xref: /dflybsd-src/contrib/gcc-8.0/libstdc++-v3/include/tr1/riemann_zeta.tcc (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/riemann_zeta.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland based on:
35*38fd1498Szrj //   (1) Handbook of Mathematical Functions,
36*38fd1498Szrj //       Ed. by Milton Abramowitz and Irene A. Stegun,
37*38fd1498Szrj //       Dover Publications, New-York, Section 5, pp. 807-808.
38*38fd1498Szrj //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
39*38fd1498Szrj //   (3) Gamma, Exploring Euler's Constant, Julian Havil,
40*38fd1498Szrj //       Princeton, 2003.
41*38fd1498Szrj 
42*38fd1498Szrj #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
43*38fd1498Szrj #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
44*38fd1498Szrj 
45*38fd1498Szrj #include "special_function_util.h"
46*38fd1498Szrj 
47*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
48*38fd1498Szrj {
49*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
50*38fd1498Szrj 
51*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
52*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std
53*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
54*38fd1498Szrj namespace tr1
55*38fd1498Szrj {
56*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1
57*38fd1498Szrj #else
58*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
59*38fd1498Szrj #endif
60*38fd1498Szrj   // [5.2] Special functions
61*38fd1498Szrj 
62*38fd1498Szrj   // Implementation-space details.
63*38fd1498Szrj   namespace __detail
64*38fd1498Szrj   {
65*38fd1498Szrj     /**
66*38fd1498Szrj      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
67*38fd1498Szrj      *           by summation for s > 1.
68*38fd1498Szrj      *
69*38fd1498Szrj      *   The Riemann zeta function is defined by:
70*38fd1498Szrj      *    \f[
71*38fd1498Szrj      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
72*38fd1498Szrj      *    \f]
73*38fd1498Szrj      *   For s < 1 use the reflection formula:
74*38fd1498Szrj      *    \f[
75*38fd1498Szrj      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
76*38fd1498Szrj      *    \f]
77*38fd1498Szrj      */
78*38fd1498Szrj     template<typename _Tp>
79*38fd1498Szrj     _Tp
__riemann_zeta_sum(_Tp __s)80*38fd1498Szrj     __riemann_zeta_sum(_Tp __s)
81*38fd1498Szrj     {
82*38fd1498Szrj       //  A user shouldn't get to this.
83*38fd1498Szrj       if (__s < _Tp(1))
84*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in zeta sum."));
85*38fd1498Szrj 
86*38fd1498Szrj       const unsigned int max_iter = 10000;
87*38fd1498Szrj       _Tp __zeta = _Tp(0);
88*38fd1498Szrj       for (unsigned int __k = 1; __k < max_iter; ++__k)
89*38fd1498Szrj         {
90*38fd1498Szrj           _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
91*38fd1498Szrj           if (__term < std::numeric_limits<_Tp>::epsilon())
92*38fd1498Szrj             {
93*38fd1498Szrj               break;
94*38fd1498Szrj             }
95*38fd1498Szrj           __zeta += __term;
96*38fd1498Szrj         }
97*38fd1498Szrj 
98*38fd1498Szrj       return __zeta;
99*38fd1498Szrj     }
100*38fd1498Szrj 
101*38fd1498Szrj 
102*38fd1498Szrj     /**
103*38fd1498Szrj      *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
104*38fd1498Szrj      *           by an alternate series for s > 0.
105*38fd1498Szrj      *
106*38fd1498Szrj      *   The Riemann zeta function is defined by:
107*38fd1498Szrj      *    \f[
108*38fd1498Szrj      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
109*38fd1498Szrj      *    \f]
110*38fd1498Szrj      *   For s < 1 use the reflection formula:
111*38fd1498Szrj      *    \f[
112*38fd1498Szrj      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
113*38fd1498Szrj      *    \f]
114*38fd1498Szrj      */
115*38fd1498Szrj     template<typename _Tp>
116*38fd1498Szrj     _Tp
__riemann_zeta_alt(_Tp __s)117*38fd1498Szrj     __riemann_zeta_alt(_Tp __s)
118*38fd1498Szrj     {
119*38fd1498Szrj       _Tp __sgn = _Tp(1);
120*38fd1498Szrj       _Tp __zeta = _Tp(0);
121*38fd1498Szrj       for (unsigned int __i = 1; __i < 10000000; ++__i)
122*38fd1498Szrj         {
123*38fd1498Szrj           _Tp __term = __sgn / std::pow(__i, __s);
124*38fd1498Szrj           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
125*38fd1498Szrj             break;
126*38fd1498Szrj           __zeta += __term;
127*38fd1498Szrj           __sgn *= _Tp(-1);
128*38fd1498Szrj         }
129*38fd1498Szrj       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
130*38fd1498Szrj 
131*38fd1498Szrj       return __zeta;
132*38fd1498Szrj     }
133*38fd1498Szrj 
134*38fd1498Szrj 
135*38fd1498Szrj     /**
136*38fd1498Szrj      *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
137*38fd1498Szrj      *           Convergence is great until largish negative numbers.
138*38fd1498Szrj      *           Then the convergence of the > 0 sum gets better.
139*38fd1498Szrj      *
140*38fd1498Szrj      *   The series is:
141*38fd1498Szrj      *    \f[
142*38fd1498Szrj      *      \zeta(s) = \frac{1}{1-2^{1-s}}
143*38fd1498Szrj      *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
144*38fd1498Szrj      *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
145*38fd1498Szrj      *    \f]
146*38fd1498Szrj      *   Havil 2003, p. 206.
147*38fd1498Szrj      *
148*38fd1498Szrj      *   The Riemann zeta function is defined by:
149*38fd1498Szrj      *    \f[
150*38fd1498Szrj      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
151*38fd1498Szrj      *    \f]
152*38fd1498Szrj      *   For s < 1 use the reflection formula:
153*38fd1498Szrj      *    \f[
154*38fd1498Szrj      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
155*38fd1498Szrj      *    \f]
156*38fd1498Szrj      */
157*38fd1498Szrj     template<typename _Tp>
158*38fd1498Szrj     _Tp
__riemann_zeta_glob(_Tp __s)159*38fd1498Szrj     __riemann_zeta_glob(_Tp __s)
160*38fd1498Szrj     {
161*38fd1498Szrj       _Tp __zeta = _Tp(0);
162*38fd1498Szrj 
163*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
164*38fd1498Szrj       //  Max e exponent before overflow.
165*38fd1498Szrj       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
166*38fd1498Szrj                                * std::log(_Tp(10)) - _Tp(1);
167*38fd1498Szrj 
168*38fd1498Szrj       //  This series works until the binomial coefficient blows up
169*38fd1498Szrj       //  so use reflection.
170*38fd1498Szrj       if (__s < _Tp(0))
171*38fd1498Szrj         {
172*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
173*38fd1498Szrj           if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0))
174*38fd1498Szrj             return _Tp(0);
175*38fd1498Szrj           else
176*38fd1498Szrj #endif
177*38fd1498Szrj             {
178*38fd1498Szrj               _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
179*38fd1498Szrj               __zeta *= std::pow(_Tp(2)
180*38fd1498Szrj                      * __numeric_constants<_Tp>::__pi(), __s)
181*38fd1498Szrj                      * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
182*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
183*38fd1498Szrj                      * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
184*38fd1498Szrj #else
185*38fd1498Szrj                      * std::exp(__log_gamma(_Tp(1) - __s))
186*38fd1498Szrj #endif
187*38fd1498Szrj                      / __numeric_constants<_Tp>::__pi();
188*38fd1498Szrj               return __zeta;
189*38fd1498Szrj             }
190*38fd1498Szrj         }
191*38fd1498Szrj 
192*38fd1498Szrj       _Tp __num = _Tp(0.5L);
193*38fd1498Szrj       const unsigned int __maxit = 10000;
194*38fd1498Szrj       for (unsigned int __i = 0; __i < __maxit; ++__i)
195*38fd1498Szrj         {
196*38fd1498Szrj           bool __punt = false;
197*38fd1498Szrj           _Tp __sgn = _Tp(1);
198*38fd1498Szrj           _Tp __term = _Tp(0);
199*38fd1498Szrj           for (unsigned int __j = 0; __j <= __i; ++__j)
200*38fd1498Szrj             {
201*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
202*38fd1498Szrj               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
203*38fd1498Szrj                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
204*38fd1498Szrj                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
205*38fd1498Szrj #else
206*38fd1498Szrj               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
207*38fd1498Szrj                               - __log_gamma(_Tp(1 + __j))
208*38fd1498Szrj                               - __log_gamma(_Tp(1 + __i - __j));
209*38fd1498Szrj #endif
210*38fd1498Szrj               if (__bincoeff > __max_bincoeff)
211*38fd1498Szrj                 {
212*38fd1498Szrj                   //  This only gets hit for x << 0.
213*38fd1498Szrj                   __punt = true;
214*38fd1498Szrj                   break;
215*38fd1498Szrj                 }
216*38fd1498Szrj               __bincoeff = std::exp(__bincoeff);
217*38fd1498Szrj               __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
218*38fd1498Szrj               __sgn *= _Tp(-1);
219*38fd1498Szrj             }
220*38fd1498Szrj           if (__punt)
221*38fd1498Szrj             break;
222*38fd1498Szrj           __term *= __num;
223*38fd1498Szrj           __zeta += __term;
224*38fd1498Szrj           if (std::abs(__term/__zeta) < __eps)
225*38fd1498Szrj             break;
226*38fd1498Szrj           __num *= _Tp(0.5L);
227*38fd1498Szrj         }
228*38fd1498Szrj 
229*38fd1498Szrj       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
230*38fd1498Szrj 
231*38fd1498Szrj       return __zeta;
232*38fd1498Szrj     }
233*38fd1498Szrj 
234*38fd1498Szrj 
235*38fd1498Szrj     /**
236*38fd1498Szrj      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
237*38fd1498Szrj      *           using the product over prime factors.
238*38fd1498Szrj      *    \f[
239*38fd1498Szrj      *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
240*38fd1498Szrj      *    \f]
241*38fd1498Szrj      *    where @f$ {p_i} @f$ are the prime numbers.
242*38fd1498Szrj      *
243*38fd1498Szrj      *   The Riemann zeta function is defined by:
244*38fd1498Szrj      *    \f[
245*38fd1498Szrj      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
246*38fd1498Szrj      *    \f]
247*38fd1498Szrj      *   For s < 1 use the reflection formula:
248*38fd1498Szrj      *    \f[
249*38fd1498Szrj      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
250*38fd1498Szrj      *    \f]
251*38fd1498Szrj      */
252*38fd1498Szrj     template<typename _Tp>
253*38fd1498Szrj     _Tp
__riemann_zeta_product(_Tp __s)254*38fd1498Szrj     __riemann_zeta_product(_Tp __s)
255*38fd1498Szrj     {
256*38fd1498Szrj       static const _Tp __prime[] = {
257*38fd1498Szrj         _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
258*38fd1498Szrj         _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
259*38fd1498Szrj         _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
260*38fd1498Szrj         _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
261*38fd1498Szrj       };
262*38fd1498Szrj       static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
263*38fd1498Szrj 
264*38fd1498Szrj       _Tp __zeta = _Tp(1);
265*38fd1498Szrj       for (unsigned int __i = 0; __i < __num_primes; ++__i)
266*38fd1498Szrj         {
267*38fd1498Szrj           const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
268*38fd1498Szrj           __zeta *= __fact;
269*38fd1498Szrj           if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
270*38fd1498Szrj             break;
271*38fd1498Szrj         }
272*38fd1498Szrj 
273*38fd1498Szrj       __zeta = _Tp(1) / __zeta;
274*38fd1498Szrj 
275*38fd1498Szrj       return __zeta;
276*38fd1498Szrj     }
277*38fd1498Szrj 
278*38fd1498Szrj 
279*38fd1498Szrj     /**
280*38fd1498Szrj      *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
281*38fd1498Szrj      *
282*38fd1498Szrj      *   The Riemann zeta function is defined by:
283*38fd1498Szrj      *    \f[
284*38fd1498Szrj      *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
285*38fd1498Szrj      *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
286*38fd1498Szrj      *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
287*38fd1498Szrj      *    \f]
288*38fd1498Szrj      *   For s < 1 use the reflection formula:
289*38fd1498Szrj      *    \f[
290*38fd1498Szrj      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
291*38fd1498Szrj      *    \f]
292*38fd1498Szrj      */
293*38fd1498Szrj     template<typename _Tp>
294*38fd1498Szrj     _Tp
__riemann_zeta(_Tp __s)295*38fd1498Szrj     __riemann_zeta(_Tp __s)
296*38fd1498Szrj     {
297*38fd1498Szrj       if (__isnan(__s))
298*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
299*38fd1498Szrj       else if (__s == _Tp(1))
300*38fd1498Szrj         return std::numeric_limits<_Tp>::infinity();
301*38fd1498Szrj       else if (__s < -_Tp(19))
302*38fd1498Szrj         {
303*38fd1498Szrj           _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
304*38fd1498Szrj           __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
305*38fd1498Szrj                  * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
306*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
307*38fd1498Szrj                  * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
308*38fd1498Szrj #else
309*38fd1498Szrj                  * std::exp(__log_gamma(_Tp(1) - __s))
310*38fd1498Szrj #endif
311*38fd1498Szrj                  / __numeric_constants<_Tp>::__pi();
312*38fd1498Szrj           return __zeta;
313*38fd1498Szrj         }
314*38fd1498Szrj       else if (__s < _Tp(20))
315*38fd1498Szrj         {
316*38fd1498Szrj           //  Global double sum or McLaurin?
317*38fd1498Szrj           bool __glob = true;
318*38fd1498Szrj           if (__glob)
319*38fd1498Szrj             return __riemann_zeta_glob(__s);
320*38fd1498Szrj           else
321*38fd1498Szrj             {
322*38fd1498Szrj               if (__s > _Tp(1))
323*38fd1498Szrj                 return __riemann_zeta_sum(__s);
324*38fd1498Szrj               else
325*38fd1498Szrj                 {
326*38fd1498Szrj                   _Tp __zeta = std::pow(_Tp(2)
327*38fd1498Szrj                                 * __numeric_constants<_Tp>::__pi(), __s)
328*38fd1498Szrj                          * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
329*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
330*38fd1498Szrj                              * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s)
331*38fd1498Szrj #else
332*38fd1498Szrj                              * std::exp(__log_gamma(_Tp(1) - __s))
333*38fd1498Szrj #endif
334*38fd1498Szrj                              * __riemann_zeta_sum(_Tp(1) - __s);
335*38fd1498Szrj                   return __zeta;
336*38fd1498Szrj                 }
337*38fd1498Szrj             }
338*38fd1498Szrj         }
339*38fd1498Szrj       else
340*38fd1498Szrj         return __riemann_zeta_product(__s);
341*38fd1498Szrj     }
342*38fd1498Szrj 
343*38fd1498Szrj 
344*38fd1498Szrj     /**
345*38fd1498Szrj      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
346*38fd1498Szrj      *           for all s != 1 and x > -1.
347*38fd1498Szrj      *
348*38fd1498Szrj      *   The Hurwitz zeta function is defined by:
349*38fd1498Szrj      *   @f[
350*38fd1498Szrj      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
351*38fd1498Szrj      *   @f]
352*38fd1498Szrj      *   The Riemann zeta function is a special case:
353*38fd1498Szrj      *   @f[
354*38fd1498Szrj      *     \zeta(s) = \zeta(1,s)
355*38fd1498Szrj      *   @f]
356*38fd1498Szrj      *
357*38fd1498Szrj      *   This functions uses the double sum that converges for s != 1
358*38fd1498Szrj      *   and x > -1:
359*38fd1498Szrj      *   @f[
360*38fd1498Szrj      *     \zeta(x,s) = \frac{1}{s-1}
361*38fd1498Szrj      *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
362*38fd1498Szrj      *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
363*38fd1498Szrj      *   @f]
364*38fd1498Szrj      */
365*38fd1498Szrj     template<typename _Tp>
366*38fd1498Szrj     _Tp
__hurwitz_zeta_glob(_Tp __a,_Tp __s)367*38fd1498Szrj     __hurwitz_zeta_glob(_Tp __a, _Tp __s)
368*38fd1498Szrj     {
369*38fd1498Szrj       _Tp __zeta = _Tp(0);
370*38fd1498Szrj 
371*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
372*38fd1498Szrj       //  Max e exponent before overflow.
373*38fd1498Szrj       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
374*38fd1498Szrj                                * std::log(_Tp(10)) - _Tp(1);
375*38fd1498Szrj 
376*38fd1498Szrj       const unsigned int __maxit = 10000;
377*38fd1498Szrj       for (unsigned int __i = 0; __i < __maxit; ++__i)
378*38fd1498Szrj         {
379*38fd1498Szrj           bool __punt = false;
380*38fd1498Szrj           _Tp __sgn = _Tp(1);
381*38fd1498Szrj           _Tp __term = _Tp(0);
382*38fd1498Szrj           for (unsigned int __j = 0; __j <= __i; ++__j)
383*38fd1498Szrj             {
384*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
385*38fd1498Szrj               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
386*38fd1498Szrj                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
387*38fd1498Szrj                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
388*38fd1498Szrj #else
389*38fd1498Szrj               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
390*38fd1498Szrj                               - __log_gamma(_Tp(1 + __j))
391*38fd1498Szrj                               - __log_gamma(_Tp(1 + __i - __j));
392*38fd1498Szrj #endif
393*38fd1498Szrj               if (__bincoeff > __max_bincoeff)
394*38fd1498Szrj                 {
395*38fd1498Szrj                   //  This only gets hit for x << 0.
396*38fd1498Szrj                   __punt = true;
397*38fd1498Szrj                   break;
398*38fd1498Szrj                 }
399*38fd1498Szrj               __bincoeff = std::exp(__bincoeff);
400*38fd1498Szrj               __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
401*38fd1498Szrj               __sgn *= _Tp(-1);
402*38fd1498Szrj             }
403*38fd1498Szrj           if (__punt)
404*38fd1498Szrj             break;
405*38fd1498Szrj           __term /= _Tp(__i + 1);
406*38fd1498Szrj           if (std::abs(__term / __zeta) < __eps)
407*38fd1498Szrj             break;
408*38fd1498Szrj           __zeta += __term;
409*38fd1498Szrj         }
410*38fd1498Szrj 
411*38fd1498Szrj       __zeta /= __s - _Tp(1);
412*38fd1498Szrj 
413*38fd1498Szrj       return __zeta;
414*38fd1498Szrj     }
415*38fd1498Szrj 
416*38fd1498Szrj 
417*38fd1498Szrj     /**
418*38fd1498Szrj      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
419*38fd1498Szrj      *           for all s != 1 and x > -1.
420*38fd1498Szrj      *
421*38fd1498Szrj      *   The Hurwitz zeta function is defined by:
422*38fd1498Szrj      *   @f[
423*38fd1498Szrj      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
424*38fd1498Szrj      *   @f]
425*38fd1498Szrj      *   The Riemann zeta function is a special case:
426*38fd1498Szrj      *   @f[
427*38fd1498Szrj      *     \zeta(s) = \zeta(1,s)
428*38fd1498Szrj      *   @f]
429*38fd1498Szrj      */
430*38fd1498Szrj     template<typename _Tp>
431*38fd1498Szrj     inline _Tp
__hurwitz_zeta(_Tp __a,_Tp __s)432*38fd1498Szrj     __hurwitz_zeta(_Tp __a, _Tp __s)
433*38fd1498Szrj     { return __hurwitz_zeta_glob(__a, __s); }
434*38fd1498Szrj   } // namespace __detail
435*38fd1498Szrj #undef _GLIBCXX_MATH_NS
436*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
437*38fd1498Szrj } // namespace tr1
438*38fd1498Szrj #endif
439*38fd1498Szrj 
440*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
441*38fd1498Szrj }
442*38fd1498Szrj 
443*38fd1498Szrj #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
444