced locally, so if there 2975 are any local symbols that are not types, first filter 2976 out all types. */ 2977 int j; 2978 for (j = 0; j < n_candidates; j += 1) 2979 switch (SYMBOL_CLASS (candidates[j].sym)) 2980 { 2981 case LOC_REGISTER: 2982 case LOC_ARG: 2983 case LOC_REF_ARG: 2984 case LOC_REGPARM_ADDR: 2985 case LOC_LOCAL: 2986 case LOC_COMPUTED: 2987 goto FoundNonType; 2988 default: 2989 break; 2990 } 2991 FoundNonType: 2992 if (j < n_candidates) 2993 { 2994 j = 0; 2995 while (j < n_candidates) 2996 { 2997 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) 2998 { 2999 candidates[j] = candidates[n_candidates - 1]; 3000 n_candidates -= 1; 3001 } 3002 else 3003 j += 1; 3004 } 3005 } 3006 } 3007 3008 if (n_candidates == 0) 3009 error (_("No definition found for %s"), 3010 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3011 else if (n_candidates == 1) 3012 i = 0; 3013 else if (deprocedure_p 3014 && !is_nonfunction (candidates, n_candidates)) 3015 { 3016 i = ada_resolve_function 3017 (candidates, n_candidates, NULL, 0, 3018 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), 3019 context_type); 3020 if (i < 0) 3021 error (_("Could not find a match for %s"), 3022 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3023 } 3024 else 3025 { 3026 printf_filtered (_("Multiple matches for %s\n"), 3027 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3028 user_select_syms (candidates, n_candidates, 1); 3029 i = 0; 3030 } 3031 3032 exp->elts[pc + 1].block = candidates[i].block; 3033 exp->elts[pc + 2].symbol = candidates[i].sym; 3034 if (innermost_block == NULL 3035 || contained_in (candidates[i].block, innermost_block)) 3036 innermost_block = candidates[i].block; 3037 } 3038 3039 if (deprocedure_p 3040 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) 3041 == TYPE_CODE_FUNC)) 3042 { 3043 replace_operator_with_call (expp, pc, 0, 0, 3044 exp->elts[pc + 2].symbol, 3045 exp->elts[pc + 1].block); 3046 exp = *expp; 3047 } 3048 break; 3049 3050 case OP_FUNCALL: 3051 { 3052 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE 3053 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 3054 { 3055 struct ada_symbol_info *candidates; 3056 int n_candidates; 3057 3058 n_candidates = 3059 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME 3060 (exp->elts[pc + 5].symbol), 3061 exp->elts[pc + 4].block, VAR_DOMAIN, 3062 &candidates); 3063 if (n_candidates == 1) 3064 i = 0; 3065 else 3066 { 3067 i = ada_resolve_function 3068 (candidates, n_candidates, 3069 argvec, nargs, 3070 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), 3071 context_type); 3072 if (i < 0) 3073 error (_("Could not find a match for %s"), 3074 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); 3075 } 3076 3077 exp->elts[pc + 4].block = candidates[i].block; 3078 exp->elts[pc + 5].symbol = candidates[i].sym; 3079 if (innermost_block == NULL 3080 || contained_in (candidates[i].block, innermost_block)) 3081 innermost_block = candidates[i].block; 3082 } 3083 } 3084 break; 3085 case BINOP_ADD: 3086 case BINOP_SUB: 3087 case BINOP_MUL: 3088 case BINOP_DIV: 3089 case BINOP_REM: 3090 case BINOP_MOD: 3091 case BINOP_CONCAT: 3092 case BINOP_BITWISE_AND: 3093 case BINOP_BITWISE_IOR: 3094 case BINOP_BITWISE_XOR: 3095 case BINOP_EQUAL: 3096 case BINOP_NOTEQUAL: 3097 case BINOP_LESS: 3098 case BINOP_GTR: 3099 case BINOP_LEQ: 3100 case BINOP_GEQ: 3101 case BINOP_EXP: 3102 case UNOP_NEG: 3103 case UNOP_PLUS: 3104 case UNOP_LOGICAL_NOT: 3105 case UNOP_ABS: 3106 if (possible_user_operator_p (op, argvec)) 3107 { 3108 struct ada_symbol_info *candidates; 3109 int n_candidates; 3110 3111 n_candidates = 3112 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), 3113 (struct block *) NULL, VAR_DOMAIN, 3114 &candidates); 3115 i = ada_resolve_function (candidates, n_candidates, argvec, nargs, 3116 ada_decoded_op_name (op), NULL); 3117 if (i < 0) 3118 break; 3119 3120 replace_operator_with_call (expp, pc, nargs, 1, 3121 candidates[i].sym, candidates[i].block); 3122 exp = *expp; 3123 } 3124 break; 3125 3126 case OP_TYPE: 3127 case OP_REGISTER: 3128 return NULL; 3129 } 3130 3131 *pos = pc; 3132 return evaluate_subexp_type (exp, pos); 3133 } 3134 3135 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If 3136 MAY_DEREF is non-zero, the formal may be a pointer and the actual 3137 a non-pointer. */ 3138 /* The term "match" here is rather loose. The match is heuristic and 3139 liberal. */ 3140 3141 static int 3142 ada_type_match (struct type *ftype, struct type *atype, int may_deref) 3143 { 3144 ftype = ada_check_typedef (ftype); 3145 atype = ada_check_typedef (atype); 3146 3147 if (TYPE_CODE (ftype) == TYPE_CODE_REF) 3148 ftype = TYPE_TARGET_TYPE (ftype); 3149 if (TYPE_CODE (atype) == TYPE_CODE_REF) 3150 atype = TYPE_TARGET_TYPE (atype); 3151 3152 switch (TYPE_CODE (ftype)) 3153 { 3154 default: 3155 return TYPE_CODE (ftype) == TYPE_CODE (atype); 3156 case TYPE_CODE_PTR: 3157 if (TYPE_CODE (atype) == TYPE_CODE_PTR) 3158 return ada_type_match (TYPE_TARGET_TYPE (ftype), 3159 TYPE_TARGET_TYPE (atype), 0); 3160 else 3161 return (may_deref 3162 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); 3163 case TYPE_CODE_INT: 3164 case TYPE_CODE_ENUM: 3165 case TYPE_CODE_RANGE: 3166 switch (TYPE_CODE (atype)) 3167 { 3168 case TYPE_CODE_INT: 3169 case TYPE_CODE_ENUM: 3170 case TYPE_CODE_RANGE: 3171 return 1; 3172 default: 3173 return 0; 3174 } 3175 3176 case TYPE_CODE_ARRAY: 3177 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY 3178 || ada_is_array_descriptor_type (atype)); 3179 3180 case TYPE_CODE_STRUCT: 3181 if (ada_is_array_descriptor_type (ftype)) 3182 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY 3183 || ada_is_array_descriptor_type (atype)); 3184 else 3185 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT 3186 && !ada_is_array_descriptor_type (atype)); 3187 3188 case TYPE_CODE_UNION: 3189 case TYPE_CODE_FLT: 3190 return (TYPE_CODE (atype) == TYPE_CODE (ftype)); 3191 } 3192 } 3193 3194 /* Return non-zero if the formals of FUNC "sufficiently match" the 3195 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC 3196 may also be an enumeral, in which case it is treated as a 0- 3197 argument function. */ 3198 3199 static int 3200 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) 3201 { 3202 int i; 3203 struct type *func_type = SYMBOL_TYPE (func); 3204 3205 if (SYMBOL_CLASS (func) == LOC_CONST 3206 && TYPE_CODE (func_type) == TYPE_CODE_ENUM) 3207 return (n_actuals == 0); 3208 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) 3209 return 0; 3210 3211 if (TYPE_NFIELDS (func_type) != n_actuals) 3212 return 0; 3213 3214 for (i = 0; i < n_actuals; i += 1) 3215 { 3216 if (actuals[i] == NULL) 3217 return 0; 3218 else 3219 { 3220 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, 3221 i)); 3222 struct type *atype = ada_check_typedef (value_type (actuals[i])); 3223 3224 if (!ada_type_match (ftype, atype, 1)) 3225 return 0; 3226 } 3227 } 3228 return 1; 3229 } 3230 3231 /* False iff function type FUNC_TYPE definitely does not produce a value 3232 compatible with type CONTEXT_TYPE. Conservatively returns 1 if 3233 FUNC_TYPE is not a valid function type with a non-null return type 3234 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ 3235 3236 static int 3237 return_match (struct type *func_type, struct type *context_type) 3238 { 3239 struct type *return_type; 3240 3241 if (func_type == NULL) 3242 return 1; 3243 3244 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) 3245 return_type = base_type (TYPE_TARGET_TYPE (func_type)); 3246 else 3247 return_type = base_type (func_type); 3248 if (return_type == NULL) 3249 return 1; 3250 3251 context_type = base_type (context_type); 3252 3253 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) 3254 return context_type == NULL || return_type == context_type; 3255 else if (context_type == NULL) 3256 return TYPE_CODE (return_type) != TYPE_CODE_VOID; 3257 else 3258 return TYPE_CODE (return_type) == TYPE_CODE (context_type); 3259 } 3260 3261 3262 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the 3263 function (if any) that matches the types of the NARGS arguments in 3264 ARGS. If CONTEXT_TYPE is non-null and there is at least one match 3265 that returns that type, then eliminate matches that don't. If 3266 CONTEXT_TYPE is void and there is at least one match that does not 3267 return void, eliminate all matches that do. 3268 3269 Asks the user if there is more than one match remaining. Returns -1 3270 if there is no such symbol or none is selected. NAME is used 3271 solely for messages. May re-arrange and modify SYMS in 3272 the process; the index returned is for the modified vector. */ 3273 3274 static int 3275 ada_resolve_function (struct ada_symbol_info syms[], 3276 int nsyms, struct value **args, int nargs, 3277 const char *name, struct type *context_type) 3278 { 3279 int fallback; 3280 int k; 3281 int m; /* Number of hits */ 3282 3283 m = 0; 3284 /* In the first pass of the loop, we only accept functions matching 3285 context_type. If none are found, we add a second pass of the loop 3286 where every function is accepted. */ 3287 for (fallback = 0; m == 0 && fallback < 2; fallback++) 3288 { 3289 for (k = 0; k < nsyms; k += 1) 3290 { 3291 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); 3292 3293 if (ada_args_match (syms[k].sym, args, nargs) 3294 && (fallback || return_match (type, context_type))) 3295 { 3296 syms[m] = syms[k]; 3297 m += 1; 3298 } 3299 } 3300 } 3301 3302 if (m == 0) 3303 return -1; 3304 else if (m > 1) 3305 { 3306 printf_filtered (_("Multiple matches for %s\n"), name); 3307 user_select_syms (syms, m, 1); 3308 return 0; 3309 } 3310 return 0; 3311 } 3312 3313 /* Returns true (non-zero) iff decoded name N0 should appear before N1 3314 in a listing of choices during disambiguation (see sort_choices, below). 3315 The idea is that overloadings of a subprogram name from the 3316 same package should sort in their source order. We settle for ordering 3317 such symbols by their trailing number (__N or $N). */ 3318 3319 static int 3320 encoded_ordered_before (char *N0, char *N1) 3321 { 3322 if (N1 == NULL) 3323 return 0; 3324 else if (N0 == NULL) 3325 return 1; 3326 else 3327 { 3328 int k0, k1; 3329 3330 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) 3331 ; 3332 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) 3333 ; 3334 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' 3335 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') 3336 { 3337 int n0, n1; 3338 3339 n0 = k0; 3340 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') 3341 n0 -= 1; 3342 n1 = k1; 3343 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') 3344 n1 -= 1; 3345 if (n0 == n1 && strncmp (N0, N1, n0) == 0) 3346 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); 3347 } 3348 return (strcmp (N0, N1) < 0); 3349 } 3350 } 3351 3352 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the 3353 encoded names. */ 3354 3355 static void 3356 sort_choices (struct ada_symbol_info syms[], int nsyms) 3357 { 3358 int i; 3359 3360 for (i = 1; i < nsyms; i += 1) 3361 { 3362 struct ada_symbol_info sym = syms[i]; 3363 int j; 3364 3365 for (j = i - 1; j >= 0; j -= 1) 3366 { 3367 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), 3368 SYMBOL_LINKAGE_NAME (sym.sym))) 3369 break; 3370 syms[j + 1] = syms[j]; 3371 } 3372 syms[j + 1] = sym; 3373 } 3374 } 3375 3376 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 3377 by asking the user (if necessary), returning the number selected, 3378 and setting the first elements of SYMS items. Error if no symbols 3379 selected. */ 3380 3381 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought 3382 to be re-integrated one of these days. */ 3383 3384 int 3385 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) 3386 { 3387 int i; 3388 int *chosen = (int *) alloca (sizeof (int) * nsyms); 3389 int n_chosen; 3390 int first_choice = (max_results == 1) ? 1 : 2; 3391 const char *select_mode = multiple_symbols_select_mode (); 3392 3393 if (max_results < 1) 3394 error (_("Request to select 0 symbols!")); 3395 if (nsyms <= 1) 3396 return nsyms; 3397 3398 if (select_mode == multiple_symbols_cancel) 3399 error (_("\ 3400 canceled because the command is ambiguous\n\ 3401 See set/show multiple-symbol.")); 3402 3403 /* If select_mode is "all", then return all possible symbols. 3404 Only do that if more than one symbol can be selected, of course. 3405 Otherwise, display the menu as usual. */ 3406 if (select_mode == multiple_symbols_all && max_results > 1) 3407 return nsyms; 3408 3409 printf_unfiltered (_("[0] cancel\n")); 3410 if (max_results > 1) 3411 printf_unfiltered (_("[1] all\n")); 3412 3413 sort_choices (syms, nsyms); 3414 3415 for (i = 0; i < nsyms; i += 1) 3416 { 3417 if (syms[i].sym == NULL) 3418 continue; 3419 3420 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) 3421 { 3422 struct symtab_and_line sal = 3423 find_function_start_sal (syms[i].sym, 1); 3424 3425 if (sal.symtab == NULL) 3426 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), 3427 i + first_choice, 3428 SYMBOL_PRINT_NAME (syms[i].sym), 3429 sal.line); 3430 else 3431 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, 3432 SYMBOL_PRINT_NAME (syms[i].sym), 3433 sal.symtab->filename, sal.line); 3434 continue; 3435 } 3436 else 3437 { 3438 int is_enumeral = 3439 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST 3440 && SYMBOL_TYPE (syms[i].sym) != NULL 3441 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); 3442 struct symtab *symtab = syms[i].sym->symtab; 3443 3444 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) 3445 printf_unfiltered (_("[%d] %s at %s:%d\n"), 3446 i + first_choice, 3447 SYMBOL_PRINT_NAME (syms[i].sym), 3448 symtab->filename, SYMBOL_LINE (syms[i].sym)); 3449 else if (is_enumeral 3450 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) 3451 { 3452 printf_unfiltered (("[%d] "), i + first_choice); 3453 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, 3454 gdb_stdout, -1, 0); 3455 printf_unfiltered (_("'(%s) (enumeral)\n"), 3456 SYMBOL_PRINT_NAME (syms[i].sym)); 3457 } 3458 else if (symtab != NULL) 3459 printf_unfiltered (is_enumeral 3460 ? _("[%d] %s in %s (enumeral)\n") 3461 : _("[%d] %s at %s:?\n"), 3462 i + first_choice, 3463 SYMBOL_PRINT_NAME (syms[i].sym), 3464 symtab->filename); 3465 else 3466 printf_unfiltered (is_enumeral 3467 ? _("[%d] %s (enumeral)\n") 3468 : _("[%d] %s at ?\n"), 3469 i + first_choice, 3470 SYMBOL_PRINT_NAME (syms[i].sym)); 3471 } 3472 } 3473 3474 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, 3475 "overload-choice"); 3476 3477 for (i = 0; i < n_chosen; i += 1) 3478 syms[i] = syms[chosen[i]]; 3479 3480 return n_chosen; 3481 } 3482 3483 /* Read and validate a set of numeric choices from the user in the 3484 range 0 .. N_CHOICES-1. Place the results in increasing 3485 order in CHOICES[0 .. N-1], and return N. 3486 3487 The user types choices as a sequence of numbers on one line 3488 separated by blanks, encoding them as follows: 3489 3490 + A choice of 0 means to cancel the selection, throwing an error. 3491 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. 3492 + The user chooses k by typing k+IS_ALL_CHOICE+1. 3493 3494 The user is not allowed to choose more than MAX_RESULTS values. 3495 3496 ANNOTATION_SUFFIX, if present, is used to annotate the input 3497 prompts (for use with the -f switch). */ 3498 3499 int 3500 get_selections (int *choices, int n_choices, int max_results, 3501 int is_all_choice, char *annotation_suffix) 3502 { 3503 char *args; 3504 char *prompt; 3505 int n_chosen; 3506 int first_choice = is_all_choice ? 2 : 1; 3507 3508 prompt = getenv ("PS2"); 3509 if (prompt == NULL) 3510 prompt = "> "; 3511 3512 args = command_line_input (prompt, 0, annotation_suffix); 3513 3514 if (args == NULL) 3515 error_no_arg (_("one or more choice numbers")); 3516 3517 n_chosen = 0; 3518 3519 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending 3520 order, as given in args. Choices are validated. */ 3521 while (1) 3522 { 3523 char *args2; 3524 int choice, j; 3525 3526 while (isspace (*args)) 3527 args += 1; 3528 if (*args == '\0' && n_chosen == 0) 3529 error_no_arg (_("one or more choice numbers")); 3530 else if (*args == '\0') 3531 break; 3532 3533 choice = strtol (args, &args2, 10); 3534 if (args == args2 || choice < 0 3535 || choice > n_choices + first_choice - 1) 3536 error (_("Argument must be choice number")); 3537 args = args2; 3538 3539 if (choice == 0) 3540 error (_("cancelled")); 3541 3542 if (choice < first_choice) 3543 { 3544 n_chosen = n_choices; 3545 for (j = 0; j < n_choices; j += 1) 3546 choices[j] = j; 3547 break; 3548 } 3549 choice -= first_choice; 3550 3551 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) 3552 { 3553 } 3554 3555 if (j < 0 || choice != choices[j]) 3556 { 3557 int k; 3558 3559 for (k = n_chosen - 1; k > j; k -= 1) 3560 choices[k + 1] = choices[k]; 3561 choices[j + 1] = choice; 3562 n_chosen += 1; 3563 } 3564 } 3565 3566 if (n_chosen > max_results) 3567 error (_("Select no more than %d of the above"), max_results); 3568 3569 return n_chosen; 3570 } 3571 3572 /* Replace the operator of length OPLEN at position PC in *EXPP with a call 3573 on the function identified by SYM and BLOCK, and taking NARGS 3574 arguments. Update *EXPP as needed to hold more space. */ 3575 3576 static void 3577 replace_operator_with_call (struct expression **expp, int pc, int nargs, 3578 int oplen, struct symbol *sym, 3579 struct block *block) 3580 { 3581 /* A new expression, with 6 more elements (3 for funcall, 4 for function 3582 symbol, -oplen for operator being replaced). */ 3583 struct expression *newexp = (struct expression *) 3584 xmalloc (sizeof (struct expression) 3585 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); 3586 struct expression *exp = *expp; 3587 3588 newexp->nelts = exp->nelts + 7 - oplen; 3589 newexp->language_defn = exp->language_defn; 3590 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); 3591 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, 3592 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); 3593 3594 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; 3595 newexp->elts[pc + 1].longconst = (LONGEST) nargs; 3596 3597 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; 3598 newexp->elts[pc + 4].block = block; 3599 newexp->elts[pc + 5].symbol = sym; 3600 3601 *expp = newexp; 3602 xfree (exp); 3603 } 3604 3605 /* Type-class predicates */ 3606 3607 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), 3608 or FLOAT). */ 3609 3610 static int 3611 numeric_type_p (struct type *type) 3612 { 3613 if (type == NULL) 3614 return 0; 3615 else 3616 { 3617 switch (TYPE_CODE (type)) 3618 { 3619 case TYPE_CODE_INT: 3620 case TYPE_CODE_FLT: 3621 return 1; 3622 case TYPE_CODE_RANGE: 3623 return (type == TYPE_TARGET_TYPE (type) 3624 || numeric_type_p (TYPE_TARGET_TYPE (type))); 3625 default: 3626 return 0; 3627 } 3628 } 3629 } 3630 3631 /* True iff TYPE is integral (an INT or RANGE of INTs). */ 3632 3633 static int 3634 integer_type_p (struct type *type) 3635 { 3636 if (type == NULL) 3637 return 0; 3638 else 3639 { 3640 switch (TYPE_CODE (type)) 3641 { 3642 case TYPE_CODE_INT: 3643 return 1; 3644 case TYPE_CODE_RANGE: 3645 return (type == TYPE_TARGET_TYPE (type) 3646 || integer_type_p (TYPE_TARGET_TYPE (type))); 3647 default: 3648 return 0; 3649 } 3650 } 3651 } 3652 3653 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ 3654 3655 static int 3656 scalar_type_p (struct type *type) 3657 { 3658 if (type == NULL) 3659 return 0; 3660 else 3661 { 3662 switch (TYPE_CODE (type)) 3663 { 3664 case TYPE_CODE_INT: 3665 case TYPE_CODE_RANGE: 3666 case TYPE_CODE_ENUM: 3667 case TYPE_CODE_FLT: 3668 return 1; 3669 default: 3670 return 0; 3671 } 3672 } 3673 } 3674 3675 /* True iff TYPE is discrete (INT, RANGE, ENUM). */ 3676 3677 static int 3678 discrete_type_p (struct type *type) 3679 { 3680 if (type == NULL) 3681 return 0; 3682 else 3683 { 3684 switch (TYPE_CODE (type)) 3685 { 3686 case TYPE_CODE_INT: 3687 case TYPE_CODE_RANGE: 3688 case TYPE_CODE_ENUM: 3689 case TYPE_CODE_BOOL: 3690 return 1; 3691 default: 3692 return 0; 3693 } 3694 } 3695 } 3696 3697 /* Returns non-zero if OP with operands in the vector ARGS could be 3698 a user-defined function. Errs on the side of pre-defined operators 3699 (i.e., result 0). */ 3700 3701 static int 3702 possible_user_operator_p (enum exp_opcode op, struct value *args[]) 3703 { 3704 struct type *type0 = 3705 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); 3706 struct type *type1 = 3707 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); 3708 3709 if (type0 == NULL) 3710 return 0; 3711 3712 switch (op) 3713 { 3714 default: 3715 return 0; 3716 3717 case BINOP_ADD: 3718 case BINOP_SUB: 3719 case BINOP_MUL: 3720 case BINOP_DIV: 3721 return (!(numeric_type_p (type0) && numeric_type_p (type1))); 3722 3723 case BINOP_REM: 3724 case BINOP_MOD: 3725 case BINOP_BITWISE_AND: 3726 case BINOP_BITWISE_IOR: 3727 case BINOP_BITWISE_XOR: 3728 return (!(integer_type_p (type0) && integer_type_p (type1))); 3729 3730 case BINOP_EQUAL: 3731 case BINOP_NOTEQUAL: 3732 case BINOP_LESS: 3733 case BINOP_GTR: 3734 case BINOP_LEQ: 3735 case BINOP_GEQ: 3736 return (!(scalar_type_p (type0) && scalar_type_p (type1))); 3737 3738 case BINOP_CONCAT: 3739 return !ada_is_array_type (type0) || !ada_is_array_type (type1); 3740 3741 case BINOP_EXP: 3742 return (!(numeric_type_p (type0) && integer_type_p (type1))); 3743 3744 case UNOP_NEG: 3745 case UNOP_PLUS: 3746 case UNOP_LOGICAL_NOT: 3747 case UNOP_ABS: 3748 return (!numeric_type_p (type0)); 3749 3750 } 3751 } 3752 3753 /* Renaming */ 3754 3755 /* NOTES: 3756 3757 1. In the following, we assume that a renaming type's name may 3758 have an ___XD suffix. It would be nice if this went away at some 3759 point. 3760 2. We handle both the (old) purely type-based representation of 3761 renamings and the (new) variable-based encoding. At some point, 3762 it is devoutly to be hoped that the former goes away 3763 (FIXME: hilfinger-2007-07-09). 3764 3. Subprogram renamings are not implemented, although the XRS 3765 suffix is recognized (FIXME: hilfinger-2007-07-09). */ 3766 3767 /* If SYM encodes a renaming, 3768 3769 <renaming> renames <renamed entity>, 3770 3771 sets *LEN to the length of the renamed entity's name, 3772 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to 3773 the string describing the subcomponent selected from the renamed 3774 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming 3775 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR 3776 are undefined). Otherwise, returns a value indicating the category 3777 of entity renamed: an object (ADA_OBJECT_RENAMING), exception 3778 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or 3779 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the 3780 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be 3781 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR 3782 may be NULL, in which case they are not assigned. 3783 3784 [Currently, however, GCC does not generate subprogram renamings.] */ 3785 3786 enum ada_renaming_category 3787 ada_parse_renaming (struct symbol *sym, 3788 const char **renamed_entity, int *len, 3789 const char **renaming_expr) 3790 { 3791 enum ada_renaming_category kind; 3792 const char *info; 3793 const char *suffix; 3794 3795 if (sym == NULL) 3796 return ADA_NOT_RENAMING; 3797 switch (SYMBOL_CLASS (sym)) 3798 { 3799 default: 3800 return ADA_NOT_RENAMING; 3801 case LOC_TYPEDEF: 3802 return parse_old_style_renaming (SYMBOL_TYPE (sym), 3803 renamed_entity, len, renaming_expr); 3804 case LOC_LOCAL: 3805 case LOC_STATIC: 3806 case LOC_COMPUTED: 3807 case LOC_OPTIMIZED_OUT: 3808 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); 3809 if (info == NULL) 3810 return ADA_NOT_RENAMING; 3811 switch (info[5]) 3812 { 3813 case '_': 3814 kind = ADA_OBJECT_RENAMING; 3815 info += 6; 3816 break; 3817 case 'E': 3818 kind = ADA_EXCEPTION_RENAMING; 3819 info += 7; 3820 break; 3821 case 'P': 3822 kind = ADA_PACKAGE_RENAMING; 3823 info += 7; 3824 break; 3825 case 'S': 3826 kind = ADA_SUBPROGRAM_RENAMING; 3827 info += 7; 3828 break; 3829 default: 3830 return ADA_NOT_RENAMING; 3831 } 3832 } 3833 3834 if (renamed_entity != NULL) 3835 *renamed_entity = info; 3836 suffix = strstr (info, "___XE"); 3837 if (suffix == NULL || suffix == info) 3838 return ADA_NOT_RENAMING; 3839 if (len != NULL) 3840 *len = strlen (info) - strlen (suffix); 3841 suffix += 5; 3842 if (renaming_expr != NULL) 3843 *renaming_expr = suffix; 3844 return kind; 3845 } 3846 3847 /* Assuming TYPE encodes a renaming according to the old encoding in 3848 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, 3849 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns 3850 ADA_NOT_RENAMING otherwise. */ 3851 static enum ada_renaming_category 3852 parse_old_style_renaming (struct type *type, 3853 const char **renamed_entity, int *len, 3854 const char **renaming_expr) 3855 { 3856 enum ada_renaming_category kind; 3857 const char *name; 3858 const char *info; 3859 const char *suffix; 3860 3861 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 3862 || TYPE_NFIELDS (type) != 1) 3863 return ADA_NOT_RENAMING; 3864 3865 name = type_name_no_tag (type); 3866 if (name == NULL) 3867 return ADA_NOT_RENAMING; 3868 3869 name = strstr (name, "___XR"); 3870 if (name == NULL) 3871 return ADA_NOT_RENAMING; 3872 switch (name[5]) 3873 { 3874 case '\0': 3875 case '_': 3876 kind = ADA_OBJECT_RENAMING; 3877 break; 3878 case 'E': 3879 kind = ADA_EXCEPTION_RENAMING; 3880 break; 3881 case 'P': 3882 kind = ADA_PACKAGE_RENAMING; 3883 break; 3884 case 'S': 3885 kind = ADA_SUBPROGRAM_RENAMING; 3886 break; 3887 default: 3888 return ADA_NOT_RENAMING; 3889 } 3890 3891 info = TYPE_FIELD_NAME (type, 0); 3892 if (info == NULL) 3893 return ADA_NOT_RENAMING; 3894 if (renamed_entity != NULL) 3895 *renamed_entity = info; 3896 suffix = strstr (info, "___XE"); 3897 if (renaming_expr != NULL) 3898 *renaming_expr = suffix + 5; 3899 if (suffix == NULL || suffix == info) 3900 return ADA_NOT_RENAMING; 3901 if (len != NULL) 3902 *len = suffix - info; 3903 return kind; 3904 } 3905 3906 3907 3908 /* Evaluation: Function Calls */ 3909 3910 /* Return an lvalue containing the value VAL. This is the identity on 3911 lvalues, and otherwise has the side-effect of pushing a copy of VAL 3912 on the stack, using and updating *SP as the stack pointer, and 3913 returning an lvalue whose value_address points to the copy. */ 3914 3915 static struct value * 3916 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp) 3917 { 3918 if (! VALUE_LVAL (val)) 3919 { 3920 int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); 3921 3922 /* The following is taken from the structure-return code in 3923 call_function_by_hand. FIXME: Therefore, some refactoring seems 3924 indicated. */ 3925 if (gdbarch_inner_than (gdbarch, 1, 2)) 3926 { 3927 /* Stack grows downward. Align SP and value_address (val) after 3928 reserving sufficient space. */ 3929 *sp -= len; 3930 if (gdbarch_frame_align_p (gdbarch)) 3931 *sp = gdbarch_frame_align (gdbarch, *sp); 3932 set_value_address (val, *sp); 3933 } 3934 else 3935 { 3936 /* Stack grows upward. Align the frame, allocate space, and 3937 then again, re-align the frame. */ 3938 if (gdbarch_frame_align_p (gdbarch)) 3939 *sp = gdbarch_frame_align (gdbarch, *sp); 3940 set_value_address (val, *sp); 3941 *sp += len; 3942 if (gdbarch_frame_align_p (gdbarch)) 3943 *sp = gdbarch_frame_align (gdbarch, *sp); 3944 } 3945 VALUE_LVAL (val) = lval_memory; 3946 3947 write_memory (value_address (val), value_contents (val), len); 3948 } 3949 3950 return val; 3951 } 3952 3953 /* Return the value ACTUAL, converted to be an appropriate value for a 3954 formal of type FORMAL_TYPE. Use *SP as a stack pointer for 3955 allocating any necessary descriptors (fat pointers), or copies of 3956 values not residing in memory, updating it as needed. */ 3957 3958 struct value * 3959 ada_convert_actual (struct value *actual, struct type *formal_type0, 3960 struct gdbarch *gdbarch, CORE_ADDR *sp) 3961 { 3962 struct type *actual_type = ada_check_typedef (value_type (actual)); 3963 struct type *formal_type = ada_check_typedef (formal_type0); 3964 struct type *formal_target = 3965 TYPE_CODE (formal_type) == TYPE_CODE_PTR 3966 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; 3967 struct type *actual_target = 3968 TYPE_CODE (actual_type) == TYPE_CODE_PTR 3969 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; 3970 3971 if (ada_is_array_descriptor_type (formal_target) 3972 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) 3973 return make_array_descriptor (formal_type, actual, gdbarch, sp); 3974 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR 3975 || TYPE_CODE (formal_type) == TYPE_CODE_REF) 3976 { 3977 struct value *result; 3978 3979 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY 3980 && ada_is_array_descriptor_type (actual_target)) 3981 result = desc_data (actual); 3982 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) 3983 { 3984 if (VALUE_LVAL (actual) != lval_memory) 3985 { 3986 struct value *val; 3987 3988 actual_type = ada_check_typedef (value_type (actual)); 3989 val = allocate_value (actual_type); 3990 memcpy ((char *) value_contents_raw (val), 3991 (char *) value_contents (actual), 3992 TYPE_LENGTH (actual_type)); 3993 actual = ensure_lval (val, gdbarch, sp); 3994 } 3995 result = value_addr (actual); 3996 } 3997 else 3998 return actual; 3999 return value_cast_pointers (formal_type, result); 4000 } 4001 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) 4002 return ada_value_ind (actual); 4003 4004 return actual; 4005 } 4006 4007 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of 4008 type TYPE. This is usually an inefficient no-op except on some targets 4009 (such as AVR) where the representation of a pointer and an address 4010 differs. */ 4011 4012 static CORE_ADDR 4013 value_pointer (struct value *value, struct type *type) 4014 { 4015 struct gdbarch *gdbarch = get_type_arch (type); 4016 unsigned len = TYPE_LENGTH (type); 4017 gdb_byte *buf = alloca (len); 4018 CORE_ADDR addr; 4019 4020 addr = value_address (value); 4021 gdbarch_address_to_pointer (gdbarch, type, buf, addr); 4022 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); 4023 return addr; 4024 } 4025 4026 4027 /* Push a descriptor of type TYPE for array value ARR on the stack at 4028 *SP, updating *SP to reflect the new descriptor. Return either 4029 an lvalue representing the new descriptor, or (if TYPE is a pointer- 4030 to-descriptor type rather than a descriptor type), a struct value * 4031 representing a pointer to this descriptor. */ 4032 4033 static struct value * 4034 make_array_descriptor (struct type *type, struct value *arr, 4035 struct gdbarch *gdbarch, CORE_ADDR *sp) 4036 { 4037 struct type *bounds_type = desc_bounds_type (type); 4038 struct type *desc_type = desc_base_type (type); 4039 struct value *descriptor = allocate_value (desc_type); 4040 struct value *bounds = allocate_value (bounds_type); 4041 int i; 4042 4043 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) 4044 { 4045 modify_general_field (value_type (bounds), 4046 value_contents_writeable (bounds), 4047 ada_array_bound (arr, i, 0), 4048 desc_bound_bitpos (bounds_type, i, 0), 4049 desc_bound_bitsize (bounds_type, i, 0)); 4050 modify_general_field (value_type (bounds), 4051 value_contents_writeable (bounds), 4052 ada_array_bound (arr, i, 1), 4053 desc_bound_bitpos (bounds_type, i, 1), 4054 desc_bound_bitsize (bounds_type, i, 1)); 4055 } 4056 4057 bounds = ensure_lval (bounds, gdbarch, sp); 4058 4059 modify_general_field (value_type (descriptor), 4060 value_contents_writeable (descriptor), 4061 value_pointer (ensure_lval (arr, gdbarch, sp), 4062 TYPE_FIELD_TYPE (desc_type, 0)), 4063 fat_pntr_data_bitpos (desc_type), 4064 fat_pntr_data_bitsize (desc_type)); 4065 4066 modify_general_field (value_type (descriptor), 4067 value_contents_writeable (descriptor), 4068 value_pointer (bounds, 4069 TYPE_FIELD_TYPE (desc_type, 1)), 4070 fat_pntr_bounds_bitpos (desc_type), 4071 fat_pntr_bounds_bitsize (desc_type)); 4072 4073 descriptor = ensure_lval (descriptor, gdbarch, sp); 4074 4075 if (TYPE_CODE (type) == TYPE_CODE_PTR) 4076 return value_addr (descriptor); 4077 else 4078 return descriptor; 4079 } 4080 4081 /* Dummy definitions for an experimental caching module that is not 4082 * used in the public sources. */ 4083 4084 static int 4085 lookup_cached_symbol (const char *name, domain_enum namespace, 4086 struct symbol **sym, struct block **block) 4087 { 4088 return 0; 4089 } 4090 4091 static void 4092 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, 4093 struct block *block) 4094 { 4095 } 4096 4097 /* Symbol Lookup */ 4098 4099 /* Return the result of a standard (literal, C-like) lookup of NAME in 4100 given DOMAIN, visible from lexical block BLOCK. */ 4101 4102 static struct symbol * 4103 standard_lookup (const char *name, const struct block *block, 4104 domain_enum domain) 4105 { 4106 struct symbol *sym; 4107 4108 if (lookup_cached_symbol (name, domain, &sym, NULL)) 4109 return sym; 4110 sym = lookup_symbol_in_language (name, block, domain, language_c, 0); 4111 cache_symbol (name, domain, sym, block_found); 4112 return sym; 4113 } 4114 4115 4116 /* Non-zero iff there is at least one non-function/non-enumeral symbol 4117 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, 4118 since they contend in overloading in the same way. */ 4119 static int 4120 is_nonfunction (struct ada_symbol_info syms[], int n) 4121 { 4122 int i; 4123 4124 for (i = 0; i < n; i += 1) 4125 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC 4126 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM 4127 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) 4128 return 1; 4129 4130 return 0; 4131 } 4132 4133 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent 4134 struct types. Otherwise, they may not. */ 4135 4136 static int 4137 equiv_types (struct type *type0, struct type *type1) 4138 { 4139 if (type0 == type1) 4140 return 1; 4141 if (type0 == NULL || type1 == NULL 4142 || TYPE_CODE (type0) != TYPE_CODE (type1)) 4143 return 0; 4144 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT 4145 || TYPE_CODE (type0) == TYPE_CODE_ENUM) 4146 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL 4147 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) 4148 return 1; 4149 4150 return 0; 4151 } 4152 4153 /* True iff SYM0 represents the same entity as SYM1, or one that is 4154 no more defined than that of SYM1. */ 4155 4156 static int 4157 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) 4158 { 4159 if (sym0 == sym1) 4160 return 1; 4161 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) 4162 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) 4163 return 0; 4164 4165 switch (SYMBOL_CLASS (sym0)) 4166 { 4167 case LOC_UNDEF: 4168 return 1; 4169 case LOC_TYPEDEF: 4170 { 4171 struct type *type0 = SYMBOL_TYPE (sym0); 4172 struct type *type1 = SYMBOL_TYPE (sym1); 4173 char *name0 = SYMBOL_LINKAGE_NAME (sym0); 4174 char *name1 = SYMBOL_LINKAGE_NAME (sym1); 4175 int len0 = strlen (name0); 4176 4177 return 4178 TYPE_CODE (type0) == TYPE_CODE (type1) 4179 && (equiv_types (type0, type1) 4180 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 4181 && strncmp (name1 + len0, "___XV", 5) == 0)); 4182 } 4183 case LOC_CONST: 4184 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) 4185 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); 4186 default: 4187 return 0; 4188 } 4189 } 4190 4191 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info 4192 records in OBSTACKP. Do nothing if SYM is a duplicate. */ 4193 4194 static void 4195 add_defn_to_vec (struct obstack *obstackp, 4196 struct symbol *sym, 4197 struct block *block) 4198 { 4199 int i; 4200 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); 4201 4202 /* Do not try to complete stub types, as the debugger is probably 4203 already scanning all symbols matching a certain name at the 4204 time when this function is called. Trying to replace the stub 4205 type by its associated full type will cause us to restart a scan 4206 which may lead to an infinite recursion. Instead, the client 4207 collecting the matching symbols will end up collecting several 4208 matches, with at least one of them complete. It can then filter 4209 out the stub ones if needed. */ 4210 4211 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) 4212 { 4213 if (lesseq_defined_than (sym, prevDefns[i].sym)) 4214 return; 4215 else if (lesseq_defined_than (prevDefns[i].sym, sym)) 4216 { 4217 prevDefns[i].sym = sym; 4218 prevDefns[i].block = block; 4219 return; 4220 } 4221 } 4222 4223 { 4224 struct ada_symbol_info info; 4225 4226 info.sym = sym; 4227 info.block = block; 4228 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); 4229 } 4230 } 4231 4232 /* Number of ada_symbol_info structures currently collected in 4233 current vector in *OBSTACKP. */ 4234 4235 static int 4236 num_defns_collected (struct obstack *obstackp) 4237 { 4238 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); 4239 } 4240 4241 /* Vector of ada_symbol_info structures currently collected in current 4242 vector in *OBSTACKP. If FINISH, close off the vector and return 4243 its final address. */ 4244 4245 static struct ada_symbol_info * 4246 defns_collected (struct obstack *obstackp, int finish) 4247 { 4248 if (finish) 4249 return obstack_finish (obstackp); 4250 else 4251 return (struct ada_symbol_info *) obstack_base (obstackp); 4252 } 4253 4254 /* Return a minimal symbol matching NAME according to Ada decoding 4255 rules. Returns NULL if there is no such minimal symbol. Names 4256 prefixed with "standard__" are handled specially: "standard__" is 4257 first stripped off, and only static and global symbols are searched. */ 4258 4259 struct minimal_symbol * 4260 ada_lookup_simple_minsym (const char *name) 4261 { 4262 struct objfile *objfile; 4263 struct minimal_symbol *msymbol; 4264 int wild_match; 4265 4266 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) 4267 { 4268 name += sizeof ("standard__") - 1; 4269 wild_match = 0; 4270 } 4271 else 4272 wild_match = (strstr (name, "__") == NULL); 4273 4274 ALL_MSYMBOLS (objfile, msymbol) 4275 { 4276 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) 4277 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) 4278 return msymbol; 4279 } 4280 4281 return NULL; 4282 } 4283 4284 /* For all subprograms that statically enclose the subprogram of the 4285 selected frame, add symbols matching identifier NAME in DOMAIN 4286 and their blocks to the list of data in OBSTACKP, as for 4287 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a 4288 wildcard prefix. */ 4289 4290 static void 4291 add_symbols_from_enclosing_procs (struct obstack *obstackp, 4292 const char *name, domain_enum namespace, 4293 int wild_match) 4294 { 4295 } 4296 4297 /* True if TYPE is definitely an artificial type supplied to a symbol 4298 for which no debugging information was given in the symbol file. */ 4299 4300 static int 4301 is_nondebugging_type (struct type *type) 4302 { 4303 char *name = ada_type_name (type); 4304 4305 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); 4306 } 4307 4308 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely 4309 duplicate other symbols in the list (The only case I know of where 4310 this happens is when object files containing stabs-in-ecoff are 4311 linked with files containing ordinary ecoff debugging symbols (or no 4312 debugging symbols)). Modifies SYMS to squeeze out deleted entries. 4313 Returns the number of items in the modified list. */ 4314 4315 static int 4316 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) 4317 { 4318 int i, j; 4319 4320 i = 0; 4321 while (i < nsyms) 4322 { 4323 int remove = 0; 4324 4325 /* If two symbols have the same name and one of them is a stub type, 4326 the get rid of the stub. */ 4327 4328 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) 4329 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) 4330 { 4331 for (j = 0; j < nsyms; j++) 4332 { 4333 if (j != i 4334 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) 4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL 4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), 4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) 4338 remove = 1; 4339 } 4340 } 4341 4342 /* Two symbols with the same name, same class and same address 4343 should be identical. */ 4344 4345 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL 4346 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC 4347 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) 4348 { 4349 for (j = 0; j < nsyms; j += 1) 4350 { 4351 if (i != j 4352 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL 4353 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), 4354 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 4355 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) 4356 && SYMBOL_VALUE_ADDRESS (syms[i].sym) 4357 == SYMBOL_VALUE_ADDRESS (syms[j].sym)) 4358 remove = 1; 4359 } 4360 } 4361 4362 if (remove) 4363 { 4364 for (j = i + 1; j < nsyms; j += 1) 4365 syms[j - 1] = syms[j]; 4366 nsyms -= 1; 4367 } 4368 4369 i += 1; 4370 } 4371 return nsyms; 4372 } 4373 4374 /* Given a type that corresponds to a renaming entity, use the type name 4375 to extract the scope (package name or function name, fully qualified, 4376 and following the GNAT encoding convention) where this renaming has been 4377 defined. The string returned needs to be deallocated after use. */ 4378 4379 static char * 4380 xget_renaming_scope (struct type *renaming_type) 4381 { 4382 /* The renaming types adhere to the following convention: 4383 <scope>__<rename>___<XR extension>. 4384 So, to extract the scope, we search for the "___XR" extension, 4385 and then backtrack until we find the first "__". */ 4386 4387 const char *name = type_name_no_tag (renaming_type); 4388 char *suffix = strstr (name, "___XR"); 4389 char *last; 4390 int scope_len; 4391 char *scope; 4392 4393 /* Now, backtrack a bit until we find the first "__". Start looking 4394 at suffix - 3, as the <rename> part is at least one character long. */ 4395 4396 for (last = suffix - 3; last > name; last--) 4397 if (last[0] == '_' && last[1] == '_') 4398 break; 4399 4400 /* Make a copy of scope and return it. */ 4401 4402 scope_len = last - name; 4403 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); 4404 4405 strncpy (scope, name, scope_len); 4406 scope[scope_len] = '\0'; 4407 4408 return scope; 4409 } 4410 4411 /* Return nonzero if NAME corresponds to a package name. */ 4412 4413 static int 4414 is_package_name (const char *name) 4415 { 4416 /* Here, We take advantage of the fact that no symbols are generated 4417 for packages, while symbols are generated for each function. 4418 So the condition for NAME represent a package becomes equivalent 4419 to NAME not existing in our list of symbols. There is only one 4420 small complication with library-level functions (see below). */ 4421 4422 char *fun_name; 4423 4424 /* If it is a function that has not been defined at library level, 4425 then we should be able to look it up in the symbols. */ 4426 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) 4427 return 0; 4428 4429 /* Library-level function names start with "_ada_". See if function 4430 "_ada_" followed by NAME can be found. */ 4431 4432 /* Do a quick check that NAME does not contain "__", since library-level 4433 functions names cannot contain "__" in them. */ 4434 if (strstr (name, "__") != NULL) 4435 return 0; 4436 4437 fun_name = xstrprintf ("_ada_%s", name); 4438 4439 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); 4440 } 4441 4442 /* Return nonzero if SYM corresponds to a renaming entity that is 4443 not visible from FUNCTION_NAME. */ 4444 4445 static int 4446 old_renaming_is_invisible (const struct symbol *sym, char *function_name) 4447 { 4448 char *scope; 4449 4450 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) 4451 return 0; 4452 4453 scope = xget_renaming_scope (SYMBOL_TYPE (sym)); 4454 4455 make_cleanup (xfree, scope); 4456 4457 /* If the rename has been defined in a package, then it is visible. */ 4458 if (is_package_name (scope)) 4459 return 0; 4460 4461 /* Check that the rename is in the current function scope by checking 4462 that its name starts with SCOPE. */ 4463 4464 /* If the function name starts with "_ada_", it means that it is 4465 a library-level function. Strip this prefix before doing the 4466 comparison, as the encoding for the renaming does not contain 4467 this prefix. */ 4468 if (strncmp (function_name, "_ada_", 5) == 0) 4469 function_name += 5; 4470 4471 return (strncmp (function_name, scope, strlen (scope)) != 0); 4472 } 4473 4474 /* Remove entries from SYMS that corresponds to a renaming entity that 4475 is not visible from the function associated with CURRENT_BLOCK or 4476 that is superfluous due to the presence of more specific renaming 4477 information. Places surviving symbols in the initial entries of 4478 SYMS and returns the number of surviving symbols. 4479 4480 Rationale: 4481 First, in cases where an object renaming is implemented as a 4482 reference variable, GNAT may produce both the actual reference 4483 variable and the renaming encoding. In this case, we discard the 4484 latter. 4485 4486 Second, GNAT emits a type following a specified encoding for each renaming 4487 entity. Unfortunately, STABS currently does not support the definition 4488 of types that are local to a given lexical block, so all renamings types 4489 are emitted at library level. As a consequence, if an application 4490 contains two renaming entities using the same name, and a user tries to 4491 print the value of one of these entities, the result of the ada symbol 4492 lookup will also contain the wrong renaming type. 4493 4494 This function partially covers for this limitation by attempting to 4495 remove from the SYMS list renaming symbols that should be visible 4496 from CURRENT_BLOCK. However, there does not seem be a 100% reliable 4497 method with the current information available. The implementation 4498 below has a couple of limitations (FIXME: brobecker-2003-05-12): 4499 4500 - When the user tries to print a rename in a function while there 4501 is another rename entity defined in a package: Normally, the 4502 rename in the function has precedence over the rename in the 4503 package, so the latter should be removed from the list. This is 4504 currently not the case. 4505 4506 - This function will incorrectly remove valid renames if 4507 the CURRENT_BLOCK corresponds to a function which symbol name 4508 has been changed by an "Export" pragma. As a consequence, 4509 the user will be unable to print such rename entities. */ 4510 4511 static int 4512 remove_irrelevant_renamings (struct ada_symbol_info *syms, 4513 int nsyms, const struct block *current_block) 4514 { 4515 struct symbol *current_function; 4516 char *current_function_name; 4517 int i; 4518 int is_new_style_renaming; 4519 4520 /* If there is both a renaming foo___XR... encoded as a variable and 4521 a simple variable foo in the same block, discard the latter. 4522 First, zero out such symbols, then compress. */ 4523 is_new_style_renaming = 0; 4524 for (i = 0; i < nsyms; i += 1) 4525 { 4526 struct symbol *sym = syms[i].sym; 4527 struct block *block = syms[i].block; 4528 const char *name; 4529 const char *suffix; 4530 4531 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) 4532 continue; 4533 name = SYMBOL_LINKAGE_NAME (sym); 4534 suffix = strstr (name, "___XR"); 4535 4536 if (suffix != NULL) 4537 { 4538 int name_len = suffix - name; 4539 int j; 4540 4541 is_new_style_renaming = 1; 4542 for (j = 0; j < nsyms; j += 1) 4543 if (i != j && syms[j].sym != NULL 4544 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), 4545 name_len) == 0 4546 && block == syms[j].block) 4547 syms[j].sym = NULL; 4548 } 4549 } 4550 if (is_new_style_renaming) 4551 { 4552 int j, k; 4553 4554 for (j = k = 0; j < nsyms; j += 1) 4555 if (syms[j].sym != NULL) 4556 { 4557 syms[k] = syms[j]; 4558 k += 1; 4559 } 4560 return k; 4561 } 4562 4563 /* Extract the function name associated to CURRENT_BLOCK. 4564 Abort if unable to do so. */ 4565 4566 if (current_block == NULL) 4567 return nsyms; 4568 4569 current_function = block_linkage_function (current_block); 4570 if (current_function == NULL) 4571 return nsyms; 4572 4573 current_function_name = SYMBOL_LINKAGE_NAME (current_function); 4574 if (current_function_name == NULL) 4575 return nsyms; 4576 4577 /* Check each of the symbols, and remove it from the list if it is 4578 a type corresponding to a renaming that is out of the scope of 4579 the current block. */ 4580 4581 i = 0; 4582 while (i < nsyms) 4583 { 4584 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) 4585 == ADA_OBJECT_RENAMING 4586 && old_renaming_is_invisible (syms[i].sym, current_function_name)) 4587 { 4588 int j; 4589 4590 for (j = i + 1; j < nsyms; j += 1) 4591 syms[j - 1] = syms[j]; 4592 nsyms -= 1; 4593 } 4594 else 4595 i += 1; 4596 } 4597 4598 return nsyms; 4599 } 4600 4601 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) 4602 whose name and domain match NAME and DOMAIN respectively. 4603 If no match was found, then extend the search to "enclosing" 4604 routines (in other words, if we're inside a nested function, 4605 search the symbols defined inside the enclosing functions). 4606 4607 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ 4608 4609 static void 4610 ada_add_local_symbols (struct obstack *obstackp, const char *name, 4611 struct block *block, domain_enum domain, 4612 int wild_match) 4613 { 4614 int block_depth = 0; 4615 4616 while (block != NULL) 4617 { 4618 block_depth += 1; 4619 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); 4620 4621 /* If we found a non-function match, assume that's the one. */ 4622 if (is_nonfunction (defns_collected (obstackp, 0), 4623 num_defns_collected (obstackp))) 4624 return; 4625 4626 block = BLOCK_SUPERBLOCK (block); 4627 } 4628 4629 /* If no luck so far, try to find NAME as a local symbol in some lexically 4630 enclosing subprogram. */ 4631 if (num_defns_collected (obstackp) == 0 && block_depth > 2) 4632 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); 4633 } 4634 4635 /* An object of this type is used as the user_data argument when 4636 calling the map_ada_symtabs method. */ 4637 4638 struct ada_psym_data 4639 { 4640 struct obstack *obstackp; 4641 const char *name; 4642 domain_enum domain; 4643 int global; 4644 int wild_match; 4645 }; 4646 4647 /* Callback function for map_ada_symtabs. */ 4648 4649 static void 4650 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data) 4651 { 4652 struct ada_psym_data *data = user_data; 4653 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK; 4654 4655 ada_add_block_symbols (data->obstackp, 4656 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), 4657 data->name, data->domain, objfile, data->wild_match); 4658 } 4659 4660 /* Add to OBSTACKP all non-local symbols whose name and domain match 4661 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK 4662 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ 4663 4664 static void 4665 ada_add_non_local_symbols (struct obstack *obstackp, const char *name, 4666 domain_enum domain, int global, 4667 int is_wild_match) 4668 { 4669 struct objfile *objfile; 4670 struct ada_psym_data data; 4671 4672 data.obstackp = obstackp; 4673 data.name = name; 4674 data.domain = domain; 4675 data.global = global; 4676 data.wild_match = is_wild_match; 4677 4678 ALL_OBJFILES (objfile) 4679 { 4680 if (objfile->sf) 4681 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix, 4682 ada_add_psyms, name, 4683 global, domain, 4684 is_wild_match, &data); 4685 } 4686 } 4687 4688 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing 4689 scope and in global scopes, returning the number of matches. Sets 4690 *RESULTS to point to a vector of (SYM,BLOCK) tuples, 4691 indicating the symbols found and the blocks and symbol tables (if 4692 any) in which they were found. This vector are transient---good only to 4693 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral 4694 symbol match within the nest of blocks whose innermost member is BLOCK0, 4695 is the one match returned (no other matches in that or 4696 enclosing blocks is returned). If there are any matches in or 4697 surrounding BLOCK0, then these alone are returned. Otherwise, the 4698 search extends to global and file-scope (static) symbol tables. 4699 Names prefixed with "standard__" are handled specially: "standard__" 4700 is first stripped off, and only static and global symbols are searched. */ 4701 4702 int 4703 ada_lookup_symbol_list (const char *name0, const struct block *block0, 4704 domain_enum namespace, 4705 struct ada_symbol_info **results) 4706 { 4707 struct symbol *sym; 4708 struct block *block; 4709 const char *name; 4710 int wild_match; 4711 int cacheIfUnique; 4712 int ndefns; 4713 4714 obstack_free (&symbol_list_obstack, NULL); 4715 obstack_init (&symbol_list_obstack); 4716 4717 cacheIfUnique = 0; 4718 4719 /* Search specified block and its superiors. */ 4720 4721 wild_match = (strstr (name0, "__") == NULL); 4722 name = name0; 4723 block = (struct block *) block0; /* FIXME: No cast ought to be 4724 needed, but adding const will 4725 have a cascade effect. */ 4726 4727 /* Special case: If the user specifies a symbol name inside package 4728 Standard, do a non-wild matching of the symbol name without 4729 the "standard__" prefix. This was primarily introduced in order 4730 to allow the user to specifically access the standard exceptions 4731 using, for instance, Standard.Constraint_Error when Constraint_Error 4732 is ambiguous (due to the user defining its own Constraint_Error 4733 entity inside its program). */ 4734 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) 4735 { 4736 wild_match = 0; 4737 block = NULL; 4738 name = name0 + sizeof ("standard__") - 1; 4739 } 4740 4741 /* Check the non-global symbols. If we have ANY match, then we're done. */ 4742 4743 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, 4744 wild_match); 4745 if (num_defns_collected (&symbol_list_obstack) > 0) 4746 goto done; 4747 4748 /* No non-global symbols found. Check our cache to see if we have 4749 already performed this search before. If we have, then return 4750 the same result. */ 4751 4752 cacheIfUnique = 1; 4753 if (lookup_cached_symbol (name0, namespace, &sym, &block)) 4754 { 4755 if (sym != NULL) 4756 add_defn_to_vec (&symbol_list_obstack, sym, block); 4757 goto done; 4758 } 4759 4760 /* Search symbols from all global blocks. */ 4761 4762 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, 4763 wild_match); 4764 4765 /* Now add symbols from all per-file blocks if we've gotten no hits 4766 (not strictly correct, but perhaps better than an error). */ 4767 4768 if (num_defns_collected (&symbol_list_obstack) == 0) 4769 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, 4770 wild_match); 4771 4772 done: 4773 ndefns = num_defns_collected (&symbol_list_obstack); 4774 *results = defns_collected (&symbol_list_obstack, 1); 4775 4776 ndefns = remove_extra_symbols (*results, ndefns); 4777 4778 if (ndefns == 0) 4779 cache_symbol (name0, namespace, NULL, NULL); 4780 4781 if (ndefns == 1 && cacheIfUnique) 4782 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); 4783 4784 ndefns = remove_irrelevant_renamings (*results, ndefns, block0); 4785 4786 return ndefns; 4787 } 4788 4789 struct symbol * 4790 ada_lookup_encoded_symbol (const char *name, const struct block *block0, 4791 domain_enum namespace, struct block **block_found) 4792 { 4793 struct ada_symbol_info *candidates; 4794 int n_candidates; 4795 4796 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); 4797 4798 if (n_candidates == 0) 4799 return NULL; 4800 4801 if (block_found != NULL) 4802 *block_found = candidates[0].block; 4803 4804 return fixup_symbol_section (candidates[0].sym, NULL); 4805 } 4806 4807 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing 4808 scope and in global scopes, or NULL if none. NAME is folded and 4809 encoded first. Otherwise, the result is as for ada_lookup_symbol_list, 4810 choosing the first symbol if there are multiple choices. 4811 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol 4812 table in which the symbol was found (in both cases, these 4813 assignments occur only if the pointers are non-null). */ 4814 struct symbol * 4815 ada_lookup_symbol (const char *name, const struct block *block0, 4816 domain_enum namespace, int *is_a_field_of_this) 4817 { 4818 if (is_a_field_of_this != NULL) 4819 *is_a_field_of_this = 0; 4820 4821 return 4822 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), 4823 block0, namespace, NULL); 4824 } 4825 4826 static struct symbol * 4827 ada_lookup_symbol_nonlocal (const char *name, 4828 const struct block *block, 4829 const domain_enum domain) 4830 { 4831 return ada_lookup_symbol (name, block_static_block (block), domain, NULL); 4832 } 4833 4834 4835 /* True iff STR is a possible encoded suffix of a normal Ada name 4836 that is to be ignored for matching purposes. Suffixes of parallel 4837 names (e.g., XVE) are not included here. Currently, the possible suffixes 4838 are given by any of the regular expressions: 4839 4840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] 4841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] 4842 _E[0-9]+[bs]$ [protected object entry suffixes] 4843 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ 4844 4845 Also, any leading "__[0-9]+" sequence is skipped before the suffix 4846 match is performed. This sequence is used to differentiate homonyms, 4847 is an optional part of a valid name suffix. */ 4848 4849 static int 4850 is_name_suffix (const char *str) 4851 { 4852 int k; 4853 const char *matching; 4854 const int len = strlen (str); 4855 4856 /* Skip optional leading __[0-9]+. */ 4857 4858 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) 4859 { 4860 str += 3; 4861 while (isdigit (str[0])) 4862 str += 1; 4863 } 4864 4865 /* [.$][0-9]+ */ 4866 4867 if (str[0] == '.' || str[0] == '$') 4868 { 4869 matching = str + 1; 4870 while (isdigit (matching[0])) 4871 matching += 1; 4872 if (matching[0] == '\0') 4873 return 1; 4874 } 4875 4876 /* ___[0-9]+ */ 4877 4878 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') 4879 { 4880 matching = str + 3; 4881 while (isdigit (matching[0])) 4882 matching += 1; 4883 if (matching[0] == '\0') 4884 return 1; 4885 } 4886 4887 #if 0 4888 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end 4889 with a N at the end. Unfortunately, the compiler uses the same 4890 convention for other internal types it creates. So treating 4891 all entity names that end with an "N" as a name suffix causes 4892 some regressions. For instance, consider the case of an enumerated 4893 type. To support the 'Image attribute, it creates an array whose 4894 name ends with N. 4895 Having a single character like this as a suffix carrying some 4896 information is a bit risky. Perhaps we should change the encoding 4897 to be something like "_N" instead. In the meantime, do not do 4898 the following check. */ 4899 /* Protected Object Subprograms */ 4900 if (len == 1 && str [0] == 'N') 4901 return 1; 4902 #endif 4903 4904 /* _E[0-9]+[bs]$ */ 4905 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) 4906 { 4907 matching = str + 3; 4908 while (isdigit (matching[0])) 4909 matching += 1; 4910 if ((matching[0] == 'b' || matching[0] == 's') 4911 && matching [1] == '\0') 4912 return 1; 4913 } 4914 4915 /* ??? We should not modify STR directly, as we are doing below. This 4916 is fine in this case, but may become problematic later if we find 4917 that this alternative did not work, and want to try matching 4918 another one from the begining of STR. Since we modified it, we 4919 won't be able to find the begining of the string anymore! */ 4920 if (str[0] == 'X') 4921 { 4922 str += 1; 4923 while (str[0] != '_' && str[0] != '\0') 4924 { 4925 if (str[0] != 'n' && str[0] != 'b') 4926 return 0; 4927 str += 1; 4928 } 4929 } 4930 4931 if (str[0] == '\000') 4932 return 1; 4933 4934 if (str[0] == '_') 4935 { 4936 if (str[1] != '_' || str[2] == '\000') 4937 return 0; 4938 if (str[2] == '_') 4939 { 4940 if (strcmp (str + 3, "JM") == 0) 4941 return 1; 4942 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using 4943 the LJM suffix in favor of the JM one. But we will 4944 still accept LJM as a valid suffix for a reasonable 4945 amount of time, just to allow ourselves to debug programs 4946 compiled using an older version of GNAT. */ 4947 if (strcmp (str + 3, "LJM") == 0) 4948 return 1; 4949 if (str[3] != 'X') 4950 return 0; 4951 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' 4952 || str[4] == 'U' || str[4] == 'P') 4953 return 1; 4954 if (str[4] == 'R' && str[5] != 'T') 4955 return 1; 4956 return 0; 4957 } 4958 if (!isdigit (str[2])) 4959 return 0; 4960 for (k = 3; str[k] != '\0'; k += 1) 4961 if (!isdigit (str[k]) && str[k] != '_') 4962 return 0; 4963 return 1; 4964 } 4965 if (str[0] == '$' && isdigit (str[1])) 4966 { 4967 for (k = 2; str[k] != '\0'; k += 1) 4968 if (!isdigit (str[k]) && str[k] != '_') 4969 return 0; 4970 return 1; 4971 } 4972 return 0; 4973 } 4974 4975 /* Return non-zero if the string starting at NAME and ending before 4976 NAME_END contains no capital letters. */ 4977 4978 static int 4979 is_valid_name_for_wild_match (const char *name0) 4980 { 4981 const char *decoded_name = ada_decode (name0); 4982 int i; 4983 4984 /* If the decoded name starts with an angle bracket, it means that 4985 NAME0 does not follow the GNAT encoding format. It should then 4986 not be allowed as a possible wild match. */ 4987 if (decoded_name[0] == '<') 4988 return 0; 4989 4990 for (i=0; decoded_name[i] != '\0'; i++) 4991 if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) 4992 return 0; 4993 4994 return 1; 4995 } 4996 4997 /* True if NAME represents a name of the form A1.A2....An, n>=1 and 4998 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores 4999 informational suffixes of NAME (i.e., for which is_name_suffix is 5000 true). */ 5001 5002 static int 5003 wild_match (const char *patn0, int patn_len, const char *name0) 5004 { 5005 char* match; 5006 const char* start; 5007 5008 start = name0; 5009 while (1) 5010 { 5011 match = strstr (start, patn0); 5012 if (match == NULL) 5013 return 0; 5014 if ((match == name0 5015 || match[-1] == '.' 5016 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') 5017 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) 5018 && is_name_suffix (match + patn_len)) 5019 return (match == name0 || is_valid_name_for_wild_match (name0)); 5020 start = match + 1; 5021 } 5022 } 5023 5024 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to 5025 vector *defn_symbols, updating the list of symbols in OBSTACKP 5026 (if necessary). If WILD, treat as NAME with a wildcard prefix. 5027 OBJFILE is the section containing BLOCK. 5028 SYMTAB is recorded with each symbol added. */ 5029 5030 static void 5031 ada_add_block_symbols (struct obstack *obstackp, 5032 struct block *block, const char *name, 5033 domain_enum domain, struct objfile *objfile, 5034 int wild) 5035 { 5036 struct dict_iterator iter; 5037 int name_len = strlen (name); 5038 /* A matching argument symbol, if any. */ 5039 struct symbol *arg_sym; 5040 /* Set true when we find a matching non-argument symbol. */ 5041 int found_sym; 5042 struct symbol *sym; 5043 5044 arg_sym = NULL; 5045 found_sym = 0; 5046 if (wild) 5047 { 5048 struct symbol *sym; 5049 5050 ALL_BLOCK_SYMBOLS (block, iter, sym) 5051 { 5052 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5053 SYMBOL_DOMAIN (sym), domain) 5054 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) 5055 { 5056 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) 5057 continue; 5058 else if (SYMBOL_IS_ARGUMENT (sym)) 5059 arg_sym = sym; 5060 else 5061 { 5062 found_sym = 1; 5063 add_defn_to_vec (obstackp, 5064 fixup_symbol_section (sym, objfile), 5065 block); 5066 } 5067 } 5068 } 5069 } 5070 else 5071 { 5072 ALL_BLOCK_SYMBOLS (block, iter, sym) 5073 { 5074 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5075 SYMBOL_DOMAIN (sym), domain)) 5076 { 5077 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); 5078 5079 if (cmp == 0 5080 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) 5081 { 5082 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) 5083 { 5084 if (SYMBOL_IS_ARGUMENT (sym)) 5085 arg_sym = sym; 5086 else 5087 { 5088 found_sym = 1; 5089 add_defn_to_vec (obstackp, 5090 fixup_symbol_section (sym, objfile), 5091 block); 5092 } 5093 } 5094 } 5095 } 5096 } 5097 } 5098 5099 if (!found_sym && arg_sym != NULL) 5100 { 5101 add_defn_to_vec (obstackp, 5102 fixup_symbol_section (arg_sym, objfile), 5103 block); 5104 } 5105 5106 if (!wild) 5107 { 5108 arg_sym = NULL; 5109 found_sym = 0; 5110 5111 ALL_BLOCK_SYMBOLS (block, iter, sym) 5112 { 5113 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5114 SYMBOL_DOMAIN (sym), domain)) 5115 { 5116 int cmp; 5117 5118 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; 5119 if (cmp == 0) 5120 { 5121 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); 5122 if (cmp == 0) 5123 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, 5124 name_len); 5125 } 5126 5127 if (cmp == 0 5128 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) 5129 { 5130 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) 5131 { 5132 if (SYMBOL_IS_ARGUMENT (sym)) 5133 arg_sym = sym; 5134 else 5135 { 5136 found_sym = 1; 5137 add_defn_to_vec (obstackp, 5138 fixup_symbol_section (sym, objfile), 5139 block); 5140 } 5141 } 5142 } 5143 } 5144 } 5145 5146 /* NOTE: This really shouldn't be needed for _ada_ symbols. 5147 They aren't parameters, right? */ 5148 if (!found_sym && arg_sym != NULL) 5149 { 5150 add_defn_to_vec (obstackp, 5151 fixup_symbol_section (arg_sym, objfile), 5152 block); 5153 } 5154 } 5155 } 5156 5157 5158 /* Symbol Completion */ 5159 5160 /* If SYM_NAME is a completion candidate for TEXT, return this symbol 5161 name in a form that's appropriate for the completion. The result 5162 does not need to be deallocated, but is only good until the next call. 5163 5164 TEXT_LEN is equal to the length of TEXT. 5165 Perform a wild match if WILD_MATCH is set. 5166 ENCODED should be set if TEXT represents the start of a symbol name 5167 in its encoded form. */ 5168 5169 static const char * 5170 symbol_completion_match (const char *sym_name, 5171 const char *text, int text_len, 5172 int wild_match, int encoded) 5173 { 5174 const int verbatim_match = (text[0] == '<'); 5175 int match = 0; 5176 5177 if (verbatim_match) 5178 { 5179 /* Strip the leading angle bracket. */ 5180 text = text + 1; 5181 text_len--; 5182 } 5183 5184 /* First, test against the fully qualified name of the symbol. */ 5185 5186 if (strncmp (sym_name, text, text_len) == 0) 5187 match = 1; 5188 5189 if (match && !encoded) 5190 { 5191 /* One needed check before declaring a positive match is to verify 5192 that iff we are doing a verbatim match, the decoded version 5193 of the symbol name starts with '<'. Otherwise, this symbol name 5194 is not a suitable completion. */ 5195 const char *sym_name_copy = sym_name; 5196 int has_angle_bracket; 5197 5198 sym_name = ada_decode (sym_name); 5199 has_angle_bracket = (sym_name[0] == '<'); 5200 match = (has_angle_bracket == verbatim_match); 5201 sym_name = sym_name_copy; 5202 } 5203 5204 if (match && !verbatim_match) 5205 { 5206 /* When doing non-verbatim match, another check that needs to 5207 be done is to verify that the potentially matching symbol name 5208 does not include capital letters, because the ada-mode would 5209 not be able to understand these symbol names without the 5210 angle bracket notation. */ 5211 const char *tmp; 5212 5213 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); 5214 if (*tmp != '\0') 5215 match = 0; 5216 } 5217 5218 /* Second: Try wild matching... */ 5219 5220 if (!match && wild_match) 5221 { 5222 /* Since we are doing wild matching, this means that TEXT 5223 may represent an unqualified symbol name. We therefore must 5224 also compare TEXT against the unqualified name of the symbol. */ 5225 sym_name = ada_unqualified_name (ada_decode (sym_name)); 5226 5227 if (strncmp (sym_name, text, text_len) == 0) 5228 match = 1; 5229 } 5230 5231 /* Finally: If we found a mach, prepare the result to return. */ 5232 5233 if (!match) 5234 return NULL; 5235 5236 if (verbatim_match) 5237 sym_name = add_angle_brackets (sym_name); 5238 5239 if (!encoded) 5240 sym_name = ada_decode (sym_name); 5241 5242 return sym_name; 5243 } 5244 5245 DEF_VEC_P (char_ptr); 5246 5247 /* A companion function to ada_make_symbol_completion_list(). 5248 Check if SYM_NAME represents a symbol which name would be suitable 5249 to complete TEXT (TEXT_LEN is the length of TEXT), in which case 5250 it is appended at the end of the given string vector SV. 5251 5252 ORIG_TEXT is the string original string from the user command 5253 that needs to be completed. WORD is the entire command on which 5254 completion should be performed. These two parameters are used to 5255 determine which part of the symbol name should be added to the 5256 completion vector. 5257 if WILD_MATCH is set, then wild matching is performed. 5258 ENCODED should be set if TEXT represents a symbol name in its 5259 encoded formed (in which case the completion should also be 5260 encoded). */ 5261 5262 static void 5263 symbol_completion_add (VEC(char_ptr) **sv, 5264 const char *sym_name, 5265 const char *text, int text_len, 5266 const char *orig_text, const char *word, 5267 int wild_match, int encoded) 5268 { 5269 const char *match = symbol_completion_match (sym_name, text, text_len, 5270 wild_match, encoded); 5271 char *completion; 5272 5273 if (match == NULL) 5274 return; 5275 5276 /* We found a match, so add the appropriate completion to the given 5277 string vector. */ 5278 5279 if (word == orig_text) 5280 { 5281 completion = xmalloc (strlen (match) + 5); 5282 strcpy (completion, match); 5283 } 5284 else if (word > orig_text) 5285 { 5286 /* Return some portion of sym_name. */ 5287 completion = xmalloc (strlen (match) + 5); 5288 strcpy (completion, match + (word - orig_text)); 5289 } 5290 else 5291 { 5292 /* Return some of ORIG_TEXT plus sym_name. */ 5293 completion = xmalloc (strlen (match) + (orig_text - word) + 5); 5294 strncpy (completion, word, orig_text - word); 5295 completion[orig_text - word] = '\0'; 5296 strcat (completion, match); 5297 } 5298 5299 VEC_safe_push (char_ptr, *sv, completion); 5300 } 5301 5302 /* An object of this type is passed as the user_data argument to the 5303 map_partial_symbol_names method. */ 5304 struct add_partial_datum 5305 { 5306 VEC(char_ptr) **completions; 5307 char *text; 5308 int text_len; 5309 char *text0; 5310 char *word; 5311 int wild_match; 5312 int encoded; 5313 }; 5314 5315 /* A callback for map_partial_symbol_names. */ 5316 static void 5317 ada_add_partial_symbol_completions (const char *name, void *user_data) 5318 { 5319 struct add_partial_datum *data = user_data; 5320 5321 symbol_completion_add (data->completions, name, 5322 data->text, data->text_len, data->text0, data->word, 5323 data->wild_match, data->encoded); 5324 } 5325 5326 /* Return a list of possible symbol names completing TEXT0. The list 5327 is NULL terminated. WORD is the entire command on which completion 5328 is made. */ 5329 5330 static char ** 5331 ada_make_symbol_completion_list (char *text0, char *word) 5332 { 5333 char *text; 5334 int text_len; 5335 int wild_match; 5336 int encoded; 5337 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); 5338 struct symbol *sym; 5339 struct symtab *s; 5340 struct minimal_symbol *msymbol; 5341 struct objfile *objfile; 5342 struct block *b, *surrounding_static_block = 0; 5343 int i; 5344 struct dict_iterator iter; 5345 5346 if (text0[0] == '<') 5347 { 5348 text = xstrdup (text0); 5349 make_cleanup (xfree, text); 5350 text_len = strlen (text); 5351 wild_match = 0; 5352 encoded = 1; 5353 } 5354 else 5355 { 5356 text = xstrdup (ada_encode (text0)); 5357 make_cleanup (xfree, text); 5358 text_len = strlen (text); 5359 for (i = 0; i < text_len; i++) 5360 text[i] = tolower (text[i]); 5361 5362 encoded = (strstr (text0, "__") != NULL); 5363 /* If the name contains a ".", then the user is entering a fully 5364 qualified entity name, and the match must not be done in wild 5365 mode. Similarly, if the user wants to complete what looks like 5366 an encoded name, the match must not be done in wild mode. */ 5367 wild_match = (strchr (text0, '.') == NULL && !encoded); 5368 } 5369 5370 /* First, look at the partial symtab symbols. */ 5371 { 5372 struct add_partial_datum data; 5373 5374 data.completions = &completions; 5375 data.text = text; 5376 data.text_len = text_len; 5377 data.text0 = text0; 5378 data.word = word; 5379 data.wild_match = wild_match; 5380 data.encoded = encoded; 5381 map_partial_symbol_names (ada_add_partial_symbol_completions, &data); 5382 } 5383 5384 /* At this point scan through the misc symbol vectors and add each 5385 symbol you find to the list. Eventually we want to ignore 5386 anything that isn't a text symbol (everything else will be 5387 handled by the psymtab code above). */ 5388 5389 ALL_MSYMBOLS (objfile, msymbol) 5390 { 5391 QUIT; 5392 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), 5393 text, text_len, text0, word, wild_match, encoded); 5394 } 5395 5396 /* Search upwards from currently selected frame (so that we can 5397 complete on local vars. */ 5398 5399 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) 5400 { 5401 if (!BLOCK_SUPERBLOCK (b)) 5402 surrounding_static_block = b; /* For elmin of dups */ 5403 5404 ALL_BLOCK_SYMBOLS (b, iter, sym) 5405 { 5406 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 5407 text, text_len, text0, word, 5408 wild_match, encoded); 5409 } 5410 } 5411 5412 /* Go through the symtabs and check the externs and statics for 5413 symbols which match. */ 5414 5415 ALL_SYMTABS (objfile, s) 5416 { 5417 QUIT; 5418 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); 5419 ALL_BLOCK_SYMBOLS (b, iter, sym) 5420 { 5421 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 5422 text, text_len, text0, word, 5423 wild_match, encoded); 5424 } 5425 } 5426 5427 ALL_SYMTABS (objfile, s) 5428 { 5429 QUIT; 5430 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); 5431 /* Don't do this block twice. */ 5432 if (b == surrounding_static_block) 5433 continue; 5434 ALL_BLOCK_SYMBOLS (b, iter, sym) 5435 { 5436 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 5437 text, text_len, text0, word, 5438 wild_match, encoded); 5439 } 5440 } 5441 5442 /* Append the closing NULL entry. */ 5443 VEC_safe_push (char_ptr, completions, NULL); 5444 5445 /* Make a copy of the COMPLETIONS VEC before we free it, and then 5446 return the copy. It's unfortunate that we have to make a copy 5447 of an array that we're about to destroy, but there is nothing much 5448 we can do about it. Fortunately, it's typically not a very large 5449 array. */ 5450 { 5451 const size_t completions_size = 5452 VEC_length (char_ptr, completions) * sizeof (char *); 5453 char **result = malloc (completions_size); 5454 5455 memcpy (result, VEC_address (char_ptr, completions), completions_size); 5456 5457 VEC_free (char_ptr, completions); 5458 return result; 5459 } 5460 } 5461 5462 /* Field Access */ 5463 5464 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used 5465 for tagged types. */ 5466 5467 static int 5468 ada_is_dispatch_table_ptr_type (struct type *type) 5469 { 5470 char *name; 5471 5472 if (TYPE_CODE (type) != TYPE_CODE_PTR) 5473 return 0; 5474 5475 name = TYPE_NAME (TYPE_TARGET_TYPE (type)); 5476 if (name == NULL) 5477 return 0; 5478 5479 return (strcmp (name, "ada__tags__dispatch_table") == 0); 5480 } 5481 5482 /* True if field number FIELD_NUM in struct or union type TYPE is supposed 5483 to be invisible to users. */ 5484 5485 int 5486 ada_is_ignored_field (struct type *type, int field_num) 5487 { 5488 if (field_num < 0 || field_num > TYPE_NFIELDS (type)) 5489 return 1; 5490 5491 /* Check the name of that field. */ 5492 { 5493 const char *name = TYPE_FIELD_NAME (type, field_num); 5494 5495 /* Anonymous field names should not be printed. 5496 brobecker/2007-02-20: I don't think this can actually happen 5497 but we don't want to print the value of annonymous fields anyway. */ 5498 if (name == NULL) 5499 return 1; 5500 5501 /* A field named "_parent" is internally generated by GNAT for 5502 tagged types, and should not be printed either. */ 5503 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) 5504 return 1; 5505 } 5506 5507 /* If this is the dispatch table of a tagged type, then ignore. */ 5508 if (ada_is_tagged_type (type, 1) 5509 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) 5510 return 1; 5511 5512 /* Not a special field, so it should not be ignored. */ 5513 return 0; 5514 } 5515 5516 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a 5517 pointer or reference type whose ultimate target has a tag field. */ 5518 5519 int 5520 ada_is_tagged_type (struct type *type, int refok) 5521 { 5522 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); 5523 } 5524 5525 /* True iff TYPE represents the type of X'Tag */ 5526 5527 int 5528 ada_is_tag_type (struct type *type) 5529 { 5530 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) 5531 return 0; 5532 else 5533 { 5534 const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); 5535 5536 return (name != NULL 5537 && strcmp (name, "ada__tags__dispatch_table") == 0); 5538 } 5539 } 5540 5541 /* The type of the tag on VAL. */ 5542 5543 struct type * 5544 ada_tag_type (struct value *val) 5545 { 5546 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); 5547 } 5548 5549 /* The value of the tag on VAL. */ 5550 5551 struct value * 5552 ada_value_tag (struct value *val) 5553 { 5554 return ada_value_struct_elt (val, "_tag", 0); 5555 } 5556 5557 /* The value of the tag on the object of type TYPE whose contents are 5558 saved at VALADDR, if it is non-null, or is at memory address 5559 ADDRESS. */ 5560 5561 static struct value * 5562 value_tag_from_contents_and_address (struct type *type, 5563 const gdb_byte *valaddr, 5564 CORE_ADDR address) 5565 { 5566 int tag_byte_offset; 5567 struct type *tag_type; 5568 5569 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, 5570 NULL, NULL, NULL)) 5571 { 5572 const gdb_byte *valaddr1 = ((valaddr == NULL) 5573 ? NULL 5574 : valaddr + tag_byte_offset); 5575 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; 5576 5577 return value_from_contents_and_address (tag_type, valaddr1, address1); 5578 } 5579 return NULL; 5580 } 5581 5582 static struct type * 5583 type_from_tag (struct value *tag) 5584 { 5585 const char *type_name = ada_tag_name (tag); 5586 5587 if (type_name != NULL) 5588 return ada_find_any_type (ada_encode (type_name)); 5589 return NULL; 5590 } 5591 5592 struct tag_args 5593 { 5594 struct value *tag; 5595 char *name; 5596 }; 5597 5598 5599 static int ada_tag_name_1 (void *); 5600 static int ada_tag_name_2 (struct tag_args *); 5601 5602 /* Wrapper function used by ada_tag_name. Given a struct tag_args* 5603 value ARGS, sets ARGS->name to the tag name of ARGS->tag. 5604 The value stored in ARGS->name is valid until the next call to 5605 ada_tag_name_1. */ 5606 5607 static int 5608 ada_tag_name_1 (void *args0) 5609 { 5610 struct tag_args *args = (struct tag_args *) args0; 5611 static char name[1024]; 5612 char *p; 5613 struct value *val; 5614 5615 args->name = NULL; 5616 val = ada_value_struct_elt (args->tag, "tsd", 1); 5617 if (val == NULL) 5618 return ada_tag_name_2 (args); 5619 val = ada_value_struct_elt (val, "expanded_name", 1); 5620 if (val == NULL) 5621 return 0; 5622 read_memory_string (value_as_address (val), name, sizeof (name) - 1); 5623 for (p = name; *p != '\0'; p += 1) 5624 if (isalpha (*p)) 5625 *p = tolower (*p); 5626 args->name = name; 5627 return 0; 5628 } 5629 5630 /* Return the "ada__tags__type_specific_data" type. */ 5631 5632 static struct type * 5633 ada_get_tsd_type (struct inferior *inf) 5634 { 5635 struct ada_inferior_data *data = get_ada_inferior_data (inf); 5636 5637 if (data->tsd_type == 0) 5638 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); 5639 return data->tsd_type; 5640 } 5641 5642 /* Utility function for ada_tag_name_1 that tries the second 5643 representation for the dispatch table (in which there is no 5644 explicit 'tsd' field in the referent of the tag pointer, and instead 5645 the tsd pointer is stored just before the dispatch table. */ 5646 5647 static int 5648 ada_tag_name_2 (struct tag_args *args) 5649 { 5650 struct type *info_type; 5651 static char name[1024]; 5652 char *p; 5653 struct value *val, *valp; 5654 5655 args->name = NULL; 5656 info_type = ada_get_tsd_type (current_inferior()); 5657 if (info_type == NULL) 5658 return 0; 5659 info_type = lookup_pointer_type (lookup_pointer_type (info_type)); 5660 valp = value_cast (info_type, args->tag); 5661 if (valp == NULL) 5662 return 0; 5663 val = value_ind (value_ptradd (valp, -1)); 5664 if (val == NULL) 5665 return 0; 5666 val = ada_value_struct_elt (val, "expanded_name", 1); 5667 if (val == NULL) 5668 return 0; 5669 read_memory_string (value_as_address (val), name, sizeof (name) - 1); 5670 for (p = name; *p != '\0'; p += 1) 5671 if (isalpha (*p)) 5672 *p = tolower (*p); 5673 args->name = name; 5674 return 0; 5675 } 5676 5677 /* The type name of the dynamic type denoted by the 'tag value TAG, as 5678 a C string. */ 5679 5680 const char * 5681 ada_tag_name (struct value *tag) 5682 { 5683 struct tag_args args; 5684 5685 if (!ada_is_tag_type (value_type (tag))) 5686 return NULL; 5687 args.tag = tag; 5688 args.name = NULL; 5689 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); 5690 return args.name; 5691 } 5692 5693 /* The parent type of TYPE, or NULL if none. */ 5694 5695 struct type * 5696 ada_parent_type (struct type *type) 5697 { 5698 int i; 5699 5700 type = ada_check_typedef (type); 5701 5702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) 5703 return NULL; 5704 5705 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 5706 if (ada_is_parent_field (type, i)) 5707 { 5708 struct type *parent_type = TYPE_FIELD_TYPE (type, i); 5709 5710 /* If the _parent field is a pointer, then dereference it. */ 5711 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) 5712 parent_type = TYPE_TARGET_TYPE (parent_type); 5713 /* If there is a parallel XVS type, get the actual base type. */ 5714 parent_type = ada_get_base_type (parent_type); 5715 5716 return ada_check_typedef (parent_type); 5717 } 5718 5719 return NULL; 5720 } 5721 5722 /* True iff field number FIELD_NUM of structure type TYPE contains the 5723 parent-type (inherited) fields of a derived type. Assumes TYPE is 5724 a structure type with at least FIELD_NUM+1 fields. */ 5725 5726 int 5727 ada_is_parent_field (struct type *type, int field_num) 5728 { 5729 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); 5730 5731 return (name != NULL 5732 && (strncmp (name, "PARENT", 6) == 0 5733 || strncmp (name, "_parent", 7) == 0)); 5734 } 5735 5736 /* True iff field number FIELD_NUM of structure type TYPE is a 5737 transparent wrapper field (which should be silently traversed when doing 5738 field selection and flattened when printing). Assumes TYPE is a 5739 structure type with at least FIELD_NUM+1 fields. Such fields are always 5740 structures. */ 5741 5742 int 5743 ada_is_wrapper_field (struct type *type, int field_num) 5744 { 5745 const char *name = TYPE_FIELD_NAME (type, field_num); 5746 5747 return (name != NULL 5748 && (strncmp (name, "PARENT", 6) == 0 5749 || strcmp (name, "REP") == 0 5750 || strncmp (name, "_parent", 7) == 0 5751 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); 5752 } 5753 5754 /* True iff field number FIELD_NUM of structure or union type TYPE 5755 is a variant wrapper. Assumes TYPE is a structure type with at least 5756 FIELD_NUM+1 fields. */ 5757 5758 int 5759 ada_is_variant_part (struct type *type, int field_num) 5760 { 5761 struct type *field_type = TYPE_FIELD_TYPE (type, field_num); 5762 5763 return (TYPE_CODE (field_type) == TYPE_CODE_UNION 5764 || (is_dynamic_field (type, field_num) 5765 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 5766 == TYPE_CODE_UNION))); 5767 } 5768 5769 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) 5770 whose discriminants are contained in the record type OUTER_TYPE, 5771 returns the type of the controlling discriminant for the variant. 5772 May return NULL if the type could not be found. */ 5773 5774 struct type * 5775 ada_variant_discrim_type (struct type *var_type, struct type *outer_type) 5776 { 5777 char *name = ada_variant_discrim_name (var_type); 5778 5779 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); 5780 } 5781 5782 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a 5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE 5784 represents a 'when others' clause; otherwise 0. */ 5785 5786 int 5787 ada_is_others_clause (struct type *type, int field_num) 5788 { 5789 const char *name = TYPE_FIELD_NAME (type, field_num); 5790 5791 return (name != NULL && name[0] == 'O'); 5792 } 5793 5794 /* Assuming that TYPE0 is the type of the variant part of a record, 5795 returns the name of the discriminant controlling the variant. 5796 The value is valid until the next call to ada_variant_discrim_name. */ 5797 5798 char * 5799 ada_variant_discrim_name (struct type *type0) 5800 { 5801 static char *result = NULL; 5802 static size_t result_len = 0; 5803 struct type *type; 5804 const char *name; 5805 const char *discrim_end; 5806 const char *discrim_start; 5807 5808 if (TYPE_CODE (type0) == TYPE_CODE_PTR) 5809 type = TYPE_TARGET_TYPE (type0); 5810 else 5811 type = type0; 5812 5813 name = ada_type_name (type); 5814 5815 if (name == NULL || name[0] == '\000') 5816 return ""; 5817 5818 for (discrim_end = name + strlen (name) - 6; discrim_end != name; 5819 discrim_end -= 1) 5820 { 5821 if (strncmp (discrim_end, "___XVN", 6) == 0) 5822 break; 5823 } 5824 if (discrim_end == name) 5825 return ""; 5826 5827 for (discrim_start = discrim_end; discrim_start != name + 3; 5828 discrim_start -= 1) 5829 { 5830 if (discrim_start == name + 1) 5831 return ""; 5832 if ((discrim_start > name + 3 5833 && strncmp (discrim_start - 3, "___", 3) == 0) 5834 || discrim_start[-1] == '.') 5835 break; 5836 } 5837 5838 GROW_VECT (result, result_len, discrim_end - discrim_start + 1); 5839 strncpy (result, discrim_start, discrim_end - discrim_start); 5840 result[discrim_end - discrim_start] = '\0'; 5841 return result; 5842 } 5843 5844 /* Scan STR for a subtype-encoded number, beginning at position K. 5845 Put the position of the character just past the number scanned in 5846 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. 5847 Return 1 if there was a valid number at the given position, and 0 5848 otherwise. A "subtype-encoded" number consists of the absolute value 5849 in decimal, followed by the letter 'm' to indicate a negative number. 5850 Assumes 0m does not occur. */ 5851 5852 int 5853 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) 5854 { 5855 ULONGEST RU; 5856 5857 if (!isdigit (str[k])) 5858 return 0; 5859 5860 /* Do it the hard way so as not to make any assumption about 5861 the relationship of unsigned long (%lu scan format code) and 5862 LONGEST. */ 5863 RU = 0; 5864 while (isdigit (str[k])) 5865 { 5866 RU = RU * 10 + (str[k] - '0'); 5867 k += 1; 5868 } 5869 5870 if (str[k] == 'm') 5871 { 5872 if (R != NULL) 5873 *R = (-(LONGEST) (RU - 1)) - 1; 5874 k += 1; 5875 } 5876 else if (R != NULL) 5877 *R = (LONGEST) RU; 5878 5879 /* NOTE on the above: Technically, C does not say what the results of 5880 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive 5881 number representable as a LONGEST (although either would probably work 5882 in most implementations). When RU>0, the locution in the then branch 5883 above is always equivalent to the negative of RU. */ 5884 5885 if (new_k != NULL) 5886 *new_k = k; 5887 return 1; 5888 } 5889 5890 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), 5891 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is 5892 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ 5893 5894 int 5895 ada_in_variant (LONGEST val, struct type *type, int field_num) 5896 { 5897 const char *name = TYPE_FIELD_NAME (type, field_num); 5898 int p; 5899 5900 p = 0; 5901 while (1) 5902 { 5903 switch (name[p]) 5904 { 5905 case '\0': 5906 return 0; 5907 case 'S': 5908 { 5909 LONGEST W; 5910 5911 if (!ada_scan_number (name, p + 1, &W, &p)) 5912 return 0; 5913 if (val == W) 5914 return 1; 5915 break; 5916 } 5917 case 'R': 5918 { 5919 LONGEST L, U; 5920 5921 if (!ada_scan_number (name, p + 1, &L, &p) 5922 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) 5923 return 0; 5924 if (val >= L && val <= U) 5925 return 1; 5926 break; 5927 } 5928 case 'O': 5929 return 1; 5930 default: 5931 return 0; 5932 } 5933 } 5934 } 5935 5936 /* FIXME: Lots of redundancy below. Try to consolidate. */ 5937 5938 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type 5939 ARG_TYPE, extract and return the value of one of its (non-static) 5940 fields. FIELDNO says which field. Differs from value_primitive_field 5941 only in that it can handle packed values of arbitrary type. */ 5942 5943 static struct value * 5944 ada_value_primitive_field (struct value *arg1, int offset, int fieldno, 5945 struct type *arg_type) 5946 { 5947 struct type *type; 5948 5949 arg_type = ada_check_typedef (arg_type); 5950 type = TYPE_FIELD_TYPE (arg_type, fieldno); 5951 5952 /* Handle packed fields. */ 5953 5954 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) 5955 { 5956 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); 5957 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); 5958 5959 return ada_value_primitive_packed_val (arg1, value_contents (arg1), 5960 offset + bit_pos / 8, 5961 bit_pos % 8, bit_size, type); 5962 } 5963 else 5964 return value_primitive_field (arg1, offset, fieldno, arg_type); 5965 } 5966 5967 /* Find field with name NAME in object of type TYPE. If found, 5968 set the following for each argument that is non-null: 5969 - *FIELD_TYPE_P to the field's type; 5970 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 5971 an object of that type; 5972 - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 5973 - *BIT_SIZE_P to its size in bits if the field is packed, and 5974 0 otherwise; 5975 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible 5976 fields up to but not including the desired field, or by the total 5977 number of fields if not found. A NULL value of NAME never 5978 matches; the function just counts visible fields in this case. 5979 5980 Returns 1 if found, 0 otherwise. */ 5981 5982 static int 5983 find_struct_field (char *name, struct type *type, int offset, 5984 struct type **field_type_p, 5985 int *byte_offset_p, int *bit_offset_p, int *bit_size_p, 5986 int *index_p) 5987 { 5988 int i; 5989 5990 type = ada_check_typedef (type); 5991 5992 if (field_type_p != NULL) 5993 *field_type_p = NULL; 5994 if (byte_offset_p != NULL) 5995 *byte_offset_p = 0; 5996 if (bit_offset_p != NULL) 5997 *bit_offset_p = 0; 5998 if (bit_size_p != NULL) 5999 *bit_size_p = 0; 6000 6001 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6002 { 6003 int bit_pos = TYPE_FIELD_BITPOS (type, i); 6004 int fld_offset = offset + bit_pos / 8; 6005 char *t_field_name = TYPE_FIELD_NAME (type, i); 6006 6007 if (t_field_name == NULL) 6008 continue; 6009 6010 else if (name != NULL && field_name_match (t_field_name, name)) 6011 { 6012 int bit_size = TYPE_FIELD_BITSIZE (type, i); 6013 6014 if (field_type_p != NULL) 6015 *field_type_p = TYPE_FIELD_TYPE (type, i); 6016 if (byte_offset_p != NULL) 6017 *byte_offset_p = fld_offset; 6018 if (bit_offset_p != NULL) 6019 *bit_offset_p = bit_pos % 8; 6020 if (bit_size_p != NULL) 6021 *bit_size_p = bit_size; 6022 return 1; 6023 } 6024 else if (ada_is_wrapper_field (type, i)) 6025 { 6026 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, 6027 field_type_p, byte_offset_p, bit_offset_p, 6028 bit_size_p, index_p)) 6029 return 1; 6030 } 6031 else if (ada_is_variant_part (type, i)) 6032 { 6033 /* PNH: Wait. Do we ever execute this section, or is ARG always of 6034 fixed type?? */ 6035 int j; 6036 struct type *field_type 6037 = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); 6038 6039 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) 6040 { 6041 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), 6042 fld_offset 6043 + TYPE_FIELD_BITPOS (field_type, j) / 8, 6044 field_type_p, byte_offset_p, 6045 bit_offset_p, bit_size_p, index_p)) 6046 return 1; 6047 } 6048 } 6049 else if (index_p != NULL) 6050 *index_p += 1; 6051 } 6052 return 0; 6053 } 6054 6055 /* Number of user-visible fields in record type TYPE. */ 6056 6057 static int 6058 num_visible_fields (struct type *type) 6059 { 6060 int n; 6061 6062 n = 0; 6063 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); 6064 return n; 6065 } 6066 6067 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, 6068 and search in it assuming it has (class) type TYPE. 6069 If found, return value, else return NULL. 6070 6071 Searches recursively through wrapper fields (e.g., '_parent'). */ 6072 6073 static struct value * 6074 ada_search_struct_field (char *name, struct value *arg, int offset, 6075 struct type *type) 6076 { 6077 int i; 6078 6079 type = ada_check_typedef (type); 6080 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6081 { 6082 char *t_field_name = TYPE_FIELD_NAME (type, i); 6083 6084 if (t_field_name == NULL) 6085 continue; 6086 6087 else if (field_name_match (t_field_name, name)) 6088 return ada_value_primitive_field (arg, offset, i, type); 6089 6090 else if (ada_is_wrapper_field (type, i)) 6091 { 6092 struct value *v = /* Do not let indent join lines here. */ 6093 ada_search_struct_field (name, arg, 6094 offset + TYPE_FIELD_BITPOS (type, i) / 8, 6095 TYPE_FIELD_TYPE (type, i)); 6096 6097 if (v != NULL) 6098 return v; 6099 } 6100 6101 else if (ada_is_variant_part (type, i)) 6102 { 6103 /* PNH: Do we ever get here? See find_struct_field. */ 6104 int j; 6105 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, 6106 i)); 6107 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; 6108 6109 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) 6110 { 6111 struct value *v = ada_search_struct_field /* Force line break. */ 6112 (name, arg, 6113 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, 6114 TYPE_FIELD_TYPE (field_type, j)); 6115 6116 if (v != NULL) 6117 return v; 6118 } 6119 } 6120 } 6121 return NULL; 6122 } 6123 6124 static struct value *ada_index_struct_field_1 (int *, struct value *, 6125 int, struct type *); 6126 6127 6128 /* Return field #INDEX in ARG, where the index is that returned by 6129 * find_struct_field through its INDEX_P argument. Adjust the address 6130 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. 6131 * If found, return value, else return NULL. */ 6132 6133 static struct value * 6134 ada_index_struct_field (int index, struct value *arg, int offset, 6135 struct type *type) 6136 { 6137 return ada_index_struct_field_1 (&index, arg, offset, type); 6138 } 6139 6140 6141 /* Auxiliary function for ada_index_struct_field. Like 6142 * ada_index_struct_field, but takes index from *INDEX_P and modifies 6143 * *INDEX_P. */ 6144 6145 static struct value * 6146 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, 6147 struct type *type) 6148 { 6149 int i; 6150 type = ada_check_typedef (type); 6151 6152 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6153 { 6154 if (TYPE_FIELD_NAME (type, i) == NULL) 6155 continue; 6156 else if (ada_is_wrapper_field (type, i)) 6157 { 6158 struct value *v = /* Do not let indent join lines here. */ 6159 ada_index_struct_field_1 (index_p, arg, 6160 offset + TYPE_FIELD_BITPOS (type, i) / 8, 6161 TYPE_FIELD_TYPE (type, i)); 6162 6163 if (v != NULL) 6164 return v; 6165 } 6166 6167 else if (ada_is_variant_part (type, i)) 6168 { 6169 /* PNH: Do we ever get here? See ada_search_struct_field, 6170 find_struct_field. */ 6171 error (_("Cannot assign this kind of variant record")); 6172 } 6173 else if (*index_p == 0) 6174 return ada_value_primitive_field (arg, offset, i, type); 6175 else 6176 *index_p -= 1; 6177 } 6178 return NULL; 6179 } 6180 6181 /* Given ARG, a value of type (pointer or reference to a)* 6182 structure/union, extract the component named NAME from the ultimate 6183 target structure/union and return it as a value with its 6184 appropriate type. 6185 6186 The routine searches for NAME among all members of the structure itself 6187 and (recursively) among all members of any wrapper members 6188 (e.g., '_parent'). 6189 6190 If NO_ERR, then simply return NULL in case of error, rather than 6191 calling error. */ 6192 6193 struct value * 6194 ada_value_struct_elt (struct value *arg, char *name, int no_err) 6195 { 6196 struct type *t, *t1; 6197 struct value *v; 6198 6199 v = NULL; 6200 t1 = t = ada_check_typedef (value_type (arg)); 6201 if (TYPE_CODE (t) == TYPE_CODE_REF) 6202 { 6203 t1 = TYPE_TARGET_TYPE (t); 6204 if (t1 == NULL) 6205 goto BadValue; 6206 t1 = ada_check_typedef (t1); 6207 if (TYPE_CODE (t1) == TYPE_CODE_PTR) 6208 { 6209 arg = coerce_ref (arg); 6210 t = t1; 6211 } 6212 } 6213 6214 while (TYPE_CODE (t) == TYPE_CODE_PTR) 6215 { 6216 t1 = TYPE_TARGET_TYPE (t); 6217 if (t1 == NULL) 6218 goto BadValue; 6219 t1 = ada_check_typedef (t1); 6220 if (TYPE_CODE (t1) == TYPE_CODE_PTR) 6221 { 6222 arg = value_ind (arg); 6223 t = t1; 6224 } 6225 else 6226 break; 6227 } 6228 6229 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) 6230 goto BadValue; 6231 6232 if (t1 == t) 6233 v = ada_search_struct_field (name, arg, 0, t); 6234 else 6235 { 6236 int bit_offset, bit_size, byte_offset; 6237 struct type *field_type; 6238 CORE_ADDR address; 6239 6240 if (TYPE_CODE (t) == TYPE_CODE_PTR) 6241 address = value_as_address (arg); 6242 else 6243 address = unpack_pointer (t, value_contents (arg)); 6244 6245 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); 6246 if (find_struct_field (name, t1, 0, 6247 &field_type, &byte_offset, &bit_offset, 6248 &bit_size, NULL)) 6249 { 6250 if (bit_size != 0) 6251 { 6252 if (TYPE_CODE (t) == TYPE_CODE_REF) 6253 arg = ada_coerce_ref (arg); 6254 else 6255 arg = ada_value_ind (arg); 6256 v = ada_value_primitive_packed_val (arg, NULL, byte_offset, 6257 bit_offset, bit_size, 6258 field_type); 6259 } 6260 else 6261 v = value_at_lazy (field_type, address + byte_offset); 6262 } 6263 } 6264 6265 if (v != NULL || no_err) 6266 return v; 6267 else 6268 error (_("There is no member named %s."), name); 6269 6270 BadValue: 6271 if (no_err) 6272 return NULL; 6273 else 6274 error (_("Attempt to extract a component of a value that is not a record.")); 6275 } 6276 6277 /* Given a type TYPE, look up the type of the component of type named NAME. 6278 If DISPP is non-null, add its byte displacement from the beginning of a 6279 structure (pointed to by a value) of type TYPE to *DISPP (does not 6280 work for packed fields). 6281 6282 Matches any field whose name has NAME as a prefix, possibly 6283 followed by "___". 6284 6285 TYPE can be either a struct or union. If REFOK, TYPE may also 6286 be a (pointer or reference)+ to a struct or union, and the 6287 ultimate target type will be searched. 6288 6289 Looks recursively into variant clauses and parent types. 6290 6291 If NOERR is nonzero, return NULL if NAME is not suitably defined or 6292 TYPE is not a type of the right kind. */ 6293 6294 static struct type * 6295 ada_lookup_struct_elt_type (struct type *type, char *name, int refok, 6296 int noerr, int *dispp) 6297 { 6298 int i; 6299 6300 if (name == NULL) 6301 goto BadName; 6302 6303 if (refok && type != NULL) 6304 while (1) 6305 { 6306 type = ada_check_typedef (type); 6307 if (TYPE_CODE (type) != TYPE_CODE_PTR 6308 && TYPE_CODE (type) != TYPE_CODE_REF) 6309 break; 6310 type = TYPE_TARGET_TYPE (type); 6311 } 6312 6313 if (type == NULL 6314 || (TYPE_CODE (type) != TYPE_CODE_STRUCT 6315 && TYPE_CODE (type) != TYPE_CODE_UNION)) 6316 { 6317 if (noerr) 6318 return NULL; 6319 else 6320 { 6321 target_terminal_ours (); 6322 gdb_flush (gdb_stdout); 6323 if (type == NULL) 6324 error (_("Type (null) is not a structure or union type")); 6325 else 6326 { 6327 /* XXX: type_sprint */ 6328 fprintf_unfiltered (gdb_stderr, _("Type ")); 6329 type_print (type, "", gdb_stderr, -1); 6330 error (_(" is not a structure or union type")); 6331 } 6332 } 6333 } 6334 6335 type = to_static_fixed_type (type); 6336 6337 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6338 { 6339 char *t_field_name = TYPE_FIELD_NAME (type, i); 6340 struct type *t; 6341 int disp; 6342 6343 if (t_field_name == NULL) 6344 continue; 6345 6346 else if (field_name_match (t_field_name, name)) 6347 { 6348 if (dispp != NULL) 6349 *dispp += TYPE_FIELD_BITPOS (type, i) / 8; 6350 return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); 6351 } 6352 6353 else if (ada_is_wrapper_field (type, i)) 6354 { 6355 disp = 0; 6356 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 6357 0, 1, &disp); 6358 if (t != NULL) 6359 { 6360 if (dispp != NULL) 6361 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; 6362 return t; 6363 } 6364 } 6365 6366 else if (ada_is_variant_part (type, i)) 6367 { 6368 int j; 6369 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, 6370 i)); 6371 6372 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) 6373 { 6374 /* FIXME pnh 2008/01/26: We check for a field that is 6375 NOT wrapped in a struct, since the compiler sometimes 6376 generates these for unchecked variant types. Revisit 6377 if the compiler changes this practice. */ 6378 char *v_field_name = TYPE_FIELD_NAME (field_type, j); 6379 disp = 0; 6380 if (v_field_name != NULL 6381 && field_name_match (v_field_name, name)) 6382 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); 6383 else 6384 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), 6385 name, 0, 1, &disp); 6386 6387 if (t != NULL) 6388 { 6389 if (dispp != NULL) 6390 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; 6391 return t; 6392 } 6393 } 6394 } 6395 6396 } 6397 6398 BadName: 6399 if (!noerr) 6400 { 6401 target_terminal_ours (); 6402 gdb_flush (gdb_stdout); 6403 if (name == NULL) 6404 { 6405 /* XXX: type_sprint */ 6406 fprintf_unfiltered (gdb_stderr, _("Type ")); 6407 type_print (type, "", gdb_stderr, -1); 6408 error (_(" has no component named <null>")); 6409 } 6410 else 6411 { 6412 /* XXX: type_sprint */ 6413 fprintf_unfiltered (gdb_stderr, _("Type ")); 6414 type_print (type, "", gdb_stderr, -1); 6415 error (_(" has no component named %s"), name); 6416 } 6417 } 6418 6419 return NULL; 6420 } 6421 6422 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), 6423 within a value of type OUTER_TYPE, return true iff VAR_TYPE 6424 represents an unchecked union (that is, the variant part of a 6425 record that is named in an Unchecked_Union pragma). */ 6426 6427 static int 6428 is_unchecked_variant (struct type *var_type, struct type *outer_type) 6429 { 6430 char *discrim_name = ada_variant_discrim_name (var_type); 6431 6432 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) 6433 == NULL); 6434 } 6435 6436 6437 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), 6438 within a value of type OUTER_TYPE that is stored in GDB at 6439 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, 6440 numbering from 0) is applicable. Returns -1 if none are. */ 6441 6442 int 6443 ada_which_variant_applies (struct type *var_type, struct type *outer_type, 6444 const gdb_byte *outer_valaddr) 6445 { 6446 int others_clause; 6447 int i; 6448 char *discrim_name = ada_variant_discrim_name (var_type); 6449 struct value *outer; 6450 struct value *discrim; 6451 LONGEST discrim_val; 6452 6453 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); 6454 discrim = ada_value_struct_elt (outer, discrim_name, 1); 6455 if (discrim == NULL) 6456 return -1; 6457 discrim_val = value_as_long (discrim); 6458 6459 others_clause = -1; 6460 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) 6461 { 6462 if (ada_is_others_clause (var_type, i)) 6463 others_clause = i; 6464 else if (ada_in_variant (discrim_val, var_type, i)) 6465 return i; 6466 } 6467 6468 return others_clause; 6469 } 6470 6471 6472 6473 /* Dynamic-Sized Records */ 6474 6475 /* Strategy: The type ostensibly attached to a value with dynamic size 6476 (i.e., a size that is not statically recorded in the debugging 6477 data) does not accurately reflect the size or layout of the value. 6478 Our strategy is to convert these values to values with accurate, 6479 conventional types that are constructed on the fly. */ 6480 6481 /* There is a subtle and tricky problem here. In general, we cannot 6482 determine the size of dynamic records without its data. However, 6483 the 'struct value' data structure, which GDB uses to represent 6484 quantities in the inferior process (the target), requires the size 6485 of the type at the time of its allocation in order to reserve space 6486 for GDB's internal copy of the data. That's why the 6487 'to_fixed_xxx_type' routines take (target) addresses as parameters, 6488 rather than struct value*s. 6489 6490 However, GDB's internal history variables ($1, $2, etc.) are 6491 struct value*s containing internal copies of the data that are not, in 6492 general, the same as the data at their corresponding addresses in 6493 the target. Fortunately, the types we give to these values are all 6494 conventional, fixed-size types (as per the strategy described 6495 above), so that we don't usually have to perform the 6496 'to_fixed_xxx_type' conversions to look at their values. 6497 Unfortunately, there is one exception: if one of the internal 6498 history variables is an array whose elements are unconstrained 6499 records, then we will need to create distinct fixed types for each 6500 element selected. */ 6501 6502 /* The upshot of all of this is that many routines take a (type, host 6503 address, target address) triple as arguments to represent a value. 6504 The host address, if non-null, is supposed to contain an internal 6505 copy of the relevant data; otherwise, the program is to consult the 6506 target at the target address. */ 6507 6508 /* Assuming that VAL0 represents a pointer value, the result of 6509 dereferencing it. Differs from value_ind in its treatment of 6510 dynamic-sized types. */ 6511 6512 struct value * 6513 ada_value_ind (struct value *val0) 6514 { 6515 struct value *val = unwrap_value (value_ind (val0)); 6516 6517 return ada_to_fixed_value (val); 6518 } 6519 6520 /* The value resulting from dereferencing any "reference to" 6521 qualifiers on VAL0. */ 6522 6523 static struct value * 6524 ada_coerce_ref (struct value *val0) 6525 { 6526 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) 6527 { 6528 struct value *val = val0; 6529 6530 val = coerce_ref (val); 6531 val = unwrap_value (val); 6532 return ada_to_fixed_value (val); 6533 } 6534 else 6535 return val0; 6536 } 6537 6538 /* Return OFF rounded upward if necessary to a multiple of 6539 ALIGNMENT (a power of 2). */ 6540 6541 static unsigned int 6542 align_value (unsigned int off, unsigned int alignment) 6543 { 6544 return (off + alignment - 1) & ~(alignment - 1); 6545 } 6546 6547 /* Return the bit alignment required for field #F of template type TYPE. */ 6548 6549 static unsigned int 6550 field_alignment (struct type *type, int f) 6551 { 6552 const char *name = TYPE_FIELD_NAME (type, f); 6553 int len; 6554 int align_offset; 6555 6556 /* The field name should never be null, unless the debugging information 6557 is somehow malformed. In this case, we assume the field does not 6558 require any alignment. */ 6559 if (name == NULL) 6560 return 1; 6561 6562 len = strlen (name); 6563 6564 if (!isdigit (name[len - 1])) 6565 return 1; 6566 6567 if (isdigit (name[len - 2])) 6568 align_offset = len - 2; 6569 else 6570 align_offset = len - 1; 6571 6572 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) 6573 return TARGET_CHAR_BIT; 6574 6575 return atoi (name + align_offset) * TARGET_CHAR_BIT; 6576 } 6577 6578 /* Find a symbol named NAME. Ignores ambiguity. */ 6579 6580 struct symbol * 6581 ada_find_any_symbol (const char *name) 6582 { 6583 struct symbol *sym; 6584 6585 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); 6586 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) 6587 return sym; 6588 6589 sym = standard_lookup (name, NULL, STRUCT_DOMAIN); 6590 return sym; 6591 } 6592 6593 /* Find a type named NAME. Ignores ambiguity. This routine will look 6594 solely for types defined by debug info, it will not search the GDB 6595 primitive types. */ 6596 6597 struct type * 6598 ada_find_any_type (const char *name) 6599 { 6600 struct symbol *sym = ada_find_any_symbol (name); 6601 6602 if (sym != NULL) 6603 return SYMBOL_TYPE (sym); 6604 6605 return NULL; 6606 } 6607 6608 /* Given NAME and an associated BLOCK, search all symbols for 6609 NAME suffixed with "___XR", which is the ``renaming'' symbol 6610 associated to NAME. Return this symbol if found, return 6611 NULL otherwise. */ 6612 6613 struct symbol * 6614 ada_find_renaming_symbol (const char *name, struct block *block) 6615 { 6616 struct symbol *sym; 6617 6618 sym = find_old_style_renaming_symbol (name, block); 6619 6620 if (sym != NULL) 6621 return sym; 6622 6623 /* Not right yet. FIXME pnh 7/20/2007. */ 6624 sym = ada_find_any_symbol (name); 6625 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) 6626 return sym; 6627 else 6628 return NULL; 6629 } 6630 6631 static struct symbol * 6632 find_old_style_renaming_symbol (const char *name, struct block *block) 6633 { 6634 const struct symbol *function_sym = block_linkage_function (block); 6635 char *rename; 6636 6637 if (function_sym != NULL) 6638 { 6639 /* If the symbol is defined inside a function, NAME is not fully 6640 qualified. This means we need to prepend the function name 6641 as well as adding the ``___XR'' suffix to build the name of 6642 the associated renaming symbol. */ 6643 char *function_name = SYMBOL_LINKAGE_NAME (function_sym); 6644 /* Function names sometimes contain suffixes used 6645 for instance to qualify nested subprograms. When building 6646 the XR type name, we need to make sure that this suffix is 6647 not included. So do not include any suffix in the function 6648 name length below. */ 6649 int function_name_len = ada_name_prefix_len (function_name); 6650 const int rename_len = function_name_len + 2 /* "__" */ 6651 + strlen (name) + 6 /* "___XR\0" */ ; 6652 6653 /* Strip the suffix if necessary. */ 6654 ada_remove_trailing_digits (function_name, &function_name_len); 6655 ada_remove_po_subprogram_suffix (function_name, &function_name_len); 6656 ada_remove_Xbn_suffix (function_name, &function_name_len); 6657 6658 /* Library-level functions are a special case, as GNAT adds 6659 a ``_ada_'' prefix to the function name to avoid namespace 6660 pollution. However, the renaming symbols themselves do not 6661 have this prefix, so we need to skip this prefix if present. */ 6662 if (function_name_len > 5 /* "_ada_" */ 6663 && strstr (function_name, "_ada_") == function_name) 6664 { 6665 function_name += 5; 6666 function_name_len -= 5; 6667 } 6668 6669 rename = (char *) alloca (rename_len * sizeof (char)); 6670 strncpy (rename, function_name, function_name_len); 6671 xsnprintf (rename + function_name_len, rename_len - function_name_len, 6672 "__%s___XR", name); 6673 } 6674 else 6675 { 6676 const int rename_len = strlen (name) + 6; 6677 6678 rename = (char *) alloca (rename_len * sizeof (char)); 6679 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); 6680 } 6681 6682 return ada_find_any_symbol (rename); 6683 } 6684 6685 /* Because of GNAT encoding conventions, several GDB symbols may match a 6686 given type name. If the type denoted by TYPE0 is to be preferred to 6687 that of TYPE1 for purposes of type printing, return non-zero; 6688 otherwise return 0. */ 6689 6690 int 6691 ada_prefer_type (struct type *type0, struct type *type1) 6692 { 6693 if (type1 == NULL) 6694 return 1; 6695 else if (type0 == NULL) 6696 return 0; 6697 else if (TYPE_CODE (type1) == TYPE_CODE_VOID) 6698 return 1; 6699 else if (TYPE_CODE (type0) == TYPE_CODE_VOID) 6700 return 0; 6701 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) 6702 return 1; 6703 else if (ada_is_constrained_packed_array_type (type0)) 6704 return 1; 6705 else if (ada_is_array_descriptor_type (type0) 6706 && !ada_is_array_descriptor_type (type1)) 6707 return 1; 6708 else 6709 { 6710 const char *type0_name = type_name_no_tag (type0); 6711 const char *type1_name = type_name_no_tag (type1); 6712 6713 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL 6714 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) 6715 return 1; 6716 } 6717 return 0; 6718 } 6719 6720 /* The name of TYPE, which is either its TYPE_NAME, or, if that is 6721 null, its TYPE_TAG_NAME. Null if TYPE is null. */ 6722 6723 char * 6724 ada_type_name (struct type *type) 6725 { 6726 if (type == NULL) 6727 return NULL; 6728 else if (TYPE_NAME (type) != NULL) 6729 return TYPE_NAME (type); 6730 else 6731 return TYPE_TAG_NAME (type); 6732 } 6733 6734 /* Search the list of "descriptive" types associated to TYPE for a type 6735 whose name is NAME. */ 6736 6737 static struct type * 6738 find_parallel_type_by_descriptive_type (struct type *type, const char *name) 6739 { 6740 struct type *result; 6741 6742 /* If there no descriptive-type info, then there is no parallel type 6743 to be found. */ 6744 if (!HAVE_GNAT_AUX_INFO (type)) 6745 return NULL; 6746 6747 result = TYPE_DESCRIPTIVE_TYPE (type); 6748 while (result != NULL) 6749 { 6750 char *result_name = ada_type_name (result); 6751 6752 if (result_name == NULL) 6753 { 6754 warning (_("unexpected null name on descriptive type")); 6755 return NULL; 6756 } 6757 6758 /* If the names match, stop. */ 6759 if (strcmp (result_name, name) == 0) 6760 break; 6761 6762 /* Otherwise, look at the next item on the list, if any. */ 6763 if (HAVE_GNAT_AUX_INFO (result)) 6764 result = TYPE_DESCRIPTIVE_TYPE (result); 6765 else 6766 result = NULL; 6767 } 6768 6769 /* If we didn't find a match, see whether this is a packed array. With 6770 older compilers, the descriptive type information is either absent or 6771 irrelevant when it comes to packed arrays so the above lookup fails. 6772 Fall back to using a parallel lookup by name in this case. */ 6773 if (result == NULL && ada_is_constrained_packed_array_type (type)) 6774 return ada_find_any_type (name); 6775 6776 return result; 6777 } 6778 6779 /* Find a parallel type to TYPE with the specified NAME, using the 6780 descriptive type taken from the debugging information, if available, 6781 and otherwise using the (slower) name-based method. */ 6782 6783 static struct type * 6784 ada_find_parallel_type_with_name (struct type *type, const char *name) 6785 { 6786 struct type *result = NULL; 6787 6788 if (HAVE_GNAT_AUX_INFO (type)) 6789 result = find_parallel_type_by_descriptive_type (type, name); 6790 else 6791 result = ada_find_any_type (name); 6792 6793 return result; 6794 } 6795 6796 /* Same as above, but specify the name of the parallel type by appending 6797 SUFFIX to the name of TYPE. */ 6798 6799 struct type * 6800 ada_find_parallel_type (struct type *type, const char *suffix) 6801 { 6802 char *name, *typename = ada_type_name (type); 6803 int len; 6804 6805 if (typename == NULL) 6806 return NULL; 6807 6808 len = strlen (typename); 6809 6810 name = (char *) alloca (len + strlen (suffix) + 1); 6811 6812 strcpy (name, typename); 6813 strcpy (name + len, suffix); 6814 6815 return ada_find_parallel_type_with_name (type, name); 6816 } 6817 6818 /* If TYPE is a variable-size record type, return the corresponding template 6819 type describing its fields. Otherwise, return NULL. */ 6820 6821 static struct type * 6822 dynamic_template_type (struct type *type) 6823 { 6824 type = ada_check_typedef (type); 6825 6826 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT 6827 || ada_type_name (type) == NULL) 6828 return NULL; 6829 else 6830 { 6831 int len = strlen (ada_type_name (type)); 6832 6833 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) 6834 return type; 6835 else 6836 return ada_find_parallel_type (type, "___XVE"); 6837 } 6838 } 6839 6840 /* Assuming that TEMPL_TYPE is a union or struct type, returns 6841 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ 6842 6843 static int 6844 is_dynamic_field (struct type *templ_type, int field_num) 6845 { 6846 const char *name = TYPE_FIELD_NAME (templ_type, field_num); 6847 6848 return name != NULL 6849 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR 6850 && strstr (name, "___XVL") != NULL; 6851 } 6852 6853 /* The index of the variant field of TYPE, or -1 if TYPE does not 6854 represent a variant record type. */ 6855 6856 static int 6857 variant_field_index (struct type *type) 6858 { 6859 int f; 6860 6861 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) 6862 return -1; 6863 6864 for (f = 0; f < TYPE_NFIELDS (type); f += 1) 6865 { 6866 if (ada_is_variant_part (type, f)) 6867 return f; 6868 } 6869 return -1; 6870 } 6871 6872 /* A record type with no fields. */ 6873 6874 static struct type * 6875 empty_record (struct type *template) 6876 { 6877 struct type *type = alloc_type_copy (template); 6878 6879 TYPE_CODE (type) = TYPE_CODE_STRUCT; 6880 TYPE_NFIELDS (type) = 0; 6881 TYPE_FIELDS (type) = NULL; 6882 INIT_CPLUS_SPECIFIC (type); 6883 TYPE_NAME (type) = "<empty>"; 6884 TYPE_TAG_NAME (type) = NULL; 6885 TYPE_LENGTH (type) = 0; 6886 return type; 6887 } 6888 6889 /* An ordinary record type (with fixed-length fields) that describes 6890 the value of type TYPE at VALADDR or ADDRESS (see comments at 6891 the beginning of this section) VAL according to GNAT conventions. 6892 DVAL0 should describe the (portion of a) record that contains any 6893 necessary discriminants. It should be NULL if value_type (VAL) is 6894 an outer-level type (i.e., as opposed to a branch of a variant.) A 6895 variant field (unless unchecked) is replaced by a particular branch 6896 of the variant. 6897 6898 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or 6899 length are not statically known are discarded. As a consequence, 6900 VALADDR, ADDRESS and DVAL0 are ignored. 6901 6902 NOTE: Limitations: For now, we assume that dynamic fields and 6903 variants occupy whole numbers of bytes. However, they need not be 6904 byte-aligned. */ 6905 6906 struct type * 6907 ada_template_to_fixed_record_type_1 (struct type *type, 6908 const gdb_byte *valaddr, 6909 CORE_ADDR address, struct value *dval0, 6910 int keep_dynamic_fields) 6911 { 6912 struct value *mark = value_mark (); 6913 struct value *dval; 6914 struct type *rtype; 6915 int nfields, bit_len; 6916 int variant_field; 6917 long off; 6918 int fld_bit_len, bit_incr; 6919 int f; 6920 6921 /* Compute the number of fields in this record type that are going 6922 to be processed: unless keep_dynamic_fields, this includes only 6923 fields whose position and length are static will be processed. */ 6924 if (keep_dynamic_fields) 6925 nfields = TYPE_NFIELDS (type); 6926 else 6927 { 6928 nfields = 0; 6929 while (nfields < TYPE_NFIELDS (type) 6930 && !ada_is_variant_part (type, nfields) 6931 && !is_dynamic_field (type, nfields)) 6932 nfields++; 6933 } 6934 6935 rtype = alloc_type_copy (type); 6936 TYPE_CODE (rtype) = TYPE_CODE_STRUCT; 6937 INIT_CPLUS_SPECIFIC (rtype); 6938 TYPE_NFIELDS (rtype) = nfields; 6939 TYPE_FIELDS (rtype) = (struct field *) 6940 TYPE_ALLOC (rtype, nfields * sizeof (struct field)); 6941 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); 6942 TYPE_NAME (rtype) = ada_type_name (type); 6943 TYPE_TAG_NAME (rtype) = NULL; 6944 TYPE_FIXED_INSTANCE (rtype) = 1; 6945 6946 off = 0; 6947 bit_len = 0; 6948 variant_field = -1; 6949 6950 for (f = 0; f < nfields; f += 1) 6951 { 6952 off = align_value (off, field_alignment (type, f)) 6953 + TYPE_FIELD_BITPOS (type, f); 6954 TYPE_FIELD_BITPOS (rtype, f) = off; 6955 TYPE_FIELD_BITSIZE (rtype, f) = 0; 6956 6957 if (ada_is_variant_part (type, f)) 6958 { 6959 variant_field = f; 6960 fld_bit_len = bit_incr = 0; 6961 } 6962 else if (is_dynamic_field (type, f)) 6963 { 6964 const gdb_byte *field_valaddr = valaddr; 6965 CORE_ADDR field_address = address; 6966 struct type *field_type = 6967 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); 6968 6969 if (dval0 == NULL) 6970 { 6971 /* rtype's length is computed based on the run-time 6972 value of discriminants. If the discriminants are not 6973 initialized, the type size may be completely bogus and 6974 GDB may fail to allocate a value for it. So check the 6975 size first before creating the value. */ 6976 check_size (rtype); 6977 dval = value_from_contents_and_address (rtype, valaddr, address); 6978 } 6979 else 6980 dval = dval0; 6981 6982 /* If the type referenced by this field is an aligner type, we need 6983 to unwrap that aligner type, because its size might not be set. 6984 Keeping the aligner type would cause us to compute the wrong 6985 size for this field, impacting the offset of the all the fields 6986 that follow this one. */ 6987 if (ada_is_aligner_type (field_type)) 6988 { 6989 long field_offset = TYPE_FIELD_BITPOS (field_type, f); 6990 6991 field_valaddr = cond_offset_host (field_valaddr, field_offset); 6992 field_address = cond_offset_target (field_address, field_offset); 6993 field_type = ada_aligned_type (field_type); 6994 } 6995 6996 field_valaddr = cond_offset_host (field_valaddr, 6997 off / TARGET_CHAR_BIT); 6998 field_address = cond_offset_target (field_address, 6999 off / TARGET_CHAR_BIT); 7000 7001 /* Get the fixed type of the field. Note that, in this case, 7002 we do not want to get the real type out of the tag: if 7003 the current field is the parent part of a tagged record, 7004 we will get the tag of the object. Clearly wrong: the real 7005 type of the parent is not the real type of the child. We 7006 would end up in an infinite loop. */ 7007 field_type = ada_get_base_type (field_type); 7008 field_type = ada_to_fixed_type (field_type, field_valaddr, 7009 field_address, dval, 0); 7010 7011 TYPE_FIELD_TYPE (rtype, f) = field_type; 7012 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); 7013 bit_incr = fld_bit_len = 7014 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; 7015 } 7016 else 7017 { 7018 struct type *field_type = TYPE_FIELD_TYPE (type, f); 7019 7020 TYPE_FIELD_TYPE (rtype, f) = field_type; 7021 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); 7022 if (TYPE_FIELD_BITSIZE (type, f) > 0) 7023 bit_incr = fld_bit_len = 7024 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); 7025 else 7026 bit_incr = fld_bit_len = 7027 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; 7028 } 7029 if (off + fld_bit_len > bit_len) 7030 bit_len = off + fld_bit_len; 7031 off += bit_incr; 7032 TYPE_LENGTH (rtype) = 7033 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; 7034 } 7035 7036 /* We handle the variant part, if any, at the end because of certain 7037 odd cases in which it is re-ordered so as NOT to be the last field of 7038 the record. This can happen in the presence of representation 7039 clauses. */ 7040 if (variant_field >= 0) 7041 { 7042 struct type *branch_type; 7043 7044 off = TYPE_FIELD_BITPOS (rtype, variant_field); 7045 7046 if (dval0 == NULL) 7047 dval = value_from_contents_and_address (rtype, valaddr, address); 7048 else 7049 dval = dval0; 7050 7051 branch_type = 7052 to_fixed_variant_branch_type 7053 (TYPE_FIELD_TYPE (type, variant_field), 7054 cond_offset_host (valaddr, off / TARGET_CHAR_BIT), 7055 cond_offset_target (address, off / TARGET_CHAR_BIT), dval); 7056 if (branch_type == NULL) 7057 { 7058 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) 7059 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; 7060 TYPE_NFIELDS (rtype) -= 1; 7061 } 7062 else 7063 { 7064 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; 7065 TYPE_FIELD_NAME (rtype, variant_field) = "S"; 7066 fld_bit_len = 7067 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * 7068 TARGET_CHAR_BIT; 7069 if (off + fld_bit_len > bit_len) 7070 bit_len = off + fld_bit_len; 7071 TYPE_LENGTH (rtype) = 7072 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; 7073 } 7074 } 7075 7076 /* According to exp_dbug.ads, the size of TYPE for variable-size records 7077 should contain the alignment of that record, which should be a strictly 7078 positive value. If null or negative, then something is wrong, most 7079 probably in the debug info. In that case, we don't round up the size 7080 of the resulting type. If this record is not part of another structure, 7081 the current RTYPE length might be good enough for our purposes. */ 7082 if (TYPE_LENGTH (type) <= 0) 7083 { 7084 if (TYPE_NAME (rtype)) 7085 warning (_("Invalid type size for `%s' detected: %d."), 7086 TYPE_NAME (rtype), TYPE_LENGTH (type)); 7087 else 7088 warning (_("Invalid type size for <unnamed> detected: %d."), 7089 TYPE_LENGTH (type)); 7090 } 7091 else 7092 { 7093 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), 7094 TYPE_LENGTH (type)); 7095 } 7096 7097 value_free_to_mark (mark); 7098 if (TYPE_LENGTH (rtype) > varsize_limit) 7099 error (_("record type with dynamic size is larger than varsize-limit")); 7100 return rtype; 7101 } 7102 7103 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS 7104 of 1. */ 7105 7106 static struct type * 7107 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, 7108 CORE_ADDR address, struct value *dval0) 7109 { 7110 return ada_template_to_fixed_record_type_1 (type, valaddr, 7111 address, dval0, 1); 7112 } 7113 7114 /* An ordinary record type in which ___XVL-convention fields and 7115 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with 7116 static approximations, containing all possible fields. Uses 7117 no runtime values. Useless for use in values, but that's OK, 7118 since the results are used only for type determinations. Works on both 7119 structs and unions. Representation note: to save space, we memorize 7120 the result of this function in the TYPE_TARGET_TYPE of the 7121 template type. */ 7122 7123 static struct type * 7124 template_to_static_fixed_type (struct type *type0) 7125 { 7126 struct type *type; 7127 int nfields; 7128 int f; 7129 7130 if (TYPE_TARGET_TYPE (type0) != NULL) 7131 return TYPE_TARGET_TYPE (type0); 7132 7133 nfields = TYPE_NFIELDS (type0); 7134 type = type0; 7135 7136 for (f = 0; f < nfields; f += 1) 7137 { 7138 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); 7139 struct type *new_type; 7140 7141 if (is_dynamic_field (type0, f)) 7142 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); 7143 else 7144 new_type = static_unwrap_type (field_type); 7145 if (type == type0 && new_type != field_type) 7146 { 7147 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); 7148 TYPE_CODE (type) = TYPE_CODE (type0); 7149 INIT_CPLUS_SPECIFIC (type); 7150 TYPE_NFIELDS (type) = nfields; 7151 TYPE_FIELDS (type) = (struct field *) 7152 TYPE_ALLOC (type, nfields * sizeof (struct field)); 7153 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), 7154 sizeof (struct field) * nfields); 7155 TYPE_NAME (type) = ada_type_name (type0); 7156 TYPE_TAG_NAME (type) = NULL; 7157 TYPE_FIXED_INSTANCE (type) = 1; 7158 TYPE_LENGTH (type) = 0; 7159 } 7160 TYPE_FIELD_TYPE (type, f) = new_type; 7161 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); 7162 } 7163 return type; 7164 } 7165 7166 /* Given an object of type TYPE whose contents are at VALADDR and 7167 whose address in memory is ADDRESS, returns a revision of TYPE, 7168 which should be a non-dynamic-sized record, in which the variant 7169 part, if any, is replaced with the appropriate branch. Looks 7170 for discriminant values in DVAL0, which can be NULL if the record 7171 contains the necessary discriminant values. */ 7172 7173 static struct type * 7174 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, 7175 CORE_ADDR address, struct value *dval0) 7176 { 7177 struct value *mark = value_mark (); 7178 struct value *dval; 7179 struct type *rtype; 7180 struct type *branch_type; 7181 int nfields = TYPE_NFIELDS (type); 7182 int variant_field = variant_field_index (type); 7183 7184 if (variant_field == -1) 7185 return type; 7186 7187 if (dval0 == NULL) 7188 dval = value_from_contents_and_address (type, valaddr, address); 7189 else 7190 dval = dval0; 7191 7192 rtype = alloc_type_copy (type); 7193 TYPE_CODE (rtype) = TYPE_CODE_STRUCT; 7194 INIT_CPLUS_SPECIFIC (rtype); 7195 TYPE_NFIELDS (rtype) = nfields; 7196 TYPE_FIELDS (rtype) = 7197 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); 7198 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), 7199 sizeof (struct field) * nfields); 7200 TYPE_NAME (rtype) = ada_type_name (type); 7201 TYPE_TAG_NAME (rtype) = NULL; 7202 TYPE_FIXED_INSTANCE (rtype) = 1; 7203 TYPE_LENGTH (rtype) = TYPE_LENGTH (type); 7204 7205 branch_type = to_fixed_variant_branch_type 7206 (TYPE_FIELD_TYPE (type, variant_field), 7207 cond_offset_host (valaddr, 7208 TYPE_FIELD_BITPOS (type, variant_field) 7209 / TARGET_CHAR_BIT), 7210 cond_offset_target (address, 7211 TYPE_FIELD_BITPOS (type, variant_field) 7212 / TARGET_CHAR_BIT), dval); 7213 if (branch_type == NULL) 7214 { 7215 int f; 7216 7217 for (f = variant_field + 1; f < nfields; f += 1) 7218 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; 7219 TYPE_NFIELDS (rtype) -= 1; 7220 } 7221 else 7222 { 7223 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; 7224 TYPE_FIELD_NAME (rtype, variant_field) = "S"; 7225 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; 7226 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); 7227 } 7228 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); 7229 7230 value_free_to_mark (mark); 7231 return rtype; 7232 } 7233 7234 /* An ordinary record type (with fixed-length fields) that describes 7235 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at 7236 beginning of this section]. Any necessary discriminants' values 7237 should be in DVAL, a record value; it may be NULL if the object 7238 at ADDR itself contains any necessary discriminant values. 7239 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant 7240 values from the record are needed. Except in the case that DVAL, 7241 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless 7242 unchecked) is replaced by a particular branch of the variant. 7243 7244 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 7245 is questionable and may be removed. It can arise during the 7246 processing of an unconstrained-array-of-record type where all the 7247 variant branches have exactly the same size. This is because in 7248 such cases, the compiler does not bother to use the XVS convention 7249 when encoding the record. I am currently dubious of this 7250 shortcut and suspect the compiler should be altered. FIXME. */ 7251 7252 static struct type * 7253 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, 7254 CORE_ADDR address, struct value *dval) 7255 { 7256 struct type *templ_type; 7257 7258 if (TYPE_FIXED_INSTANCE (type0)) 7259 return type0; 7260 7261 templ_type = dynamic_template_type (type0); 7262 7263 if (templ_type != NULL) 7264 return template_to_fixed_record_type (templ_type, valaddr, address, dval); 7265 else if (variant_field_index (type0) >= 0) 7266 { 7267 if (dval == NULL && valaddr == NULL && address == 0) 7268 return type0; 7269 return to_record_with_fixed_variant_part (type0, valaddr, address, 7270 dval); 7271 } 7272 else 7273 { 7274 TYPE_FIXED_INSTANCE (type0) = 1; 7275 return type0; 7276 } 7277 7278 } 7279 7280 /* An ordinary record type (with fixed-length fields) that describes 7281 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a 7282 union type. Any necessary discriminants' values should be in DVAL, 7283 a record value. That is, this routine selects the appropriate 7284 branch of the union at ADDR according to the discriminant value 7285 indicated in the union's type name. Returns VAR_TYPE0 itself if 7286 it represents a variant subject to a pragma Unchecked_Union. */ 7287 7288 static struct type * 7289 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, 7290 CORE_ADDR address, struct value *dval) 7291 { 7292 int which; 7293 struct type *templ_type; 7294 struct type *var_type; 7295 7296 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) 7297 var_type = TYPE_TARGET_TYPE (var_type0); 7298 else 7299 var_type = var_type0; 7300 7301 templ_type = ada_find_parallel_type (var_type, "___XVU"); 7302 7303 if (templ_type != NULL) 7304 var_type = templ_type; 7305 7306 if (is_unchecked_variant (var_type, value_type (dval))) 7307 return var_type0; 7308 which = 7309 ada_which_variant_applies (var_type, 7310 value_type (dval), value_contents (dval)); 7311 7312 if (which < 0) 7313 return empty_record (var_type); 7314 else if (is_dynamic_field (var_type, which)) 7315 return to_fixed_record_type 7316 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), 7317 valaddr, address, dval); 7318 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) 7319 return 7320 to_fixed_record_type 7321 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); 7322 else 7323 return TYPE_FIELD_TYPE (var_type, which); 7324 } 7325 7326 /* Assuming that TYPE0 is an array type describing the type of a value 7327 at ADDR, and that DVAL describes a record containing any 7328 discriminants used in TYPE0, returns a type for the value that 7329 contains no dynamic components (that is, no components whose sizes 7330 are determined by run-time quantities). Unless IGNORE_TOO_BIG is 7331 true, gives an error message if the resulting type's size is over 7332 varsize_limit. */ 7333 7334 static struct type * 7335 to_fixed_array_type (struct type *type0, struct value *dval, 7336 int ignore_too_big) 7337 { 7338 struct type *index_type_desc; 7339 struct type *result; 7340 int constrained_packed_array_p; 7341 7342 if (TYPE_FIXED_INSTANCE (type0)) 7343 return type0; 7344 7345 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); 7346 if (constrained_packed_array_p) 7347 type0 = decode_constrained_packed_array_type (type0); 7348 7349 index_type_desc = ada_find_parallel_type (type0, "___XA"); 7350 ada_fixup_array_indexes_type (index_type_desc); 7351 if (index_type_desc == NULL) 7352 { 7353 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); 7354 7355 /* NOTE: elt_type---the fixed version of elt_type0---should never 7356 depend on the contents of the array in properly constructed 7357 debugging data. */ 7358 /* Create a fixed version of the array element type. 7359 We're not providing the address of an element here, 7360 and thus the actual object value cannot be inspected to do 7361 the conversion. This should not be a problem, since arrays of 7362 unconstrained objects are not allowed. In particular, all 7363 the elements of an array of a tagged type should all be of 7364 the same type specified in the debugging info. No need to 7365 consult the object tag. */ 7366 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); 7367 7368 /* Make sure we always create a new array type when dealing with 7369 packed array types, since we're going to fix-up the array 7370 type length and element bitsize a little further down. */ 7371 if (elt_type0 == elt_type && !constrained_packed_array_p) 7372 result = type0; 7373 else 7374 result = create_array_type (alloc_type_copy (type0), 7375 elt_type, TYPE_INDEX_TYPE (type0)); 7376 } 7377 else 7378 { 7379 int i; 7380 struct type *elt_type0; 7381 7382 elt_type0 = type0; 7383 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) 7384 elt_type0 = TYPE_TARGET_TYPE (elt_type0); 7385 7386 /* NOTE: result---the fixed version of elt_type0---should never 7387 depend on the contents of the array in properly constructed 7388 debugging data. */ 7389 /* Create a fixed version of the array element type. 7390 We're not providing the address of an element here, 7391 and thus the actual object value cannot be inspected to do 7392 the conversion. This should not be a problem, since arrays of 7393 unconstrained objects are not allowed. In particular, all 7394 the elements of an array of a tagged type should all be of 7395 the same type specified in the debugging info. No need to 7396 consult the object tag. */ 7397 result = 7398 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); 7399 7400 elt_type0 = type0; 7401 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) 7402 { 7403 struct type *range_type = 7404 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); 7405 7406 result = create_array_type (alloc_type_copy (elt_type0), 7407 result, range_type); 7408 elt_type0 = TYPE_TARGET_TYPE (elt_type0); 7409 } 7410 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) 7411 error (_("array type with dynamic size is larger than varsize-limit")); 7412 } 7413 7414 if (constrained_packed_array_p) 7415 { 7416 /* So far, the resulting type has been created as if the original 7417 type was a regular (non-packed) array type. As a result, the 7418 bitsize of the array elements needs to be set again, and the array 7419 length needs to be recomputed based on that bitsize. */ 7420 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); 7421 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); 7422 7423 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); 7424 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; 7425 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) 7426 TYPE_LENGTH (result)++; 7427 } 7428 7429 TYPE_FIXED_INSTANCE (result) = 1; 7430 return result; 7431 } 7432 7433 7434 /* A standard type (containing no dynamically sized components) 7435 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) 7436 DVAL describes a record containing any discriminants used in TYPE0, 7437 and may be NULL if there are none, or if the object of type TYPE at 7438 ADDRESS or in VALADDR contains these discriminants. 7439 7440 If CHECK_TAG is not null, in the case of tagged types, this function 7441 attempts to locate the object's tag and use it to compute the actual 7442 type. However, when ADDRESS is null, we cannot use it to determine the 7443 location of the tag, and therefore compute the tagged type's actual type. 7444 So we return the tagged type without consulting the tag. */ 7445 7446 static struct type * 7447 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, 7448 CORE_ADDR address, struct value *dval, int check_tag) 7449 { 7450 type = ada_check_typedef (type); 7451 switch (TYPE_CODE (type)) 7452 { 7453 default: 7454 return type; 7455 case TYPE_CODE_STRUCT: 7456 { 7457 struct type *static_type = to_static_fixed_type (type); 7458 struct type *fixed_record_type = 7459 to_fixed_record_type (type, valaddr, address, NULL); 7460 7461 /* If STATIC_TYPE is a tagged type and we know the object's address, 7462 then we can determine its tag, and compute the object's actual 7463 type from there. Note that we have to use the fixed record 7464 type (the parent part of the record may have dynamic fields 7465 and the way the location of _tag is expressed may depend on 7466 them). */ 7467 7468 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) 7469 { 7470 struct type *real_type = 7471 type_from_tag (value_tag_from_contents_and_address 7472 (fixed_record_type, 7473 valaddr, 7474 address)); 7475 7476 if (real_type != NULL) 7477 return to_fixed_record_type (real_type, valaddr, address, NULL); 7478 } 7479 7480 /* Check to see if there is a parallel ___XVZ variable. 7481 If there is, then it provides the actual size of our type. */ 7482 else if (ada_type_name (fixed_record_type) != NULL) 7483 { 7484 char *name = ada_type_name (fixed_record_type); 7485 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); 7486 int xvz_found = 0; 7487 LONGEST size; 7488 7489 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); 7490 size = get_int_var_value (xvz_name, &xvz_found); 7491 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) 7492 { 7493 fixed_record_type = copy_type (fixed_record_type); 7494 TYPE_LENGTH (fixed_record_type) = size; 7495 7496 /* The FIXED_RECORD_TYPE may have be a stub. We have 7497 observed this when the debugging info is STABS, and 7498 apparently it is something that is hard to fix. 7499 7500 In practice, we don't need the actual type definition 7501 at all, because the presence of the XVZ variable allows us 7502 to assume that there must be a XVS type as well, which we 7503 should be able to use later, when we need the actual type 7504 definition. 7505 7506 In the meantime, pretend that the "fixed" type we are 7507 returning is NOT a stub, because this can cause trouble 7508 when using this type to create new types targeting it. 7509 Indeed, the associated creation routines often check 7510 whether the target type is a stub and will try to replace 7511 it, thus using a type with the wrong size. This, in turn, 7512 might cause the new type to have the wrong size too. 7513 Consider the case of an array, for instance, where the size 7514 of the array is computed from the number of elements in 7515 our array multiplied by the size of its element. */ 7516 TYPE_STUB (fixed_record_type) = 0; 7517 } 7518 } 7519 return fixed_record_type; 7520 } 7521 case TYPE_CODE_ARRAY: 7522 return to_fixed_array_type (type, dval, 1); 7523 case TYPE_CODE_UNION: 7524 if (dval == NULL) 7525 return type; 7526 else 7527 return to_fixed_variant_branch_type (type, valaddr, address, dval); 7528 } 7529 } 7530 7531 /* The same as ada_to_fixed_type_1, except that it preserves the type 7532 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. 7533 ada_to_fixed_type_1 would return the type referenced by TYPE. */ 7534 7535 struct type * 7536 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, 7537 CORE_ADDR address, struct value *dval, int check_tag) 7538 7539 { 7540 struct type *fixed_type = 7541 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); 7542 7543 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF 7544 && TYPE_TARGET_TYPE (type) == fixed_type) 7545 return type; 7546 7547 return fixed_type; 7548 } 7549 7550 /* A standard (static-sized) type corresponding as well as possible to 7551 TYPE0, but based on no runtime data. */ 7552 7553 static struct type * 7554 to_static_fixed_type (struct type *type0) 7555 { 7556 struct type *type; 7557 7558 if (type0 == NULL) 7559 return NULL; 7560 7561 if (TYPE_FIXED_INSTANCE (type0)) 7562 return type0; 7563 7564 type0 = ada_check_typedef (type0); 7565 7566 switch (TYPE_CODE (type0)) 7567 { 7568 default: 7569 return type0; 7570 case TYPE_CODE_STRUCT: 7571 type = dynamic_template_type (type0); 7572 if (type != NULL) 7573 return template_to_static_fixed_type (type); 7574 else 7575 return template_to_static_fixed_type (type0); 7576 case TYPE_CODE_UNION: 7577 type = ada_find_parallel_type (type0, "___XVU"); 7578 if (type != NULL) 7579 return template_to_static_fixed_type (type); 7580 else 7581 return template_to_static_fixed_type (type0); 7582 } 7583 } 7584 7585 /* A static approximation of TYPE with all type wrappers removed. */ 7586 7587 static struct type * 7588 static_unwrap_type (struct type *type) 7589 { 7590 if (ada_is_aligner_type (type)) 7591 { 7592 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); 7593 if (ada_type_name (type1) == NULL) 7594 TYPE_NAME (type1) = ada_type_name (type); 7595 7596 return static_unwrap_type (type1); 7597 } 7598 else 7599 { 7600 struct type *raw_real_type = ada_get_base_type (type); 7601 7602 if (raw_real_type == type) 7603 return type; 7604 else 7605 return to_static_fixed_type (raw_real_type); 7606 } 7607 } 7608 7609 /* In some cases, incomplete and private types require 7610 cross-references that are not resolved as records (for example, 7611 type Foo; 7612 type FooP is access Foo; 7613 V: FooP; 7614 type Foo is array ...; 7615 ). In these cases, since there is no mechanism for producing 7616 cross-references to such types, we instead substitute for FooP a 7617 stub enumeration type that is nowhere resolved, and whose tag is 7618 the name of the actual type. Call these types "non-record stubs". */ 7619 7620 /* A type equivalent to TYPE that is not a non-record stub, if one 7621 exists, otherwise TYPE. */ 7622 7623 struct type * 7624 ada_check_typedef (struct type *type) 7625 { 7626 if (type == NULL) 7627 return NULL; 7628 7629 CHECK_TYPEDEF (type); 7630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 7631 || !TYPE_STUB (type) 7632 || TYPE_TAG_NAME (type) == NULL) 7633 return type; 7634 else 7635 { 7636 char *name = TYPE_TAG_NAME (type); 7637 struct type *type1 = ada_find_any_type (name); 7638 7639 return (type1 == NULL) ? type : type1; 7640 } 7641 } 7642 7643 /* A value representing the data at VALADDR/ADDRESS as described by 7644 type TYPE0, but with a standard (static-sized) type that correctly 7645 describes it. If VAL0 is not NULL and TYPE0 already is a standard 7646 type, then return VAL0 [this feature is simply to avoid redundant 7647 creation of struct values]. */ 7648 7649 static struct value * 7650 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, 7651 struct value *val0) 7652 { 7653 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); 7654 7655 if (type == type0 && val0 != NULL) 7656 return val0; 7657 else 7658 return value_from_contents_and_address (type, 0, address); 7659 } 7660 7661 /* A value representing VAL, but with a standard (static-sized) type 7662 that correctly describes it. Does not necessarily create a new 7663 value. */ 7664 7665 struct value * 7666 ada_to_fixed_value (struct value *val) 7667 { 7668 return ada_to_fixed_value_create (value_type (val), 7669 value_address (val), 7670 val); 7671 } 7672 7673 7674 /* Attributes */ 7675 7676 /* Table mapping attribute numbers to names. 7677 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ 7678 7679 static const char *attribute_names[] = { 7680 "<?>", 7681 7682 "first", 7683 "last", 7684 "length", 7685 "image", 7686 "max", 7687 "min", 7688 "modulus", 7689 "pos", 7690 "size", 7691 "tag", 7692 "val", 7693 0 7694 }; 7695 7696 const char * 7697 ada_attribute_name (enum exp_opcode n) 7698 { 7699 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) 7700 return attribute_names[n - OP_ATR_FIRST + 1]; 7701 else 7702 return attribute_names[0]; 7703 } 7704 7705 /* Evaluate the 'POS attribute applied to ARG. */ 7706 7707 static LONGEST 7708 pos_atr (struct value *arg) 7709 { 7710 struct value *val = coerce_ref (arg); 7711 struct type *type = value_type (val); 7712 7713 if (!discrete_type_p (type)) 7714 error (_("'POS only defined on discrete types")); 7715 7716 if (TYPE_CODE (type) == TYPE_CODE_ENUM) 7717 { 7718 int i; 7719 LONGEST v = value_as_long (val); 7720 7721 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 7722 { 7723 if (v == TYPE_FIELD_BITPOS (type, i)) 7724 return i; 7725 } 7726 error (_("enumeration value is invalid: can't find 'POS")); 7727 } 7728 else 7729 return value_as_long (val); 7730 } 7731 7732 static struct value * 7733 value_pos_atr (struct type *type, struct value *arg) 7734 { 7735 return value_from_longest (type, pos_atr (arg)); 7736 } 7737 7738 /* Evaluate the TYPE'VAL attribute applied to ARG. */ 7739 7740 static struct value * 7741 value_val_atr (struct type *type, struct value *arg) 7742 { 7743 if (!discrete_type_p (type)) 7744 error (_("'VAL only defined on discrete types")); 7745 if (!integer_type_p (value_type (arg))) 7746 error (_("'VAL requires integral argument")); 7747 7748 if (TYPE_CODE (type) == TYPE_CODE_ENUM) 7749 { 7750 long pos = value_as_long (arg); 7751 7752 if (pos < 0 || pos >= TYPE_NFIELDS (type)) 7753 error (_("argument to 'VAL out of range")); 7754 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); 7755 } 7756 else 7757 return value_from_longest (type, value_as_long (arg)); 7758 } 7759 7760 7761 /* Evaluation */ 7762 7763 /* True if TYPE appears to be an Ada character type. 7764 [At the moment, this is true only for Character and Wide_Character; 7765 It is a heuristic test that could stand improvement]. */ 7766 7767 int 7768 ada_is_character_type (struct type *type) 7769 { 7770 const char *name; 7771 7772 /* If the type code says it's a character, then assume it really is, 7773 and don't check any further. */ 7774 if (TYPE_CODE (type) == TYPE_CODE_CHAR) 7775 return 1; 7776 7777 /* Otherwise, assume it's a character type iff it is a discrete type 7778 with a known character type name. */ 7779 name = ada_type_name (type); 7780 return (name != NULL 7781 && (TYPE_CODE (type) == TYPE_CODE_INT 7782 || TYPE_CODE (type) == TYPE_CODE_RANGE) 7783 && (strcmp (name, "character") == 0 7784 || strcmp (name, "wide_character") == 0 7785 || strcmp (name, "wide_wide_character") == 0 7786 || strcmp (name, "unsigned char") == 0)); 7787 } 7788 7789 /* True if TYPE appears to be an Ada string type. */ 7790 7791 int 7792 ada_is_string_type (struct type *type) 7793 { 7794 type = ada_check_typedef (type); 7795 if (type != NULL 7796 && TYPE_CODE (type) != TYPE_CODE_PTR 7797 && (ada_is_simple_array_type (type) 7798 || ada_is_array_descriptor_type (type)) 7799 && ada_array_arity (type) == 1) 7800 { 7801 struct type *elttype = ada_array_element_type (type, 1); 7802 7803 return ada_is_character_type (elttype); 7804 } 7805 else 7806 return 0; 7807 } 7808 7809 /* The compiler sometimes provides a parallel XVS type for a given 7810 PAD type. Normally, it is safe to follow the PAD type directly, 7811 but older versions of the compiler have a bug that causes the offset 7812 of its "F" field to be wrong. Following that field in that case 7813 would lead to incorrect results, but this can be worked around 7814 by ignoring the PAD type and using the associated XVS type instead. 7815 7816 Set to True if the debugger should trust the contents of PAD types. 7817 Otherwise, ignore the PAD type if there is a parallel XVS type. */ 7818 static int trust_pad_over_xvs = 1; 7819 7820 /* True if TYPE is a struct type introduced by the compiler to force the 7821 alignment of a value. Such types have a single field with a 7822 distinctive name. */ 7823 7824 int 7825 ada_is_aligner_type (struct type *type) 7826 { 7827 type = ada_check_typedef (type); 7828 7829 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) 7830 return 0; 7831 7832 return (TYPE_CODE (type) == TYPE_CODE_STRUCT 7833 && TYPE_NFIELDS (type) == 1 7834 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); 7835 } 7836 7837 /* If there is an ___XVS-convention type parallel to SUBTYPE, return 7838 the parallel type. */ 7839 7840 struct type * 7841 ada_get_base_type (struct type *raw_type) 7842 { 7843 struct type *real_type_namer; 7844 struct type *raw_real_type; 7845 7846 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) 7847 return raw_type; 7848 7849 if (ada_is_aligner_type (raw_type)) 7850 /* The encoding specifies that we should always use the aligner type. 7851 So, even if this aligner type has an associated XVS type, we should 7852 simply ignore it. 7853 7854 According to the compiler gurus, an XVS type parallel to an aligner 7855 type may exist because of a stabs limitation. In stabs, aligner 7856 types are empty because the field has a variable-sized type, and 7857 thus cannot actually be used as an aligner type. As a result, 7858 we need the associated parallel XVS type to decode the type. 7859 Since the policy in the compiler is to not change the internal 7860 representation based on the debugging info format, we sometimes 7861 end up having a redundant XVS type parallel to the aligner type. */ 7862 return raw_type; 7863 7864 real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); 7865 if (real_type_namer == NULL 7866 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT 7867 || TYPE_NFIELDS (real_type_namer) != 1) 7868 return raw_type; 7869 7870 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) 7871 { 7872 /* This is an older encoding form where the base type needs to be 7873 looked up by name. We prefer the newer enconding because it is 7874 more efficient. */ 7875 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); 7876 if (raw_real_type == NULL) 7877 return raw_type; 7878 else 7879 return raw_real_type; 7880 } 7881 7882 /* The field in our XVS type is a reference to the base type. */ 7883 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); 7884 } 7885 7886 /* The type of value designated by TYPE, with all aligners removed. */ 7887 7888 struct type * 7889 ada_aligned_type (struct type *type) 7890 { 7891 if (ada_is_aligner_type (type)) 7892 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); 7893 else 7894 return ada_get_base_type (type); 7895 } 7896 7897 7898 /* The address of the aligned value in an object at address VALADDR 7899 having type TYPE. Assumes ada_is_aligner_type (TYPE). */ 7900 7901 const gdb_byte * 7902 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) 7903 { 7904 if (ada_is_aligner_type (type)) 7905 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), 7906 valaddr + 7907 TYPE_FIELD_BITPOS (type, 7908 0) / TARGET_CHAR_BIT); 7909 else 7910 return valaddr; 7911 } 7912 7913 7914 7915 /* The printed representation of an enumeration literal with encoded 7916 name NAME. The value is good to the next call of ada_enum_name. */ 7917 const char * 7918 ada_enum_name (const char *name) 7919 { 7920 static char *result; 7921 static size_t result_len = 0; 7922 char *tmp; 7923 7924 /* First, unqualify the enumeration name: 7925 1. Search for the last '.' character. If we find one, then skip 7926 all the preceeding characters, the unqualified name starts 7927 right after that dot. 7928 2. Otherwise, we may be debugging on a target where the compiler 7929 translates dots into "__". Search forward for double underscores, 7930 but stop searching when we hit an overloading suffix, which is 7931 of the form "__" followed by digits. */ 7932 7933 tmp = strrchr (name, '.'); 7934 if (tmp != NULL) 7935 name = tmp + 1; 7936 else 7937 { 7938 while ((tmp = strstr (name, "__")) != NULL) 7939 { 7940 if (isdigit (tmp[2])) 7941 break; 7942 else 7943 name = tmp + 2; 7944 } 7945 } 7946 7947 if (name[0] == 'Q') 7948 { 7949 int v; 7950 7951 if (name[1] == 'U' || name[1] == 'W') 7952 { 7953 if (sscanf (name + 2, "%x", &v) != 1) 7954 return name; 7955 } 7956 else 7957 return name; 7958 7959 GROW_VECT (result, result_len, 16); 7960 if (isascii (v) && isprint (v)) 7961 xsnprintf (result, result_len, "'%c'", v); 7962 else if (name[1] == 'U') 7963 xsnprintf (result, result_len, "[\"%02x\"]", v); 7964 else 7965 xsnprintf (result, result_len, "[\"%04x\"]", v); 7966 7967 return result; 7968 } 7969 else 7970 { 7971 tmp = strstr (name, "__"); 7972 if (tmp == NULL) 7973 tmp = strstr (name, "$"); 7974 if (tmp != NULL) 7975 { 7976 GROW_VECT (result, result_len, tmp - name + 1); 7977 strncpy (result, name, tmp - name); 7978 result[tmp - name] = '\0'; 7979 return result; 7980 } 7981 7982 return name; 7983 } 7984 } 7985 7986 /* Evaluate the subexpression of EXP starting at *POS as for 7987 evaluate_type, updating *POS to point just past the evaluated 7988 expression. */ 7989 7990 static struct value * 7991 evaluate_subexp_type (struct expression *exp, int *pos) 7992 { 7993 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 7994 } 7995 7996 /* If VAL is wrapped in an aligner or subtype wrapper, return the 7997 value it wraps. */ 7998 7999 static struct value * 8000 unwrap_value (struct value *val) 8001 { 8002 struct type *type = ada_check_typedef (value_type (val)); 8003 8004 if (ada_is_aligner_type (type)) 8005 { 8006 struct value *v = ada_value_struct_elt (val, "F", 0); 8007 struct type *val_type = ada_check_typedef (value_type (v)); 8008 8009 if (ada_type_name (val_type) == NULL) 8010 TYPE_NAME (val_type) = ada_type_name (type); 8011 8012 return unwrap_value (v); 8013 } 8014 else 8015 { 8016 struct type *raw_real_type = 8017 ada_check_typedef (ada_get_base_type (type)); 8018 8019 /* If there is no parallel XVS or XVE type, then the value is 8020 already unwrapped. Return it without further modification. */ 8021 if ((type == raw_real_type) 8022 && ada_find_parallel_type (type, "___XVE") == NULL) 8023 return val; 8024 8025 return 8026 coerce_unspec_val_to_type 8027 (val, ada_to_fixed_type (raw_real_type, 0, 8028 value_address (val), 8029 NULL, 1)); 8030 } 8031 } 8032 8033 static struct value * 8034 cast_to_fixed (struct type *type, struct value *arg) 8035 { 8036 LONGEST val; 8037 8038 if (type == value_type (arg)) 8039 return arg; 8040 else if (ada_is_fixed_point_type (value_type (arg))) 8041 val = ada_float_to_fixed (type, 8042 ada_fixed_to_float (value_type (arg), 8043 value_as_long (arg))); 8044 else 8045 { 8046 DOUBLEST argd = value_as_double (arg); 8047 8048 val = ada_float_to_fixed (type, argd); 8049 } 8050 8051 return value_from_longest (type, val); 8052 } 8053 8054 static struct value * 8055 cast_from_fixed (struct type *type, struct value *arg) 8056 { 8057 DOUBLEST val = ada_fixed_to_float (value_type (arg), 8058 value_as_long (arg)); 8059 8060 return value_from_double (type, val); 8061 } 8062 8063 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and 8064 return the converted value. */ 8065 8066 static struct value * 8067 coerce_for_assign (struct type *type, struct value *val) 8068 { 8069 struct type *type2 = value_type (val); 8070 8071 if (type == type2) 8072 return val; 8073 8074 type2 = ada_check_typedef (type2); 8075 type = ada_check_typedef (type); 8076 8077 if (TYPE_CODE (type2) == TYPE_CODE_PTR 8078 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 8079 { 8080 val = ada_value_ind (val); 8081 type2 = value_type (val); 8082 } 8083 8084 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY 8085 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 8086 { 8087 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) 8088 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) 8089 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) 8090 error (_("Incompatible types in assignment")); 8091 deprecated_set_value_type (val, type); 8092 } 8093 return val; 8094 } 8095 8096 static struct value * 8097 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) 8098 { 8099 struct value *val; 8100 struct type *type1, *type2; 8101 LONGEST v, v1, v2; 8102 8103 arg1 = coerce_ref (arg1); 8104 arg2 = coerce_ref (arg2); 8105 type1 = base_type (ada_check_typedef (value_type (arg1))); 8106 type2 = base_type (ada_check_typedef (value_type (arg2))); 8107 8108 if (TYPE_CODE (type1) != TYPE_CODE_INT 8109 || TYPE_CODE (type2) != TYPE_CODE_INT) 8110 return value_binop (arg1, arg2, op); 8111 8112 switch (op) 8113 { 8114 case BINOP_MOD: 8115 case BINOP_DIV: 8116 case BINOP_REM: 8117 break; 8118 default: 8119 return value_binop (arg1, arg2, op); 8120 } 8121 8122 v2 = value_as_long (arg2); 8123 if (v2 == 0) 8124 error (_("second operand of %s must not be zero."), op_string (op)); 8125 8126 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) 8127 return value_binop (arg1, arg2, op); 8128 8129 v1 = value_as_long (arg1); 8130 switch (op) 8131 { 8132 case BINOP_DIV: 8133 v = v1 / v2; 8134 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) 8135 v += v > 0 ? -1 : 1; 8136 break; 8137 case BINOP_REM: 8138 v = v1 % v2; 8139 if (v * v1 < 0) 8140 v -= v2; 8141 break; 8142 default: 8143 /* Should not reach this point. */ 8144 v = 0; 8145 } 8146 8147 val = allocate_value (type1); 8148 store_unsigned_integer (value_contents_raw (val), 8149 TYPE_LENGTH (value_type (val)), 8150 gdbarch_byte_order (get_type_arch (type1)), v); 8151 return val; 8152 } 8153 8154 static int 8155 ada_value_equal (struct value *arg1, struct value *arg2) 8156 { 8157 if (ada_is_direct_array_type (value_type (arg1)) 8158 || ada_is_direct_array_type (value_type (arg2))) 8159 { 8160 /* Automatically dereference any array reference before 8161 we attempt to perform the comparison. */ 8162 arg1 = ada_coerce_ref (arg1); 8163 arg2 = ada_coerce_ref (arg2); 8164 8165 arg1 = ada_coerce_to_simple_array (arg1); 8166 arg2 = ada_coerce_to_simple_array (arg2); 8167 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY 8168 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) 8169 error (_("Attempt to compare array with non-array")); 8170 /* FIXME: The following works only for types whose 8171 representations use all bits (no padding or undefined bits) 8172 and do not have user-defined equality. */ 8173 return 8174 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) 8175 && memcmp (value_contents (arg1), value_contents (arg2), 8176 TYPE_LENGTH (value_type (arg1))) == 0; 8177 } 8178 return value_equal (arg1, arg2); 8179 } 8180 8181 /* Total number of component associations in the aggregate starting at 8182 index PC in EXP. Assumes that index PC is the start of an 8183 OP_AGGREGATE. */ 8184 8185 static int 8186 num_component_specs (struct expression *exp, int pc) 8187 { 8188 int n, m, i; 8189 8190 m = exp->elts[pc + 1].longconst; 8191 pc += 3; 8192 n = 0; 8193 for (i = 0; i < m; i += 1) 8194 { 8195 switch (exp->elts[pc].opcode) 8196 { 8197 default: 8198 n += 1; 8199 break; 8200 case OP_CHOICES: 8201 n += exp->elts[pc + 1].longconst; 8202 break; 8203 } 8204 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); 8205 } 8206 return n; 8207 } 8208 8209 /* Assign the result of evaluating EXP starting at *POS to the INDEXth 8210 component of LHS (a simple array or a record), updating *POS past 8211 the expression, assuming that LHS is contained in CONTAINER. Does 8212 not modify the inferior's memory, nor does it modify LHS (unless 8213 LHS == CONTAINER). */ 8214 8215 static void 8216 assign_component (struct value *container, struct value *lhs, LONGEST index, 8217 struct expression *exp, int *pos) 8218 { 8219 struct value *mark = value_mark (); 8220 struct value *elt; 8221 8222 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) 8223 { 8224 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; 8225 struct value *index_val = value_from_longest (index_type, index); 8226 8227 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); 8228 } 8229 else 8230 { 8231 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); 8232 elt = ada_to_fixed_value (unwrap_value (elt)); 8233 } 8234 8235 if (exp->elts[*pos].opcode == OP_AGGREGATE) 8236 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); 8237 else 8238 value_assign_to_component (container, elt, 8239 ada_evaluate_subexp (NULL, exp, pos, 8240 EVAL_NORMAL)); 8241 8242 value_free_to_mark (mark); 8243 } 8244 8245 /* Assuming that LHS represents an lvalue having a record or array 8246 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment 8247 of that aggregate's value to LHS, advancing *POS past the 8248 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an 8249 lvalue containing LHS (possibly LHS itself). Does not modify 8250 the inferior's memory, nor does it modify the contents of 8251 LHS (unless == CONTAINER). Returns the modified CONTAINER. */ 8252 8253 static struct value * 8254 assign_aggregate (struct value *container, 8255 struct value *lhs, struct expression *exp, 8256 int *pos, enum noside noside) 8257 { 8258 struct type *lhs_type; 8259 int n = exp->elts[*pos+1].longconst; 8260 LONGEST low_index, high_index; 8261 int num_specs; 8262 LONGEST *indices; 8263 int max_indices, num_indices; 8264 int is_array_aggregate; 8265 int i; 8266 8267 *pos += 3; 8268 if (noside != EVAL_NORMAL) 8269 { 8270 int i; 8271 8272 for (i = 0; i < n; i += 1) 8273 ada_evaluate_subexp (NULL, exp, pos, noside); 8274 return container; 8275 } 8276 8277 container = ada_coerce_ref (container); 8278 if (ada_is_direct_array_type (value_type (container))) 8279 container = ada_coerce_to_simple_array (container); 8280 lhs = ada_coerce_ref (lhs); 8281 if (!deprecated_value_modifiable (lhs)) 8282 error (_("Left operand of assignment is not a modifiable lvalue.")); 8283 8284 lhs_type = value_type (lhs); 8285 if (ada_is_direct_array_type (lhs_type)) 8286 { 8287 lhs = ada_coerce_to_simple_array (lhs); 8288 lhs_type = value_type (lhs); 8289 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); 8290 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); 8291 is_array_aggregate = 1; 8292 } 8293 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) 8294 { 8295 low_index = 0; 8296 high_index = num_visible_fields (lhs_type) - 1; 8297 is_array_aggregate = 0; 8298 } 8299 else 8300 error (_("Left-hand side must be array or record.")); 8301 8302 num_specs = num_component_specs (exp, *pos - 3); 8303 max_indices = 4 * num_specs + 4; 8304 indices = alloca (max_indices * sizeof (indices[0])); 8305 indices[0] = indices[1] = low_index - 1; 8306 indices[2] = indices[3] = high_index + 1; 8307 num_indices = 4; 8308 8309 for (i = 0; i < n; i += 1) 8310 { 8311 switch (exp->elts[*pos].opcode) 8312 { 8313 case OP_CHOICES: 8314 aggregate_assign_from_choices (container, lhs, exp, pos, indices, 8315 &num_indices, max_indices, 8316 low_index, high_index); 8317 break; 8318 case OP_POSITIONAL: 8319 aggregate_assign_positional (container, lhs, exp, pos, indices, 8320 &num_indices, max_indices, 8321 low_index, high_index); 8322 break; 8323 case OP_OTHERS: 8324 if (i != n-1) 8325 error (_("Misplaced 'others' clause")); 8326 aggregate_assign_others (container, lhs, exp, pos, indices, 8327 num_indices, low_index, high_index); 8328 break; 8329 default: 8330 error (_("Internal error: bad aggregate clause")); 8331 } 8332 } 8333 8334 return container; 8335 } 8336 8337 /* Assign into the component of LHS indexed by the OP_POSITIONAL 8338 construct at *POS, updating *POS past the construct, given that 8339 the positions are relative to lower bound LOW, where HIGH is the 8340 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] 8341 updating *NUM_INDICES as needed. CONTAINER is as for 8342 assign_aggregate. */ 8343 static void 8344 aggregate_assign_positional (struct value *container, 8345 struct value *lhs, struct expression *exp, 8346 int *pos, LONGEST *indices, int *num_indices, 8347 int max_indices, LONGEST low, LONGEST high) 8348 { 8349 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; 8350 8351 if (ind - 1 == high) 8352 warning (_("Extra components in aggregate ignored.")); 8353 if (ind <= high) 8354 { 8355 add_component_interval (ind, ind, indices, num_indices, max_indices); 8356 *pos += 3; 8357 assign_component (container, lhs, ind, exp, pos); 8358 } 8359 else 8360 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 8361 } 8362 8363 /* Assign into the components of LHS indexed by the OP_CHOICES 8364 construct at *POS, updating *POS past the construct, given that 8365 the allowable indices are LOW..HIGH. Record the indices assigned 8366 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as 8367 needed. CONTAINER is as for assign_aggregate. */ 8368 static void 8369 aggregate_assign_from_choices (struct value *container, 8370 struct value *lhs, struct expression *exp, 8371 int *pos, LONGEST *indices, int *num_indices, 8372 int max_indices, LONGEST low, LONGEST high) 8373 { 8374 int j; 8375 int n_choices = longest_to_int (exp->elts[*pos+1].longconst); 8376 int choice_pos, expr_pc; 8377 int is_array = ada_is_direct_array_type (value_type (lhs)); 8378 8379 choice_pos = *pos += 3; 8380 8381 for (j = 0; j < n_choices; j += 1) 8382 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 8383 expr_pc = *pos; 8384 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 8385 8386 for (j = 0; j < n_choices; j += 1) 8387 { 8388 LONGEST lower, upper; 8389 enum exp_opcode op = exp->elts[choice_pos].opcode; 8390 8391 if (op == OP_DISCRETE_RANGE) 8392 { 8393 choice_pos += 1; 8394 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 8395 EVAL_NORMAL)); 8396 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 8397 EVAL_NORMAL)); 8398 } 8399 else if (is_array) 8400 { 8401 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 8402 EVAL_NORMAL)); 8403 upper = lower; 8404 } 8405 else 8406 { 8407 int ind; 8408 char *name; 8409 8410 switch (op) 8411 { 8412 case OP_NAME: 8413 name = &exp->elts[choice_pos + 2].string; 8414 break; 8415 case OP_VAR_VALUE: 8416 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); 8417 break; 8418 default: 8419 error (_("Invalid record component association.")); 8420 } 8421 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); 8422 ind = 0; 8423 if (! find_struct_field (name, value_type (lhs), 0, 8424 NULL, NULL, NULL, NULL, &ind)) 8425 error (_("Unknown component name: %s."), name); 8426 lower = upper = ind; 8427 } 8428 8429 if (lower <= upper && (lower < low || upper > high)) 8430 error (_("Index in component association out of bounds.")); 8431 8432 add_component_interval (lower, upper, indices, num_indices, 8433 max_indices); 8434 while (lower <= upper) 8435 { 8436 int pos1; 8437 8438 pos1 = expr_pc; 8439 assign_component (container, lhs, lower, exp, &pos1); 8440 lower += 1; 8441 } 8442 } 8443 } 8444 8445 /* Assign the value of the expression in the OP_OTHERS construct in 8446 EXP at *POS into the components of LHS indexed from LOW .. HIGH that 8447 have not been previously assigned. The index intervals already assigned 8448 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the 8449 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ 8450 static void 8451 aggregate_assign_others (struct value *container, 8452 struct value *lhs, struct expression *exp, 8453 int *pos, LONGEST *indices, int num_indices, 8454 LONGEST low, LONGEST high) 8455 { 8456 int i; 8457 int expr_pc = *pos+1; 8458 8459 for (i = 0; i < num_indices - 2; i += 2) 8460 { 8461 LONGEST ind; 8462 8463 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) 8464 { 8465 int pos; 8466 8467 pos = expr_pc; 8468 assign_component (container, lhs, ind, exp, &pos); 8469 } 8470 } 8471 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 8472 } 8473 8474 /* Add the interval [LOW .. HIGH] to the sorted set of intervals 8475 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], 8476 modifying *SIZE as needed. It is an error if *SIZE exceeds 8477 MAX_SIZE. The resulting intervals do not overlap. */ 8478 static void 8479 add_component_interval (LONGEST low, LONGEST high, 8480 LONGEST* indices, int *size, int max_size) 8481 { 8482 int i, j; 8483 8484 for (i = 0; i < *size; i += 2) { 8485 if (high >= indices[i] && low <= indices[i + 1]) 8486 { 8487 int kh; 8488 8489 for (kh = i + 2; kh < *size; kh += 2) 8490 if (high < indices[kh]) 8491 break; 8492 if (low < indices[i]) 8493 indices[i] = low; 8494 indices[i + 1] = indices[kh - 1]; 8495 if (high > indices[i + 1]) 8496 indices[i + 1] = high; 8497 memcpy (indices + i + 2, indices + kh, *size - kh); 8498 *size -= kh - i - 2; 8499 return; 8500 } 8501 else if (high < indices[i]) 8502 break; 8503 } 8504 8505 if (*size == max_size) 8506 error (_("Internal error: miscounted aggregate components.")); 8507 *size += 2; 8508 for (j = *size-1; j >= i+2; j -= 1) 8509 indices[j] = indices[j - 2]; 8510 indices[i] = low; 8511 indices[i + 1] = high; 8512 } 8513 8514 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 8515 is different. */ 8516 8517 static struct value * 8518 ada_value_cast (struct type *type, struct value *arg2, enum noside noside) 8519 { 8520 if (type == ada_check_typedef (value_type (arg2))) 8521 return arg2; 8522 8523 if (ada_is_fixed_point_type (type)) 8524 return (cast_to_fixed (type, arg2)); 8525 8526 if (ada_is_fixed_point_type (value_type (arg2))) 8527 return cast_from_fixed (type, arg2); 8528 8529 return value_cast (type, arg2); 8530 } 8531 8532 /* Evaluating Ada expressions, and printing their result. 8533 ------------------------------------------------------ 8534 8535 1. Introduction: 8536 ---------------- 8537 8538 We usually evaluate an Ada expression in order to print its value. 8539 We also evaluate an expression in order to print its type, which 8540 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, 8541 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the 8542 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of 8543 the evaluation compared to the EVAL_NORMAL, but is otherwise very 8544 similar. 8545 8546 Evaluating expressions is a little more complicated for Ada entities 8547 than it is for entities in languages such as C. The main reason for 8548 this is that Ada provides types whose definition might be dynamic. 8549 One example of such types is variant records. Or another example 8550 would be an array whose bounds can only be known at run time. 8551 8552 The following description is a general guide as to what should be 8553 done (and what should NOT be done) in order to evaluate an expression 8554 involving such types, and when. This does not cover how the semantic 8555 information is encoded by GNAT as this is covered separatly. For the 8556 document used as the reference for the GNAT encoding, see exp_dbug.ads 8557 in the GNAT sources. 8558 8559 Ideally, we should embed each part of this description next to its 8560 associated code. Unfortunately, the amount of code is so vast right 8561 now that it's hard to see whether the code handling a particular 8562 situation might be duplicated or not. One day, when the code is 8563 cleaned up, this guide might become redundant with the comments 8564 inserted in the code, and we might want to remove it. 8565 8566 2. ``Fixing'' an Entity, the Simple Case: 8567 ----------------------------------------- 8568 8569 When evaluating Ada expressions, the tricky issue is that they may 8570 reference entities whose type contents and size are not statically 8571 known. Consider for instance a variant record: 8572 8573 type Rec (Empty : Boolean := True) is record 8574 case Empty is 8575 when True => null; 8576 when False => Value : Integer; 8577 end case; 8578 end record; 8579 Yes : Rec := (Empty => False, Value => 1); 8580 No : Rec := (empty => True); 8581 8582 The size and contents of that record depends on the value of the 8583 descriminant (Rec.Empty). At this point, neither the debugging 8584 information nor the associated type structure in GDB are able to 8585 express such dynamic types. So what the debugger does is to create 8586 "fixed" versions of the type that applies to the specific object. 8587 We also informally refer to this opperation as "fixing" an object, 8588 which means creating its associated fixed type. 8589 8590 Example: when printing the value of variable "Yes" above, its fixed 8591 type would look like this: 8592 8593 type Rec is record 8594 Empty : Boolean; 8595 Value : Integer; 8596 end record; 8597 8598 On the other hand, if we printed the value of "No", its fixed type 8599 would become: 8600 8601 type Rec is record 8602 Empty : Boolean; 8603 end record; 8604 8605 Things become a little more complicated when trying to fix an entity 8606 with a dynamic type that directly contains another dynamic type, 8607 such as an array of variant records, for instance. There are 8608 two possible cases: Arrays, and records. 8609 8610 3. ``Fixing'' Arrays: 8611 --------------------- 8612 8613 The type structure in GDB describes an array in terms of its bounds, 8614 and the type of its elements. By design, all elements in the array 8615 have the same type and we cannot represent an array of variant elements 8616 using the current type structure in GDB. When fixing an array, 8617 we cannot fix the array element, as we would potentially need one 8618 fixed type per element of the array. As a result, the best we can do 8619 when fixing an array is to produce an array whose bounds and size 8620 are correct (allowing us to read it from memory), but without having 8621 touched its element type. Fixing each element will be done later, 8622 when (if) necessary. 8623 8624 Arrays are a little simpler to handle than records, because the same 8625 amount of memory is allocated for each element of the array, even if 8626 the amount of space actually used by each element differs from element 8627 to element. Consider for instance the following array of type Rec: 8628 8629 type Rec_Array is array (1 .. 2) of Rec; 8630 8631 The actual amount of memory occupied by each element might be different 8632 from element to element, depending on the value of their discriminant. 8633 But the amount of space reserved for each element in the array remains 8634 fixed regardless. So we simply need to compute that size using 8635 the debugging information available, from which we can then determine 8636 the array size (we multiply the number of elements of the array by 8637 the size of each element). 8638 8639 The simplest case is when we have an array of a constrained element 8640 type. For instance, consider the following type declarations: 8641 8642 type Bounded_String (Max_Size : Integer) is 8643 Length : Integer; 8644 Buffer : String (1 .. Max_Size); 8645 end record; 8646 type Bounded_String_Array is array (1 ..2) of Bounded_String (80); 8647 8648 In this case, the compiler describes the array as an array of 8649 variable-size elements (identified by its XVS suffix) for which 8650 the size can be read in the parallel XVZ variable. 8651 8652 In the case of an array of an unconstrained element type, the compiler 8653 wraps the array element inside a private PAD type. This type should not 8654 be shown to the user, and must be "unwrap"'ed before printing. Note 8655 that we also use the adjective "aligner" in our code to designate 8656 these wrapper types. 8657 8658 In some cases, the size allocated for each element is statically 8659 known. In that case, the PAD type already has the correct size, 8660 and the array element should remain unfixed. 8661 8662 But there are cases when this size is not statically known. 8663 For instance, assuming that "Five" is an integer variable: 8664 8665 type Dynamic is array (1 .. Five) of Integer; 8666 type Wrapper (Has_Length : Boolean := False) is record 8667 Data : Dynamic; 8668 case Has_Length is 8669 when True => Length : Integer; 8670 when False => null; 8671 end case; 8672 end record; 8673 type Wrapper_Array is array (1 .. 2) of Wrapper; 8674 8675 Hello : Wrapper_Array := (others => (Has_Length => True, 8676 Data => (others => 17), 8677 Length => 1)); 8678 8679 8680 The debugging info would describe variable Hello as being an 8681 array of a PAD type. The size of that PAD type is not statically 8682 known, but can be determined using a parallel XVZ variable. 8683 In that case, a copy of the PAD type with the correct size should 8684 be used for the fixed array. 8685 8686 3. ``Fixing'' record type objects: 8687 ---------------------------------- 8688 8689 Things are slightly different from arrays in the case of dynamic 8690 record types. In this case, in order to compute the associated 8691 fixed type, we need to determine the size and offset of each of 8692 its components. This, in turn, requires us to compute the fixed 8693 type of each of these components. 8694 8695 Consider for instance the example: 8696 8697 type Bounded_String (Max_Size : Natural) is record 8698 Str : String (1 .. Max_Size); 8699 Length : Natural; 8700 end record; 8701 My_String : Bounded_String (Max_Size => 10); 8702 8703 In that case, the position of field "Length" depends on the size 8704 of field Str, which itself depends on the value of the Max_Size 8705 discriminant. In order to fix the type of variable My_String, 8706 we need to fix the type of field Str. Therefore, fixing a variant 8707 record requires us to fix each of its components. 8708 8709 However, if a component does not have a dynamic size, the component 8710 should not be fixed. In particular, fields that use a PAD type 8711 should not fixed. Here is an example where this might happen 8712 (assuming type Rec above): 8713 8714 type Container (Big : Boolean) is record 8715 First : Rec; 8716 After : Integer; 8717 case Big is 8718 when True => Another : Integer; 8719 when False => null; 8720 end case; 8721 end record; 8722 My_Container : Container := (Big => False, 8723 First => (Empty => True), 8724 After => 42); 8725 8726 In that example, the compiler creates a PAD type for component First, 8727 whose size is constant, and then positions the component After just 8728 right after it. The offset of component After is therefore constant 8729 in this case. 8730 8731 The debugger computes the position of each field based on an algorithm 8732 that uses, among other things, the actual position and size of the field 8733 preceding it. Let's now imagine that the user is trying to print 8734 the value of My_Container. If the type fixing was recursive, we would 8735 end up computing the offset of field After based on the size of the 8736 fixed version of field First. And since in our example First has 8737 only one actual field, the size of the fixed type is actually smaller 8738 than the amount of space allocated to that field, and thus we would 8739 compute the wrong offset of field After. 8740 8741 To make things more complicated, we need to watch out for dynamic 8742 components of variant records (identified by the ___XVL suffix in 8743 the component name). Even if the target type is a PAD type, the size 8744 of that type might not be statically known. So the PAD type needs 8745 to be unwrapped and the resulting type needs to be fixed. Otherwise, 8746 we might end up with the wrong size for our component. This can be 8747 observed with the following type declarations: 8748 8749 type Octal is new Integer range 0 .. 7; 8750 type Octal_Array is array (Positive range <>) of Octal; 8751 pragma Pack (Octal_Array); 8752 8753 type Octal_Buffer (Size : Positive) is record 8754 Buffer : Octal_Array (1 .. Size); 8755 Length : Integer; 8756 end record; 8757 8758 In that case, Buffer is a PAD type whose size is unset and needs 8759 to be computed by fixing the unwrapped type. 8760 8761 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: 8762 ---------------------------------------------------------- 8763 8764 Lastly, when should the sub-elements of an entity that remained unfixed 8765 thus far, be actually fixed? 8766 8767 The answer is: Only when referencing that element. For instance 8768 when selecting one component of a record, this specific component 8769 should be fixed at that point in time. Or when printing the value 8770 of a record, each component should be fixed before its value gets 8771 printed. Similarly for arrays, the element of the array should be 8772 fixed when printing each element of the array, or when extracting 8773 one element out of that array. On the other hand, fixing should 8774 not be performed on the elements when taking a slice of an array! 8775 8776 Note that one of the side-effects of miscomputing the offset and 8777 size of each field is that we end up also miscomputing the size 8778 of the containing type. This can have adverse results when computing 8779 the value of an entity. GDB fetches the value of an entity based 8780 on the size of its type, and thus a wrong size causes GDB to fetch 8781 the wrong amount of memory. In the case where the computed size is 8782 too small, GDB fetches too little data to print the value of our 8783 entiry. Results in this case as unpredicatble, as we usually read 8784 past the buffer containing the data =:-o. */ 8785 8786 /* Implement the evaluate_exp routine in the exp_descriptor structure 8787 for the Ada language. */ 8788 8789 static struct value * 8790 ada_evaluate_subexp (struct type *expect_type, struct expression *exp, 8791 int *pos, enum noside noside) 8792 { 8793 enum exp_opcode op; 8794 int tem; 8795 int pc; 8796 struct value *arg1 = NULL, *arg2 = NULL, *arg3; 8797 struct type *type; 8798 int nargs, oplen; 8799 struct value **argvec; 8800 8801 pc = *pos; 8802 *pos += 1; 8803 op = exp->elts[pc].opcode; 8804 8805 switch (op) 8806 { 8807 default: 8808 *pos -= 1; 8809 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); 8810 arg1 = unwrap_value (arg1); 8811 8812 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, 8813 then we need to perform the conversion manually, because 8814 evaluate_subexp_standard doesn't do it. This conversion is 8815 necessary in Ada because the different kinds of float/fixed 8816 types in Ada have different representations. 8817 8818 Similarly, we need to perform the conversion from OP_LONG 8819 ourselves. */ 8820 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) 8821 arg1 = ada_value_cast (expect_type, arg1, noside); 8822 8823 return arg1; 8824 8825 case OP_STRING: 8826 { 8827 struct value *result; 8828 8829 *pos -= 1; 8830 result = evaluate_subexp_standard (expect_type, exp, pos, noside); 8831 /* The result type will have code OP_STRING, bashed there from 8832 OP_ARRAY. Bash it back. */ 8833 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) 8834 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; 8835 return result; 8836 } 8837 8838 case UNOP_CAST: 8839 (*pos) += 2; 8840 type = exp->elts[pc + 1].type; 8841 arg1 = evaluate_subexp (type, exp, pos, noside); 8842 if (noside == EVAL_SKIP) 8843 goto nosideret; 8844 arg1 = ada_value_cast (type, arg1, noside); 8845 return arg1; 8846 8847 case UNOP_QUAL: 8848 (*pos) += 2; 8849 type = exp->elts[pc + 1].type; 8850 return ada_evaluate_subexp (type, exp, pos, noside); 8851 8852 case BINOP_ASSIGN: 8853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 8854 if (exp->elts[*pos].opcode == OP_AGGREGATE) 8855 { 8856 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); 8857 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 8858 return arg1; 8859 return ada_value_assign (arg1, arg1); 8860 } 8861 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, 8862 except if the lhs of our assignment is a convenience variable. 8863 In the case of assigning to a convenience variable, the lhs 8864 should be exactly the result of the evaluation of the rhs. */ 8865 type = value_type (arg1); 8866 if (VALUE_LVAL (arg1) == lval_internalvar) 8867 type = NULL; 8868 arg2 = evaluate_subexp (type, exp, pos, noside); 8869 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 8870 return arg1; 8871 if (ada_is_fixed_point_type (value_type (arg1))) 8872 arg2 = cast_to_fixed (value_type (arg1), arg2); 8873 else if (ada_is_fixed_point_type (value_type (arg2))) 8874 error 8875 (_("Fixed-point values must be assigned to fixed-point variables")); 8876 else 8877 arg2 = coerce_for_assign (value_type (arg1), arg2); 8878 return ada_value_assign (arg1, arg2); 8879 8880 case BINOP_ADD: 8881 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 8882 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 8883 if (noside == EVAL_SKIP) 8884 goto nosideret; 8885 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) 8886 return (value_from_longest 8887 (value_type (arg1), 8888 value_as_long (arg1) + value_as_long (arg2))); 8889 if ((ada_is_fixed_point_type (value_type (arg1)) 8890 || ada_is_fixed_point_type (value_type (arg2))) 8891 && value_type (arg1) != value_type (arg2)) 8892 error (_("Operands of fixed-point addition must have the same type")); 8893 /* Do the addition, and cast the result to the type of the first 8894 argument. We cannot cast the result to a reference type, so if 8895 ARG1 is a reference type, find its underlying type. */ 8896 type = value_type (arg1); 8897 while (TYPE_CODE (type) == TYPE_CODE_REF) 8898 type = TYPE_TARGET_TYPE (type); 8899 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 8900 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); 8901 8902 case BINOP_SUB: 8903 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 8904 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 8905 if (noside == EVAL_SKIP) 8906 goto nosideret; 8907 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) 8908 return (value_from_longest 8909 (value_type (arg1), 8910 value_as_long (arg1) - value_as_long (arg2))); 8911 if ((ada_is_fixed_point_type (value_type (arg1)) 8912 || ada_is_fixed_point_type (value_type (arg2))) 8913 && value_type (arg1) != value_type (arg2)) 8914 error (_("Operands of fixed-point subtraction must have the same type")); 8915 /* Do the substraction, and cast the result to the type of the first 8916 argument. We cannot cast the result to a reference type, so if 8917 ARG1 is a reference type, find its underlying type. */ 8918 type = value_type (arg1); 8919 while (TYPE_CODE (type) == TYPE_CODE_REF) 8920 type = TYPE_TARGET_TYPE (type); 8921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 8922 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); 8923 8924 case BINOP_MUL: 8925 case BINOP_DIV: 8926 case BINOP_REM: 8927 case BINOP_MOD: 8928 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 8929 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 8930 if (noside == EVAL_SKIP) 8931 goto nosideret; 8932 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 8933 { 8934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 8935 return value_zero (value_type (arg1), not_lval); 8936 } 8937 else 8938 { 8939 type = builtin_type (exp->gdbarch)->builtin_double; 8940 if (ada_is_fixed_point_type (value_type (arg1))) 8941 arg1 = cast_from_fixed (type, arg1); 8942 if (ada_is_fixed_point_type (value_type (arg2))) 8943 arg2 = cast_from_fixed (type, arg2); 8944 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 8945 return ada_value_binop (arg1, arg2, op); 8946 } 8947 8948 case BINOP_EQUAL: 8949 case BINOP_NOTEQUAL: 8950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 8951 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 8952 if (noside == EVAL_SKIP) 8953 goto nosideret; 8954 if (noside == EVAL_AVOID_SIDE_EFFECTS) 8955 tem = 0; 8956 else 8957 { 8958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 8959 tem = ada_value_equal (arg1, arg2); 8960 } 8961 if (op == BINOP_NOTEQUAL) 8962 tem = !tem; 8963 type = language_bool_type (exp->language_defn, exp->gdbarch); 8964 return value_from_longest (type, (LONGEST) tem); 8965 8966 case UNOP_NEG: 8967 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 8968 if (noside == EVAL_SKIP) 8969 goto nosideret; 8970 else if (ada_is_fixed_point_type (value_type (arg1))) 8971 return value_cast (value_type (arg1), value_neg (arg1)); 8972 else 8973 { 8974 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 8975 return value_neg (arg1); 8976 } 8977 8978 case BINOP_LOGICAL_AND: 8979 case BINOP_LOGICAL_OR: 8980 case UNOP_LOGICAL_NOT: 8981 { 8982 struct value *val; 8983 8984 *pos -= 1; 8985 val = evaluate_subexp_standard (expect_type, exp, pos, noside); 8986 type = language_bool_type (exp->language_defn, exp->gdbarch); 8987 return value_cast (type, val); 8988 } 8989 8990 case BINOP_BITWISE_AND: 8991 case BINOP_BITWISE_IOR: 8992 case BINOP_BITWISE_XOR: 8993 { 8994 struct value *val; 8995 8996 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 8997 *pos = pc; 8998 val = evaluate_subexp_standard (expect_type, exp, pos, noside); 8999 9000 return value_cast (value_type (arg1), val); 9001 } 9002 9003 case OP_VAR_VALUE: 9004 *pos -= 1; 9005 9006 if (noside == EVAL_SKIP) 9007 { 9008 *pos += 4; 9009 goto nosideret; 9010 } 9011 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) 9012 /* Only encountered when an unresolved symbol occurs in a 9013 context other than a function call, in which case, it is 9014 invalid. */ 9015 error (_("Unexpected unresolved symbol, %s, during evaluation"), 9016 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 9017 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9018 { 9019 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); 9020 /* Check to see if this is a tagged type. We also need to handle 9021 the case where the type is a reference to a tagged type, but 9022 we have to be careful to exclude pointers to tagged types. 9023 The latter should be shown as usual (as a pointer), whereas 9024 a reference should mostly be transparent to the user. */ 9025 if (ada_is_tagged_type (type, 0) 9026 || (TYPE_CODE(type) == TYPE_CODE_REF 9027 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) 9028 { 9029 /* Tagged types are a little special in the fact that the real 9030 type is dynamic and can only be determined by inspecting the 9031 object's tag. This means that we need to get the object's 9032 value first (EVAL_NORMAL) and then extract the actual object 9033 type from its tag. 9034 9035 Note that we cannot skip the final step where we extract 9036 the object type from its tag, because the EVAL_NORMAL phase 9037 results in dynamic components being resolved into fixed ones. 9038 This can cause problems when trying to print the type 9039 description of tagged types whose parent has a dynamic size: 9040 We use the type name of the "_parent" component in order 9041 to print the name of the ancestor type in the type description. 9042 If that component had a dynamic size, the resolution into 9043 a fixed type would result in the loss of that type name, 9044 thus preventing us from printing the name of the ancestor 9045 type in the type description. */ 9046 struct type *actual_type; 9047 9048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); 9049 actual_type = type_from_tag (ada_value_tag (arg1)); 9050 if (actual_type == NULL) 9051 /* If, for some reason, we were unable to determine 9052 the actual type from the tag, then use the static 9053 approximation that we just computed as a fallback. 9054 This can happen if the debugging information is 9055 incomplete, for instance. */ 9056 actual_type = type; 9057 9058 return value_zero (actual_type, not_lval); 9059 } 9060 9061 *pos += 4; 9062 return value_zero 9063 (to_static_fixed_type 9064 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), 9065 not_lval); 9066 } 9067 else 9068 { 9069 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); 9070 arg1 = unwrap_value (arg1); 9071 return ada_to_fixed_value (arg1); 9072 } 9073 9074 case OP_FUNCALL: 9075 (*pos) += 2; 9076 9077 /* Allocate arg vector, including space for the function to be 9078 called in argvec[0] and a terminating NULL. */ 9079 nargs = longest_to_int (exp->elts[pc + 1].longconst); 9080 argvec = 9081 (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); 9082 9083 if (exp->elts[*pos].opcode == OP_VAR_VALUE 9084 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 9085 error (_("Unexpected unresolved symbol, %s, during evaluation"), 9086 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); 9087 else 9088 { 9089 for (tem = 0; tem <= nargs; tem += 1) 9090 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9091 argvec[tem] = 0; 9092 9093 if (noside == EVAL_SKIP) 9094 goto nosideret; 9095 } 9096 9097 if (ada_is_constrained_packed_array_type 9098 (desc_base_type (value_type (argvec[0])))) 9099 argvec[0] = ada_coerce_to_simple_array (argvec[0]); 9100 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY 9101 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) 9102 /* This is a packed array that has already been fixed, and 9103 therefore already coerced to a simple array. Nothing further 9104 to do. */ 9105 ; 9106 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF 9107 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY 9108 && VALUE_LVAL (argvec[0]) == lval_memory)) 9109 argvec[0] = value_addr (argvec[0]); 9110 9111 type = ada_check_typedef (value_type (argvec[0])); 9112 if (TYPE_CODE (type) == TYPE_CODE_PTR) 9113 { 9114 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) 9115 { 9116 case TYPE_CODE_FUNC: 9117 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 9118 break; 9119 case TYPE_CODE_ARRAY: 9120 break; 9121 case TYPE_CODE_STRUCT: 9122 if (noside != EVAL_AVOID_SIDE_EFFECTS) 9123 argvec[0] = ada_value_ind (argvec[0]); 9124 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 9125 break; 9126 default: 9127 error (_("cannot subscript or call something of type `%s'"), 9128 ada_type_name (value_type (argvec[0]))); 9129 break; 9130 } 9131 } 9132 9133 switch (TYPE_CODE (type)) 9134 { 9135 case TYPE_CODE_FUNC: 9136 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9137 return allocate_value (TYPE_TARGET_TYPE (type)); 9138 return call_function_by_hand (argvec[0], nargs, argvec + 1); 9139 case TYPE_CODE_STRUCT: 9140 { 9141 int arity; 9142 9143 arity = ada_array_arity (type); 9144 type = ada_array_element_type (type, nargs); 9145 if (type == NULL) 9146 error (_("cannot subscript or call a record")); 9147 if (arity != nargs) 9148 error (_("wrong number of subscripts; expecting %d"), arity); 9149 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9150 return value_zero (ada_aligned_type (type), lval_memory); 9151 return 9152 unwrap_value (ada_value_subscript 9153 (argvec[0], nargs, argvec + 1)); 9154 } 9155 case TYPE_CODE_ARRAY: 9156 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9157 { 9158 type = ada_array_element_type (type, nargs); 9159 if (type == NULL) 9160 error (_("element type of array unknown")); 9161 else 9162 return value_zero (ada_aligned_type (type), lval_memory); 9163 } 9164 return 9165 unwrap_value (ada_value_subscript 9166 (ada_coerce_to_simple_array (argvec[0]), 9167 nargs, argvec + 1)); 9168 case TYPE_CODE_PTR: /* Pointer to array */ 9169 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); 9170 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9171 { 9172 type = ada_array_element_type (type, nargs); 9173 if (type == NULL) 9174 error (_("element type of array unknown")); 9175 else 9176 return value_zero (ada_aligned_type (type), lval_memory); 9177 } 9178 return 9179 unwrap_value (ada_value_ptr_subscript (argvec[0], type, 9180 nargs, argvec + 1)); 9181 9182 default: 9183 error (_("Attempt to index or call something other than an " 9184 "array or function")); 9185 } 9186 9187 case TERNOP_SLICE: 9188 { 9189 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9190 struct value *low_bound_val = 9191 evaluate_subexp (NULL_TYPE, exp, pos, noside); 9192 struct value *high_bound_val = 9193 evaluate_subexp (NULL_TYPE, exp, pos, noside); 9194 LONGEST low_bound; 9195 LONGEST high_bound; 9196 9197 low_bound_val = coerce_ref (low_bound_val); 9198 high_bound_val = coerce_ref (high_bound_val); 9199 low_bound = pos_atr (low_bound_val); 9200 high_bound = pos_atr (high_bound_val); 9201 9202 if (noside == EVAL_SKIP) 9203 goto nosideret; 9204 9205 /* If this is a reference to an aligner type, then remove all 9206 the aligners. */ 9207 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF 9208 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) 9209 TYPE_TARGET_TYPE (value_type (array)) = 9210 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); 9211 9212 if (ada_is_constrained_packed_array_type (value_type (array))) 9213 error (_("cannot slice a packed array")); 9214 9215 /* If this is a reference to an array or an array lvalue, 9216 convert to a pointer. */ 9217 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF 9218 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY 9219 && VALUE_LVAL (array) == lval_memory)) 9220 array = value_addr (array); 9221 9222 if (noside == EVAL_AVOID_SIDE_EFFECTS 9223 && ada_is_array_descriptor_type (ada_check_typedef 9224 (value_type (array)))) 9225 return empty_array (ada_type_of_array (array, 0), low_bound); 9226 9227 array = ada_coerce_to_simple_array_ptr (array); 9228 9229 /* If we have more than one level of pointer indirection, 9230 dereference the value until we get only one level. */ 9231 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR 9232 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) 9233 == TYPE_CODE_PTR)) 9234 array = value_ind (array); 9235 9236 /* Make sure we really do have an array type before going further, 9237 to avoid a SEGV when trying to get the index type or the target 9238 type later down the road if the debug info generated by 9239 the compiler is incorrect or incomplete. */ 9240 if (!ada_is_simple_array_type (value_type (array))) 9241 error (_("cannot take slice of non-array")); 9242 9243 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) 9244 { 9245 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) 9246 return empty_array (TYPE_TARGET_TYPE (value_type (array)), 9247 low_bound); 9248 else 9249 { 9250 struct type *arr_type0 = 9251 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), 9252 NULL, 1); 9253 9254 return ada_value_slice_from_ptr (array, arr_type0, 9255 longest_to_int (low_bound), 9256 longest_to_int (high_bound)); 9257 } 9258 } 9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9260 return array; 9261 else if (high_bound < low_bound) 9262 return empty_array (value_type (array), low_bound); 9263 else 9264 return ada_value_slice (array, longest_to_int (low_bound), 9265 longest_to_int (high_bound)); 9266 } 9267 9268 case UNOP_IN_RANGE: 9269 (*pos) += 2; 9270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9271 type = check_typedef (exp->elts[pc + 1].type); 9272 9273 if (noside == EVAL_SKIP) 9274 goto nosideret; 9275 9276 switch (TYPE_CODE (type)) 9277 { 9278 default: 9279 lim_warning (_("Membership test incompletely implemented; " 9280 "always returns true")); 9281 type = language_bool_type (exp->language_defn, exp->gdbarch); 9282 return value_from_longest (type, (LONGEST) 1); 9283 9284 case TYPE_CODE_RANGE: 9285 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); 9286 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); 9287 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 9289 type = language_bool_type (exp->language_defn, exp->gdbarch); 9290 return 9291 value_from_longest (type, 9292 (value_less (arg1, arg3) 9293 || value_equal (arg1, arg3)) 9294 && (value_less (arg2, arg1) 9295 || value_equal (arg2, arg1))); 9296 } 9297 9298 case BINOP_IN_BOUNDS: 9299 (*pos) += 2; 9300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9301 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9302 9303 if (noside == EVAL_SKIP) 9304 goto nosideret; 9305 9306 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9307 { 9308 type = language_bool_type (exp->language_defn, exp->gdbarch); 9309 return value_zero (type, not_lval); 9310 } 9311 9312 tem = longest_to_int (exp->elts[pc + 1].longconst); 9313 9314 type = ada_index_type (value_type (arg2), tem, "range"); 9315 if (!type) 9316 type = value_type (arg1); 9317 9318 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); 9319 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); 9320 9321 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9322 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 9323 type = language_bool_type (exp->language_defn, exp->gdbarch); 9324 return 9325 value_from_longest (type, 9326 (value_less (arg1, arg3) 9327 || value_equal (arg1, arg3)) 9328 && (value_less (arg2, arg1) 9329 || value_equal (arg2, arg1))); 9330 9331 case TERNOP_IN_RANGE: 9332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9333 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9334 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9335 9336 if (noside == EVAL_SKIP) 9337 goto nosideret; 9338 9339 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9340 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 9341 type = language_bool_type (exp->language_defn, exp->gdbarch); 9342 return 9343 value_from_longest (type, 9344 (value_less (arg1, arg3) 9345 || value_equal (arg1, arg3)) 9346 && (value_less (arg2, arg1) 9347 || value_equal (arg2, arg1))); 9348 9349 case OP_ATR_FIRST: 9350 case OP_ATR_LAST: 9351 case OP_ATR_LENGTH: 9352 { 9353 struct type *type_arg; 9354 9355 if (exp->elts[*pos].opcode == OP_TYPE) 9356 { 9357 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 9358 arg1 = NULL; 9359 type_arg = check_typedef (exp->elts[pc + 2].type); 9360 } 9361 else 9362 { 9363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9364 type_arg = NULL; 9365 } 9366 9367 if (exp->elts[*pos].opcode != OP_LONG) 9368 error (_("Invalid operand to '%s"), ada_attribute_name (op)); 9369 tem = longest_to_int (exp->elts[*pos + 2].longconst); 9370 *pos += 4; 9371 9372 if (noside == EVAL_SKIP) 9373 goto nosideret; 9374 9375 if (type_arg == NULL) 9376 { 9377 arg1 = ada_coerce_ref (arg1); 9378 9379 if (ada_is_constrained_packed_array_type (value_type (arg1))) 9380 arg1 = ada_coerce_to_simple_array (arg1); 9381 9382 type = ada_index_type (value_type (arg1), tem, 9383 ada_attribute_name (op)); 9384 if (type == NULL) 9385 type = builtin_type (exp->gdbarch)->builtin_int; 9386 9387 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9388 return allocate_value (type); 9389 9390 switch (op) 9391 { 9392 default: /* Should never happen. */ 9393 error (_("unexpected attribute encountered")); 9394 case OP_ATR_FIRST: 9395 return value_from_longest 9396 (type, ada_array_bound (arg1, tem, 0)); 9397 case OP_ATR_LAST: 9398 return value_from_longest 9399 (type, ada_array_bound (arg1, tem, 1)); 9400 case OP_ATR_LENGTH: 9401 return value_from_longest 9402 (type, ada_array_length (arg1, tem)); 9403 } 9404 } 9405 else if (discrete_type_p (type_arg)) 9406 { 9407 struct type *range_type; 9408 char *name = ada_type_name (type_arg); 9409 9410 range_type = NULL; 9411 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) 9412 range_type = to_fixed_range_type (type_arg, NULL); 9413 if (range_type == NULL) 9414 range_type = type_arg; 9415 switch (op) 9416 { 9417 default: 9418 error (_("unexpected attribute encountered")); 9419 case OP_ATR_FIRST: 9420 return value_from_longest 9421 (range_type, ada_discrete_type_low_bound (range_type)); 9422 case OP_ATR_LAST: 9423 return value_from_longest 9424 (range_type, ada_discrete_type_high_bound (range_type)); 9425 case OP_ATR_LENGTH: 9426 error (_("the 'length attribute applies only to array types")); 9427 } 9428 } 9429 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) 9430 error (_("unimplemented type attribute")); 9431 else 9432 { 9433 LONGEST low, high; 9434 9435 if (ada_is_constrained_packed_array_type (type_arg)) 9436 type_arg = decode_constrained_packed_array_type (type_arg); 9437 9438 type = ada_index_type (type_arg, tem, ada_attribute_name (op)); 9439 if (type == NULL) 9440 type = builtin_type (exp->gdbarch)->builtin_int; 9441 9442 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9443 return allocate_value (type); 9444 9445 switch (op) 9446 { 9447 default: 9448 error (_("unexpected attribute encountered")); 9449 case OP_ATR_FIRST: 9450 low = ada_array_bound_from_type (type_arg, tem, 0); 9451 return value_from_longest (type, low); 9452 case OP_ATR_LAST: 9453 high = ada_array_bound_from_type (type_arg, tem, 1); 9454 return value_from_longest (type, high); 9455 case OP_ATR_LENGTH: 9456 low = ada_array_bound_from_type (type_arg, tem, 0); 9457 high = ada_array_bound_from_type (type_arg, tem, 1); 9458 return value_from_longest (type, high - low + 1); 9459 } 9460 } 9461 } 9462 9463 case OP_ATR_TAG: 9464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9465 if (noside == EVAL_SKIP) 9466 goto nosideret; 9467 9468 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9469 return value_zero (ada_tag_type (arg1), not_lval); 9470 9471 return ada_value_tag (arg1); 9472 9473 case OP_ATR_MIN: 9474 case OP_ATR_MAX: 9475 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 9476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9477 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9478 if (noside == EVAL_SKIP) 9479 goto nosideret; 9480 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9481 return value_zero (value_type (arg1), not_lval); 9482 else 9483 { 9484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9485 return value_binop (arg1, arg2, 9486 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); 9487 } 9488 9489 case OP_ATR_MODULUS: 9490 { 9491 struct type *type_arg = check_typedef (exp->elts[pc + 2].type); 9492 9493 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 9494 if (noside == EVAL_SKIP) 9495 goto nosideret; 9496 9497 if (!ada_is_modular_type (type_arg)) 9498 error (_("'modulus must be applied to modular type")); 9499 9500 return value_from_longest (TYPE_TARGET_TYPE (type_arg), 9501 ada_modulus (type_arg)); 9502 } 9503 9504 9505 case OP_ATR_POS: 9506 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 9507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9508 if (noside == EVAL_SKIP) 9509 goto nosideret; 9510 type = builtin_type (exp->gdbarch)->builtin_int; 9511 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9512 return value_zero (type, not_lval); 9513 else 9514 return value_pos_atr (type, arg1); 9515 9516 case OP_ATR_SIZE: 9517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9518 type = value_type (arg1); 9519 9520 /* If the argument is a reference, then dereference its type, since 9521 the user is really asking for the size of the actual object, 9522 not the size of the pointer. */ 9523 if (TYPE_CODE (type) == TYPE_CODE_REF) 9524 type = TYPE_TARGET_TYPE (type); 9525 9526 if (noside == EVAL_SKIP) 9527 goto nosideret; 9528 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9529 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); 9530 else 9531 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 9532 TARGET_CHAR_BIT * TYPE_LENGTH (type)); 9533 9534 case OP_ATR_VAL: 9535 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 9536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9537 type = exp->elts[pc + 2].type; 9538 if (noside == EVAL_SKIP) 9539 goto nosideret; 9540 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9541 return value_zero (type, not_lval); 9542 else 9543 return value_val_atr (type, arg1); 9544 9545 case BINOP_EXP: 9546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9547 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9548 if (noside == EVAL_SKIP) 9549 goto nosideret; 9550 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9551 return value_zero (value_type (arg1), not_lval); 9552 else 9553 { 9554 /* For integer exponentiation operations, 9555 only promote the first argument. */ 9556 if (is_integral_type (value_type (arg2))) 9557 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 9558 else 9559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9560 9561 return value_binop (arg1, arg2, op); 9562 } 9563 9564 case UNOP_PLUS: 9565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9566 if (noside == EVAL_SKIP) 9567 goto nosideret; 9568 else 9569 return arg1; 9570 9571 case UNOP_ABS: 9572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9573 if (noside == EVAL_SKIP) 9574 goto nosideret; 9575 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 9576 if (value_less (arg1, value_zero (value_type (arg1), not_lval))) 9577 return value_neg (arg1); 9578 else 9579 return arg1; 9580 9581 case UNOP_IND: 9582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9583 if (noside == EVAL_SKIP) 9584 goto nosideret; 9585 type = ada_check_typedef (value_type (arg1)); 9586 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9587 { 9588 if (ada_is_array_descriptor_type (type)) 9589 /* GDB allows dereferencing GNAT array descriptors. */ 9590 { 9591 struct type *arrType = ada_type_of_array (arg1, 0); 9592 9593 if (arrType == NULL) 9594 error (_("Attempt to dereference null array pointer.")); 9595 return value_at_lazy (arrType, 0); 9596 } 9597 else if (TYPE_CODE (type) == TYPE_CODE_PTR 9598 || TYPE_CODE (type) == TYPE_CODE_REF 9599 /* In C you can dereference an array to get the 1st elt. */ 9600 || TYPE_CODE (type) == TYPE_CODE_ARRAY) 9601 { 9602 type = to_static_fixed_type 9603 (ada_aligned_type 9604 (ada_check_typedef (TYPE_TARGET_TYPE (type)))); 9605 check_size (type); 9606 return value_zero (type, lval_memory); 9607 } 9608 else if (TYPE_CODE (type) == TYPE_CODE_INT) 9609 { 9610 /* GDB allows dereferencing an int. */ 9611 if (expect_type == NULL) 9612 return value_zero (builtin_type (exp->gdbarch)->builtin_int, 9613 lval_memory); 9614 else 9615 { 9616 expect_type = 9617 to_static_fixed_type (ada_aligned_type (expect_type)); 9618 return value_zero (expect_type, lval_memory); 9619 } 9620 } 9621 else 9622 error (_("Attempt to take contents of a non-pointer value.")); 9623 } 9624 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ 9625 type = ada_check_typedef (value_type (arg1)); 9626 9627 if (TYPE_CODE (type) == TYPE_CODE_INT) 9628 /* GDB allows dereferencing an int. If we were given 9629 the expect_type, then use that as the target type. 9630 Otherwise, assume that the target type is an int. */ 9631 { 9632 if (expect_type != NULL) 9633 return ada_value_ind (value_cast (lookup_pointer_type (expect_type), 9634 arg1)); 9635 else 9636 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, 9637 (CORE_ADDR) value_as_address (arg1)); 9638 } 9639 9640 if (ada_is_array_descriptor_type (type)) 9641 /* GDB allows dereferencing GNAT array descriptors. */ 9642 return ada_coerce_to_simple_array (arg1); 9643 else 9644 return ada_value_ind (arg1); 9645 9646 case STRUCTOP_STRUCT: 9647 tem = longest_to_int (exp->elts[pc + 1].longconst); 9648 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 9649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9650 if (noside == EVAL_SKIP) 9651 goto nosideret; 9652 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9653 { 9654 struct type *type1 = value_type (arg1); 9655 9656 if (ada_is_tagged_type (type1, 1)) 9657 { 9658 type = ada_lookup_struct_elt_type (type1, 9659 &exp->elts[pc + 2].string, 9660 1, 1, NULL); 9661 if (type == NULL) 9662 /* In this case, we assume that the field COULD exist 9663 in some extension of the type. Return an object of 9664 "type" void, which will match any formal 9665 (see ada_type_match). */ 9666 return value_zero (builtin_type (exp->gdbarch)->builtin_void, 9667 lval_memory); 9668 } 9669 else 9670 type = 9671 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, 9672 0, NULL); 9673 9674 return value_zero (ada_aligned_type (type), lval_memory); 9675 } 9676 else 9677 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); 9678 arg1 = unwrap_value (arg1); 9679 return ada_to_fixed_value (arg1); 9680 9681 case OP_TYPE: 9682 /* The value is not supposed to be used. This is here to make it 9683 easier to accommodate expressions that contain types. */ 9684 (*pos) += 2; 9685 if (noside == EVAL_SKIP) 9686 goto nosideret; 9687 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9688 return allocate_value (exp->elts[pc + 1].type); 9689 else 9690 error (_("Attempt to use a type name as an expression")); 9691 9692 case OP_AGGREGATE: 9693 case OP_CHOICES: 9694 case OP_OTHERS: 9695 case OP_DISCRETE_RANGE: 9696 case OP_POSITIONAL: 9697 case OP_NAME: 9698 if (noside == EVAL_NORMAL) 9699 switch (op) 9700 { 9701 case OP_NAME: 9702 error (_("Undefined name, ambiguous name, or renaming used in " 9703 "component association: %s."), &exp->elts[pc+2].string); 9704 case OP_AGGREGATE: 9705 error (_("Aggregates only allowed on the right of an assignment")); 9706 default: 9707 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); 9708 } 9709 9710 ada_forward_operator_length (exp, pc, &oplen, &nargs); 9711 *pos += oplen - 1; 9712 for (tem = 0; tem < nargs; tem += 1) 9713 ada_evaluate_subexp (NULL, exp, pos, noside); 9714 goto nosideret; 9715 } 9716 9717 nosideret: 9718 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); 9719 } 9720 9721 9722 /* Fixed point */ 9723 9724 /* If TYPE encodes an Ada fixed-point type, return the suffix of the 9725 type name that encodes the 'small and 'delta information. 9726 Otherwise, return NULL. */ 9727 9728 static const char * 9729 fixed_type_info (struct type *type) 9730 { 9731 const char *name = ada_type_name (type); 9732 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); 9733 9734 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) 9735 { 9736 const char *tail = strstr (name, "___XF_"); 9737 9738 if (tail == NULL) 9739 return NULL; 9740 else 9741 return tail + 5; 9742 } 9743 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) 9744 return fixed_type_info (TYPE_TARGET_TYPE (type)); 9745 else 9746 return NULL; 9747 } 9748 9749 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ 9750 9751 int 9752 ada_is_fixed_point_type (struct type *type) 9753 { 9754 return fixed_type_info (type) != NULL; 9755 } 9756 9757 /* Return non-zero iff TYPE represents a System.Address type. */ 9758 9759 int 9760 ada_is_system_address_type (struct type *type) 9761 { 9762 return (TYPE_NAME (type) 9763 && strcmp (TYPE_NAME (type), "system__address") == 0); 9764 } 9765 9766 /* Assuming that TYPE is the representation of an Ada fixed-point 9767 type, return its delta, or -1 if the type is malformed and the 9768 delta cannot be determined. */ 9769 9770 DOUBLEST 9771 ada_delta (struct type *type) 9772 { 9773 const char *encoding = fixed_type_info (type); 9774 DOUBLEST num, den; 9775 9776 /* Strictly speaking, num and den are encoded as integer. However, 9777 they may not fit into a long, and they will have to be converted 9778 to DOUBLEST anyway. So scan them as DOUBLEST. */ 9779 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, 9780 &num, &den) < 2) 9781 return -1.0; 9782 else 9783 return num / den; 9784 } 9785 9786 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling 9787 factor ('SMALL value) associated with the type. */ 9788 9789 static DOUBLEST 9790 scaling_factor (struct type *type) 9791 { 9792 const char *encoding = fixed_type_info (type); 9793 DOUBLEST num0, den0, num1, den1; 9794 int n; 9795 9796 /* Strictly speaking, num's and den's are encoded as integer. However, 9797 they may not fit into a long, and they will have to be converted 9798 to DOUBLEST anyway. So scan them as DOUBLEST. */ 9799 n = sscanf (encoding, 9800 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT 9801 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, 9802 &num0, &den0, &num1, &den1); 9803 9804 if (n < 2) 9805 return 1.0; 9806 else if (n == 4) 9807 return num1 / den1; 9808 else 9809 return num0 / den0; 9810 } 9811 9812 9813 /* Assuming that X is the representation of a value of fixed-point 9814 type TYPE, return its floating-point equivalent. */ 9815 9816 DOUBLEST 9817 ada_fixed_to_float (struct type *type, LONGEST x) 9818 { 9819 return (DOUBLEST) x *scaling_factor (type); 9820 } 9821 9822 /* The representation of a fixed-point value of type TYPE 9823 corresponding to the value X. */ 9824 9825 LONGEST 9826 ada_float_to_fixed (struct type *type, DOUBLEST x) 9827 { 9828 return (LONGEST) (x / scaling_factor (type) + 0.5); 9829 } 9830 9831 9832 9833 /* Range types */ 9834 9835 /* Scan STR beginning at position K for a discriminant name, and 9836 return the value of that discriminant field of DVAL in *PX. If 9837 PNEW_K is not null, put the position of the character beyond the 9838 name scanned in *PNEW_K. Return 1 if successful; return 0 and do 9839 not alter *PX and *PNEW_K if unsuccessful. */ 9840 9841 static int 9842 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, 9843 int *pnew_k) 9844 { 9845 static char *bound_buffer = NULL; 9846 static size_t bound_buffer_len = 0; 9847 char *bound; 9848 char *pend; 9849 struct value *bound_val; 9850 9851 if (dval == NULL || str == NULL || str[k] == '\0') 9852 return 0; 9853 9854 pend = strstr (str + k, "__"); 9855 if (pend == NULL) 9856 { 9857 bound = str + k; 9858 k += strlen (bound); 9859 } 9860 else 9861 { 9862 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); 9863 bound = bound_buffer; 9864 strncpy (bound_buffer, str + k, pend - (str + k)); 9865 bound[pend - (str + k)] = '\0'; 9866 k = pend - str; 9867 } 9868 9869 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); 9870 if (bound_val == NULL) 9871 return 0; 9872 9873 *px = value_as_long (bound_val); 9874 if (pnew_k != NULL) 9875 *pnew_k = k; 9876 return 1; 9877 } 9878 9879 /* Value of variable named NAME in the current environment. If 9880 no such variable found, then if ERR_MSG is null, returns 0, and 9881 otherwise causes an error with message ERR_MSG. */ 9882 9883 static struct value * 9884 get_var_value (char *name, char *err_msg) 9885 { 9886 struct ada_symbol_info *syms; 9887 int nsyms; 9888 9889 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, 9890 &syms); 9891 9892 if (nsyms != 1) 9893 { 9894 if (err_msg == NULL) 9895 return 0; 9896 else 9897 error (("%s"), err_msg); 9898 } 9899 9900 return value_of_variable (syms[0].sym, syms[0].block); 9901 } 9902 9903 /* Value of integer variable named NAME in the current environment. If 9904 no such variable found, returns 0, and sets *FLAG to 0. If 9905 successful, sets *FLAG to 1. */ 9906 9907 LONGEST 9908 get_int_var_value (char *name, int *flag) 9909 { 9910 struct value *var_val = get_var_value (name, 0); 9911 9912 if (var_val == 0) 9913 { 9914 if (flag != NULL) 9915 *flag = 0; 9916 return 0; 9917 } 9918 else 9919 { 9920 if (flag != NULL) 9921 *flag = 1; 9922 return value_as_long (var_val); 9923 } 9924 } 9925 9926 9927 /* Return a range type whose base type is that of the range type named 9928 NAME in the current environment, and whose bounds are calculated 9929 from NAME according to the GNAT range encoding conventions. 9930 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the 9931 corresponding range type from debug information; fall back to using it 9932 if symbol lookup fails. If a new type must be created, allocate it 9933 like ORIG_TYPE was. The bounds information, in general, is encoded 9934 in NAME, the base type given in the named range type. */ 9935 9936 static struct type * 9937 to_fixed_range_type (struct type *raw_type, struct value *dval) 9938 { 9939 char *name; 9940 struct type *base_type; 9941 char *subtype_info; 9942 9943 gdb_assert (raw_type != NULL); 9944 gdb_assert (TYPE_NAME (raw_type) != NULL); 9945 9946 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) 9947 base_type = TYPE_TARGET_TYPE (raw_type); 9948 else 9949 base_type = raw_type; 9950 9951 name = TYPE_NAME (raw_type); 9952 subtype_info = strstr (name, "___XD"); 9953 if (subtype_info == NULL) 9954 { 9955 LONGEST L = ada_discrete_type_low_bound (raw_type); 9956 LONGEST U = ada_discrete_type_high_bound (raw_type); 9957 9958 if (L < INT_MIN || U > INT_MAX) 9959 return raw_type; 9960 else 9961 return create_range_type (alloc_type_copy (raw_type), raw_type, 9962 ada_discrete_type_low_bound (raw_type), 9963 ada_discrete_type_high_bound (raw_type)); 9964 } 9965 else 9966 { 9967 static char *name_buf = NULL; 9968 static size_t name_len = 0; 9969 int prefix_len = subtype_info - name; 9970 LONGEST L, U; 9971 struct type *type; 9972 char *bounds_str; 9973 int n; 9974 9975 GROW_VECT (name_buf, name_len, prefix_len + 5); 9976 strncpy (name_buf, name, prefix_len); 9977 name_buf[prefix_len] = '\0'; 9978 9979 subtype_info += 5; 9980 bounds_str = strchr (subtype_info, '_'); 9981 n = 1; 9982 9983 if (*subtype_info == 'L') 9984 { 9985 if (!ada_scan_number (bounds_str, n, &L, &n) 9986 && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) 9987 return raw_type; 9988 if (bounds_str[n] == '_') 9989 n += 2; 9990 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ 9991 n += 1; 9992 subtype_info += 1; 9993 } 9994 else 9995 { 9996 int ok; 9997 9998 strcpy (name_buf + prefix_len, "___L"); 9999 L = get_int_var_value (name_buf, &ok); 10000 if (!ok) 10001 { 10002 lim_warning (_("Unknown lower bound, using 1.")); 10003 L = 1; 10004 } 10005 } 10006 10007 if (*subtype_info == 'U') 10008 { 10009 if (!ada_scan_number (bounds_str, n, &U, &n) 10010 && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) 10011 return raw_type; 10012 } 10013 else 10014 { 10015 int ok; 10016 10017 strcpy (name_buf + prefix_len, "___U"); 10018 U = get_int_var_value (name_buf, &ok); 10019 if (!ok) 10020 { 10021 lim_warning (_("Unknown upper bound, using %ld."), (long) L); 10022 U = L; 10023 } 10024 } 10025 10026 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); 10027 TYPE_NAME (type) = name; 10028 return type; 10029 } 10030 } 10031 10032 /* True iff NAME is the name of a range type. */ 10033 10034 int 10035 ada_is_range_type_name (const char *name) 10036 { 10037 return (name != NULL && strstr (name, "___XD")); 10038 } 10039 10040 10041 /* Modular types */ 10042 10043 /* True iff TYPE is an Ada modular type. */ 10044 10045 int 10046 ada_is_modular_type (struct type *type) 10047 { 10048 struct type *subranged_type = base_type (type); 10049 10050 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE 10051 && TYPE_CODE (subranged_type) == TYPE_CODE_INT 10052 && TYPE_UNSIGNED (subranged_type)); 10053 } 10054 10055 /* Try to determine the lower and upper bounds of the given modular type 10056 using the type name only. Return non-zero and set L and U as the lower 10057 and upper bounds (respectively) if successful. */ 10058 10059 int 10060 ada_modulus_from_name (struct type *type, ULONGEST *modulus) 10061 { 10062 char *name = ada_type_name (type); 10063 char *suffix; 10064 int k; 10065 LONGEST U; 10066 10067 if (name == NULL) 10068 return 0; 10069 10070 /* Discrete type bounds are encoded using an __XD suffix. In our case, 10071 we are looking for static bounds, which means an __XDLU suffix. 10072 Moreover, we know that the lower bound of modular types is always 10073 zero, so the actual suffix should start with "__XDLU_0__", and 10074 then be followed by the upper bound value. */ 10075 suffix = strstr (name, "__XDLU_0__"); 10076 if (suffix == NULL) 10077 return 0; 10078 k = 10; 10079 if (!ada_scan_number (suffix, k, &U, NULL)) 10080 return 0; 10081 10082 *modulus = (ULONGEST) U + 1; 10083 return 1; 10084 } 10085 10086 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ 10087 10088 ULONGEST 10089 ada_modulus (struct type *type) 10090 { 10091 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; 10092 } 10093 10094 10095 /* Ada exception catchpoint support: 10096 --------------------------------- 10097 10098 We support 3 kinds of exception catchpoints: 10099 . catchpoints on Ada exceptions 10100 . catchpoints on unhandled Ada exceptions 10101 . catchpoints on failed assertions 10102 10103 Exceptions raised during failed assertions, or unhandled exceptions 10104 could perfectly be caught with the general catchpoint on Ada exceptions. 10105 However, we can easily differentiate these two special cases, and having 10106 the option to distinguish these two cases from the rest can be useful 10107 to zero-in on certain situations. 10108 10109 Exception catchpoints are a specialized form of breakpoint, 10110 since they rely on inserting breakpoints inside known routines 10111 of the GNAT runtime. The implementation therefore uses a standard 10112 breakpoint structure of the BP_BREAKPOINT type, but with its own set 10113 of breakpoint_ops. 10114 10115 Support in the runtime for exception catchpoints have been changed 10116 a few times already, and these changes affect the implementation 10117 of these catchpoints. In order to be able to support several 10118 variants of the runtime, we use a sniffer that will determine 10119 the runtime variant used by the program being debugged. 10120 10121 At this time, we do not support the use of conditions on Ada exception 10122 catchpoints. The COND and COND_STRING fields are therefore set 10123 to NULL (most of the time, see below). 10124 10125 Conditions where EXP_STRING, COND, and COND_STRING are used: 10126 10127 When a user specifies the name of a specific exception in the case 10128 of catchpoints on Ada exceptions, we store the name of that exception 10129 in the EXP_STRING. We then translate this request into an actual 10130 condition stored in COND_STRING, and then parse it into an expression 10131 stored in COND. */ 10132 10133 /* The different types of catchpoints that we introduced for catching 10134 Ada exceptions. */ 10135 10136 enum exception_catchpoint_kind 10137 { 10138 ex_catch_exception, 10139 ex_catch_exception_unhandled, 10140 ex_catch_assert 10141 }; 10142 10143 /* Ada's standard exceptions. */ 10144 10145 static char *standard_exc[] = { 10146 "constraint_error", 10147 "program_error", 10148 "storage_error", 10149 "tasking_error" 10150 }; 10151 10152 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); 10153 10154 /* A structure that describes how to support exception catchpoints 10155 for a given executable. */ 10156 10157 struct exception_support_info 10158 { 10159 /* The name of the symbol to break on in order to insert 10160 a catchpoint on exceptions. */ 10161 const char *catch_exception_sym; 10162 10163 /* The name of the symbol to break on in order to insert 10164 a catchpoint on unhandled exceptions. */ 10165 const char *catch_exception_unhandled_sym; 10166 10167 /* The name of the symbol to break on in order to insert 10168 a catchpoint on failed assertions. */ 10169 const char *catch_assert_sym; 10170 10171 /* Assuming that the inferior just triggered an unhandled exception 10172 catchpoint, this function is responsible for returning the address 10173 in inferior memory where the name of that exception is stored. 10174 Return zero if the address could not be computed. */ 10175 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; 10176 }; 10177 10178 static CORE_ADDR ada_unhandled_exception_name_addr (void); 10179 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); 10180 10181 /* The following exception support info structure describes how to 10182 implement exception catchpoints with the latest version of the 10183 Ada runtime (as of 2007-03-06). */ 10184 10185 static const struct exception_support_info default_exception_support_info = 10186 { 10187 "__gnat_debug_raise_exception", /* catch_exception_sym */ 10188 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ 10189 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ 10190 ada_unhandled_exception_name_addr 10191 }; 10192 10193 /* The following exception support info structure describes how to 10194 implement exception catchpoints with a slightly older version 10195 of the Ada runtime. */ 10196 10197 static const struct exception_support_info exception_support_info_fallback = 10198 { 10199 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ 10200 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ 10201 "system__assertions__raise_assert_failure", /* catch_assert_sym */ 10202 ada_unhandled_exception_name_addr_from_raise 10203 }; 10204 10205 /* For each executable, we sniff which exception info structure to use 10206 and cache it in the following global variable. */ 10207 10208 static const struct exception_support_info *exception_info = NULL; 10209 10210 /* Inspect the Ada runtime and determine which exception info structure 10211 should be used to provide support for exception catchpoints. 10212 10213 This function will always set exception_info, or raise an error. */ 10214 10215 static void 10216 ada_exception_support_info_sniffer (void) 10217 { 10218 struct symbol *sym; 10219 10220 /* If the exception info is already known, then no need to recompute it. */ 10221 if (exception_info != NULL) 10222 return; 10223 10224 /* Check the latest (default) exception support info. */ 10225 sym = standard_lookup (default_exception_support_info.catch_exception_sym, 10226 NULL, VAR_DOMAIN); 10227 if (sym != NULL) 10228 { 10229 exception_info = &default_exception_support_info; 10230 return; 10231 } 10232 10233 /* Try our fallback exception suport info. */ 10234 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, 10235 NULL, VAR_DOMAIN); 10236 if (sym != NULL) 10237 { 10238 exception_info = &exception_support_info_fallback; 10239 return; 10240 } 10241 10242 /* Sometimes, it is normal for us to not be able to find the routine 10243 we are looking for. This happens when the program is linked with 10244 the shared version of the GNAT runtime, and the program has not been 10245 started yet. Inform the user of these two possible causes if 10246 applicable. */ 10247 10248 if (ada_update_initial_language (language_unknown) != language_ada) 10249 error (_("Unable to insert catchpoint. Is this an Ada main program?")); 10250 10251 /* If the symbol does not exist, then check that the program is 10252 already started, to make sure that shared libraries have been 10253 loaded. If it is not started, this may mean that the symbol is 10254 in a shared library. */ 10255 10256 if (ptid_get_pid (inferior_ptid) == 0) 10257 error (_("Unable to insert catchpoint. Try to start the program first.")); 10258 10259 /* At this point, we know that we are debugging an Ada program and 10260 that the inferior has been started, but we still are not able to 10261 find the run-time symbols. That can mean that we are in 10262 configurable run time mode, or that a-except as been optimized 10263 out by the linker... In any case, at this point it is not worth 10264 supporting this feature. */ 10265 10266 error (_("Cannot insert catchpoints in this configuration.")); 10267 } 10268 10269 /* An observer of "executable_changed" events. 10270 Its role is to clear certain cached values that need to be recomputed 10271 each time a new executable is loaded by GDB. */ 10272 10273 static void 10274 ada_executable_changed_observer (void) 10275 { 10276 /* If the executable changed, then it is possible that the Ada runtime 10277 is different. So we need to invalidate the exception support info 10278 cache. */ 10279 exception_info = NULL; 10280 } 10281 10282 /* True iff FRAME is very likely to be that of a function that is 10283 part of the runtime system. This is all very heuristic, but is 10284 intended to be used as advice as to what frames are uninteresting 10285 to most users. */ 10286 10287 static int 10288 is_known_support_routine (struct frame_info *frame) 10289 { 10290 struct symtab_and_line sal; 10291 char *func_name; 10292 enum language func_lang; 10293 int i; 10294 10295 /* If this code does not have any debugging information (no symtab), 10296 This cannot be any user code. */ 10297 10298 find_frame_sal (frame, &sal); 10299 if (sal.symtab == NULL) 10300 return 1; 10301 10302 /* If there is a symtab, but the associated source file cannot be 10303 located, then assume this is not user code: Selecting a frame 10304 for which we cannot display the code would not be very helpful 10305 for the user. This should also take care of case such as VxWorks 10306 where the kernel has some debugging info provided for a few units. */ 10307 10308 if (symtab_to_fullname (sal.symtab) == NULL) 10309 return 1; 10310 10311 /* Check the unit filename againt the Ada runtime file naming. 10312 We also check the name of the objfile against the name of some 10313 known system libraries that sometimes come with debugging info 10314 too. */ 10315 10316 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) 10317 { 10318 re_comp (known_runtime_file_name_patterns[i]); 10319 if (re_exec (sal.symtab->filename)) 10320 return 1; 10321 if (sal.symtab->objfile != NULL 10322 && re_exec (sal.symtab->objfile->name)) 10323 return 1; 10324 } 10325 10326 /* Check whether the function is a GNAT-generated entity. */ 10327 10328 find_frame_funname (frame, &func_name, &func_lang); 10329 if (func_name == NULL) 10330 return 1; 10331 10332 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) 10333 { 10334 re_comp (known_auxiliary_function_name_patterns[i]); 10335 if (re_exec (func_name)) 10336 return 1; 10337 } 10338 10339 return 0; 10340 } 10341 10342 /* Find the first frame that contains debugging information and that is not 10343 part of the Ada run-time, starting from FI and moving upward. */ 10344 10345 void 10346 ada_find_printable_frame (struct frame_info *fi) 10347 { 10348 for (; fi != NULL; fi = get_prev_frame (fi)) 10349 { 10350 if (!is_known_support_routine (fi)) 10351 { 10352 select_frame (fi); 10353 break; 10354 } 10355 } 10356 10357 } 10358 10359 /* Assuming that the inferior just triggered an unhandled exception 10360 catchpoint, return the address in inferior memory where the name 10361 of the exception is stored. 10362 10363 Return zero if the address could not be computed. */ 10364 10365 static CORE_ADDR 10366 ada_unhandled_exception_name_addr (void) 10367 { 10368 return parse_and_eval_address ("e.full_name"); 10369 } 10370 10371 /* Same as ada_unhandled_exception_name_addr, except that this function 10372 should be used when the inferior uses an older version of the runtime, 10373 where the exception name needs to be extracted from a specific frame 10374 several frames up in the callstack. */ 10375 10376 static CORE_ADDR 10377 ada_unhandled_exception_name_addr_from_raise (void) 10378 { 10379 int frame_level; 10380 struct frame_info *fi; 10381 10382 /* To determine the name of this exception, we need to select 10383 the frame corresponding to RAISE_SYM_NAME. This frame is 10384 at least 3 levels up, so we simply skip the first 3 frames 10385 without checking the name of their associated function. */ 10386 fi = get_current_frame (); 10387 for (frame_level = 0; frame_level < 3; frame_level += 1) 10388 if (fi != NULL) 10389 fi = get_prev_frame (fi); 10390 10391 while (fi != NULL) 10392 { 10393 char *func_name; 10394 enum language func_lang; 10395 10396 find_frame_funname (fi, &func_name, &func_lang); 10397 if (func_name != NULL 10398 && strcmp (func_name, exception_info->catch_exception_sym) == 0) 10399 break; /* We found the frame we were looking for... */ 10400 fi = get_prev_frame (fi); 10401 } 10402 10403 if (fi == NULL) 10404 return 0; 10405 10406 select_frame (fi); 10407 return parse_and_eval_address ("id.full_name"); 10408 } 10409 10410 /* Assuming the inferior just triggered an Ada exception catchpoint 10411 (of any type), return the address in inferior memory where the name 10412 of the exception is stored, if applicable. 10413 10414 Return zero if the address could not be computed, or if not relevant. */ 10415 10416 static CORE_ADDR 10417 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, 10418 struct breakpoint *b) 10419 { 10420 switch (ex) 10421 { 10422 case ex_catch_exception: 10423 return (parse_and_eval_address ("e.full_name")); 10424 break; 10425 10426 case ex_catch_exception_unhandled: 10427 return exception_info->unhandled_exception_name_addr (); 10428 break; 10429 10430 case ex_catch_assert: 10431 return 0; /* Exception name is not relevant in this case. */ 10432 break; 10433 10434 default: 10435 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 10436 break; 10437 } 10438 10439 return 0; /* Should never be reached. */ 10440 } 10441 10442 /* Same as ada_exception_name_addr_1, except that it intercepts and contains 10443 any error that ada_exception_name_addr_1 might cause to be thrown. 10444 When an error is intercepted, a warning with the error message is printed, 10445 and zero is returned. */ 10446 10447 static CORE_ADDR 10448 ada_exception_name_addr (enum exception_catchpoint_kind ex, 10449 struct breakpoint *b) 10450 { 10451 struct gdb_exception e; 10452 CORE_ADDR result = 0; 10453 10454 TRY_CATCH (e, RETURN_MASK_ERROR) 10455 { 10456 result = ada_exception_name_addr_1 (ex, b); 10457 } 10458 10459 if (e.reason < 0) 10460 { 10461 warning (_("failed to get exception name: %s"), e.message); 10462 return 0; 10463 } 10464 10465 return result; 10466 } 10467 10468 /* Implement the PRINT_IT method in the breakpoint_ops structure 10469 for all exception catchpoint kinds. */ 10470 10471 static enum print_stop_action 10472 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) 10473 { 10474 const CORE_ADDR addr = ada_exception_name_addr (ex, b); 10475 char exception_name[256]; 10476 10477 if (addr != 0) 10478 { 10479 read_memory (addr, exception_name, sizeof (exception_name) - 1); 10480 exception_name [sizeof (exception_name) - 1] = '\0'; 10481 } 10482 10483 ada_find_printable_frame (get_current_frame ()); 10484 10485 annotate_catchpoint (b->number); 10486 switch (ex) 10487 { 10488 case ex_catch_exception: 10489 if (addr != 0) 10490 printf_filtered (_("\nCatchpoint %d, %s at "), 10491 b->number, exception_name); 10492 else 10493 printf_filtered (_("\nCatchpoint %d, exception at "), b->number); 10494 break; 10495 case ex_catch_exception_unhandled: 10496 if (addr != 0) 10497 printf_filtered (_("\nCatchpoint %d, unhandled %s at "), 10498 b->number, exception_name); 10499 else 10500 printf_filtered (_("\nCatchpoint %d, unhandled exception at "), 10501 b->number); 10502 break; 10503 case ex_catch_assert: 10504 printf_filtered (_("\nCatchpoint %d, failed assertion at "), 10505 b->number); 10506 break; 10507 } 10508 10509 return PRINT_SRC_AND_LOC; 10510 } 10511 10512 /* Implement the PRINT_ONE method in the breakpoint_ops structure 10513 for all exception catchpoint kinds. */ 10514 10515 static void 10516 print_one_exception (enum exception_catchpoint_kind ex, 10517 struct breakpoint *b, struct bp_location **last_loc) 10518 { 10519 struct value_print_options opts; 10520 10521 get_user_print_options (&opts); 10522 if (opts.addressprint) 10523 { 10524 annotate_field (4); 10525 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); 10526 } 10527 10528 annotate_field (5); 10529 *last_loc = b->loc; 10530 switch (ex) 10531 { 10532 case ex_catch_exception: 10533 if (b->exp_string != NULL) 10534 { 10535 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); 10536 10537 ui_out_field_string (uiout, "what", msg); 10538 xfree (msg); 10539 } 10540 else 10541 ui_out_field_string (uiout, "what", "all Ada exceptions"); 10542 10543 break; 10544 10545 case ex_catch_exception_unhandled: 10546 ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); 10547 break; 10548 10549 case ex_catch_assert: 10550 ui_out_field_string (uiout, "what", "failed Ada assertions"); 10551 break; 10552 10553 default: 10554 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 10555 break; 10556 } 10557 } 10558 10559 /* Implement the PRINT_MENTION method in the breakpoint_ops structure 10560 for all exception catchpoint kinds. */ 10561 10562 static void 10563 print_mention_exception (enum exception_catchpoint_kind ex, 10564 struct breakpoint *b) 10565 { 10566 switch (ex) 10567 { 10568 case ex_catch_exception: 10569 if (b->exp_string != NULL) 10570 printf_filtered (_("Catchpoint %d: `%s' Ada exception"), 10571 b->number, b->exp_string); 10572 else 10573 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); 10574 10575 break; 10576 10577 case ex_catch_exception_unhandled: 10578 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), 10579 b->number); 10580 break; 10581 10582 case ex_catch_assert: 10583 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); 10584 break; 10585 10586 default: 10587 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 10588 break; 10589 } 10590 } 10591 10592 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure 10593 for all exception catchpoint kinds. */ 10594 10595 static void 10596 print_recreate_exception (enum exception_catchpoint_kind ex, 10597 struct breakpoint *b, struct ui_file *fp) 10598 { 10599 switch (ex) 10600 { 10601 case ex_catch_exception: 10602 fprintf_filtered (fp, "catch exception"); 10603 if (b->exp_string != NULL) 10604 fprintf_filtered (fp, " %s", b->exp_string); 10605 break; 10606 10607 case ex_catch_exception_unhandled: 10608 fprintf_filtered (fp, "catch exception unhandled"); 10609 break; 10610 10611 case ex_catch_assert: 10612 fprintf_filtered (fp, "catch assert"); 10613 break; 10614 10615 default: 10616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 10617 } 10618 } 10619 10620 /* Virtual table for "catch exception" breakpoints. */ 10621 10622 static enum print_stop_action 10623 print_it_catch_exception (struct breakpoint *b) 10624 { 10625 return print_it_exception (ex_catch_exception, b); 10626 } 10627 10628 static void 10629 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) 10630 { 10631 print_one_exception (ex_catch_exception, b, last_loc); 10632 } 10633 10634 static void 10635 print_mention_catch_exception (struct breakpoint *b) 10636 { 10637 print_mention_exception (ex_catch_exception, b); 10638 } 10639 10640 static void 10641 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) 10642 { 10643 print_recreate_exception (ex_catch_exception, b, fp); 10644 } 10645 10646 static struct breakpoint_ops catch_exception_breakpoint_ops = 10647 { 10648 NULL, /* insert */ 10649 NULL, /* remove */ 10650 NULL, /* breakpoint_hit */ 10651 print_it_catch_exception, 10652 print_one_catch_exception, 10653 print_mention_catch_exception, 10654 print_recreate_catch_exception 10655 }; 10656 10657 /* Virtual table for "catch exception unhandled" breakpoints. */ 10658 10659 static enum print_stop_action 10660 print_it_catch_exception_unhandled (struct breakpoint *b) 10661 { 10662 return print_it_exception (ex_catch_exception_unhandled, b); 10663 } 10664 10665 static void 10666 print_one_catch_exception_unhandled (struct breakpoint *b, 10667 struct bp_location **last_loc) 10668 { 10669 print_one_exception (ex_catch_exception_unhandled, b, last_loc); 10670 } 10671 10672 static void 10673 print_mention_catch_exception_unhandled (struct breakpoint *b) 10674 { 10675 print_mention_exception (ex_catch_exception_unhandled, b); 10676 } 10677 10678 static void 10679 print_recreate_catch_exception_unhandled (struct breakpoint *b, 10680 struct ui_file *fp) 10681 { 10682 print_recreate_exception (ex_catch_exception_unhandled, b, fp); 10683 } 10684 10685 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { 10686 NULL, /* insert */ 10687 NULL, /* remove */ 10688 NULL, /* breakpoint_hit */ 10689 print_it_catch_exception_unhandled, 10690 print_one_catch_exception_unhandled, 10691 print_mention_catch_exception_unhandled, 10692 print_recreate_catch_exception_unhandled 10693 }; 10694 10695 /* Virtual table for "catch assert" breakpoints. */ 10696 10697 static enum print_stop_action 10698 print_it_catch_assert (struct breakpoint *b) 10699 { 10700 return print_it_exception (ex_catch_assert, b); 10701 } 10702 10703 static void 10704 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) 10705 { 10706 print_one_exception (ex_catch_assert, b, last_loc); 10707 } 10708 10709 static void 10710 print_mention_catch_assert (struct breakpoint *b) 10711 { 10712 print_mention_exception (ex_catch_assert, b); 10713 } 10714 10715 static void 10716 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) 10717 { 10718 print_recreate_exception (ex_catch_assert, b, fp); 10719 } 10720 10721 static struct breakpoint_ops catch_assert_breakpoint_ops = { 10722 NULL, /* insert */ 10723 NULL, /* remove */ 10724 NULL, /* breakpoint_hit */ 10725 print_it_catch_assert, 10726 print_one_catch_assert, 10727 print_mention_catch_assert, 10728 print_recreate_catch_assert 10729 }; 10730 10731 /* Return non-zero if B is an Ada exception catchpoint. */ 10732 10733 int 10734 ada_exception_catchpoint_p (struct breakpoint *b) 10735 { 10736 return (b->ops == &catch_exception_breakpoint_ops 10737 || b->ops == &catch_exception_unhandled_breakpoint_ops 10738 || b->ops == &catch_assert_breakpoint_ops); 10739 } 10740 10741 /* Return a newly allocated copy of the first space-separated token 10742 in ARGSP, and then adjust ARGSP to point immediately after that 10743 token. 10744 10745 Return NULL if ARGPS does not contain any more tokens. */ 10746 10747 static char * 10748 ada_get_next_arg (char **argsp) 10749 { 10750 char *args = *argsp; 10751 char *end; 10752 char *result; 10753 10754 /* Skip any leading white space. */ 10755 10756 while (isspace (*args)) 10757 args++; 10758 10759 if (args[0] == '\0') 10760 return NULL; /* No more arguments. */ 10761 10762 /* Find the end of the current argument. */ 10763 10764 end = args; 10765 while (*end != '\0' && !isspace (*end)) 10766 end++; 10767 10768 /* Adjust ARGSP to point to the start of the next argument. */ 10769 10770 *argsp = end; 10771 10772 /* Make a copy of the current argument and return it. */ 10773 10774 result = xmalloc (end - args + 1); 10775 strncpy (result, args, end - args); 10776 result[end - args] = '\0'; 10777 10778 return result; 10779 } 10780 10781 /* Split the arguments specified in a "catch exception" command. 10782 Set EX to the appropriate catchpoint type. 10783 Set EXP_STRING to the name of the specific exception if 10784 specified by the user. */ 10785 10786 static void 10787 catch_ada_exception_command_split (char *args, 10788 enum exception_catchpoint_kind *ex, 10789 char **exp_string) 10790 { 10791 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 10792 char *exception_name; 10793 10794 exception_name = ada_get_next_arg (&args); 10795 make_cleanup (xfree, exception_name); 10796 10797 /* Check that we do not have any more arguments. Anything else 10798 is unexpected. */ 10799 10800 while (isspace (*args)) 10801 args++; 10802 10803 if (args[0] != '\0') 10804 error (_("Junk at end of expression")); 10805 10806 discard_cleanups (old_chain); 10807 10808 if (exception_name == NULL) 10809 { 10810 /* Catch all exceptions. */ 10811 *ex = ex_catch_exception; 10812 *exp_string = NULL; 10813 } 10814 else if (strcmp (exception_name, "unhandled") == 0) 10815 { 10816 /* Catch unhandled exceptions. */ 10817 *ex = ex_catch_exception_unhandled; 10818 *exp_string = NULL; 10819 } 10820 else 10821 { 10822 /* Catch a specific exception. */ 10823 *ex = ex_catch_exception; 10824 *exp_string = exception_name; 10825 } 10826 } 10827 10828 /* Return the name of the symbol on which we should break in order to 10829 implement a catchpoint of the EX kind. */ 10830 10831 static const char * 10832 ada_exception_sym_name (enum exception_catchpoint_kind ex) 10833 { 10834 gdb_assert (exception_info != NULL); 10835 10836 switch (ex) 10837 { 10838 case ex_catch_exception: 10839 return (exception_info->catch_exception_sym); 10840 break; 10841 case ex_catch_exception_unhandled: 10842 return (exception_info->catch_exception_unhandled_sym); 10843 break; 10844 case ex_catch_assert: 10845 return (exception_info->catch_assert_sym); 10846 break; 10847 default: 10848 internal_error (__FILE__, __LINE__, 10849 _("unexpected catchpoint kind (%d)"), ex); 10850 } 10851 } 10852 10853 /* Return the breakpoint ops "virtual table" used for catchpoints 10854 of the EX kind. */ 10855 10856 static struct breakpoint_ops * 10857 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) 10858 { 10859 switch (ex) 10860 { 10861 case ex_catch_exception: 10862 return (&catch_exception_breakpoint_ops); 10863 break; 10864 case ex_catch_exception_unhandled: 10865 return (&catch_exception_unhandled_breakpoint_ops); 10866 break; 10867 case ex_catch_assert: 10868 return (&catch_assert_breakpoint_ops); 10869 break; 10870 default: 10871 internal_error (__FILE__, __LINE__, 10872 _("unexpected catchpoint kind (%d)"), ex); 10873 } 10874 } 10875 10876 /* Return the condition that will be used to match the current exception 10877 being raised with the exception that the user wants to catch. This 10878 assumes that this condition is used when the inferior just triggered 10879 an exception catchpoint. 10880 10881 The string returned is a newly allocated string that needs to be 10882 deallocated later. */ 10883 10884 static char * 10885 ada_exception_catchpoint_cond_string (const char *exp_string) 10886 { 10887 int i; 10888 10889 /* The standard exceptions are a special case. They are defined in 10890 runtime units that have been compiled without debugging info; if 10891 EXP_STRING is the not-fully-qualified name of a standard 10892 exception (e.g. "constraint_error") then, during the evaluation 10893 of the condition expression, the symbol lookup on this name would 10894 *not* return this standard exception. The catchpoint condition 10895 may then be set only on user-defined exceptions which have the 10896 same not-fully-qualified name (e.g. my_package.constraint_error). 10897 10898 To avoid this unexcepted behavior, these standard exceptions are 10899 systematically prefixed by "standard". This means that "catch 10900 exception constraint_error" is rewritten into "catch exception 10901 standard.constraint_error". 10902 10903 If an exception named contraint_error is defined in another package of 10904 the inferior program, then the only way to specify this exception as a 10905 breakpoint condition is to use its fully-qualified named: 10906 e.g. my_package.constraint_error. */ 10907 10908 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) 10909 { 10910 if (strcmp (standard_exc [i], exp_string) == 0) 10911 { 10912 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", 10913 exp_string); 10914 } 10915 } 10916 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); 10917 } 10918 10919 /* Return the expression corresponding to COND_STRING evaluated at SAL. */ 10920 10921 static struct expression * 10922 ada_parse_catchpoint_condition (char *cond_string, 10923 struct symtab_and_line sal) 10924 { 10925 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); 10926 } 10927 10928 /* Return the symtab_and_line that should be used to insert an exception 10929 catchpoint of the TYPE kind. 10930 10931 EX_STRING should contain the name of a specific exception 10932 that the catchpoint should catch, or NULL otherwise. 10933 10934 The idea behind all the remaining parameters is that their names match 10935 the name of certain fields in the breakpoint structure that are used to 10936 handle exception catchpoints. This function returns the value to which 10937 these fields should be set, depending on the type of catchpoint we need 10938 to create. 10939 10940 If COND and COND_STRING are both non-NULL, any value they might 10941 hold will be free'ed, and then replaced by newly allocated ones. 10942 These parameters are left untouched otherwise. */ 10943 10944 static struct symtab_and_line 10945 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, 10946 char **addr_string, char **cond_string, 10947 struct expression **cond, struct breakpoint_ops **ops) 10948 { 10949 const char *sym_name; 10950 struct symbol *sym; 10951 struct symtab_and_line sal; 10952 10953 /* First, find out which exception support info to use. */ 10954 ada_exception_support_info_sniffer (); 10955 10956 /* Then lookup the function on which we will break in order to catch 10957 the Ada exceptions requested by the user. */ 10958 10959 sym_name = ada_exception_sym_name (ex); 10960 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); 10961 10962 /* The symbol we're looking up is provided by a unit in the GNAT runtime 10963 that should be compiled with debugging information. As a result, we 10964 expect to find that symbol in the symtabs. If we don't find it, then 10965 the target most likely does not support Ada exceptions, or we cannot 10966 insert exception breakpoints yet, because the GNAT runtime hasn't been 10967 loaded yet. */ 10968 10969 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled 10970 in such a way that no debugging information is produced for the symbol 10971 we are looking for. In this case, we could search the minimal symbols 10972 as a fall-back mechanism. This would still be operating in degraded 10973 mode, however, as we would still be missing the debugging information 10974 that is needed in order to extract the name of the exception being 10975 raised (this name is printed in the catchpoint message, and is also 10976 used when trying to catch a specific exception). We do not handle 10977 this case for now. */ 10978 10979 if (sym == NULL) 10980 error (_("Unable to break on '%s' in this configuration."), sym_name); 10981 10982 /* Make sure that the symbol we found corresponds to a function. */ 10983 if (SYMBOL_CLASS (sym) != LOC_BLOCK) 10984 error (_("Symbol \"%s\" is not a function (class = %d)"), 10985 sym_name, SYMBOL_CLASS (sym)); 10986 10987 sal = find_function_start_sal (sym, 1); 10988 10989 /* Set ADDR_STRING. */ 10990 10991 *addr_string = xstrdup (sym_name); 10992 10993 /* Set the COND and COND_STRING (if not NULL). */ 10994 10995 if (cond_string != NULL && cond != NULL) 10996 { 10997 if (*cond_string != NULL) 10998 { 10999 xfree (*cond_string); 11000 *cond_string = NULL; 11001 } 11002 if (*cond != NULL) 11003 { 11004 xfree (*cond); 11005 *cond = NULL; 11006 } 11007 if (exp_string != NULL) 11008 { 11009 *cond_string = ada_exception_catchpoint_cond_string (exp_string); 11010 *cond = ada_parse_catchpoint_condition (*cond_string, sal); 11011 } 11012 } 11013 11014 /* Set OPS. */ 11015 *ops = ada_exception_breakpoint_ops (ex); 11016 11017 return sal; 11018 } 11019 11020 /* Parse the arguments (ARGS) of the "catch exception" command. 11021 11022 Set TYPE to the appropriate exception catchpoint type. 11023 If the user asked the catchpoint to catch only a specific 11024 exception, then save the exception name in ADDR_STRING. 11025 11026 See ada_exception_sal for a description of all the remaining 11027 function arguments of this function. */ 11028 11029 struct symtab_and_line 11030 ada_decode_exception_location (char *args, char **addr_string, 11031 char **exp_string, char **cond_string, 11032 struct expression **cond, 11033 struct breakpoint_ops **ops) 11034 { 11035 enum exception_catchpoint_kind ex; 11036 11037 catch_ada_exception_command_split (args, &ex, exp_string); 11038 return ada_exception_sal (ex, *exp_string, addr_string, cond_string, 11039 cond, ops); 11040 } 11041 11042 struct symtab_and_line 11043 ada_decode_assert_location (char *args, char **addr_string, 11044 struct breakpoint_ops **ops) 11045 { 11046 /* Check that no argument where provided at the end of the command. */ 11047 11048 if (args != NULL) 11049 { 11050 while (isspace (*args)) 11051 args++; 11052 if (*args != '\0') 11053 error (_("Junk at end of arguments.")); 11054 } 11055 11056 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, 11057 ops); 11058 } 11059 11060 /* Operators */ 11061 /* Information about operators given special treatment in functions 11062 below. */ 11063 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ 11064 11065 #define ADA_OPERATORS \ 11066 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ 11067 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ 11068 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ 11069 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ 11070 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ 11071 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ 11072 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ 11073 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ 11074 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ 11075 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ 11076 OP_DEFN (OP_ATR_POS, 1, 2, 0) \ 11077 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ 11078 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ 11079 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ 11080 OP_DEFN (UNOP_QUAL, 3, 1, 0) \ 11081 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ 11082 OP_DEFN (OP_OTHERS, 1, 1, 0) \ 11083 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ 11084 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) 11085 11086 static void 11087 ada_operator_length (const struct expression *exp, int pc, int *oplenp, 11088 int *argsp) 11089 { 11090 switch (exp->elts[pc - 1].opcode) 11091 { 11092 default: 11093 operator_length_standard (exp, pc, oplenp, argsp); 11094 break; 11095 11096 #define OP_DEFN(op, len, args, binop) \ 11097 case op: *oplenp = len; *argsp = args; break; 11098 ADA_OPERATORS; 11099 #undef OP_DEFN 11100 11101 case OP_AGGREGATE: 11102 *oplenp = 3; 11103 *argsp = longest_to_int (exp->elts[pc - 2].longconst); 11104 break; 11105 11106 case OP_CHOICES: 11107 *oplenp = 3; 11108 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; 11109 break; 11110 } 11111 } 11112 11113 /* Implementation of the exp_descriptor method operator_check. */ 11114 11115 static int 11116 ada_operator_check (struct expression *exp, int pos, 11117 int (*objfile_func) (struct objfile *objfile, void *data), 11118 void *data) 11119 { 11120 const union exp_element *const elts = exp->elts; 11121 struct type *type = NULL; 11122 11123 switch (elts[pos].opcode) 11124 { 11125 case UNOP_IN_RANGE: 11126 case UNOP_QUAL: 11127 type = elts[pos + 1].type; 11128 break; 11129 11130 default: 11131 return operator_check_standard (exp, pos, objfile_func, data); 11132 } 11133 11134 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 11135 11136 if (type && TYPE_OBJFILE (type) 11137 && (*objfile_func) (TYPE_OBJFILE (type), data)) 11138 return 1; 11139 11140 return 0; 11141 } 11142 11143 static char * 11144 ada_op_name (enum exp_opcode opcode) 11145 { 11146 switch (opcode) 11147 { 11148 default: 11149 return op_name_standard (opcode); 11150 11151 #define OP_DEFN(op, len, args, binop) case op: return #op; 11152 ADA_OPERATORS; 11153 #undef OP_DEFN 11154 11155 case OP_AGGREGATE: 11156 return "OP_AGGREGATE"; 11157 case OP_CHOICES: 11158 return "OP_CHOICES"; 11159 case OP_NAME: 11160 return "OP_NAME"; 11161 } 11162 } 11163 11164 /* As for operator_length, but assumes PC is pointing at the first 11165 element of the operator, and gives meaningful results only for the 11166 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ 11167 11168 static void 11169 ada_forward_operator_length (struct expression *exp, int pc, 11170 int *oplenp, int *argsp) 11171 { 11172 switch (exp->elts[pc].opcode) 11173 { 11174 default: 11175 *oplenp = *argsp = 0; 11176 break; 11177 11178 #define OP_DEFN(op, len, args, binop) \ 11179 case op: *oplenp = len; *argsp = args; break; 11180 ADA_OPERATORS; 11181 #undef OP_DEFN 11182 11183 case OP_AGGREGATE: 11184 *oplenp = 3; 11185 *argsp = longest_to_int (exp->elts[pc + 1].longconst); 11186 break; 11187 11188 case OP_CHOICES: 11189 *oplenp = 3; 11190 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; 11191 break; 11192 11193 case OP_STRING: 11194 case OP_NAME: 11195 { 11196 int len = longest_to_int (exp->elts[pc + 1].longconst); 11197 11198 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); 11199 *argsp = 0; 11200 break; 11201 } 11202 } 11203 } 11204 11205 static int 11206 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) 11207 { 11208 enum exp_opcode op = exp->elts[elt].opcode; 11209 int oplen, nargs; 11210 int pc = elt; 11211 int i; 11212 11213 ada_forward_operator_length (exp, elt, &oplen, &nargs); 11214 11215 switch (op) 11216 { 11217 /* Ada attributes ('Foo). */ 11218 case OP_ATR_FIRST: 11219 case OP_ATR_LAST: 11220 case OP_ATR_LENGTH: 11221 case OP_ATR_IMAGE: 11222 case OP_ATR_MAX: 11223 case OP_ATR_MIN: 11224 case OP_ATR_MODULUS: 11225 case OP_ATR_POS: 11226 case OP_ATR_SIZE: 11227 case OP_ATR_TAG: 11228 case OP_ATR_VAL: 11229 break; 11230 11231 case UNOP_IN_RANGE: 11232 case UNOP_QUAL: 11233 /* XXX: gdb_sprint_host_address, type_sprint */ 11234 fprintf_filtered (stream, _("Type @")); 11235 gdb_print_host_address (exp->elts[pc + 1].type, stream); 11236 fprintf_filtered (stream, " ("); 11237 type_print (exp->elts[pc + 1].type, NULL, stream, 0); 11238 fprintf_filtered (stream, ")"); 11239 break; 11240 case BINOP_IN_BOUNDS: 11241 fprintf_filtered (stream, " (%d)", 11242 longest_to_int (exp->elts[pc + 2].longconst)); 11243 break; 11244 case TERNOP_IN_RANGE: 11245 break; 11246 11247 case OP_AGGREGATE: 11248 case OP_OTHERS: 11249 case OP_DISCRETE_RANGE: 11250 case OP_POSITIONAL: 11251 case OP_CHOICES: 11252 break; 11253 11254 case OP_NAME: 11255 case OP_STRING: 11256 { 11257 char *name = &exp->elts[elt + 2].string; 11258 int len = longest_to_int (exp->elts[elt + 1].longconst); 11259 11260 fprintf_filtered (stream, "Text: `%.*s'", len, name); 11261 break; 11262 } 11263 11264 default: 11265 return dump_subexp_body_standard (exp, stream, elt); 11266 } 11267 11268 elt += oplen; 11269 for (i = 0; i < nargs; i += 1) 11270 elt = dump_subexp (exp, stream, elt); 11271 11272 return elt; 11273 } 11274 11275 /* The Ada extension of print_subexp (q.v.). */ 11276 11277 static void 11278 ada_print_subexp (struct expression *exp, int *pos, 11279 struct ui_file *stream, enum precedence prec) 11280 { 11281 int oplen, nargs, i; 11282 int pc = *pos; 11283 enum exp_opcode op = exp->elts[pc].opcode; 11284 11285 ada_forward_operator_length (exp, pc, &oplen, &nargs); 11286 11287 *pos += oplen; 11288 switch (op) 11289 { 11290 default: 11291 *pos -= oplen; 11292 print_subexp_standard (exp, pos, stream, prec); 11293 return; 11294 11295 case OP_VAR_VALUE: 11296 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); 11297 return; 11298 11299 case BINOP_IN_BOUNDS: 11300 /* XXX: sprint_subexp */ 11301 print_subexp (exp, pos, stream, PREC_SUFFIX); 11302 fputs_filtered (" in ", stream); 11303 print_subexp (exp, pos, stream, PREC_SUFFIX); 11304 fputs_filtered ("'range", stream); 11305 if (exp->elts[pc + 1].longconst > 1) 11306 fprintf_filtered (stream, "(%ld)", 11307 (long) exp->elts[pc + 1].longconst); 11308 return; 11309 11310 case TERNOP_IN_RANGE: 11311 if (prec >= PREC_EQUAL) 11312 fputs_filtered ("(", stream); 11313 /* XXX: sprint_subexp */ 11314 print_subexp (exp, pos, stream, PREC_SUFFIX); 11315 fputs_filtered (" in ", stream); 11316 print_subexp (exp, pos, stream, PREC_EQUAL); 11317 fputs_filtered (" .. ", stream); 11318 print_subexp (exp, pos, stream, PREC_EQUAL); 11319 if (prec >= PREC_EQUAL) 11320 fputs_filtered (")", stream); 11321 return; 11322 11323 case OP_ATR_FIRST: 11324 case OP_ATR_LAST: 11325 case OP_ATR_LENGTH: 11326 case OP_ATR_IMAGE: 11327 case OP_ATR_MAX: 11328 case OP_ATR_MIN: 11329 case OP_ATR_MODULUS: 11330 case OP_ATR_POS: 11331 case OP_ATR_SIZE: 11332 case OP_ATR_TAG: 11333 case OP_ATR_VAL: 11334 if (exp->elts[*pos].opcode == OP_TYPE) 11335 { 11336 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) 11337 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); 11338 *pos += 3; 11339 } 11340 else 11341 print_subexp (exp, pos, stream, PREC_SUFFIX); 11342 fprintf_filtered (stream, "'%s", ada_attribute_name (op)); 11343 if (nargs > 1) 11344 { 11345 int tem; 11346 11347 for (tem = 1; tem < nargs; tem += 1) 11348 { 11349 fputs_filtered ((tem == 1) ? " (" : ", ", stream); 11350 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); 11351 } 11352 fputs_filtered (")", stream); 11353 } 11354 return; 11355 11356 case UNOP_QUAL: 11357 type_print (exp->elts[pc + 1].type, "", stream, 0); 11358 fputs_filtered ("'(", stream); 11359 print_subexp (exp, pos, stream, PREC_PREFIX); 11360 fputs_filtered (")", stream); 11361 return; 11362 11363 case UNOP_IN_RANGE: 11364 /* XXX: sprint_subexp */ 11365 print_subexp (exp, pos, stream, PREC_SUFFIX); 11366 fputs_filtered (" in ", stream); 11367 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); 11368 return; 11369 11370 case OP_DISCRETE_RANGE: 11371 print_subexp (exp, pos, stream, PREC_SUFFIX); 11372 fputs_filtered ("..", stream); 11373 print_subexp (exp, pos, stream, PREC_SUFFIX); 11374 return; 11375 11376 case OP_OTHERS: 11377 fputs_filtered ("others => ", stream); 11378 print_subexp (exp, pos, stream, PREC_SUFFIX); 11379 return; 11380 11381 case OP_CHOICES: 11382 for (i = 0; i < nargs-1; i += 1) 11383 { 11384 if (i > 0) 11385 fputs_filtered ("|", stream); 11386 print_subexp (exp, pos, stream, PREC_SUFFIX); 11387 } 11388 fputs_filtered (" => ", stream); 11389 print_subexp (exp, pos, stream, PREC_SUFFIX); 11390 return; 11391 11392 case OP_POSITIONAL: 11393 print_subexp (exp, pos, stream, PREC_SUFFIX); 11394 return; 11395 11396 case OP_AGGREGATE: 11397 fputs_filtered ("(", stream); 11398 for (i = 0; i < nargs; i += 1) 11399 { 11400 if (i > 0) 11401 fputs_filtered (", ", stream); 11402 print_subexp (exp, pos, stream, PREC_SUFFIX); 11403 } 11404 fputs_filtered (")", stream); 11405 return; 11406 } 11407 } 11408 11409 /* Table mapping opcodes into strings for printing operators 11410 and precedences of the operators. */ 11411 11412 static const struct op_print ada_op_print_tab[] = { 11413 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, 11414 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, 11415 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, 11416 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, 11417 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, 11418 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, 11419 {"=", BINOP_EQUAL, PREC_EQUAL, 0}, 11420 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, 11421 {"<=", BINOP_LEQ, PREC_ORDER, 0}, 11422 {">=", BINOP_GEQ, PREC_ORDER, 0}, 11423 {">", BINOP_GTR, PREC_ORDER, 0}, 11424 {"<", BINOP_LESS, PREC_ORDER, 0}, 11425 {">>", BINOP_RSH, PREC_SHIFT, 0}, 11426 {"<<", BINOP_LSH, PREC_SHIFT, 0}, 11427 {"+", BINOP_ADD, PREC_ADD, 0}, 11428 {"-", BINOP_SUB, PREC_ADD, 0}, 11429 {"&", BINOP_CONCAT, PREC_ADD, 0}, 11430 {"*", BINOP_MUL, PREC_MUL, 0}, 11431 {"/", BINOP_DIV, PREC_MUL, 0}, 11432 {"rem", BINOP_REM, PREC_MUL, 0}, 11433 {"mod", BINOP_MOD, PREC_MUL, 0}, 11434 {"**", BINOP_EXP, PREC_REPEAT, 0}, 11435 {"@", BINOP_REPEAT, PREC_REPEAT, 0}, 11436 {"-", UNOP_NEG, PREC_PREFIX, 0}, 11437 {"+", UNOP_PLUS, PREC_PREFIX, 0}, 11438 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, 11439 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, 11440 {"abs ", UNOP_ABS, PREC_PREFIX, 0}, 11441 {".all", UNOP_IND, PREC_SUFFIX, 1}, 11442 {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, 11443 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, 11444 {NULL, 0, 0, 0} 11445 }; 11446 11447 enum ada_primitive_types { 11448 ada_primitive_type_int, 11449 ada_primitive_type_long, 11450 ada_primitive_type_short, 11451 ada_primitive_type_char, 11452 ada_primitive_type_float, 11453 ada_primitive_type_double, 11454 ada_primitive_type_void, 11455 ada_primitive_type_long_long, 11456 ada_primitive_type_long_double, 11457 ada_primitive_type_natural, 11458 ada_primitive_type_positive, 11459 ada_primitive_type_system_address, 11460 nr_ada_primitive_types 11461 }; 11462 11463 static void 11464 ada_language_arch_info (struct gdbarch *gdbarch, 11465 struct language_arch_info *lai) 11466 { 11467 const struct builtin_type *builtin = builtin_type (gdbarch); 11468 11469 lai->primitive_type_vector 11470 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, 11471 struct type *); 11472 11473 lai->primitive_type_vector [ada_primitive_type_int] 11474 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 11475 0, "integer"); 11476 lai->primitive_type_vector [ada_primitive_type_long] 11477 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 11478 0, "long_integer"); 11479 lai->primitive_type_vector [ada_primitive_type_short] 11480 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 11481 0, "short_integer"); 11482 lai->string_char_type 11483 = lai->primitive_type_vector [ada_primitive_type_char] 11484 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); 11485 lai->primitive_type_vector [ada_primitive_type_float] 11486 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), 11487 "float", NULL); 11488 lai->primitive_type_vector [ada_primitive_type_double] 11489 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), 11490 "long_float", NULL); 11491 lai->primitive_type_vector [ada_primitive_type_long_long] 11492 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 11493 0, "long_long_integer"); 11494 lai->primitive_type_vector [ada_primitive_type_long_double] 11495 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), 11496 "long_long_float", NULL); 11497 lai->primitive_type_vector [ada_primitive_type_natural] 11498 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 11499 0, "natural"); 11500 lai->primitive_type_vector [ada_primitive_type_positive] 11501 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 11502 0, "positive"); 11503 lai->primitive_type_vector [ada_primitive_type_void] 11504 = builtin->builtin_void; 11505 11506 lai->primitive_type_vector [ada_primitive_type_system_address] 11507 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); 11508 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) 11509 = "system__address"; 11510 11511 lai->bool_type_symbol = NULL; 11512 lai->bool_type_default = builtin->builtin_bool; 11513 } 11514 11515 /* Language vector */ 11516 11517 /* Not really used, but needed in the ada_language_defn. */ 11518 11519 static void 11520 emit_char (int c, struct type *type, struct ui_file *stream, int quoter) 11521 { 11522 ada_emit_char (c, type, stream, quoter, 1); 11523 } 11524 11525 static int 11526 parse (void) 11527 { 11528 warnings_issued = 0; 11529 return ada_parse (); 11530 } 11531 11532 static const struct exp_descriptor ada_exp_descriptor = { 11533 ada_print_subexp, 11534 ada_operator_length, 11535 ada_operator_check, 11536 ada_op_name, 11537 ada_dump_subexp_body, 11538 ada_evaluate_subexp 11539 }; 11540 11541 const struct language_defn ada_language_defn = { 11542 "ada", /* Language name */ 11543 language_ada, 11544 range_check_off, 11545 type_check_off, 11546 case_sensitive_on, /* Yes, Ada is case-insensitive, but 11547 that's not quite what this means. */ 11548 array_row_major, 11549 macro_expansion_no, 11550 &ada_exp_descriptor, 11551 parse, 11552 ada_error, 11553 resolve, 11554 ada_printchar, /* Print a character constant */ 11555 ada_printstr, /* Function to print string constant */ 11556 emit_char, /* Function to print single char (not used) */ 11557 ada_print_type, /* Print a type using appropriate syntax */ 11558 ada_print_typedef, /* Print a typedef using appropriate syntax */ 11559 ada_val_print, /* Print a value using appropriate syntax */ 11560 ada_value_print, /* Print a top-level value */ 11561 NULL, /* Language specific skip_trampoline */ 11562 NULL, /* name_of_this */ 11563 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ 11564 basic_lookup_transparent_type, /* lookup_transparent_type */ 11565 ada_la_decode, /* Language specific symbol demangler */ 11566 NULL, /* Language specific class_name_from_physname */ 11567 ada_op_print_tab, /* expression operators for printing */ 11568 0, /* c-style arrays */ 11569 1, /* String lower bound */ 11570 ada_get_gdb_completer_word_break_characters, 11571 ada_make_symbol_completion_list, 11572 ada_language_arch_info, 11573 ada_print_array_index, 11574 default_pass_by_reference, 11575 c_get_string, 11576 LANG_MAGIC 11577 }; 11578 11579 /* Provide a prototype to silence -Wmissing-prototypes. */ 11580 extern initialize_file_ftype _initialize_ada_language; 11581 11582 /* Command-list for the "set/show ada" prefix command. */ 11583 static struct cmd_list_element *set_ada_list; 11584 static struct cmd_list_element *show_ada_list; 11585 11586 /* Implement the "set ada" prefix command. */ 11587 11588 static void 11589 set_ada_command (char *arg, int from_tty) 11590 { 11591 printf_unfiltered (_(\ 11592 "\"set ada\" must be followed by the name of a setting.\n")); 11593 help_list (set_ada_list, "set ada ", -1, gdb_stdout); 11594 } 11595 11596 /* Implement the "show ada" prefix command. */ 11597 11598 static void 11599 show_ada_command (char *args, int from_tty) 11600 { 11601 cmd_show_list (show_ada_list, from_tty, ""); 11602 } 11603 11604 void 11605 _initialize_ada_language (void) 11606 { 11607 add_language (&ada_language_defn); 11608 11609 add_prefix_cmd ("ada", no_class, set_ada_command, 11610 _("Prefix command for changing Ada-specfic settings"), 11611 &set_ada_list, "set ada ", 0, &setlist); 11612 11613 add_prefix_cmd ("ada", no_class, show_ada_command, 11614 _("Generic command for showing Ada-specific settings."), 11615 &show_ada_list, "show ada ", 0, &showlist); 11616 11617 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, 11618 &trust_pad_over_xvs, _("\ 11619 Enable or disable an optimization trusting PAD types over XVS types"), _("\ 11620 Show whether an optimization trusting PAD types over XVS types is activated"), 11621 _("\ 11622 This is related to the encoding used by the GNAT compiler. The debugger\n\ 11623 should normally trust the contents of PAD types, but certain older versions\n\ 11624 of GNAT have a bug that sometimes causes the information in the PAD type\n\ 11625 to be incorrect. Turning this setting \"off\" allows the debugger to\n\ 11626 work around this bug. It is always safe to turn this option \"off\", but\n\ 11627 this incurs a slight performance penalty, so it is recommended to NOT change\n\ 11628 this option to \"off\" unless necessary."), 11629 NULL, NULL, &set_ada_list, &show_ada_list); 11630 11631 varsize_limit = 65536; 11632 11633 obstack_init (&symbol_list_obstack); 11634 11635 decoded_names_store = htab_create_alloc 11636 (256, htab_hash_string, (int (*)(const void *, const void *)) streq, 11637 NULL, xcalloc, xfree); 11638 11639 observer_attach_executable_changed (ada_executable_changed_observer); 11640 11641 /* Setup per-inferior data. */ 11642 observer_attach_inferior_exit (ada_inferior_exit); 11643 ada_inferior_data 11644 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); 11645 } 11646