xref: /dflybsd-src/contrib/gdb-7/bfd/linker.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.
227 
228 @findex _bfd_generic_link_add_archive_symbols
229 	In most cases the work of looking through the symbols in the
230 	archive should be done by the
231 	<<_bfd_generic_link_add_archive_symbols>> function.  This
232 	function builds a hash table from the archive symbol table and
233 	looks through the list of undefined symbols to see which
234 	elements should be included.
235 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
236 	to call to make the final decision about adding an archive
237 	element to the link and to do the actual work of adding the
238 	symbols to the linker hash table.
239 
240 	The function passed to
241 	<<_bfd_generic_link_add_archive_symbols>> must read the
242 	symbols of the archive element and decide whether the archive
243 	element should be included in the link.  If the element is to
244 	be included, the <<add_archive_element>> linker callback
245 	routine must be called with the element as an argument, and
246 	the elements symbols must be added to the linker hash table
247 	just as though the element had itself been passed to the
248 	<<_bfd_link_add_symbols>> function.
249 
250 	When the a.out <<_bfd_link_add_symbols>> function receives an
251 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 	passing <<aout_link_check_archive_element>> as the function
253 	argument. <<aout_link_check_archive_element>> calls
254 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
255 	the element (an element is only added if it provides a real,
256 	non-common, definition for a previously undefined or common
257 	symbol) it calls the <<add_archive_element>> callback and then
258 	<<aout_link_check_archive_element>> calls
259 	<<aout_link_add_symbols>> to actually add the symbols to the
260 	linker hash table.
261 
262 	The ECOFF back end is unusual in that it does not normally
263 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 	archives already contain a hash table of symbols.  The ECOFF
265 	back end searches the archive itself to avoid the overhead of
266 	creating a new hash table.
267 
268 INODE
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
270 SUBSECTION
271 	Performing the final link
272 
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 	When all the input files have been processed, the linker calls
276 	the <<_bfd_final_link>> entry point of the output BFD.  This
277 	routine is responsible for producing the final output file,
278 	which has several aspects.  It must relocate the contents of
279 	the input sections and copy the data into the output sections.
280 	It must build an output symbol table including any local
281 	symbols from the input files and the global symbols from the
282 	hash table.  When producing relocatable output, it must
283 	modify the input relocs and write them into the output file.
284 	There may also be object format dependent work to be done.
285 
286 	The linker will also call the <<write_object_contents>> entry
287 	point when the BFD is closed.  The two entry points must work
288 	together in order to produce the correct output file.
289 
290 	The details of how this works are inevitably dependent upon
291 	the specific object file format.  The a.out
292 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 
294 @menu
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
298 @end menu
299 
300 INODE
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
302 SUBSUBSECTION
303 	Information provided by the linker
304 
305 	Before the linker calls the <<_bfd_final_link>> entry point,
306 	it sets up some data structures for the function to use.
307 
308 	The <<input_bfds>> field of the <<bfd_link_info>> structure
309 	will point to a list of all the input files included in the
310 	link.  These files are linked through the <<link_next>> field
311 	of the <<bfd>> structure.
312 
313 	Each section in the output file will have a list of
314 	<<link_order>> structures attached to the <<map_head.link_order>>
315 	field (the <<link_order>> structure is defined in
316 	<<bfdlink.h>>).  These structures describe how to create the
317 	contents of the output section in terms of the contents of
318 	various input sections, fill constants, and, eventually, other
319 	types of information.  They also describe relocs that must be
320 	created by the BFD backend, but do not correspond to any input
321 	file; this is used to support -Ur, which builds constructors
322 	while generating a relocatable object file.
323 
324 INODE
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
326 SUBSUBSECTION
327 	Relocating the section contents
328 
329 	The <<_bfd_final_link>> function should look through the
330 	<<link_order>> structures attached to each section of the
331 	output file.  Each <<link_order>> structure should either be
332 	handled specially, or it should be passed to the function
333 	<<_bfd_default_link_order>> which will do the right thing
334 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
335 
336 	For efficiency, a <<link_order>> of type
337 	<<bfd_indirect_link_order>> whose associated section belongs
338 	to a BFD of the same format as the output BFD must be handled
339 	specially.  This type of <<link_order>> describes part of an
340 	output section in terms of a section belonging to one of the
341 	input files.  The <<_bfd_final_link>> function should read the
342 	contents of the section and any associated relocs, apply the
343 	relocs to the section contents, and write out the modified
344 	section contents.  If performing a relocatable link, the
345 	relocs themselves must also be modified and written out.
346 
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 	The functions <<_bfd_relocate_contents>> and
350 	<<_bfd_final_link_relocate>> provide some general support for
351 	performing the actual relocations, notably overflow checking.
352 	Their arguments include information about the symbol the
353 	relocation is against and a <<reloc_howto_type>> argument
354 	which describes the relocation to perform.  These functions
355 	are defined in <<reloc.c>>.
356 
357 	The a.out function which handles reading, relocating, and
358 	writing section contents is <<aout_link_input_section>>.  The
359 	actual relocation is done in <<aout_link_input_section_std>>
360 	and <<aout_link_input_section_ext>>.
361 
362 INODE
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
364 SUBSUBSECTION
365 	Writing the symbol table
366 
367 	The <<_bfd_final_link>> function must gather all the symbols
368 	in the input files and write them out.  It must also write out
369 	all the symbols in the global hash table.  This must be
370 	controlled by the <<strip>> and <<discard>> fields of the
371 	<<bfd_link_info>> structure.
372 
373 	The local symbols of the input files will not have been
374 	entered into the linker hash table.  The <<_bfd_final_link>>
375 	routine must consider each input file and include the symbols
376 	in the output file.  It may be convenient to do this when
377 	looking through the <<link_order>> structures, or it may be
378 	done by stepping through the <<input_bfds>> list.
379 
380 	The <<_bfd_final_link>> routine must also traverse the global
381 	hash table to gather all the externally visible symbols.  It
382 	is possible that most of the externally visible symbols may be
383 	written out when considering the symbols of each input file,
384 	but it is still necessary to traverse the hash table since the
385 	linker script may have defined some symbols that are not in
386 	any of the input files.
387 
388 	The <<strip>> field of the <<bfd_link_info>> structure
389 	controls which symbols are written out.  The possible values
390 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
391 	then the <<keep_hash>> field of the <<bfd_link_info>>
392 	structure is a hash table of symbols to keep; each symbol
393 	should be looked up in this hash table, and only symbols which
394 	are present should be included in the output file.
395 
396 	If the <<strip>> field of the <<bfd_link_info>> structure
397 	permits local symbols to be written out, the <<discard>> field
398 	is used to further controls which local symbols are included
399 	in the output file.  If the value is <<discard_l>>, then all
400 	local symbols which begin with a certain prefix are discarded;
401 	this is controlled by the <<bfd_is_local_label_name>> entry point.
402 
403 	The a.out backend handles symbols by calling
404 	<<aout_link_write_symbols>> on each input BFD and then
405 	traversing the global hash table with the function
406 	<<aout_link_write_other_symbol>>.  It builds a string table
407 	while writing out the symbols, which is written to the output
408 	file at the end of <<NAME(aout,final_link)>>.
409 */
410 
411 static bfd_boolean generic_link_add_object_symbols
412   (bfd *, struct bfd_link_info *, bfd_boolean collect);
413 static bfd_boolean generic_link_add_symbols
414   (bfd *, struct bfd_link_info *, bfd_boolean);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416   (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element_collect
418   (bfd *, struct bfd_link_info *, bfd_boolean *);
419 static bfd_boolean generic_link_check_archive_element
420   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
421 static bfd_boolean generic_link_add_symbol_list
422   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423    bfd_boolean);
424 static bfd_boolean generic_add_output_symbol
425   (bfd *, size_t *psymalloc, asymbol *);
426 static bfd_boolean default_data_link_order
427   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
428 static bfd_boolean default_indirect_link_order
429   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
430    bfd_boolean);
431 
432 /* The link hash table structure is defined in bfdlink.h.  It provides
433    a base hash table which the backend specific hash tables are built
434    upon.  */
435 
436 /* Routine to create an entry in the link hash table.  */
437 
438 struct bfd_hash_entry *
439 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
440 			struct bfd_hash_table *table,
441 			const char *string)
442 {
443   /* Allocate the structure if it has not already been allocated by a
444      subclass.  */
445   if (entry == NULL)
446     {
447       entry = (struct bfd_hash_entry *)
448           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
449       if (entry == NULL)
450 	return entry;
451     }
452 
453   /* Call the allocation method of the superclass.  */
454   entry = bfd_hash_newfunc (entry, table, string);
455   if (entry)
456     {
457       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
458 
459       /* Initialize the local fields.  */
460       h->type = bfd_link_hash_new;
461       memset (&h->u.undef.next, 0,
462 	      (sizeof (struct bfd_link_hash_entry)
463 	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
464     }
465 
466   return entry;
467 }
468 
469 /* Initialize a link hash table.  The BFD argument is the one
470    responsible for creating this table.  */
471 
472 bfd_boolean
473 _bfd_link_hash_table_init
474   (struct bfd_link_hash_table *table,
475    bfd *abfd ATTRIBUTE_UNUSED,
476    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
477 				      struct bfd_hash_table *,
478 				      const char *),
479    unsigned int entsize)
480 {
481   table->undefs = NULL;
482   table->undefs_tail = NULL;
483   table->type = bfd_link_generic_hash_table;
484 
485   return bfd_hash_table_init (&table->table, newfunc, entsize);
486 }
487 
488 /* Look up a symbol in a link hash table.  If follow is TRUE, we
489    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
490    the real symbol.  */
491 
492 struct bfd_link_hash_entry *
493 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
494 		      const char *string,
495 		      bfd_boolean create,
496 		      bfd_boolean copy,
497 		      bfd_boolean follow)
498 {
499   struct bfd_link_hash_entry *ret;
500 
501   ret = ((struct bfd_link_hash_entry *)
502 	 bfd_hash_lookup (&table->table, string, create, copy));
503 
504   if (follow && ret != NULL)
505     {
506       while (ret->type == bfd_link_hash_indirect
507 	     || ret->type == bfd_link_hash_warning)
508 	ret = ret->u.i.link;
509     }
510 
511   return ret;
512 }
513 
514 /* Look up a symbol in the main linker hash table if the symbol might
515    be wrapped.  This should only be used for references to an
516    undefined symbol, not for definitions of a symbol.  */
517 
518 struct bfd_link_hash_entry *
519 bfd_wrapped_link_hash_lookup (bfd *abfd,
520 			      struct bfd_link_info *info,
521 			      const char *string,
522 			      bfd_boolean create,
523 			      bfd_boolean copy,
524 			      bfd_boolean follow)
525 {
526   bfd_size_type amt;
527 
528   if (info->wrap_hash != NULL)
529     {
530       const char *l;
531       char prefix = '\0';
532 
533       l = string;
534       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
535 	{
536 	  prefix = *l;
537 	  ++l;
538 	}
539 
540 #undef WRAP
541 #define WRAP "__wrap_"
542 
543       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
544 	{
545 	  char *n;
546 	  struct bfd_link_hash_entry *h;
547 
548 	  /* This symbol is being wrapped.  We want to replace all
549              references to SYM with references to __wrap_SYM.  */
550 
551 	  amt = strlen (l) + sizeof WRAP + 1;
552 	  n = (char *) bfd_malloc (amt);
553 	  if (n == NULL)
554 	    return NULL;
555 
556 	  n[0] = prefix;
557 	  n[1] = '\0';
558 	  strcat (n, WRAP);
559 	  strcat (n, l);
560 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
561 	  free (n);
562 	  return h;
563 	}
564 
565 #undef WRAP
566 
567 #undef  REAL
568 #define REAL "__real_"
569 
570       if (*l == '_'
571 	  && CONST_STRNEQ (l, REAL)
572 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
573 			      FALSE, FALSE) != NULL)
574 	{
575 	  char *n;
576 	  struct bfd_link_hash_entry *h;
577 
578 	  /* This is a reference to __real_SYM, where SYM is being
579              wrapped.  We want to replace all references to __real_SYM
580              with references to SYM.  */
581 
582 	  amt = strlen (l + sizeof REAL - 1) + 2;
583 	  n = (char *) bfd_malloc (amt);
584 	  if (n == NULL)
585 	    return NULL;
586 
587 	  n[0] = prefix;
588 	  n[1] = '\0';
589 	  strcat (n, l + sizeof REAL - 1);
590 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
591 	  free (n);
592 	  return h;
593 	}
594 
595 #undef REAL
596     }
597 
598   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
599 }
600 
601 /* Traverse a generic link hash table.  The only reason this is not a
602    macro is to do better type checking.  This code presumes that an
603    argument passed as a struct bfd_hash_entry * may be caught as a
604    struct bfd_link_hash_entry * with no explicit cast required on the
605    call.  */
606 
607 void
608 bfd_link_hash_traverse
609   (struct bfd_link_hash_table *table,
610    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
611    void *info)
612 {
613   bfd_hash_traverse (&table->table,
614 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
615 		     info);
616 }
617 
618 /* Add a symbol to the linker hash table undefs list.  */
619 
620 void
621 bfd_link_add_undef (struct bfd_link_hash_table *table,
622 		    struct bfd_link_hash_entry *h)
623 {
624   BFD_ASSERT (h->u.undef.next == NULL);
625   if (table->undefs_tail != NULL)
626     table->undefs_tail->u.undef.next = h;
627   if (table->undefs == NULL)
628     table->undefs = h;
629   table->undefs_tail = h;
630 }
631 
632 /* The undefs list was designed so that in normal use we don't need to
633    remove entries.  However, if symbols on the list are changed from
634    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
635    bfd_link_hash_new for some reason, then they must be removed from the
636    list.  Failure to do so might result in the linker attempting to add
637    the symbol to the list again at a later stage.  */
638 
639 void
640 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
641 {
642   struct bfd_link_hash_entry **pun;
643 
644   pun = &table->undefs;
645   while (*pun != NULL)
646     {
647       struct bfd_link_hash_entry *h = *pun;
648 
649       if (h->type == bfd_link_hash_new
650 	  || h->type == bfd_link_hash_undefweak)
651 	{
652 	  *pun = h->u.undef.next;
653 	  h->u.undef.next = NULL;
654 	  if (h == table->undefs_tail)
655 	    {
656 	      if (pun == &table->undefs)
657 		table->undefs_tail = NULL;
658 	      else
659 		/* pun points at an u.undef.next field.  Go back to
660 		   the start of the link_hash_entry.  */
661 		table->undefs_tail = (struct bfd_link_hash_entry *)
662 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
663 	      break;
664 	    }
665 	}
666       else
667 	pun = &h->u.undef.next;
668     }
669 }
670 
671 /* Routine to create an entry in a generic link hash table.  */
672 
673 struct bfd_hash_entry *
674 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
675 				struct bfd_hash_table *table,
676 				const char *string)
677 {
678   /* Allocate the structure if it has not already been allocated by a
679      subclass.  */
680   if (entry == NULL)
681     {
682       entry = (struct bfd_hash_entry *)
683 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
684       if (entry == NULL)
685 	return entry;
686     }
687 
688   /* Call the allocation method of the superclass.  */
689   entry = _bfd_link_hash_newfunc (entry, table, string);
690   if (entry)
691     {
692       struct generic_link_hash_entry *ret;
693 
694       /* Set local fields.  */
695       ret = (struct generic_link_hash_entry *) entry;
696       ret->written = FALSE;
697       ret->sym = NULL;
698     }
699 
700   return entry;
701 }
702 
703 /* Create a generic link hash table.  */
704 
705 struct bfd_link_hash_table *
706 _bfd_generic_link_hash_table_create (bfd *abfd)
707 {
708   struct generic_link_hash_table *ret;
709   bfd_size_type amt = sizeof (struct generic_link_hash_table);
710 
711   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
712   if (ret == NULL)
713     return NULL;
714   if (! _bfd_link_hash_table_init (&ret->root, abfd,
715 				   _bfd_generic_link_hash_newfunc,
716 				   sizeof (struct generic_link_hash_entry)))
717     {
718       free (ret);
719       return NULL;
720     }
721   return &ret->root;
722 }
723 
724 void
725 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
726 {
727   struct generic_link_hash_table *ret
728     = (struct generic_link_hash_table *) hash;
729 
730   bfd_hash_table_free (&ret->root.table);
731   free (ret);
732 }
733 
734 /* Grab the symbols for an object file when doing a generic link.  We
735    store the symbols in the outsymbols field.  We need to keep them
736    around for the entire link to ensure that we only read them once.
737    If we read them multiple times, we might wind up with relocs and
738    the hash table pointing to different instances of the symbol
739    structure.  */
740 
741 bfd_boolean
742 bfd_generic_link_read_symbols (bfd *abfd)
743 {
744   if (bfd_get_outsymbols (abfd) == NULL)
745     {
746       long symsize;
747       long symcount;
748 
749       symsize = bfd_get_symtab_upper_bound (abfd);
750       if (symsize < 0)
751 	return FALSE;
752       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
753                                                                     symsize);
754       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
755 	return FALSE;
756       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
757       if (symcount < 0)
758 	return FALSE;
759       bfd_get_symcount (abfd) = symcount;
760     }
761 
762   return TRUE;
763 }
764 
765 /* Generic function to add symbols to from an object file to the
766    global hash table.  This version does not automatically collect
767    constructors by name.  */
768 
769 bfd_boolean
770 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
771 {
772   return generic_link_add_symbols (abfd, info, FALSE);
773 }
774 
775 /* Generic function to add symbols from an object file to the global
776    hash table.  This version automatically collects constructors by
777    name, as the collect2 program does.  It should be used for any
778    target which does not provide some other mechanism for setting up
779    constructors and destructors; these are approximately those targets
780    for which gcc uses collect2 and do not support stabs.  */
781 
782 bfd_boolean
783 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
784 {
785   return generic_link_add_symbols (abfd, info, TRUE);
786 }
787 
788 /* Indicate that we are only retrieving symbol values from this
789    section.  We want the symbols to act as though the values in the
790    file are absolute.  */
791 
792 void
793 _bfd_generic_link_just_syms (asection *sec,
794 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
795 {
796   sec->output_section = bfd_abs_section_ptr;
797   sec->output_offset = sec->vma;
798 }
799 
800 /* Copy the type of a symbol assiciated with a linker hast table entry.
801    Override this so that symbols created in linker scripts get their
802    type from the RHS of the assignment.
803    The default implementation does nothing.  */
804 void
805 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
806     struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
807     struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
808 {
809 }
810 
811 /* Add symbols from an object file to the global hash table.  */
812 
813 static bfd_boolean
814 generic_link_add_symbols (bfd *abfd,
815 			  struct bfd_link_info *info,
816 			  bfd_boolean collect)
817 {
818   bfd_boolean ret;
819 
820   switch (bfd_get_format (abfd))
821     {
822     case bfd_object:
823       ret = generic_link_add_object_symbols (abfd, info, collect);
824       break;
825     case bfd_archive:
826       ret = (_bfd_generic_link_add_archive_symbols
827 	     (abfd, info,
828 	      (collect
829 	       ? generic_link_check_archive_element_collect
830 	       : generic_link_check_archive_element_no_collect)));
831       break;
832     default:
833       bfd_set_error (bfd_error_wrong_format);
834       ret = FALSE;
835     }
836 
837   return ret;
838 }
839 
840 /* Add symbols from an object file to the global hash table.  */
841 
842 static bfd_boolean
843 generic_link_add_object_symbols (bfd *abfd,
844 				 struct bfd_link_info *info,
845 				 bfd_boolean collect)
846 {
847   bfd_size_type symcount;
848   struct bfd_symbol **outsyms;
849 
850   if (!bfd_generic_link_read_symbols (abfd))
851     return FALSE;
852   symcount = _bfd_generic_link_get_symcount (abfd);
853   outsyms = _bfd_generic_link_get_symbols (abfd);
854   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
855 }
856 
857 /* We build a hash table of all symbols defined in an archive.  */
858 
859 /* An archive symbol may be defined by multiple archive elements.
860    This linked list is used to hold the elements.  */
861 
862 struct archive_list
863 {
864   struct archive_list *next;
865   unsigned int indx;
866 };
867 
868 /* An entry in an archive hash table.  */
869 
870 struct archive_hash_entry
871 {
872   struct bfd_hash_entry root;
873   /* Where the symbol is defined.  */
874   struct archive_list *defs;
875 };
876 
877 /* An archive hash table itself.  */
878 
879 struct archive_hash_table
880 {
881   struct bfd_hash_table table;
882 };
883 
884 /* Create a new entry for an archive hash table.  */
885 
886 static struct bfd_hash_entry *
887 archive_hash_newfunc (struct bfd_hash_entry *entry,
888 		      struct bfd_hash_table *table,
889 		      const char *string)
890 {
891   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
892 
893   /* Allocate the structure if it has not already been allocated by a
894      subclass.  */
895   if (ret == NULL)
896     ret = (struct archive_hash_entry *)
897         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
898   if (ret == NULL)
899     return NULL;
900 
901   /* Call the allocation method of the superclass.  */
902   ret = ((struct archive_hash_entry *)
903 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
904 
905   if (ret)
906     {
907       /* Initialize the local fields.  */
908       ret->defs = NULL;
909     }
910 
911   return &ret->root;
912 }
913 
914 /* Initialize an archive hash table.  */
915 
916 static bfd_boolean
917 archive_hash_table_init
918   (struct archive_hash_table *table,
919    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
920 				      struct bfd_hash_table *,
921 				      const char *),
922    unsigned int entsize)
923 {
924   return bfd_hash_table_init (&table->table, newfunc, entsize);
925 }
926 
927 /* Look up an entry in an archive hash table.  */
928 
929 #define archive_hash_lookup(t, string, create, copy) \
930   ((struct archive_hash_entry *) \
931    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
932 
933 /* Allocate space in an archive hash table.  */
934 
935 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
936 
937 /* Free an archive hash table.  */
938 
939 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
940 
941 /* Generic function to add symbols from an archive file to the global
942    hash file.  This function presumes that the archive symbol table
943    has already been read in (this is normally done by the
944    bfd_check_format entry point).  It looks through the undefined and
945    common symbols and searches the archive symbol table for them.  If
946    it finds an entry, it includes the associated object file in the
947    link.
948 
949    The old linker looked through the archive symbol table for
950    undefined symbols.  We do it the other way around, looking through
951    undefined symbols for symbols defined in the archive.  The
952    advantage of the newer scheme is that we only have to look through
953    the list of undefined symbols once, whereas the old method had to
954    re-search the symbol table each time a new object file was added.
955 
956    The CHECKFN argument is used to see if an object file should be
957    included.  CHECKFN should set *PNEEDED to TRUE if the object file
958    should be included, and must also call the bfd_link_info
959    add_archive_element callback function and handle adding the symbols
960    to the global hash table.  CHECKFN should only return FALSE if some
961    sort of error occurs.
962 
963    For some formats, such as a.out, it is possible to look through an
964    object file but not actually include it in the link.  The
965    archive_pass field in a BFD is used to avoid checking the symbols
966    of an object files too many times.  When an object is included in
967    the link, archive_pass is set to -1.  If an object is scanned but
968    not included, archive_pass is set to the pass number.  The pass
969    number is incremented each time a new object file is included.  The
970    pass number is used because when a new object file is included it
971    may create new undefined symbols which cause a previously examined
972    object file to be included.  */
973 
974 bfd_boolean
975 _bfd_generic_link_add_archive_symbols
976   (bfd *abfd,
977    struct bfd_link_info *info,
978    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
979 {
980   carsym *arsyms;
981   carsym *arsym_end;
982   register carsym *arsym;
983   int pass;
984   struct archive_hash_table arsym_hash;
985   unsigned int indx;
986   struct bfd_link_hash_entry **pundef;
987 
988   if (! bfd_has_map (abfd))
989     {
990       /* An empty archive is a special case.  */
991       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
992 	return TRUE;
993       bfd_set_error (bfd_error_no_armap);
994       return FALSE;
995     }
996 
997   arsyms = bfd_ardata (abfd)->symdefs;
998   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
999 
1000   /* In order to quickly determine whether an symbol is defined in
1001      this archive, we build a hash table of the symbols.  */
1002   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1003 				 sizeof (struct archive_hash_entry)))
1004     return FALSE;
1005   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1006     {
1007       struct archive_hash_entry *arh;
1008       struct archive_list *l, **pp;
1009 
1010       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1011       if (arh == NULL)
1012 	goto error_return;
1013       l = ((struct archive_list *)
1014 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1015       if (l == NULL)
1016 	goto error_return;
1017       l->indx = indx;
1018       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1019 	;
1020       *pp = l;
1021       l->next = NULL;
1022     }
1023 
1024   /* The archive_pass field in the archive itself is used to
1025      initialize PASS, sine we may search the same archive multiple
1026      times.  */
1027   pass = abfd->archive_pass + 1;
1028 
1029   /* New undefined symbols are added to the end of the list, so we
1030      only need to look through it once.  */
1031   pundef = &info->hash->undefs;
1032   while (*pundef != NULL)
1033     {
1034       struct bfd_link_hash_entry *h;
1035       struct archive_hash_entry *arh;
1036       struct archive_list *l;
1037 
1038       h = *pundef;
1039 
1040       /* When a symbol is defined, it is not necessarily removed from
1041 	 the list.  */
1042       if (h->type != bfd_link_hash_undefined
1043 	  && h->type != bfd_link_hash_common)
1044 	{
1045 	  /* Remove this entry from the list, for general cleanliness
1046 	     and because we are going to look through the list again
1047 	     if we search any more libraries.  We can't remove the
1048 	     entry if it is the tail, because that would lose any
1049 	     entries we add to the list later on (it would also cause
1050 	     us to lose track of whether the symbol has been
1051 	     referenced).  */
1052 	  if (*pundef != info->hash->undefs_tail)
1053 	    *pundef = (*pundef)->u.undef.next;
1054 	  else
1055 	    pundef = &(*pundef)->u.undef.next;
1056 	  continue;
1057 	}
1058 
1059       /* Look for this symbol in the archive symbol map.  */
1060       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1061       if (arh == NULL)
1062 	{
1063 	  /* If we haven't found the exact symbol we're looking for,
1064 	     let's look for its import thunk */
1065 	  if (info->pei386_auto_import)
1066 	    {
1067 	      bfd_size_type amt = strlen (h->root.string) + 10;
1068 	      char *buf = (char *) bfd_malloc (amt);
1069 	      if (buf == NULL)
1070 		return FALSE;
1071 
1072 	      sprintf (buf, "__imp_%s", h->root.string);
1073 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1074 	      free(buf);
1075 	    }
1076 	  if (arh == NULL)
1077 	    {
1078 	      pundef = &(*pundef)->u.undef.next;
1079 	      continue;
1080 	    }
1081 	}
1082       /* Look at all the objects which define this symbol.  */
1083       for (l = arh->defs; l != NULL; l = l->next)
1084 	{
1085 	  bfd *element;
1086 	  bfd_boolean needed;
1087 
1088 	  /* If the symbol has gotten defined along the way, quit.  */
1089 	  if (h->type != bfd_link_hash_undefined
1090 	      && h->type != bfd_link_hash_common)
1091 	    break;
1092 
1093 	  element = bfd_get_elt_at_index (abfd, l->indx);
1094 	  if (element == NULL)
1095 	    goto error_return;
1096 
1097 	  /* If we've already included this element, or if we've
1098 	     already checked it on this pass, continue.  */
1099 	  if (element->archive_pass == -1
1100 	      || element->archive_pass == pass)
1101 	    continue;
1102 
1103 	  /* If we can't figure this element out, just ignore it.  */
1104 	  if (! bfd_check_format (element, bfd_object))
1105 	    {
1106 	      element->archive_pass = -1;
1107 	      continue;
1108 	    }
1109 
1110 	  /* CHECKFN will see if this element should be included, and
1111 	     go ahead and include it if appropriate.  */
1112 	  if (! (*checkfn) (element, info, &needed))
1113 	    goto error_return;
1114 
1115 	  if (! needed)
1116 	    element->archive_pass = pass;
1117 	  else
1118 	    {
1119 	      element->archive_pass = -1;
1120 
1121 	      /* Increment the pass count to show that we may need to
1122 		 recheck object files which were already checked.  */
1123 	      ++pass;
1124 	    }
1125 	}
1126 
1127       pundef = &(*pundef)->u.undef.next;
1128     }
1129 
1130   archive_hash_table_free (&arsym_hash);
1131 
1132   /* Save PASS in case we are called again.  */
1133   abfd->archive_pass = pass;
1134 
1135   return TRUE;
1136 
1137  error_return:
1138   archive_hash_table_free (&arsym_hash);
1139   return FALSE;
1140 }
1141 
1142 /* See if we should include an archive element.  This version is used
1143    when we do not want to automatically collect constructors based on
1144    the symbol name, presumably because we have some other mechanism
1145    for finding them.  */
1146 
1147 static bfd_boolean
1148 generic_link_check_archive_element_no_collect (
1149 					       bfd *abfd,
1150 					       struct bfd_link_info *info,
1151 					       bfd_boolean *pneeded)
1152 {
1153   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1154 }
1155 
1156 /* See if we should include an archive element.  This version is used
1157    when we want to automatically collect constructors based on the
1158    symbol name, as collect2 does.  */
1159 
1160 static bfd_boolean
1161 generic_link_check_archive_element_collect (bfd *abfd,
1162 					    struct bfd_link_info *info,
1163 					    bfd_boolean *pneeded)
1164 {
1165   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1166 }
1167 
1168 /* See if we should include an archive element.  Optionally collect
1169    constructors.  */
1170 
1171 static bfd_boolean
1172 generic_link_check_archive_element (bfd *abfd,
1173 				    struct bfd_link_info *info,
1174 				    bfd_boolean *pneeded,
1175 				    bfd_boolean collect)
1176 {
1177   asymbol **pp, **ppend;
1178 
1179   *pneeded = FALSE;
1180 
1181   if (!bfd_generic_link_read_symbols (abfd))
1182     return FALSE;
1183 
1184   pp = _bfd_generic_link_get_symbols (abfd);
1185   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1186   for (; pp < ppend; pp++)
1187     {
1188       asymbol *p;
1189       struct bfd_link_hash_entry *h;
1190 
1191       p = *pp;
1192 
1193       /* We are only interested in globally visible symbols.  */
1194       if (! bfd_is_com_section (p->section)
1195 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1196 	continue;
1197 
1198       /* We are only interested if we know something about this
1199 	 symbol, and it is undefined or common.  An undefined weak
1200 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1201 	 a reference when pulling files out of an archive.  See the
1202 	 SVR4 ABI, p. 4-27.  */
1203       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1204 				FALSE, TRUE);
1205       if (h == NULL
1206 	  || (h->type != bfd_link_hash_undefined
1207 	      && h->type != bfd_link_hash_common))
1208 	continue;
1209 
1210       /* P is a symbol we are looking for.  */
1211 
1212       if (! bfd_is_com_section (p->section))
1213 	{
1214 	  bfd_size_type symcount;
1215 	  asymbol **symbols;
1216 
1217 	  /* This object file defines this symbol, so pull it in.  */
1218 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1219 							 bfd_asymbol_name (p)))
1220 	    return FALSE;
1221 	  symcount = _bfd_generic_link_get_symcount (abfd);
1222 	  symbols = _bfd_generic_link_get_symbols (abfd);
1223 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1224 					      symbols, collect))
1225 	    return FALSE;
1226 	  *pneeded = TRUE;
1227 	  return TRUE;
1228 	}
1229 
1230       /* P is a common symbol.  */
1231 
1232       if (h->type == bfd_link_hash_undefined)
1233 	{
1234 	  bfd *symbfd;
1235 	  bfd_vma size;
1236 	  unsigned int power;
1237 
1238 	  symbfd = h->u.undef.abfd;
1239 	  if (symbfd == NULL)
1240 	    {
1241 	      /* This symbol was created as undefined from outside
1242 		 BFD.  We assume that we should link in the object
1243 		 file.  This is for the -u option in the linker.  */
1244 	      if (! (*info->callbacks->add_archive_element)
1245 		  (info, abfd, bfd_asymbol_name (p)))
1246 		return FALSE;
1247 	      *pneeded = TRUE;
1248 	      return TRUE;
1249 	    }
1250 
1251 	  /* Turn the symbol into a common symbol but do not link in
1252 	     the object file.  This is how a.out works.  Object
1253 	     formats that require different semantics must implement
1254 	     this function differently.  This symbol is already on the
1255 	     undefs list.  We add the section to a common section
1256 	     attached to symbfd to ensure that it is in a BFD which
1257 	     will be linked in.  */
1258 	  h->type = bfd_link_hash_common;
1259 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1260 	    bfd_hash_allocate (&info->hash->table,
1261 			       sizeof (struct bfd_link_hash_common_entry));
1262 	  if (h->u.c.p == NULL)
1263 	    return FALSE;
1264 
1265 	  size = bfd_asymbol_value (p);
1266 	  h->u.c.size = size;
1267 
1268 	  power = bfd_log2 (size);
1269 	  if (power > 4)
1270 	    power = 4;
1271 	  h->u.c.p->alignment_power = power;
1272 
1273 	  if (p->section == bfd_com_section_ptr)
1274 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1275 	  else
1276 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1277 							  p->section->name);
1278 	  h->u.c.p->section->flags = SEC_ALLOC;
1279 	}
1280       else
1281 	{
1282 	  /* Adjust the size of the common symbol if necessary.  This
1283 	     is how a.out works.  Object formats that require
1284 	     different semantics must implement this function
1285 	     differently.  */
1286 	  if (bfd_asymbol_value (p) > h->u.c.size)
1287 	    h->u.c.size = bfd_asymbol_value (p);
1288 	}
1289     }
1290 
1291   /* This archive element is not needed.  */
1292   return TRUE;
1293 }
1294 
1295 /* Add the symbols from an object file to the global hash table.  ABFD
1296    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1297    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1298    is TRUE if constructors should be automatically collected by name
1299    as is done by collect2.  */
1300 
1301 static bfd_boolean
1302 generic_link_add_symbol_list (bfd *abfd,
1303 			      struct bfd_link_info *info,
1304 			      bfd_size_type symbol_count,
1305 			      asymbol **symbols,
1306 			      bfd_boolean collect)
1307 {
1308   asymbol **pp, **ppend;
1309 
1310   pp = symbols;
1311   ppend = symbols + symbol_count;
1312   for (; pp < ppend; pp++)
1313     {
1314       asymbol *p;
1315 
1316       p = *pp;
1317 
1318       if ((p->flags & (BSF_INDIRECT
1319 		       | BSF_WARNING
1320 		       | BSF_GLOBAL
1321 		       | BSF_CONSTRUCTOR
1322 		       | BSF_WEAK)) != 0
1323 	  || bfd_is_und_section (bfd_get_section (p))
1324 	  || bfd_is_com_section (bfd_get_section (p))
1325 	  || bfd_is_ind_section (bfd_get_section (p)))
1326 	{
1327 	  const char *name;
1328 	  const char *string;
1329 	  struct generic_link_hash_entry *h;
1330 	  struct bfd_link_hash_entry *bh;
1331 
1332 	  string = name = bfd_asymbol_name (p);
1333 	  if (((p->flags & BSF_INDIRECT) != 0
1334 	       || bfd_is_ind_section (p->section))
1335 	      && pp + 1 < ppend)
1336 	    {
1337 	      pp++;
1338 	      string = bfd_asymbol_name (*pp);
1339 	    }
1340 	  else if ((p->flags & BSF_WARNING) != 0
1341 		   && pp + 1 < ppend)
1342 	    {
1343 	      /* The name of P is actually the warning string, and the
1344 		 next symbol is the one to warn about.  */
1345 	      pp++;
1346 	      name = bfd_asymbol_name (*pp);
1347 	    }
1348 
1349 	  bh = NULL;
1350 	  if (! (_bfd_generic_link_add_one_symbol
1351 		 (info, abfd, name, p->flags, bfd_get_section (p),
1352 		  p->value, string, FALSE, collect, &bh)))
1353 	    return FALSE;
1354 	  h = (struct generic_link_hash_entry *) bh;
1355 
1356 	  /* If this is a constructor symbol, and the linker didn't do
1357              anything with it, then we want to just pass the symbol
1358              through to the output file.  This will happen when
1359              linking with -r.  */
1360 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1361 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1362 	    {
1363 	      p->udata.p = NULL;
1364 	      continue;
1365 	    }
1366 
1367 	  /* Save the BFD symbol so that we don't lose any backend
1368 	     specific information that may be attached to it.  We only
1369 	     want this one if it gives more information than the
1370 	     existing one; we don't want to replace a defined symbol
1371 	     with an undefined one.  This routine may be called with a
1372 	     hash table other than the generic hash table, so we only
1373 	     do this if we are certain that the hash table is a
1374 	     generic one.  */
1375 	  if (info->output_bfd->xvec == abfd->xvec)
1376 	    {
1377 	      if (h->sym == NULL
1378 		  || (! bfd_is_und_section (bfd_get_section (p))
1379 		      && (! bfd_is_com_section (bfd_get_section (p))
1380 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1381 		{
1382 		  h->sym = p;
1383 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1384 		     reading, and it should go away when the COFF
1385 		     linker is switched to the new version.  */
1386 		  if (bfd_is_com_section (bfd_get_section (p)))
1387 		    p->flags |= BSF_OLD_COMMON;
1388 		}
1389 	    }
1390 
1391 	  /* Store a back pointer from the symbol to the hash
1392 	     table entry for the benefit of relaxation code until
1393 	     it gets rewritten to not use asymbol structures.
1394 	     Setting this is also used to check whether these
1395 	     symbols were set up by the generic linker.  */
1396 	  p->udata.p = h;
1397 	}
1398     }
1399 
1400   return TRUE;
1401 }
1402 
1403 /* We use a state table to deal with adding symbols from an object
1404    file.  The first index into the state table describes the symbol
1405    from the object file.  The second index into the state table is the
1406    type of the symbol in the hash table.  */
1407 
1408 /* The symbol from the object file is turned into one of these row
1409    values.  */
1410 
1411 enum link_row
1412 {
1413   UNDEF_ROW,		/* Undefined.  */
1414   UNDEFW_ROW,		/* Weak undefined.  */
1415   DEF_ROW,		/* Defined.  */
1416   DEFW_ROW,		/* Weak defined.  */
1417   COMMON_ROW,		/* Common.  */
1418   INDR_ROW,		/* Indirect.  */
1419   WARN_ROW,		/* Warning.  */
1420   SET_ROW		/* Member of set.  */
1421 };
1422 
1423 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1424 #undef FAIL
1425 
1426 /* The actions to take in the state table.  */
1427 
1428 enum link_action
1429 {
1430   FAIL,		/* Abort.  */
1431   UND,		/* Mark symbol undefined.  */
1432   WEAK,		/* Mark symbol weak undefined.  */
1433   DEF,		/* Mark symbol defined.  */
1434   DEFW,		/* Mark symbol weak defined.  */
1435   COM,		/* Mark symbol common.  */
1436   REF,		/* Mark defined symbol referenced.  */
1437   CREF,		/* Possibly warn about common reference to defined symbol.  */
1438   CDEF,		/* Define existing common symbol.  */
1439   NOACT,	/* No action.  */
1440   BIG,		/* Mark symbol common using largest size.  */
1441   MDEF,		/* Multiple definition error.  */
1442   MIND,		/* Multiple indirect symbols.  */
1443   IND,		/* Make indirect symbol.  */
1444   CIND,		/* Make indirect symbol from existing common symbol.  */
1445   SET,		/* Add value to set.  */
1446   MWARN,	/* Make warning symbol.  */
1447   WARN,		/* Issue warning.  */
1448   CWARN,	/* Warn if referenced, else MWARN.  */
1449   CYCLE,	/* Repeat with symbol pointed to.  */
1450   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1451   WARNC		/* Issue warning and then CYCLE.  */
1452 };
1453 
1454 /* The state table itself.  The first index is a link_row and the
1455    second index is a bfd_link_hash_type.  */
1456 
1457 static const enum link_action link_action[8][8] =
1458 {
1459   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1460   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1461   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1462   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1463   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1464   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1465   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1466   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1467   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1468 };
1469 
1470 /* Most of the entries in the LINK_ACTION table are straightforward,
1471    but a few are somewhat subtle.
1472 
1473    A reference to an indirect symbol (UNDEF_ROW/indr or
1474    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1475    symbol and to the symbol the indirect symbol points to.
1476 
1477    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1478    causes the warning to be issued.
1479 
1480    A common definition of an indirect symbol (COMMON_ROW/indr) is
1481    treated as a multiple definition error.  Likewise for an indirect
1482    definition of a common symbol (INDR_ROW/com).
1483 
1484    An indirect definition of a warning (INDR_ROW/warn) does not cause
1485    the warning to be issued.
1486 
1487    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1488    warning is created for the symbol the indirect symbol points to.
1489 
1490    Adding an entry to a set does not count as a reference to a set,
1491    and no warning is issued (SET_ROW/warn).  */
1492 
1493 /* Return the BFD in which a hash entry has been defined, if known.  */
1494 
1495 static bfd *
1496 hash_entry_bfd (struct bfd_link_hash_entry *h)
1497 {
1498   while (h->type == bfd_link_hash_warning)
1499     h = h->u.i.link;
1500   switch (h->type)
1501     {
1502     default:
1503       return NULL;
1504     case bfd_link_hash_undefined:
1505     case bfd_link_hash_undefweak:
1506       return h->u.undef.abfd;
1507     case bfd_link_hash_defined:
1508     case bfd_link_hash_defweak:
1509       return h->u.def.section->owner;
1510     case bfd_link_hash_common:
1511       return h->u.c.p->section->owner;
1512     }
1513   /*NOTREACHED*/
1514 }
1515 
1516 /* Add a symbol to the global hash table.
1517    ABFD is the BFD the symbol comes from.
1518    NAME is the name of the symbol.
1519    FLAGS is the BSF_* bits associated with the symbol.
1520    SECTION is the section in which the symbol is defined; this may be
1521      bfd_und_section_ptr or bfd_com_section_ptr.
1522    VALUE is the value of the symbol, relative to the section.
1523    STRING is used for either an indirect symbol, in which case it is
1524      the name of the symbol to indirect to, or a warning symbol, in
1525      which case it is the warning string.
1526    COPY is TRUE if NAME or STRING must be copied into locally
1527      allocated memory if they need to be saved.
1528    COLLECT is TRUE if we should automatically collect gcc constructor
1529      or destructor names as collect2 does.
1530    HASHP, if not NULL, is a place to store the created hash table
1531      entry; if *HASHP is not NULL, the caller has already looked up
1532      the hash table entry, and stored it in *HASHP.  */
1533 
1534 bfd_boolean
1535 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1536 				  bfd *abfd,
1537 				  const char *name,
1538 				  flagword flags,
1539 				  asection *section,
1540 				  bfd_vma value,
1541 				  const char *string,
1542 				  bfd_boolean copy,
1543 				  bfd_boolean collect,
1544 				  struct bfd_link_hash_entry **hashp)
1545 {
1546   enum link_row row;
1547   struct bfd_link_hash_entry *h;
1548   bfd_boolean cycle;
1549 
1550   if (bfd_is_ind_section (section)
1551       || (flags & BSF_INDIRECT) != 0)
1552     row = INDR_ROW;
1553   else if ((flags & BSF_WARNING) != 0)
1554     row = WARN_ROW;
1555   else if ((flags & BSF_CONSTRUCTOR) != 0)
1556     row = SET_ROW;
1557   else if (bfd_is_und_section (section))
1558     {
1559       if ((flags & BSF_WEAK) != 0)
1560 	row = UNDEFW_ROW;
1561       else
1562 	row = UNDEF_ROW;
1563     }
1564   else if ((flags & BSF_WEAK) != 0)
1565     row = DEFW_ROW;
1566   else if (bfd_is_com_section (section))
1567     row = COMMON_ROW;
1568   else
1569     row = DEF_ROW;
1570 
1571   if (hashp != NULL && *hashp != NULL)
1572     h = *hashp;
1573   else
1574     {
1575       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1576 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1577       else
1578 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1579       if (h == NULL)
1580 	{
1581 	  if (hashp != NULL)
1582 	    *hashp = NULL;
1583 	  return FALSE;
1584 	}
1585     }
1586 
1587   if (info->notice_all
1588       || (info->notice_hash != NULL
1589 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1590     {
1591       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1592 					value))
1593 	return FALSE;
1594     }
1595 
1596   if (hashp != NULL)
1597     *hashp = h;
1598 
1599   do
1600     {
1601       enum link_action action;
1602 
1603       cycle = FALSE;
1604       action = link_action[(int) row][(int) h->type];
1605       switch (action)
1606 	{
1607 	case FAIL:
1608 	  abort ();
1609 
1610 	case NOACT:
1611 	  /* Do nothing.  */
1612 	  break;
1613 
1614 	case UND:
1615 	  /* Make a new undefined symbol.  */
1616 	  h->type = bfd_link_hash_undefined;
1617 	  h->u.undef.abfd = abfd;
1618 	  bfd_link_add_undef (info->hash, h);
1619 	  break;
1620 
1621 	case WEAK:
1622 	  /* Make a new weak undefined symbol.  */
1623 	  h->type = bfd_link_hash_undefweak;
1624 	  h->u.undef.abfd = abfd;
1625 	  h->u.undef.weak = abfd;
1626 	  break;
1627 
1628 	case CDEF:
1629 	  /* We have found a definition for a symbol which was
1630 	     previously common.  */
1631 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1632 	  if (! ((*info->callbacks->multiple_common)
1633 		 (info, h->root.string,
1634 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1635 		  abfd, bfd_link_hash_defined, 0)))
1636 	    return FALSE;
1637 	  /* Fall through.  */
1638 	case DEF:
1639 	case DEFW:
1640 	  {
1641 	    enum bfd_link_hash_type oldtype;
1642 
1643 	    /* Define a symbol.  */
1644 	    oldtype = h->type;
1645 	    if (action == DEFW)
1646 	      h->type = bfd_link_hash_defweak;
1647 	    else
1648 	      h->type = bfd_link_hash_defined;
1649 	    h->u.def.section = section;
1650 	    h->u.def.value = value;
1651 
1652 	    /* If we have been asked to, we act like collect2 and
1653 	       identify all functions that might be global
1654 	       constructors and destructors and pass them up in a
1655 	       callback.  We only do this for certain object file
1656 	       types, since many object file types can handle this
1657 	       automatically.  */
1658 	    if (collect && name[0] == '_')
1659 	      {
1660 		const char *s;
1661 
1662 		/* A constructor or destructor name starts like this:
1663 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1664 		   the second are the same character (we accept any
1665 		   character there, in case a new object file format
1666 		   comes along with even worse naming restrictions).  */
1667 
1668 #define CONS_PREFIX "GLOBAL_"
1669 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1670 
1671 		s = name + 1;
1672 		while (*s == '_')
1673 		  ++s;
1674 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1675 		  {
1676 		    char c;
1677 
1678 		    c = s[CONS_PREFIX_LEN + 1];
1679 		    if ((c == 'I' || c == 'D')
1680 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1681 		      {
1682 			/* If this is a definition of a symbol which
1683                            was previously weakly defined, we are in
1684                            trouble.  We have already added a
1685                            constructor entry for the weak defined
1686                            symbol, and now we are trying to add one
1687                            for the new symbol.  Fortunately, this case
1688                            should never arise in practice.  */
1689 			if (oldtype == bfd_link_hash_defweak)
1690 			  abort ();
1691 
1692 			if (! ((*info->callbacks->constructor)
1693 			       (info, c == 'I',
1694 				h->root.string, abfd, section, value)))
1695 			  return FALSE;
1696 		      }
1697 		  }
1698 	      }
1699 	  }
1700 
1701 	  break;
1702 
1703 	case COM:
1704 	  /* We have found a common definition for a symbol.  */
1705 	  if (h->type == bfd_link_hash_new)
1706 	    bfd_link_add_undef (info->hash, h);
1707 	  h->type = bfd_link_hash_common;
1708 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1709 	    bfd_hash_allocate (&info->hash->table,
1710 			       sizeof (struct bfd_link_hash_common_entry));
1711 	  if (h->u.c.p == NULL)
1712 	    return FALSE;
1713 
1714 	  h->u.c.size = value;
1715 
1716 	  /* Select a default alignment based on the size.  This may
1717              be overridden by the caller.  */
1718 	  {
1719 	    unsigned int power;
1720 
1721 	    power = bfd_log2 (value);
1722 	    if (power > 4)
1723 	      power = 4;
1724 	    h->u.c.p->alignment_power = power;
1725 	  }
1726 
1727 	  /* The section of a common symbol is only used if the common
1728              symbol is actually allocated.  It basically provides a
1729              hook for the linker script to decide which output section
1730              the common symbols should be put in.  In most cases, the
1731              section of a common symbol will be bfd_com_section_ptr,
1732              the code here will choose a common symbol section named
1733              "COMMON", and the linker script will contain *(COMMON) in
1734              the appropriate place.  A few targets use separate common
1735              sections for small symbols, and they require special
1736              handling.  */
1737 	  if (section == bfd_com_section_ptr)
1738 	    {
1739 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1740 	      h->u.c.p->section->flags = SEC_ALLOC;
1741 	    }
1742 	  else if (section->owner != abfd)
1743 	    {
1744 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1745 							    section->name);
1746 	      h->u.c.p->section->flags = SEC_ALLOC;
1747 	    }
1748 	  else
1749 	    h->u.c.p->section = section;
1750 	  break;
1751 
1752 	case REF:
1753 	  /* A reference to a defined symbol.  */
1754 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1755 	    h->u.undef.next = h;
1756 	  break;
1757 
1758 	case BIG:
1759 	  /* We have found a common definition for a symbol which
1760 	     already had a common definition.  Use the maximum of the
1761 	     two sizes, and use the section required by the larger symbol.  */
1762 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1763 	  if (! ((*info->callbacks->multiple_common)
1764 		 (info, h->root.string,
1765 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1766 		  abfd, bfd_link_hash_common, value)))
1767 	    return FALSE;
1768 	  if (value > h->u.c.size)
1769 	    {
1770 	      unsigned int power;
1771 
1772 	      h->u.c.size = value;
1773 
1774 	      /* Select a default alignment based on the size.  This may
1775 		 be overridden by the caller.  */
1776 	      power = bfd_log2 (value);
1777 	      if (power > 4)
1778 		power = 4;
1779 	      h->u.c.p->alignment_power = power;
1780 
1781 	      /* Some systems have special treatment for small commons,
1782 		 hence we want to select the section used by the larger
1783 		 symbol.  This makes sure the symbol does not go in a
1784 		 small common section if it is now too large.  */
1785 	      if (section == bfd_com_section_ptr)
1786 		{
1787 		  h->u.c.p->section
1788 		    = bfd_make_section_old_way (abfd, "COMMON");
1789 		  h->u.c.p->section->flags = SEC_ALLOC;
1790 		}
1791 	      else if (section->owner != abfd)
1792 		{
1793 		  h->u.c.p->section
1794 		    = bfd_make_section_old_way (abfd, section->name);
1795 		  h->u.c.p->section->flags = SEC_ALLOC;
1796 		}
1797 	      else
1798 		h->u.c.p->section = section;
1799 	    }
1800 	  break;
1801 
1802 	case CREF:
1803 	  {
1804 	    bfd *obfd;
1805 
1806 	    /* We have found a common definition for a symbol which
1807 	       was already defined.  FIXME: It would nice if we could
1808 	       report the BFD which defined an indirect symbol, but we
1809 	       don't have anywhere to store the information.  */
1810 	    if (h->type == bfd_link_hash_defined
1811 		|| h->type == bfd_link_hash_defweak)
1812 	      obfd = h->u.def.section->owner;
1813 	    else
1814 	      obfd = NULL;
1815 	    if (! ((*info->callbacks->multiple_common)
1816 		   (info, h->root.string, obfd, h->type, 0,
1817 		    abfd, bfd_link_hash_common, value)))
1818 	      return FALSE;
1819 	  }
1820 	  break;
1821 
1822 	case MIND:
1823 	  /* Multiple indirect symbols.  This is OK if they both point
1824 	     to the same symbol.  */
1825 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1826 	    break;
1827 	  /* Fall through.  */
1828 	case MDEF:
1829 	  /* Handle a multiple definition.  */
1830 	  if (!info->allow_multiple_definition)
1831 	    {
1832 	      asection *msec = NULL;
1833 	      bfd_vma mval = 0;
1834 
1835 	      switch (h->type)
1836 		{
1837 		case bfd_link_hash_defined:
1838 		  msec = h->u.def.section;
1839 		  mval = h->u.def.value;
1840 		  break;
1841 	        case bfd_link_hash_indirect:
1842 		  msec = bfd_ind_section_ptr;
1843 		  mval = 0;
1844 		  break;
1845 		default:
1846 		  abort ();
1847 		}
1848 
1849 	      /* Ignore a redefinition of an absolute symbol to the
1850 		 same value; it's harmless.  */
1851 	      if (h->type == bfd_link_hash_defined
1852 		  && bfd_is_abs_section (msec)
1853 		  && bfd_is_abs_section (section)
1854 		  && value == mval)
1855 		break;
1856 
1857 	      if (! ((*info->callbacks->multiple_definition)
1858 		     (info, h->root.string, msec->owner, msec, mval,
1859 		      abfd, section, value)))
1860 		return FALSE;
1861 	    }
1862 	  break;
1863 
1864 	case CIND:
1865 	  /* Create an indirect symbol from an existing common symbol.  */
1866 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1867 	  if (! ((*info->callbacks->multiple_common)
1868 		 (info, h->root.string,
1869 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1870 		  abfd, bfd_link_hash_indirect, 0)))
1871 	    return FALSE;
1872 	  /* Fall through.  */
1873 	case IND:
1874 	  /* Create an indirect symbol.  */
1875 	  {
1876 	    struct bfd_link_hash_entry *inh;
1877 
1878 	    /* STRING is the name of the symbol we want to indirect
1879 	       to.  */
1880 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1881 						copy, FALSE);
1882 	    if (inh == NULL)
1883 	      return FALSE;
1884 	    if (inh->type == bfd_link_hash_indirect
1885 		&& inh->u.i.link == h)
1886 	      {
1887 		(*_bfd_error_handler)
1888 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1889 		   abfd, name, string);
1890 		bfd_set_error (bfd_error_invalid_operation);
1891 		return FALSE;
1892 	      }
1893 	    if (inh->type == bfd_link_hash_new)
1894 	      {
1895 		inh->type = bfd_link_hash_undefined;
1896 		inh->u.undef.abfd = abfd;
1897 		bfd_link_add_undef (info->hash, inh);
1898 	      }
1899 
1900 	    /* If the indirect symbol has been referenced, we need to
1901 	       push the reference down to the symbol we are
1902 	       referencing.  */
1903 	    if (h->type != bfd_link_hash_new)
1904 	      {
1905 		row = UNDEF_ROW;
1906 		cycle = TRUE;
1907 	      }
1908 
1909 	    h->type = bfd_link_hash_indirect;
1910 	    h->u.i.link = inh;
1911 	  }
1912 	  break;
1913 
1914 	case SET:
1915 	  /* Add an entry to a set.  */
1916 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1917 						abfd, section, value))
1918 	    return FALSE;
1919 	  break;
1920 
1921 	case WARNC:
1922 	  /* Issue a warning and cycle.  */
1923 	  if (h->u.i.warning != NULL)
1924 	    {
1925 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1926 						 h->root.string, abfd,
1927 						 NULL, 0))
1928 		return FALSE;
1929 	      /* Only issue a warning once.  */
1930 	      h->u.i.warning = NULL;
1931 	    }
1932 	  /* Fall through.  */
1933 	case CYCLE:
1934 	  /* Try again with the referenced symbol.  */
1935 	  h = h->u.i.link;
1936 	  cycle = TRUE;
1937 	  break;
1938 
1939 	case REFC:
1940 	  /* A reference to an indirect symbol.  */
1941 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1942 	    h->u.undef.next = h;
1943 	  h = h->u.i.link;
1944 	  cycle = TRUE;
1945 	  break;
1946 
1947 	case WARN:
1948 	  /* Issue a warning.  */
1949 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1950 					     hash_entry_bfd (h), NULL, 0))
1951 	    return FALSE;
1952 	  break;
1953 
1954 	case CWARN:
1955 	  /* Warn if this symbol has been referenced already,
1956 	     otherwise add a warning.  A symbol has been referenced if
1957 	     the u.undef.next field is not NULL, or it is the tail of the
1958 	     undefined symbol list.  The REF case above helps to
1959 	     ensure this.  */
1960 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1961 	    {
1962 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1963 						 hash_entry_bfd (h), NULL, 0))
1964 		return FALSE;
1965 	      break;
1966 	    }
1967 	  /* Fall through.  */
1968 	case MWARN:
1969 	  /* Make a warning symbol.  */
1970 	  {
1971 	    struct bfd_link_hash_entry *sub;
1972 
1973 	    /* STRING is the warning to give.  */
1974 	    sub = ((struct bfd_link_hash_entry *)
1975 		   ((*info->hash->table.newfunc)
1976 		    (NULL, &info->hash->table, h->root.string)));
1977 	    if (sub == NULL)
1978 	      return FALSE;
1979 	    *sub = *h;
1980 	    sub->type = bfd_link_hash_warning;
1981 	    sub->u.i.link = h;
1982 	    if (! copy)
1983 	      sub->u.i.warning = string;
1984 	    else
1985 	      {
1986 		char *w;
1987 		size_t len = strlen (string) + 1;
1988 
1989 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1990 		if (w == NULL)
1991 		  return FALSE;
1992 		memcpy (w, string, len);
1993 		sub->u.i.warning = w;
1994 	      }
1995 
1996 	    bfd_hash_replace (&info->hash->table,
1997 			      (struct bfd_hash_entry *) h,
1998 			      (struct bfd_hash_entry *) sub);
1999 	    if (hashp != NULL)
2000 	      *hashp = sub;
2001 	  }
2002 	  break;
2003 	}
2004     }
2005   while (cycle);
2006 
2007   return TRUE;
2008 }
2009 
2010 /* Generic final link routine.  */
2011 
2012 bfd_boolean
2013 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2014 {
2015   bfd *sub;
2016   asection *o;
2017   struct bfd_link_order *p;
2018   size_t outsymalloc;
2019   struct generic_write_global_symbol_info wginfo;
2020 
2021   bfd_get_outsymbols (abfd) = NULL;
2022   bfd_get_symcount (abfd) = 0;
2023   outsymalloc = 0;
2024 
2025   /* Mark all sections which will be included in the output file.  */
2026   for (o = abfd->sections; o != NULL; o = o->next)
2027     for (p = o->map_head.link_order; p != NULL; p = p->next)
2028       if (p->type == bfd_indirect_link_order)
2029 	p->u.indirect.section->linker_mark = TRUE;
2030 
2031   /* Build the output symbol table.  */
2032   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2033     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2034       return FALSE;
2035 
2036   /* Accumulate the global symbols.  */
2037   wginfo.info = info;
2038   wginfo.output_bfd = abfd;
2039   wginfo.psymalloc = &outsymalloc;
2040   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2041 				   _bfd_generic_link_write_global_symbol,
2042 				   &wginfo);
2043 
2044   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2045      shouldn't really need one, since we have SYMCOUNT, but some old
2046      code still expects one.  */
2047   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2048     return FALSE;
2049 
2050   if (info->relocatable)
2051     {
2052       /* Allocate space for the output relocs for each section.  */
2053       for (o = abfd->sections; o != NULL; o = o->next)
2054 	{
2055 	  o->reloc_count = 0;
2056 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2057 	    {
2058 	      if (p->type == bfd_section_reloc_link_order
2059 		  || p->type == bfd_symbol_reloc_link_order)
2060 		++o->reloc_count;
2061 	      else if (p->type == bfd_indirect_link_order)
2062 		{
2063 		  asection *input_section;
2064 		  bfd *input_bfd;
2065 		  long relsize;
2066 		  arelent **relocs;
2067 		  asymbol **symbols;
2068 		  long reloc_count;
2069 
2070 		  input_section = p->u.indirect.section;
2071 		  input_bfd = input_section->owner;
2072 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2073 						       input_section);
2074 		  if (relsize < 0)
2075 		    return FALSE;
2076 		  relocs = (arelent **) bfd_malloc (relsize);
2077 		  if (!relocs && relsize != 0)
2078 		    return FALSE;
2079 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2080 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2081 							input_section,
2082 							relocs,
2083 							symbols);
2084 		  free (relocs);
2085 		  if (reloc_count < 0)
2086 		    return FALSE;
2087 		  BFD_ASSERT ((unsigned long) reloc_count
2088 			      == input_section->reloc_count);
2089 		  o->reloc_count += reloc_count;
2090 		}
2091 	    }
2092 	  if (o->reloc_count > 0)
2093 	    {
2094 	      bfd_size_type amt;
2095 
2096 	      amt = o->reloc_count;
2097 	      amt *= sizeof (arelent *);
2098 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2099 	      if (!o->orelocation)
2100 		return FALSE;
2101 	      o->flags |= SEC_RELOC;
2102 	      /* Reset the count so that it can be used as an index
2103 		 when putting in the output relocs.  */
2104 	      o->reloc_count = 0;
2105 	    }
2106 	}
2107     }
2108 
2109   /* Handle all the link order information for the sections.  */
2110   for (o = abfd->sections; o != NULL; o = o->next)
2111     {
2112       for (p = o->map_head.link_order; p != NULL; p = p->next)
2113 	{
2114 	  switch (p->type)
2115 	    {
2116 	    case bfd_section_reloc_link_order:
2117 	    case bfd_symbol_reloc_link_order:
2118 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2119 		return FALSE;
2120 	      break;
2121 	    case bfd_indirect_link_order:
2122 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2123 		return FALSE;
2124 	      break;
2125 	    default:
2126 	      if (! _bfd_default_link_order (abfd, info, o, p))
2127 		return FALSE;
2128 	      break;
2129 	    }
2130 	}
2131     }
2132 
2133   return TRUE;
2134 }
2135 
2136 /* Add an output symbol to the output BFD.  */
2137 
2138 static bfd_boolean
2139 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2140 {
2141   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2142     {
2143       asymbol **newsyms;
2144       bfd_size_type amt;
2145 
2146       if (*psymalloc == 0)
2147 	*psymalloc = 124;
2148       else
2149 	*psymalloc *= 2;
2150       amt = *psymalloc;
2151       amt *= sizeof (asymbol *);
2152       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2153       if (newsyms == NULL)
2154 	return FALSE;
2155       bfd_get_outsymbols (output_bfd) = newsyms;
2156     }
2157 
2158   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2159   if (sym != NULL)
2160     ++ bfd_get_symcount (output_bfd);
2161 
2162   return TRUE;
2163 }
2164 
2165 /* Handle the symbols for an input BFD.  */
2166 
2167 bfd_boolean
2168 _bfd_generic_link_output_symbols (bfd *output_bfd,
2169 				  bfd *input_bfd,
2170 				  struct bfd_link_info *info,
2171 				  size_t *psymalloc)
2172 {
2173   asymbol **sym_ptr;
2174   asymbol **sym_end;
2175 
2176   if (!bfd_generic_link_read_symbols (input_bfd))
2177     return FALSE;
2178 
2179   /* Create a filename symbol if we are supposed to.  */
2180   if (info->create_object_symbols_section != NULL)
2181     {
2182       asection *sec;
2183 
2184       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2185 	{
2186 	  if (sec->output_section == info->create_object_symbols_section)
2187 	    {
2188 	      asymbol *newsym;
2189 
2190 	      newsym = bfd_make_empty_symbol (input_bfd);
2191 	      if (!newsym)
2192 		return FALSE;
2193 	      newsym->name = input_bfd->filename;
2194 	      newsym->value = 0;
2195 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2196 	      newsym->section = sec;
2197 
2198 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2199 					       newsym))
2200 		return FALSE;
2201 
2202 	      break;
2203 	    }
2204 	}
2205     }
2206 
2207   /* Adjust the values of the globally visible symbols, and write out
2208      local symbols.  */
2209   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2210   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2211   for (; sym_ptr < sym_end; sym_ptr++)
2212     {
2213       asymbol *sym;
2214       struct generic_link_hash_entry *h;
2215       bfd_boolean output;
2216 
2217       h = NULL;
2218       sym = *sym_ptr;
2219       if ((sym->flags & (BSF_INDIRECT
2220 			 | BSF_WARNING
2221 			 | BSF_GLOBAL
2222 			 | BSF_CONSTRUCTOR
2223 			 | BSF_WEAK)) != 0
2224 	  || bfd_is_und_section (bfd_get_section (sym))
2225 	  || bfd_is_com_section (bfd_get_section (sym))
2226 	  || bfd_is_ind_section (bfd_get_section (sym)))
2227 	{
2228 	  if (sym->udata.p != NULL)
2229 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2230 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2231 	    {
2232 	      /* This case normally means that the main linker code
2233                  deliberately ignored this constructor symbol.  We
2234                  should just pass it through.  This will screw up if
2235                  the constructor symbol is from a different,
2236                  non-generic, object file format, but the case will
2237                  only arise when linking with -r, which will probably
2238                  fail anyhow, since there will be no way to represent
2239                  the relocs in the output format being used.  */
2240 	      h = NULL;
2241 	    }
2242 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2243 	    h = ((struct generic_link_hash_entry *)
2244 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2245 					       bfd_asymbol_name (sym),
2246 					       FALSE, FALSE, TRUE));
2247 	  else
2248 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2249 					       bfd_asymbol_name (sym),
2250 					       FALSE, FALSE, TRUE);
2251 
2252 	  if (h != NULL)
2253 	    {
2254 	      /* Force all references to this symbol to point to
2255 		 the same area in memory.  It is possible that
2256 		 this routine will be called with a hash table
2257 		 other than a generic hash table, so we double
2258 		 check that.  */
2259 	      if (info->output_bfd->xvec == input_bfd->xvec)
2260 		{
2261 		  if (h->sym != NULL)
2262 		    *sym_ptr = sym = h->sym;
2263 		}
2264 
2265 	      switch (h->root.type)
2266 		{
2267 		default:
2268 		case bfd_link_hash_new:
2269 		  abort ();
2270 		case bfd_link_hash_undefined:
2271 		  break;
2272 		case bfd_link_hash_undefweak:
2273 		  sym->flags |= BSF_WEAK;
2274 		  break;
2275 		case bfd_link_hash_indirect:
2276 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2277 		  /* fall through */
2278 		case bfd_link_hash_defined:
2279 		  sym->flags |= BSF_GLOBAL;
2280 		  sym->flags &=~ BSF_CONSTRUCTOR;
2281 		  sym->value = h->root.u.def.value;
2282 		  sym->section = h->root.u.def.section;
2283 		  break;
2284 		case bfd_link_hash_defweak:
2285 		  sym->flags |= BSF_WEAK;
2286 		  sym->flags &=~ BSF_CONSTRUCTOR;
2287 		  sym->value = h->root.u.def.value;
2288 		  sym->section = h->root.u.def.section;
2289 		  break;
2290 		case bfd_link_hash_common:
2291 		  sym->value = h->root.u.c.size;
2292 		  sym->flags |= BSF_GLOBAL;
2293 		  if (! bfd_is_com_section (sym->section))
2294 		    {
2295 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2296 		      sym->section = bfd_com_section_ptr;
2297 		    }
2298 		  /* We do not set the section of the symbol to
2299 		     h->root.u.c.p->section.  That value was saved so
2300 		     that we would know where to allocate the symbol
2301 		     if it was defined.  In this case the type is
2302 		     still bfd_link_hash_common, so we did not define
2303 		     it, so we do not want to use that section.  */
2304 		  break;
2305 		}
2306 	    }
2307 	}
2308 
2309       /* This switch is straight from the old code in
2310 	 write_file_locals in ldsym.c.  */
2311       if (info->strip == strip_all
2312 	  || (info->strip == strip_some
2313 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2314 				  FALSE, FALSE) == NULL))
2315 	output = FALSE;
2316       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2317 	{
2318 	  /* If this symbol is marked as occurring now, rather
2319 	     than at the end, output it now.  This is used for
2320 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2321 	     better way.  */
2322 	  if (bfd_asymbol_bfd (sym) == input_bfd
2323 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2324 	    output = TRUE;
2325 	  else
2326 	    output = FALSE;
2327 	}
2328       else if (bfd_is_ind_section (sym->section))
2329 	output = FALSE;
2330       else if ((sym->flags & BSF_DEBUGGING) != 0)
2331 	{
2332 	  if (info->strip == strip_none)
2333 	    output = TRUE;
2334 	  else
2335 	    output = FALSE;
2336 	}
2337       else if (bfd_is_und_section (sym->section)
2338 	       || bfd_is_com_section (sym->section))
2339 	output = FALSE;
2340       else if ((sym->flags & BSF_LOCAL) != 0)
2341 	{
2342 	  if ((sym->flags & BSF_WARNING) != 0)
2343 	    output = FALSE;
2344 	  else
2345 	    {
2346 	      switch (info->discard)
2347 		{
2348 		default:
2349 		case discard_all:
2350 		  output = FALSE;
2351 		  break;
2352 		case discard_sec_merge:
2353 		  output = TRUE;
2354 		  if (info->relocatable
2355 		      || ! (sym->section->flags & SEC_MERGE))
2356 		    break;
2357 		  /* FALLTHROUGH */
2358 		case discard_l:
2359 		  if (bfd_is_local_label (input_bfd, sym))
2360 		    output = FALSE;
2361 		  else
2362 		    output = TRUE;
2363 		  break;
2364 		case discard_none:
2365 		  output = TRUE;
2366 		  break;
2367 		}
2368 	    }
2369 	}
2370       else if ((sym->flags & BSF_CONSTRUCTOR))
2371 	{
2372 	  if (info->strip != strip_all)
2373 	    output = TRUE;
2374 	  else
2375 	    output = FALSE;
2376 	}
2377       else
2378 	abort ();
2379 
2380       /* If this symbol is in a section which is not being included
2381 	 in the output file, then we don't want to output the
2382 	 symbol.  */
2383       if (!bfd_is_abs_section (sym->section)
2384 	  && bfd_section_removed_from_list (output_bfd,
2385 					    sym->section->output_section))
2386 	output = FALSE;
2387 
2388       if (output)
2389 	{
2390 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2391 	    return FALSE;
2392 	  if (h != NULL)
2393 	    h->written = TRUE;
2394 	}
2395     }
2396 
2397   return TRUE;
2398 }
2399 
2400 /* Set the section and value of a generic BFD symbol based on a linker
2401    hash table entry.  */
2402 
2403 static void
2404 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2405 {
2406   switch (h->type)
2407     {
2408     default:
2409       abort ();
2410       break;
2411     case bfd_link_hash_new:
2412       /* This can happen when a constructor symbol is seen but we are
2413          not building constructors.  */
2414       if (sym->section != NULL)
2415 	{
2416 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2417 	}
2418       else
2419 	{
2420 	  sym->flags |= BSF_CONSTRUCTOR;
2421 	  sym->section = bfd_abs_section_ptr;
2422 	  sym->value = 0;
2423 	}
2424       break;
2425     case bfd_link_hash_undefined:
2426       sym->section = bfd_und_section_ptr;
2427       sym->value = 0;
2428       break;
2429     case bfd_link_hash_undefweak:
2430       sym->section = bfd_und_section_ptr;
2431       sym->value = 0;
2432       sym->flags |= BSF_WEAK;
2433       break;
2434     case bfd_link_hash_defined:
2435       sym->section = h->u.def.section;
2436       sym->value = h->u.def.value;
2437       break;
2438     case bfd_link_hash_defweak:
2439       sym->flags |= BSF_WEAK;
2440       sym->section = h->u.def.section;
2441       sym->value = h->u.def.value;
2442       break;
2443     case bfd_link_hash_common:
2444       sym->value = h->u.c.size;
2445       if (sym->section == NULL)
2446 	sym->section = bfd_com_section_ptr;
2447       else if (! bfd_is_com_section (sym->section))
2448 	{
2449 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2450 	  sym->section = bfd_com_section_ptr;
2451 	}
2452       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2453       break;
2454     case bfd_link_hash_indirect:
2455     case bfd_link_hash_warning:
2456       /* FIXME: What should we do here?  */
2457       break;
2458     }
2459 }
2460 
2461 /* Write out a global symbol, if it hasn't already been written out.
2462    This is called for each symbol in the hash table.  */
2463 
2464 bfd_boolean
2465 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2466 				       void *data)
2467 {
2468   struct generic_write_global_symbol_info *wginfo =
2469       (struct generic_write_global_symbol_info *) data;
2470   asymbol *sym;
2471 
2472   if (h->root.type == bfd_link_hash_warning)
2473     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2474 
2475   if (h->written)
2476     return TRUE;
2477 
2478   h->written = TRUE;
2479 
2480   if (wginfo->info->strip == strip_all
2481       || (wginfo->info->strip == strip_some
2482 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2483 			      FALSE, FALSE) == NULL))
2484     return TRUE;
2485 
2486   if (h->sym != NULL)
2487     sym = h->sym;
2488   else
2489     {
2490       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2491       if (!sym)
2492 	return FALSE;
2493       sym->name = h->root.root.string;
2494       sym->flags = 0;
2495     }
2496 
2497   set_symbol_from_hash (sym, &h->root);
2498 
2499   sym->flags |= BSF_GLOBAL;
2500 
2501   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2502 				   sym))
2503     {
2504       /* FIXME: No way to return failure.  */
2505       abort ();
2506     }
2507 
2508   return TRUE;
2509 }
2510 
2511 /* Create a relocation.  */
2512 
2513 bfd_boolean
2514 _bfd_generic_reloc_link_order (bfd *abfd,
2515 			       struct bfd_link_info *info,
2516 			       asection *sec,
2517 			       struct bfd_link_order *link_order)
2518 {
2519   arelent *r;
2520 
2521   if (! info->relocatable)
2522     abort ();
2523   if (sec->orelocation == NULL)
2524     abort ();
2525 
2526   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2527   if (r == NULL)
2528     return FALSE;
2529 
2530   r->address = link_order->offset;
2531   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2532   if (r->howto == 0)
2533     {
2534       bfd_set_error (bfd_error_bad_value);
2535       return FALSE;
2536     }
2537 
2538   /* Get the symbol to use for the relocation.  */
2539   if (link_order->type == bfd_section_reloc_link_order)
2540     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2541   else
2542     {
2543       struct generic_link_hash_entry *h;
2544 
2545       h = ((struct generic_link_hash_entry *)
2546 	   bfd_wrapped_link_hash_lookup (abfd, info,
2547 					 link_order->u.reloc.p->u.name,
2548 					 FALSE, FALSE, TRUE));
2549       if (h == NULL
2550 	  || ! h->written)
2551 	{
2552 	  if (! ((*info->callbacks->unattached_reloc)
2553 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2554 	    return FALSE;
2555 	  bfd_set_error (bfd_error_bad_value);
2556 	  return FALSE;
2557 	}
2558       r->sym_ptr_ptr = &h->sym;
2559     }
2560 
2561   /* If this is an inplace reloc, write the addend to the object file.
2562      Otherwise, store it in the reloc addend.  */
2563   if (! r->howto->partial_inplace)
2564     r->addend = link_order->u.reloc.p->addend;
2565   else
2566     {
2567       bfd_size_type size;
2568       bfd_reloc_status_type rstat;
2569       bfd_byte *buf;
2570       bfd_boolean ok;
2571       file_ptr loc;
2572 
2573       size = bfd_get_reloc_size (r->howto);
2574       buf = (bfd_byte *) bfd_zmalloc (size);
2575       if (buf == NULL)
2576 	return FALSE;
2577       rstat = _bfd_relocate_contents (r->howto, abfd,
2578 				      (bfd_vma) link_order->u.reloc.p->addend,
2579 				      buf);
2580       switch (rstat)
2581 	{
2582 	case bfd_reloc_ok:
2583 	  break;
2584 	default:
2585 	case bfd_reloc_outofrange:
2586 	  abort ();
2587 	case bfd_reloc_overflow:
2588 	  if (! ((*info->callbacks->reloc_overflow)
2589 		 (info, NULL,
2590 		  (link_order->type == bfd_section_reloc_link_order
2591 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2592 		   : link_order->u.reloc.p->u.name),
2593 		  r->howto->name, link_order->u.reloc.p->addend,
2594 		  NULL, NULL, 0)))
2595 	    {
2596 	      free (buf);
2597 	      return FALSE;
2598 	    }
2599 	  break;
2600 	}
2601       loc = link_order->offset * bfd_octets_per_byte (abfd);
2602       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2603       free (buf);
2604       if (! ok)
2605 	return FALSE;
2606 
2607       r->addend = 0;
2608     }
2609 
2610   sec->orelocation[sec->reloc_count] = r;
2611   ++sec->reloc_count;
2612 
2613   return TRUE;
2614 }
2615 
2616 /* Allocate a new link_order for a section.  */
2617 
2618 struct bfd_link_order *
2619 bfd_new_link_order (bfd *abfd, asection *section)
2620 {
2621   bfd_size_type amt = sizeof (struct bfd_link_order);
2622   struct bfd_link_order *new_lo;
2623 
2624   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2625   if (!new_lo)
2626     return NULL;
2627 
2628   new_lo->type = bfd_undefined_link_order;
2629 
2630   if (section->map_tail.link_order != NULL)
2631     section->map_tail.link_order->next = new_lo;
2632   else
2633     section->map_head.link_order = new_lo;
2634   section->map_tail.link_order = new_lo;
2635 
2636   return new_lo;
2637 }
2638 
2639 /* Default link order processing routine.  Note that we can not handle
2640    the reloc_link_order types here, since they depend upon the details
2641    of how the particular backends generates relocs.  */
2642 
2643 bfd_boolean
2644 _bfd_default_link_order (bfd *abfd,
2645 			 struct bfd_link_info *info,
2646 			 asection *sec,
2647 			 struct bfd_link_order *link_order)
2648 {
2649   switch (link_order->type)
2650     {
2651     case bfd_undefined_link_order:
2652     case bfd_section_reloc_link_order:
2653     case bfd_symbol_reloc_link_order:
2654     default:
2655       abort ();
2656     case bfd_indirect_link_order:
2657       return default_indirect_link_order (abfd, info, sec, link_order,
2658 					  FALSE);
2659     case bfd_data_link_order:
2660       return default_data_link_order (abfd, info, sec, link_order);
2661     }
2662 }
2663 
2664 /* Default routine to handle a bfd_data_link_order.  */
2665 
2666 static bfd_boolean
2667 default_data_link_order (bfd *abfd,
2668 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2669 			 asection *sec,
2670 			 struct bfd_link_order *link_order)
2671 {
2672   bfd_size_type size;
2673   size_t fill_size;
2674   bfd_byte *fill;
2675   file_ptr loc;
2676   bfd_boolean result;
2677 
2678   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2679 
2680   size = link_order->size;
2681   if (size == 0)
2682     return TRUE;
2683 
2684   fill = link_order->u.data.contents;
2685   fill_size = link_order->u.data.size;
2686   if (fill_size != 0 && fill_size < size)
2687     {
2688       bfd_byte *p;
2689       fill = (bfd_byte *) bfd_malloc (size);
2690       if (fill == NULL)
2691 	return FALSE;
2692       p = fill;
2693       if (fill_size == 1)
2694 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2695       else
2696 	{
2697 	  do
2698 	    {
2699 	      memcpy (p, link_order->u.data.contents, fill_size);
2700 	      p += fill_size;
2701 	      size -= fill_size;
2702 	    }
2703 	  while (size >= fill_size);
2704 	  if (size != 0)
2705 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2706 	  size = link_order->size;
2707 	}
2708     }
2709 
2710   loc = link_order->offset * bfd_octets_per_byte (abfd);
2711   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2712 
2713   if (fill != link_order->u.data.contents)
2714     free (fill);
2715   return result;
2716 }
2717 
2718 /* Default routine to handle a bfd_indirect_link_order.  */
2719 
2720 static bfd_boolean
2721 default_indirect_link_order (bfd *output_bfd,
2722 			     struct bfd_link_info *info,
2723 			     asection *output_section,
2724 			     struct bfd_link_order *link_order,
2725 			     bfd_boolean generic_linker)
2726 {
2727   asection *input_section;
2728   bfd *input_bfd;
2729   bfd_byte *contents = NULL;
2730   bfd_byte *new_contents;
2731   bfd_size_type sec_size;
2732   file_ptr loc;
2733 
2734   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2735 
2736   input_section = link_order->u.indirect.section;
2737   input_bfd = input_section->owner;
2738   if (input_section->size == 0)
2739     return TRUE;
2740 
2741   BFD_ASSERT (input_section->output_section == output_section);
2742   BFD_ASSERT (input_section->output_offset == link_order->offset);
2743   BFD_ASSERT (input_section->size == link_order->size);
2744 
2745   if (info->relocatable
2746       && input_section->reloc_count > 0
2747       && output_section->orelocation == NULL)
2748     {
2749       /* Space has not been allocated for the output relocations.
2750 	 This can happen when we are called by a specific backend
2751 	 because somebody is attempting to link together different
2752 	 types of object files.  Handling this case correctly is
2753 	 difficult, and sometimes impossible.  */
2754       (*_bfd_error_handler)
2755 	(_("Attempt to do relocatable link with %s input and %s output"),
2756 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2757       bfd_set_error (bfd_error_wrong_format);
2758       return FALSE;
2759     }
2760 
2761   if (! generic_linker)
2762     {
2763       asymbol **sympp;
2764       asymbol **symppend;
2765 
2766       /* Get the canonical symbols.  The generic linker will always
2767 	 have retrieved them by this point, but we are being called by
2768 	 a specific linker, presumably because we are linking
2769 	 different types of object files together.  */
2770       if (!bfd_generic_link_read_symbols (input_bfd))
2771 	return FALSE;
2772 
2773       /* Since we have been called by a specific linker, rather than
2774 	 the generic linker, the values of the symbols will not be
2775 	 right.  They will be the values as seen in the input file,
2776 	 not the values of the final link.  We need to fix them up
2777 	 before we can relocate the section.  */
2778       sympp = _bfd_generic_link_get_symbols (input_bfd);
2779       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2780       for (; sympp < symppend; sympp++)
2781 	{
2782 	  asymbol *sym;
2783 	  struct bfd_link_hash_entry *h;
2784 
2785 	  sym = *sympp;
2786 
2787 	  if ((sym->flags & (BSF_INDIRECT
2788 			     | BSF_WARNING
2789 			     | BSF_GLOBAL
2790 			     | BSF_CONSTRUCTOR
2791 			     | BSF_WEAK)) != 0
2792 	      || bfd_is_und_section (bfd_get_section (sym))
2793 	      || bfd_is_com_section (bfd_get_section (sym))
2794 	      || bfd_is_ind_section (bfd_get_section (sym)))
2795 	    {
2796 	      /* sym->udata may have been set by
2797 		 generic_link_add_symbol_list.  */
2798 	      if (sym->udata.p != NULL)
2799 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2800 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2801 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2802 						  bfd_asymbol_name (sym),
2803 						  FALSE, FALSE, TRUE);
2804 	      else
2805 		h = bfd_link_hash_lookup (info->hash,
2806 					  bfd_asymbol_name (sym),
2807 					  FALSE, FALSE, TRUE);
2808 	      if (h != NULL)
2809 		set_symbol_from_hash (sym, h);
2810 	    }
2811 	}
2812     }
2813 
2814   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2815       && input_section->size != 0)
2816     {
2817       /* Group section contents are set by bfd_elf_set_group_contents.  */
2818       if (!output_bfd->output_has_begun)
2819 	{
2820 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2821 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2822 	    goto error_return;
2823 	}
2824       new_contents = output_section->contents;
2825       BFD_ASSERT (new_contents != NULL);
2826       BFD_ASSERT (input_section->output_offset == 0);
2827     }
2828   else
2829     {
2830       /* Get and relocate the section contents.  */
2831       sec_size = (input_section->rawsize > input_section->size
2832 		  ? input_section->rawsize
2833 		  : input_section->size);
2834       contents = (bfd_byte *) bfd_malloc (sec_size);
2835       if (contents == NULL && sec_size != 0)
2836 	goto error_return;
2837       new_contents = (bfd_get_relocated_section_contents
2838 		      (output_bfd, info, link_order, contents,
2839 		       info->relocatable,
2840 		       _bfd_generic_link_get_symbols (input_bfd)));
2841       if (!new_contents)
2842 	goto error_return;
2843     }
2844 
2845   /* Output the section contents.  */
2846   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2847   if (! bfd_set_section_contents (output_bfd, output_section,
2848 				  new_contents, loc, input_section->size))
2849     goto error_return;
2850 
2851   if (contents != NULL)
2852     free (contents);
2853   return TRUE;
2854 
2855  error_return:
2856   if (contents != NULL)
2857     free (contents);
2858   return FALSE;
2859 }
2860 
2861 /* A little routine to count the number of relocs in a link_order
2862    list.  */
2863 
2864 unsigned int
2865 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2866 {
2867   register unsigned int c;
2868   register struct bfd_link_order *l;
2869 
2870   c = 0;
2871   for (l = link_order; l != NULL; l = l->next)
2872     {
2873       if (l->type == bfd_section_reloc_link_order
2874 	  || l->type == bfd_symbol_reloc_link_order)
2875 	++c;
2876     }
2877 
2878   return c;
2879 }
2880 
2881 /*
2882 FUNCTION
2883 	bfd_link_split_section
2884 
2885 SYNOPSIS
2886         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2887 
2888 DESCRIPTION
2889 	Return nonzero if @var{sec} should be split during a
2890 	reloceatable or final link.
2891 
2892 .#define bfd_link_split_section(abfd, sec) \
2893 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2894 .
2895 
2896 */
2897 
2898 bfd_boolean
2899 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2900 				 asection *sec ATTRIBUTE_UNUSED)
2901 {
2902   return FALSE;
2903 }
2904 
2905 /*
2906 FUNCTION
2907 	bfd_section_already_linked
2908 
2909 SYNOPSIS
2910         void bfd_section_already_linked (bfd *abfd, asection *sec,
2911 					 struct bfd_link_info *info);
2912 
2913 DESCRIPTION
2914 	Check if @var{sec} has been already linked during a reloceatable
2915 	or final link.
2916 
2917 .#define bfd_section_already_linked(abfd, sec, info) \
2918 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2919 .
2920 
2921 */
2922 
2923 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2924    once into the output.  This routine checks each section, and
2925    arrange to discard it if a section of the same name has already
2926    been linked.  This code assumes that all relevant sections have the
2927    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2928    section name.  bfd_section_already_linked is called via
2929    bfd_map_over_sections.  */
2930 
2931 /* The hash table.  */
2932 
2933 static struct bfd_hash_table _bfd_section_already_linked_table;
2934 
2935 /* Support routines for the hash table used by section_already_linked,
2936    initialize the table, traverse, lookup, fill in an entry and remove
2937    the table.  */
2938 
2939 void
2940 bfd_section_already_linked_table_traverse
2941   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2942 			void *), void *info)
2943 {
2944   bfd_hash_traverse (&_bfd_section_already_linked_table,
2945 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2946 				       void *)) func,
2947 		     info);
2948 }
2949 
2950 struct bfd_section_already_linked_hash_entry *
2951 bfd_section_already_linked_table_lookup (const char *name)
2952 {
2953   return ((struct bfd_section_already_linked_hash_entry *)
2954 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2955 			   TRUE, FALSE));
2956 }
2957 
2958 bfd_boolean
2959 bfd_section_already_linked_table_insert
2960   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2961    asection *sec)
2962 {
2963   struct bfd_section_already_linked *l;
2964 
2965   /* Allocate the memory from the same obstack as the hash table is
2966      kept in.  */
2967   l = (struct bfd_section_already_linked *)
2968       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2969   if (l == NULL)
2970     return FALSE;
2971   l->sec = sec;
2972   l->next = already_linked_list->entry;
2973   already_linked_list->entry = l;
2974   return TRUE;
2975 }
2976 
2977 static struct bfd_hash_entry *
2978 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2979 			struct bfd_hash_table *table,
2980 			const char *string ATTRIBUTE_UNUSED)
2981 {
2982   struct bfd_section_already_linked_hash_entry *ret =
2983     (struct bfd_section_already_linked_hash_entry *)
2984       bfd_hash_allocate (table, sizeof *ret);
2985 
2986   if (ret == NULL)
2987     return NULL;
2988 
2989   ret->entry = NULL;
2990 
2991   return &ret->root;
2992 }
2993 
2994 bfd_boolean
2995 bfd_section_already_linked_table_init (void)
2996 {
2997   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2998 				already_linked_newfunc,
2999 				sizeof (struct bfd_section_already_linked_hash_entry),
3000 				42);
3001 }
3002 
3003 void
3004 bfd_section_already_linked_table_free (void)
3005 {
3006   bfd_hash_table_free (&_bfd_section_already_linked_table);
3007 }
3008 
3009 /* This is used on non-ELF inputs.  */
3010 
3011 void
3012 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
3013 				     struct bfd_link_info *info)
3014 {
3015   flagword flags;
3016   const char *name;
3017   struct bfd_section_already_linked *l;
3018   struct bfd_section_already_linked_hash_entry *already_linked_list;
3019 
3020   flags = sec->flags;
3021   if ((flags & SEC_LINK_ONCE) == 0)
3022     return;
3023 
3024   /* FIXME: When doing a relocatable link, we may have trouble
3025      copying relocations in other sections that refer to local symbols
3026      in the section being discarded.  Those relocations will have to
3027      be converted somehow; as of this writing I'm not sure that any of
3028      the backends handle that correctly.
3029 
3030      It is tempting to instead not discard link once sections when
3031      doing a relocatable link (technically, they should be discarded
3032      whenever we are building constructors).  However, that fails,
3033      because the linker winds up combining all the link once sections
3034      into a single large link once section, which defeats the purpose
3035      of having link once sections in the first place.  */
3036 
3037   name = bfd_get_section_name (abfd, sec);
3038 
3039   already_linked_list = bfd_section_already_linked_table_lookup (name);
3040 
3041   for (l = already_linked_list->entry; l != NULL; l = l->next)
3042     {
3043       bfd_boolean skip = FALSE;
3044       struct coff_comdat_info *s_comdat
3045 	= bfd_coff_get_comdat_section (abfd, sec);
3046       struct coff_comdat_info *l_comdat
3047 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3048 
3049       /* We may have 3 different sections on the list: group section,
3050 	 comdat section and linkonce section. SEC may be a linkonce or
3051 	 comdat section. We always ignore group section. For non-COFF
3052 	 inputs, we also ignore comdat section.
3053 
3054 	 FIXME: Is that safe to match a linkonce section with a comdat
3055 	 section for COFF inputs?  */
3056       if ((l->sec->flags & SEC_GROUP) != 0)
3057 	skip = TRUE;
3058       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3059 	{
3060 	  if (s_comdat != NULL
3061 	      && l_comdat != NULL
3062 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3063 	    skip = TRUE;
3064 	}
3065       else if (l_comdat != NULL)
3066 	skip = TRUE;
3067 
3068       if (!skip)
3069 	{
3070 	  /* The section has already been linked.  See if we should
3071              issue a warning.  */
3072 	  switch (flags & SEC_LINK_DUPLICATES)
3073 	    {
3074 	    default:
3075 	      abort ();
3076 
3077 	    case SEC_LINK_DUPLICATES_DISCARD:
3078 	      break;
3079 
3080 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3081 	      (*_bfd_error_handler)
3082 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3083 		 abfd, sec);
3084 	      break;
3085 
3086 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3087 	      /* FIXME: We should really dig out the contents of both
3088                  sections and memcmp them.  The COFF/PE spec says that
3089                  the Microsoft linker does not implement this
3090                  correctly, so I'm not going to bother doing it
3091                  either.  */
3092 	      /* Fall through.  */
3093 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3094 	      if (sec->size != l->sec->size)
3095 		(*_bfd_error_handler)
3096 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3097 		   abfd, sec);
3098 	      break;
3099 	    }
3100 
3101 	  /* Set the output_section field so that lang_add_section
3102 	     does not create a lang_input_section structure for this
3103 	     section.  Since there might be a symbol in the section
3104 	     being discarded, we must retain a pointer to the section
3105 	     which we are really going to use.  */
3106 	  sec->output_section = bfd_abs_section_ptr;
3107 	  sec->kept_section = l->sec;
3108 
3109 	  return;
3110 	}
3111     }
3112 
3113   /* This is the first section with this name.  Record it.  */
3114   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3115     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3116 }
3117 
3118 /* Convert symbols in excluded output sections to use a kept section.  */
3119 
3120 static bfd_boolean
3121 fix_syms (struct bfd_link_hash_entry *h, void *data)
3122 {
3123   bfd *obfd = (bfd *) data;
3124 
3125   if (h->type == bfd_link_hash_warning)
3126     h = h->u.i.link;
3127 
3128   if (h->type == bfd_link_hash_defined
3129       || h->type == bfd_link_hash_defweak)
3130     {
3131       asection *s = h->u.def.section;
3132       if (s != NULL
3133 	  && s->output_section != NULL
3134 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3135 	  && bfd_section_removed_from_list (obfd, s->output_section))
3136 	{
3137 	  asection *op, *op1;
3138 
3139 	  h->u.def.value += s->output_offset + s->output_section->vma;
3140 
3141 	  /* Find preceding kept section.  */
3142 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3143 	    if ((op1->flags & SEC_EXCLUDE) == 0
3144 		&& !bfd_section_removed_from_list (obfd, op1))
3145 	      break;
3146 
3147 	  /* Find following kept section.  Start at prev->next because
3148 	     other sections may have been added after S was removed.  */
3149 	  if (s->output_section->prev != NULL)
3150 	    op = s->output_section->prev->next;
3151 	  else
3152 	    op = s->output_section->owner->sections;
3153 	  for (; op != NULL; op = op->next)
3154 	    if ((op->flags & SEC_EXCLUDE) == 0
3155 		&& !bfd_section_removed_from_list (obfd, op))
3156 	      break;
3157 
3158 	  /* Choose better of two sections, based on flags.  The idea
3159 	     is to choose a section that will be in the same segment
3160 	     as S would have been if it was kept.  */
3161 	  if (op1 == NULL)
3162 	    {
3163 	      if (op == NULL)
3164 		op = bfd_abs_section_ptr;
3165 	    }
3166 	  else if (op == NULL)
3167 	    op = op1;
3168 	  else if (((op1->flags ^ op->flags)
3169 		    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3170 	    {
3171 	      if (((op->flags ^ s->flags)
3172 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3173 		  /* We prefer to choose a loaded section.  Section S
3174 		     doesn't have SEC_LOAD set (it being excluded, that
3175 		     part of the flag processing didn't happen) so we
3176 		     can't compare that flag to those of OP and OP1.  */
3177 		  || ((op1->flags & SEC_LOAD) != 0
3178 		      && (op->flags & SEC_LOAD) == 0))
3179 		op = op1;
3180 	    }
3181 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3182 	    {
3183 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3184 		op = op1;
3185 	    }
3186 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3187 	    {
3188 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3189 		op = op1;
3190 	    }
3191 	  else
3192 	    {
3193 	      /* Flags we care about are the same.  Prefer the following
3194 		 section if that will result in a positive valued sym.  */
3195 	      if (h->u.def.value < op->vma)
3196 		op = op1;
3197 	    }
3198 
3199 	  h->u.def.value -= op->vma;
3200 	  h->u.def.section = op;
3201 	}
3202     }
3203 
3204   return TRUE;
3205 }
3206 
3207 void
3208 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3209 {
3210   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3211 }
3212 
3213 /*
3214 FUNCTION
3215 	bfd_generic_define_common_symbol
3216 
3217 SYNOPSIS
3218 	bfd_boolean bfd_generic_define_common_symbol
3219 	  (bfd *output_bfd, struct bfd_link_info *info,
3220 	   struct bfd_link_hash_entry *h);
3221 
3222 DESCRIPTION
3223 	Convert common symbol @var{h} into a defined symbol.
3224 	Return TRUE on success and FALSE on failure.
3225 
3226 .#define bfd_define_common_symbol(output_bfd, info, h) \
3227 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3228 .
3229 */
3230 
3231 bfd_boolean
3232 bfd_generic_define_common_symbol (bfd *output_bfd,
3233 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3234 				  struct bfd_link_hash_entry *h)
3235 {
3236   unsigned int power_of_two;
3237   bfd_vma alignment, size;
3238   asection *section;
3239 
3240   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3241 
3242   size = h->u.c.size;
3243   power_of_two = h->u.c.p->alignment_power;
3244   section = h->u.c.p->section;
3245 
3246   /* Increase the size of the section to align the common symbol.
3247      The alignment must be a power of two.  */
3248   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3249   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3250   section->size += alignment - 1;
3251   section->size &= -alignment;
3252 
3253   /* Adjust the section's overall alignment if necessary.  */
3254   if (power_of_two > section->alignment_power)
3255     section->alignment_power = power_of_two;
3256 
3257   /* Change the symbol from common to defined.  */
3258   h->type = bfd_link_hash_defined;
3259   h->u.def.section = section;
3260   h->u.def.value = section->size;
3261 
3262   /* Increase the size of the section.  */
3263   section->size += size;
3264 
3265   /* Make sure the section is allocated in memory, and make sure that
3266      it is no longer a common section.  */
3267   section->flags |= SEC_ALLOC;
3268   section->flags &= ~SEC_IS_COMMON;
3269   return TRUE;
3270 }
3271 
3272 /*
3273 FUNCTION
3274 	bfd_find_version_for_sym
3275 
3276 SYNOPSIS
3277 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3278 	  (struct bfd_elf_version_tree *verdefs,
3279 	   const char *sym_name, bfd_boolean *hide);
3280 
3281 DESCRIPTION
3282 	Search an elf version script tree for symbol versioning
3283 	info and export / don't-export status for a given symbol.
3284 	Return non-NULL on success and NULL on failure; also sets
3285 	the output @samp{hide} boolean parameter.
3286 
3287 */
3288 
3289 struct bfd_elf_version_tree *
3290 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3291 			  const char *sym_name,
3292 			  bfd_boolean *hide)
3293 {
3294   struct bfd_elf_version_tree *t;
3295   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3296   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3297 
3298   local_ver = NULL;
3299   global_ver = NULL;
3300   star_local_ver = NULL;
3301   star_global_ver = NULL;
3302   exist_ver = NULL;
3303   for (t = verdefs; t != NULL; t = t->next)
3304     {
3305       if (t->globals.list != NULL)
3306 	{
3307 	  struct bfd_elf_version_expr *d = NULL;
3308 
3309 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3310 	    {
3311 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3312 		global_ver = t;
3313 	      else
3314 		star_global_ver = t;
3315 	      if (d->symver)
3316 		exist_ver = t;
3317 	      d->script = 1;
3318 	      /* If the match is a wildcard pattern, keep looking for
3319 		 a more explicit, perhaps even local, match.  */
3320 	      if (d->literal)
3321 		break;
3322 	    }
3323 
3324 	  if (d != NULL)
3325 	    break;
3326 	}
3327 
3328       if (t->locals.list != NULL)
3329 	{
3330 	  struct bfd_elf_version_expr *d = NULL;
3331 
3332 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3333 	    {
3334 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3335 		local_ver = t;
3336 	      else
3337 		star_local_ver = t;
3338 	      /* If the match is a wildcard pattern, keep looking for
3339 		 a more explicit, perhaps even global, match.  */
3340 	      if (d->literal)
3341 		{
3342 		  /* An exact match overrides a global wildcard.  */
3343 		  global_ver = NULL;
3344 		  star_global_ver = NULL;
3345 		  break;
3346 		}
3347 	    }
3348 
3349 	  if (d != NULL)
3350 	    break;
3351 	}
3352     }
3353 
3354   if (global_ver == NULL && local_ver == NULL)
3355     global_ver = star_global_ver;
3356 
3357   if (global_ver != NULL)
3358     {
3359       /* If we already have a versioned symbol that matches the
3360 	 node for this symbol, then we don't want to create a
3361 	 duplicate from the unversioned symbol.  Instead hide the
3362 	 unversioned symbol.  */
3363       *hide = exist_ver == global_ver;
3364       return global_ver;
3365     }
3366 
3367   if (local_ver == NULL)
3368     local_ver = star_local_ver;
3369 
3370   if (local_ver != NULL)
3371     {
3372       *hide = TRUE;
3373       return local_ver;
3374     }
3375 
3376   return NULL;
3377 }
3378