xref: /dflybsd-src/contrib/gcc-8.0/libstdc++-v3/include/tr1/gamma.tcc (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/gamma.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland based on:
35*38fd1498Szrj //   (1) Handbook of Mathematical Functions,
36*38fd1498Szrj //       ed. Milton Abramowitz and Irene A. Stegun,
37*38fd1498Szrj //       Dover Publications,
38*38fd1498Szrj //       Section 6, pp. 253-266
39*38fd1498Szrj //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40*38fd1498Szrj //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41*38fd1498Szrj //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42*38fd1498Szrj //       2nd ed, pp. 213-216
43*38fd1498Szrj //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
44*38fd1498Szrj //       Princeton, 2003.
45*38fd1498Szrj 
46*38fd1498Szrj #ifndef _GLIBCXX_TR1_GAMMA_TCC
47*38fd1498Szrj #define _GLIBCXX_TR1_GAMMA_TCC 1
48*38fd1498Szrj 
49*38fd1498Szrj #include <tr1/special_function_util.h>
50*38fd1498Szrj 
51*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
52*38fd1498Szrj {
53*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
54*38fd1498Szrj 
55*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
56*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std
57*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
58*38fd1498Szrj namespace tr1
59*38fd1498Szrj {
60*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1
61*38fd1498Szrj #else
62*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
63*38fd1498Szrj #endif
64*38fd1498Szrj   // Implementation-space details.
65*38fd1498Szrj   namespace __detail
66*38fd1498Szrj   {
67*38fd1498Szrj     /**
68*38fd1498Szrj      *   @brief This returns Bernoulli numbers from a table or by summation
69*38fd1498Szrj      *          for larger values.
70*38fd1498Szrj      *
71*38fd1498Szrj      *   Recursion is unstable.
72*38fd1498Szrj      *
73*38fd1498Szrj      *   @param __n the order n of the Bernoulli number.
74*38fd1498Szrj      *   @return  The Bernoulli number of order n.
75*38fd1498Szrj      */
76*38fd1498Szrj     template <typename _Tp>
77*38fd1498Szrj     _Tp
__bernoulli_series(unsigned int __n)78*38fd1498Szrj     __bernoulli_series(unsigned int __n)
79*38fd1498Szrj     {
80*38fd1498Szrj 
81*38fd1498Szrj       static const _Tp __num[28] = {
82*38fd1498Szrj         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
83*38fd1498Szrj         _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
84*38fd1498Szrj         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
85*38fd1498Szrj         _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
86*38fd1498Szrj         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
87*38fd1498Szrj         _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
88*38fd1498Szrj         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
89*38fd1498Szrj         _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
90*38fd1498Szrj         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
91*38fd1498Szrj         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
92*38fd1498Szrj         -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
93*38fd1498Szrj         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
94*38fd1498Szrj         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
95*38fd1498Szrj         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
96*38fd1498Szrj       };
97*38fd1498Szrj 
98*38fd1498Szrj       if (__n == 0)
99*38fd1498Szrj         return _Tp(1);
100*38fd1498Szrj 
101*38fd1498Szrj       if (__n == 1)
102*38fd1498Szrj         return -_Tp(1) / _Tp(2);
103*38fd1498Szrj 
104*38fd1498Szrj       //  Take care of the rest of the odd ones.
105*38fd1498Szrj       if (__n % 2 == 1)
106*38fd1498Szrj         return _Tp(0);
107*38fd1498Szrj 
108*38fd1498Szrj       //  Take care of some small evens that are painful for the series.
109*38fd1498Szrj       if (__n < 28)
110*38fd1498Szrj         return __num[__n];
111*38fd1498Szrj 
112*38fd1498Szrj 
113*38fd1498Szrj       _Tp __fact = _Tp(1);
114*38fd1498Szrj       if ((__n / 2) % 2 == 0)
115*38fd1498Szrj         __fact *= _Tp(-1);
116*38fd1498Szrj       for (unsigned int __k = 1; __k <= __n; ++__k)
117*38fd1498Szrj         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
118*38fd1498Szrj       __fact *= _Tp(2);
119*38fd1498Szrj 
120*38fd1498Szrj       _Tp __sum = _Tp(0);
121*38fd1498Szrj       for (unsigned int __i = 1; __i < 1000; ++__i)
122*38fd1498Szrj         {
123*38fd1498Szrj           _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
124*38fd1498Szrj           if (__term < std::numeric_limits<_Tp>::epsilon())
125*38fd1498Szrj             break;
126*38fd1498Szrj           __sum += __term;
127*38fd1498Szrj         }
128*38fd1498Szrj 
129*38fd1498Szrj       return __fact * __sum;
130*38fd1498Szrj     }
131*38fd1498Szrj 
132*38fd1498Szrj 
133*38fd1498Szrj     /**
134*38fd1498Szrj      *   @brief This returns Bernoulli number \f$B_n\f$.
135*38fd1498Szrj      *
136*38fd1498Szrj      *   @param __n the order n of the Bernoulli number.
137*38fd1498Szrj      *   @return  The Bernoulli number of order n.
138*38fd1498Szrj      */
139*38fd1498Szrj     template<typename _Tp>
140*38fd1498Szrj     inline _Tp
__bernoulli(int __n)141*38fd1498Szrj     __bernoulli(int __n)
142*38fd1498Szrj     { return __bernoulli_series<_Tp>(__n); }
143*38fd1498Szrj 
144*38fd1498Szrj 
145*38fd1498Szrj     /**
146*38fd1498Szrj      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
147*38fd1498Szrj      *          with Bernoulli number coefficients.  This is like
148*38fd1498Szrj      *          Sterling's approximation.
149*38fd1498Szrj      *
150*38fd1498Szrj      *   @param __x The argument of the log of the gamma function.
151*38fd1498Szrj      *   @return  The logarithm of the gamma function.
152*38fd1498Szrj      */
153*38fd1498Szrj     template<typename _Tp>
154*38fd1498Szrj     _Tp
__log_gamma_bernoulli(_Tp __x)155*38fd1498Szrj     __log_gamma_bernoulli(_Tp __x)
156*38fd1498Szrj     {
157*38fd1498Szrj       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
158*38fd1498Szrj                + _Tp(0.5L) * std::log(_Tp(2)
159*38fd1498Szrj                * __numeric_constants<_Tp>::__pi());
160*38fd1498Szrj 
161*38fd1498Szrj       const _Tp __xx = __x * __x;
162*38fd1498Szrj       _Tp __help = _Tp(1) / __x;
163*38fd1498Szrj       for ( unsigned int __i = 1; __i < 20; ++__i )
164*38fd1498Szrj         {
165*38fd1498Szrj           const _Tp __2i = _Tp(2 * __i);
166*38fd1498Szrj           __help /= __2i * (__2i - _Tp(1)) * __xx;
167*38fd1498Szrj           __lg += __bernoulli<_Tp>(2 * __i) * __help;
168*38fd1498Szrj         }
169*38fd1498Szrj 
170*38fd1498Szrj       return __lg;
171*38fd1498Szrj     }
172*38fd1498Szrj 
173*38fd1498Szrj 
174*38fd1498Szrj     /**
175*38fd1498Szrj      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
176*38fd1498Szrj      *          This method dominates all others on the positive axis I think.
177*38fd1498Szrj      *
178*38fd1498Szrj      *   @param __x The argument of the log of the gamma function.
179*38fd1498Szrj      *   @return  The logarithm of the gamma function.
180*38fd1498Szrj      */
181*38fd1498Szrj     template<typename _Tp>
182*38fd1498Szrj     _Tp
__log_gamma_lanczos(_Tp __x)183*38fd1498Szrj     __log_gamma_lanczos(_Tp __x)
184*38fd1498Szrj     {
185*38fd1498Szrj       const _Tp __xm1 = __x - _Tp(1);
186*38fd1498Szrj 
187*38fd1498Szrj       static const _Tp __lanczos_cheb_7[9] = {
188*38fd1498Szrj        _Tp( 0.99999999999980993227684700473478L),
189*38fd1498Szrj        _Tp( 676.520368121885098567009190444019L),
190*38fd1498Szrj        _Tp(-1259.13921672240287047156078755283L),
191*38fd1498Szrj        _Tp( 771.3234287776530788486528258894L),
192*38fd1498Szrj        _Tp(-176.61502916214059906584551354L),
193*38fd1498Szrj        _Tp( 12.507343278686904814458936853L),
194*38fd1498Szrj        _Tp(-0.13857109526572011689554707L),
195*38fd1498Szrj        _Tp( 9.984369578019570859563e-6L),
196*38fd1498Szrj        _Tp( 1.50563273514931155834e-7L)
197*38fd1498Szrj       };
198*38fd1498Szrj 
199*38fd1498Szrj       static const _Tp __LOGROOT2PI
200*38fd1498Szrj           = _Tp(0.9189385332046727417803297364056176L);
201*38fd1498Szrj 
202*38fd1498Szrj       _Tp __sum = __lanczos_cheb_7[0];
203*38fd1498Szrj       for(unsigned int __k = 1; __k < 9; ++__k)
204*38fd1498Szrj         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
205*38fd1498Szrj 
206*38fd1498Szrj       const _Tp __term1 = (__xm1 + _Tp(0.5L))
207*38fd1498Szrj                         * std::log((__xm1 + _Tp(7.5L))
208*38fd1498Szrj                        / __numeric_constants<_Tp>::__euler());
209*38fd1498Szrj       const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
210*38fd1498Szrj       const _Tp __result = __term1 + (__term2 - _Tp(7));
211*38fd1498Szrj 
212*38fd1498Szrj       return __result;
213*38fd1498Szrj     }
214*38fd1498Szrj 
215*38fd1498Szrj 
216*38fd1498Szrj     /**
217*38fd1498Szrj      *   @brief Return \f$ log(|\Gamma(x)|) \f$.
218*38fd1498Szrj      *          This will return values even for \f$ x < 0 \f$.
219*38fd1498Szrj      *          To recover the sign of \f$ \Gamma(x) \f$ for
220*38fd1498Szrj      *          any argument use @a __log_gamma_sign.
221*38fd1498Szrj      *
222*38fd1498Szrj      *   @param __x The argument of the log of the gamma function.
223*38fd1498Szrj      *   @return  The logarithm of the gamma function.
224*38fd1498Szrj      */
225*38fd1498Szrj     template<typename _Tp>
226*38fd1498Szrj     _Tp
__log_gamma(_Tp __x)227*38fd1498Szrj     __log_gamma(_Tp __x)
228*38fd1498Szrj     {
229*38fd1498Szrj       if (__x > _Tp(0.5L))
230*38fd1498Szrj         return __log_gamma_lanczos(__x);
231*38fd1498Szrj       else
232*38fd1498Szrj         {
233*38fd1498Szrj           const _Tp __sin_fact
234*38fd1498Szrj                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
235*38fd1498Szrj           if (__sin_fact == _Tp(0))
236*38fd1498Szrj             std::__throw_domain_error(__N("Argument is nonpositive integer "
237*38fd1498Szrj                                           "in __log_gamma"));
238*38fd1498Szrj           return __numeric_constants<_Tp>::__lnpi()
239*38fd1498Szrj                      - std::log(__sin_fact)
240*38fd1498Szrj                      - __log_gamma_lanczos(_Tp(1) - __x);
241*38fd1498Szrj         }
242*38fd1498Szrj     }
243*38fd1498Szrj 
244*38fd1498Szrj 
245*38fd1498Szrj     /**
246*38fd1498Szrj      *   @brief Return the sign of \f$ \Gamma(x) \f$.
247*38fd1498Szrj      *          At nonpositive integers zero is returned.
248*38fd1498Szrj      *
249*38fd1498Szrj      *   @param __x The argument of the gamma function.
250*38fd1498Szrj      *   @return  The sign of the gamma function.
251*38fd1498Szrj      */
252*38fd1498Szrj     template<typename _Tp>
253*38fd1498Szrj     _Tp
__log_gamma_sign(_Tp __x)254*38fd1498Szrj     __log_gamma_sign(_Tp __x)
255*38fd1498Szrj     {
256*38fd1498Szrj       if (__x > _Tp(0))
257*38fd1498Szrj         return _Tp(1);
258*38fd1498Szrj       else
259*38fd1498Szrj         {
260*38fd1498Szrj           const _Tp __sin_fact
261*38fd1498Szrj                   = std::sin(__numeric_constants<_Tp>::__pi() * __x);
262*38fd1498Szrj           if (__sin_fact > _Tp(0))
263*38fd1498Szrj             return (1);
264*38fd1498Szrj           else if (__sin_fact < _Tp(0))
265*38fd1498Szrj             return -_Tp(1);
266*38fd1498Szrj           else
267*38fd1498Szrj             return _Tp(0);
268*38fd1498Szrj         }
269*38fd1498Szrj     }
270*38fd1498Szrj 
271*38fd1498Szrj 
272*38fd1498Szrj     /**
273*38fd1498Szrj      *   @brief Return the logarithm of the binomial coefficient.
274*38fd1498Szrj      *   The binomial coefficient is given by:
275*38fd1498Szrj      *   @f[
276*38fd1498Szrj      *   \left(  \right) = \frac{n!}{(n-k)! k!}
277*38fd1498Szrj      *   @f]
278*38fd1498Szrj      *
279*38fd1498Szrj      *   @param __n The first argument of the binomial coefficient.
280*38fd1498Szrj      *   @param __k The second argument of the binomial coefficient.
281*38fd1498Szrj      *   @return  The binomial coefficient.
282*38fd1498Szrj      */
283*38fd1498Szrj     template<typename _Tp>
284*38fd1498Szrj     _Tp
__log_bincoef(unsigned int __n,unsigned int __k)285*38fd1498Szrj     __log_bincoef(unsigned int __n, unsigned int __k)
286*38fd1498Szrj     {
287*38fd1498Szrj       //  Max e exponent before overflow.
288*38fd1498Szrj       static const _Tp __max_bincoeff
289*38fd1498Szrj                       = std::numeric_limits<_Tp>::max_exponent10
290*38fd1498Szrj                       * std::log(_Tp(10)) - _Tp(1);
291*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
292*38fd1498Szrj       _Tp __coeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n))
293*38fd1498Szrj                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k))
294*38fd1498Szrj                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k));
295*38fd1498Szrj #else
296*38fd1498Szrj       _Tp __coeff =  __log_gamma(_Tp(1 + __n))
297*38fd1498Szrj                   - __log_gamma(_Tp(1 + __k))
298*38fd1498Szrj                   - __log_gamma(_Tp(1 + __n - __k));
299*38fd1498Szrj #endif
300*38fd1498Szrj     }
301*38fd1498Szrj 
302*38fd1498Szrj 
303*38fd1498Szrj     /**
304*38fd1498Szrj      *   @brief Return the binomial coefficient.
305*38fd1498Szrj      *   The binomial coefficient is given by:
306*38fd1498Szrj      *   @f[
307*38fd1498Szrj      *   \left(  \right) = \frac{n!}{(n-k)! k!}
308*38fd1498Szrj      *   @f]
309*38fd1498Szrj      *
310*38fd1498Szrj      *   @param __n The first argument of the binomial coefficient.
311*38fd1498Szrj      *   @param __k The second argument of the binomial coefficient.
312*38fd1498Szrj      *   @return  The binomial coefficient.
313*38fd1498Szrj      */
314*38fd1498Szrj     template<typename _Tp>
315*38fd1498Szrj     _Tp
__bincoef(unsigned int __n,unsigned int __k)316*38fd1498Szrj     __bincoef(unsigned int __n, unsigned int __k)
317*38fd1498Szrj     {
318*38fd1498Szrj       //  Max e exponent before overflow.
319*38fd1498Szrj       static const _Tp __max_bincoeff
320*38fd1498Szrj                       = std::numeric_limits<_Tp>::max_exponent10
321*38fd1498Szrj                       * std::log(_Tp(10)) - _Tp(1);
322*38fd1498Szrj 
323*38fd1498Szrj       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
324*38fd1498Szrj       if (__log_coeff > __max_bincoeff)
325*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
326*38fd1498Szrj       else
327*38fd1498Szrj         return std::exp(__log_coeff);
328*38fd1498Szrj     }
329*38fd1498Szrj 
330*38fd1498Szrj 
331*38fd1498Szrj     /**
332*38fd1498Szrj      *   @brief Return \f$ \Gamma(x) \f$.
333*38fd1498Szrj      *
334*38fd1498Szrj      *   @param __x The argument of the gamma function.
335*38fd1498Szrj      *   @return  The gamma function.
336*38fd1498Szrj      */
337*38fd1498Szrj     template<typename _Tp>
338*38fd1498Szrj     inline _Tp
__gamma(_Tp __x)339*38fd1498Szrj     __gamma(_Tp __x)
340*38fd1498Szrj     { return std::exp(__log_gamma(__x)); }
341*38fd1498Szrj 
342*38fd1498Szrj 
343*38fd1498Szrj     /**
344*38fd1498Szrj      *   @brief  Return the digamma function by series expansion.
345*38fd1498Szrj      *   The digamma or @f$ \psi(x) @f$ function is defined by
346*38fd1498Szrj      *   @f[
347*38fd1498Szrj      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
348*38fd1498Szrj      *   @f]
349*38fd1498Szrj      *
350*38fd1498Szrj      *   The series is given by:
351*38fd1498Szrj      *   @f[
352*38fd1498Szrj      *     \psi(x) = -\gamma_E - \frac{1}{x}
353*38fd1498Szrj      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
354*38fd1498Szrj      *   @f]
355*38fd1498Szrj      */
356*38fd1498Szrj     template<typename _Tp>
357*38fd1498Szrj     _Tp
__psi_series(_Tp __x)358*38fd1498Szrj     __psi_series(_Tp __x)
359*38fd1498Szrj     {
360*38fd1498Szrj       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
361*38fd1498Szrj       const unsigned int __max_iter = 100000;
362*38fd1498Szrj       for (unsigned int __k = 1; __k < __max_iter; ++__k)
363*38fd1498Szrj         {
364*38fd1498Szrj           const _Tp __term = __x / (__k * (__k + __x));
365*38fd1498Szrj           __sum += __term;
366*38fd1498Szrj           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
367*38fd1498Szrj             break;
368*38fd1498Szrj         }
369*38fd1498Szrj       return __sum;
370*38fd1498Szrj     }
371*38fd1498Szrj 
372*38fd1498Szrj 
373*38fd1498Szrj     /**
374*38fd1498Szrj      *   @brief  Return the digamma function for large argument.
375*38fd1498Szrj      *   The digamma or @f$ \psi(x) @f$ function is defined by
376*38fd1498Szrj      *   @f[
377*38fd1498Szrj      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
378*38fd1498Szrj      *   @f]
379*38fd1498Szrj      *
380*38fd1498Szrj      *   The asymptotic series is given by:
381*38fd1498Szrj      *   @f[
382*38fd1498Szrj      *     \psi(x) = \ln(x) - \frac{1}{2x}
383*38fd1498Szrj      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
384*38fd1498Szrj      *   @f]
385*38fd1498Szrj      */
386*38fd1498Szrj     template<typename _Tp>
387*38fd1498Szrj     _Tp
__psi_asymp(_Tp __x)388*38fd1498Szrj     __psi_asymp(_Tp __x)
389*38fd1498Szrj     {
390*38fd1498Szrj       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
391*38fd1498Szrj       const _Tp __xx = __x * __x;
392*38fd1498Szrj       _Tp __xp = __xx;
393*38fd1498Szrj       const unsigned int __max_iter = 100;
394*38fd1498Szrj       for (unsigned int __k = 1; __k < __max_iter; ++__k)
395*38fd1498Szrj         {
396*38fd1498Szrj           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
397*38fd1498Szrj           __sum -= __term;
398*38fd1498Szrj           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
399*38fd1498Szrj             break;
400*38fd1498Szrj           __xp *= __xx;
401*38fd1498Szrj         }
402*38fd1498Szrj       return __sum;
403*38fd1498Szrj     }
404*38fd1498Szrj 
405*38fd1498Szrj 
406*38fd1498Szrj     /**
407*38fd1498Szrj      *   @brief  Return the digamma function.
408*38fd1498Szrj      *   The digamma or @f$ \psi(x) @f$ function is defined by
409*38fd1498Szrj      *   @f[
410*38fd1498Szrj      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
411*38fd1498Szrj      *   @f]
412*38fd1498Szrj      *   For negative argument the reflection formula is used:
413*38fd1498Szrj      *   @f[
414*38fd1498Szrj      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
415*38fd1498Szrj      *   @f]
416*38fd1498Szrj      */
417*38fd1498Szrj     template<typename _Tp>
418*38fd1498Szrj     _Tp
__psi(_Tp __x)419*38fd1498Szrj     __psi(_Tp __x)
420*38fd1498Szrj     {
421*38fd1498Szrj       const int __n = static_cast<int>(__x + 0.5L);
422*38fd1498Szrj       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
423*38fd1498Szrj       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
424*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
425*38fd1498Szrj       else if (__x < _Tp(0))
426*38fd1498Szrj         {
427*38fd1498Szrj           const _Tp __pi = __numeric_constants<_Tp>::__pi();
428*38fd1498Szrj           return __psi(_Tp(1) - __x)
429*38fd1498Szrj                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
430*38fd1498Szrj         }
431*38fd1498Szrj       else if (__x > _Tp(100))
432*38fd1498Szrj         return __psi_asymp(__x);
433*38fd1498Szrj       else
434*38fd1498Szrj         return __psi_series(__x);
435*38fd1498Szrj     }
436*38fd1498Szrj 
437*38fd1498Szrj 
438*38fd1498Szrj     /**
439*38fd1498Szrj      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
440*38fd1498Szrj      *
441*38fd1498Szrj      *   The polygamma function is related to the Hurwitz zeta function:
442*38fd1498Szrj      *   @f[
443*38fd1498Szrj      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
444*38fd1498Szrj      *   @f]
445*38fd1498Szrj      */
446*38fd1498Szrj     template<typename _Tp>
447*38fd1498Szrj     _Tp
__psi(unsigned int __n,_Tp __x)448*38fd1498Szrj     __psi(unsigned int __n, _Tp __x)
449*38fd1498Szrj     {
450*38fd1498Szrj       if (__x <= _Tp(0))
451*38fd1498Szrj         std::__throw_domain_error(__N("Argument out of range "
452*38fd1498Szrj                                       "in __psi"));
453*38fd1498Szrj       else if (__n == 0)
454*38fd1498Szrj         return __psi(__x);
455*38fd1498Szrj       else
456*38fd1498Szrj         {
457*38fd1498Szrj           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
458*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
459*38fd1498Szrj           const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
460*38fd1498Szrj #else
461*38fd1498Szrj           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
462*38fd1498Szrj #endif
463*38fd1498Szrj           _Tp __result = std::exp(__ln_nfact) * __hzeta;
464*38fd1498Szrj           if (__n % 2 == 1)
465*38fd1498Szrj             __result = -__result;
466*38fd1498Szrj           return __result;
467*38fd1498Szrj         }
468*38fd1498Szrj     }
469*38fd1498Szrj   } // namespace __detail
470*38fd1498Szrj #undef _GLIBCXX_MATH_NS
471*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
472*38fd1498Szrj } // namespace tr1
473*38fd1498Szrj #endif
474*38fd1498Szrj 
475*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
476*38fd1498Szrj } // namespace std
477*38fd1498Szrj 
478*38fd1498Szrj #endif // _GLIBCXX_TR1_GAMMA_TCC
479*38fd1498Szrj 
480