xref: /dflybsd-src/contrib/gcc-8.0/libstdc++-v3/include/tr1/ell_integral.tcc (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/ell_integral.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland based on:
35*38fd1498Szrj //   (1)  B. C. Carlson Numer. Math. 33, 1 (1979)
36*38fd1498Szrj //   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977)
37*38fd1498Szrj //   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl
38*38fd1498Szrj //   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
39*38fd1498Szrj //        W. T. Vetterling, B. P. Flannery, Cambridge University Press
40*38fd1498Szrj //        (1992), pp. 261-269
41*38fd1498Szrj 
42*38fd1498Szrj #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
43*38fd1498Szrj #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
44*38fd1498Szrj 
45*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
46*38fd1498Szrj {
47*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
48*38fd1498Szrj 
49*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
50*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
51*38fd1498Szrj namespace tr1
52*38fd1498Szrj {
53*38fd1498Szrj #else
54*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
55*38fd1498Szrj #endif
56*38fd1498Szrj   // [5.2] Special functions
57*38fd1498Szrj 
58*38fd1498Szrj   // Implementation-space details.
59*38fd1498Szrj   namespace __detail
60*38fd1498Szrj   {
61*38fd1498Szrj     /**
62*38fd1498Szrj      *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
63*38fd1498Szrj      *          of the first kind.
64*38fd1498Szrj      *
65*38fd1498Szrj      *   The Carlson elliptic function of the first kind is defined by:
66*38fd1498Szrj      *   @f[
67*38fd1498Szrj      *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty
68*38fd1498Szrj      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
69*38fd1498Szrj      *   @f]
70*38fd1498Szrj      *
71*38fd1498Szrj      *   @param  __x  The first of three symmetric arguments.
72*38fd1498Szrj      *   @param  __y  The second of three symmetric arguments.
73*38fd1498Szrj      *   @param  __z  The third of three symmetric arguments.
74*38fd1498Szrj      *   @return  The Carlson elliptic function of the first kind.
75*38fd1498Szrj      */
76*38fd1498Szrj     template<typename _Tp>
77*38fd1498Szrj     _Tp
__ellint_rf(_Tp __x,_Tp __y,_Tp __z)78*38fd1498Szrj     __ellint_rf(_Tp __x, _Tp __y, _Tp __z)
79*38fd1498Szrj     {
80*38fd1498Szrj       const _Tp __min = std::numeric_limits<_Tp>::min();
81*38fd1498Szrj       const _Tp __max = std::numeric_limits<_Tp>::max();
82*38fd1498Szrj       const _Tp __lolim = _Tp(5) * __min;
83*38fd1498Szrj       const _Tp __uplim = __max / _Tp(5);
84*38fd1498Szrj 
85*38fd1498Szrj       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
86*38fd1498Szrj         std::__throw_domain_error(__N("Argument less than zero "
87*38fd1498Szrj                                       "in __ellint_rf."));
88*38fd1498Szrj       else if (__x + __y < __lolim || __x + __z < __lolim
89*38fd1498Szrj             || __y + __z < __lolim)
90*38fd1498Szrj         std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
91*38fd1498Szrj       else
92*38fd1498Szrj         {
93*38fd1498Szrj           const _Tp __c0 = _Tp(1) / _Tp(4);
94*38fd1498Szrj           const _Tp __c1 = _Tp(1) / _Tp(24);
95*38fd1498Szrj           const _Tp __c2 = _Tp(1) / _Tp(10);
96*38fd1498Szrj           const _Tp __c3 = _Tp(3) / _Tp(44);
97*38fd1498Szrj           const _Tp __c4 = _Tp(1) / _Tp(14);
98*38fd1498Szrj 
99*38fd1498Szrj           _Tp __xn = __x;
100*38fd1498Szrj           _Tp __yn = __y;
101*38fd1498Szrj           _Tp __zn = __z;
102*38fd1498Szrj 
103*38fd1498Szrj           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
104*38fd1498Szrj           const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
105*38fd1498Szrj           _Tp __mu;
106*38fd1498Szrj           _Tp __xndev, __yndev, __zndev;
107*38fd1498Szrj 
108*38fd1498Szrj           const unsigned int __max_iter = 100;
109*38fd1498Szrj           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
110*38fd1498Szrj             {
111*38fd1498Szrj               __mu = (__xn + __yn + __zn) / _Tp(3);
112*38fd1498Szrj               __xndev = 2 - (__mu + __xn) / __mu;
113*38fd1498Szrj               __yndev = 2 - (__mu + __yn) / __mu;
114*38fd1498Szrj               __zndev = 2 - (__mu + __zn) / __mu;
115*38fd1498Szrj               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
116*38fd1498Szrj               __epsilon = std::max(__epsilon, std::abs(__zndev));
117*38fd1498Szrj               if (__epsilon < __errtol)
118*38fd1498Szrj                 break;
119*38fd1498Szrj               const _Tp __xnroot = std::sqrt(__xn);
120*38fd1498Szrj               const _Tp __ynroot = std::sqrt(__yn);
121*38fd1498Szrj               const _Tp __znroot = std::sqrt(__zn);
122*38fd1498Szrj               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
123*38fd1498Szrj                                  + __ynroot * __znroot;
124*38fd1498Szrj               __xn = __c0 * (__xn + __lambda);
125*38fd1498Szrj               __yn = __c0 * (__yn + __lambda);
126*38fd1498Szrj               __zn = __c0 * (__zn + __lambda);
127*38fd1498Szrj             }
128*38fd1498Szrj 
129*38fd1498Szrj           const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
130*38fd1498Szrj           const _Tp __e3 = __xndev * __yndev * __zndev;
131*38fd1498Szrj           const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
132*38fd1498Szrj                    + __c4 * __e3;
133*38fd1498Szrj 
134*38fd1498Szrj           return __s / std::sqrt(__mu);
135*38fd1498Szrj         }
136*38fd1498Szrj     }
137*38fd1498Szrj 
138*38fd1498Szrj 
139*38fd1498Szrj     /**
140*38fd1498Szrj      *   @brief Return the complete elliptic integral of the first kind
141*38fd1498Szrj      *          @f$ K(k) @f$ by series expansion.
142*38fd1498Szrj      *
143*38fd1498Szrj      *   The complete elliptic integral of the first kind is defined as
144*38fd1498Szrj      *   @f[
145*38fd1498Szrj      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
146*38fd1498Szrj      *                              {\sqrt{1 - k^2sin^2\theta}}
147*38fd1498Szrj      *   @f]
148*38fd1498Szrj      *
149*38fd1498Szrj      *   This routine is not bad as long as |k| is somewhat smaller than 1
150*38fd1498Szrj      *   but is not is good as the Carlson elliptic integral formulation.
151*38fd1498Szrj      *
152*38fd1498Szrj      *   @param  __k  The argument of the complete elliptic function.
153*38fd1498Szrj      *   @return  The complete elliptic function of the first kind.
154*38fd1498Szrj      */
155*38fd1498Szrj     template<typename _Tp>
156*38fd1498Szrj     _Tp
__comp_ellint_1_series(_Tp __k)157*38fd1498Szrj     __comp_ellint_1_series(_Tp __k)
158*38fd1498Szrj     {
159*38fd1498Szrj 
160*38fd1498Szrj       const _Tp __kk = __k * __k;
161*38fd1498Szrj 
162*38fd1498Szrj       _Tp __term = __kk / _Tp(4);
163*38fd1498Szrj       _Tp __sum = _Tp(1) + __term;
164*38fd1498Szrj 
165*38fd1498Szrj       const unsigned int __max_iter = 1000;
166*38fd1498Szrj       for (unsigned int __i = 2; __i < __max_iter; ++__i)
167*38fd1498Szrj         {
168*38fd1498Szrj           __term *= (2 * __i - 1) * __kk / (2 * __i);
169*38fd1498Szrj           if (__term < std::numeric_limits<_Tp>::epsilon())
170*38fd1498Szrj             break;
171*38fd1498Szrj           __sum += __term;
172*38fd1498Szrj         }
173*38fd1498Szrj 
174*38fd1498Szrj       return __numeric_constants<_Tp>::__pi_2() * __sum;
175*38fd1498Szrj     }
176*38fd1498Szrj 
177*38fd1498Szrj 
178*38fd1498Szrj     /**
179*38fd1498Szrj      *   @brief  Return the complete elliptic integral of the first kind
180*38fd1498Szrj      *           @f$ K(k) @f$ using the Carlson formulation.
181*38fd1498Szrj      *
182*38fd1498Szrj      *   The complete elliptic integral of the first kind is defined as
183*38fd1498Szrj      *   @f[
184*38fd1498Szrj      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
185*38fd1498Szrj      *                                           {\sqrt{1 - k^2 sin^2\theta}}
186*38fd1498Szrj      *   @f]
187*38fd1498Szrj      *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
188*38fd1498Szrj      *   first kind.
189*38fd1498Szrj      *
190*38fd1498Szrj      *   @param  __k  The argument of the complete elliptic function.
191*38fd1498Szrj      *   @return  The complete elliptic function of the first kind.
192*38fd1498Szrj      */
193*38fd1498Szrj     template<typename _Tp>
194*38fd1498Szrj     _Tp
__comp_ellint_1(_Tp __k)195*38fd1498Szrj     __comp_ellint_1(_Tp __k)
196*38fd1498Szrj     {
197*38fd1498Szrj 
198*38fd1498Szrj       if (__isnan(__k))
199*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
200*38fd1498Szrj       else if (std::abs(__k) >= _Tp(1))
201*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
202*38fd1498Szrj       else
203*38fd1498Szrj         return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
204*38fd1498Szrj     }
205*38fd1498Szrj 
206*38fd1498Szrj 
207*38fd1498Szrj     /**
208*38fd1498Szrj      *   @brief  Return the incomplete elliptic integral of the first kind
209*38fd1498Szrj      *           @f$ F(k,\phi) @f$ using the Carlson formulation.
210*38fd1498Szrj      *
211*38fd1498Szrj      *   The incomplete elliptic integral of the first kind is defined as
212*38fd1498Szrj      *   @f[
213*38fd1498Szrj      *     F(k,\phi) = \int_0^{\phi}\frac{d\theta}
214*38fd1498Szrj      *                                   {\sqrt{1 - k^2 sin^2\theta}}
215*38fd1498Szrj      *   @f]
216*38fd1498Szrj      *
217*38fd1498Szrj      *   @param  __k  The argument of the elliptic function.
218*38fd1498Szrj      *   @param  __phi  The integral limit argument of the elliptic function.
219*38fd1498Szrj      *   @return  The elliptic function of the first kind.
220*38fd1498Szrj      */
221*38fd1498Szrj     template<typename _Tp>
222*38fd1498Szrj     _Tp
__ellint_1(_Tp __k,_Tp __phi)223*38fd1498Szrj     __ellint_1(_Tp __k, _Tp __phi)
224*38fd1498Szrj     {
225*38fd1498Szrj 
226*38fd1498Szrj       if (__isnan(__k) || __isnan(__phi))
227*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
228*38fd1498Szrj       else if (std::abs(__k) > _Tp(1))
229*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in __ellint_1."));
230*38fd1498Szrj       else
231*38fd1498Szrj         {
232*38fd1498Szrj           //  Reduce phi to -pi/2 < phi < +pi/2.
233*38fd1498Szrj           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
234*38fd1498Szrj                                    + _Tp(0.5L));
235*38fd1498Szrj           const _Tp __phi_red = __phi
236*38fd1498Szrj                               - __n * __numeric_constants<_Tp>::__pi();
237*38fd1498Szrj 
238*38fd1498Szrj           const _Tp __s = std::sin(__phi_red);
239*38fd1498Szrj           const _Tp __c = std::cos(__phi_red);
240*38fd1498Szrj 
241*38fd1498Szrj           const _Tp __F = __s
242*38fd1498Szrj                         * __ellint_rf(__c * __c,
243*38fd1498Szrj                                 _Tp(1) - __k * __k * __s * __s, _Tp(1));
244*38fd1498Szrj 
245*38fd1498Szrj           if (__n == 0)
246*38fd1498Szrj             return __F;
247*38fd1498Szrj           else
248*38fd1498Szrj             return __F + _Tp(2) * __n * __comp_ellint_1(__k);
249*38fd1498Szrj         }
250*38fd1498Szrj     }
251*38fd1498Szrj 
252*38fd1498Szrj 
253*38fd1498Szrj     /**
254*38fd1498Szrj      *   @brief Return the complete elliptic integral of the second kind
255*38fd1498Szrj      *          @f$ E(k) @f$ by series expansion.
256*38fd1498Szrj      *
257*38fd1498Szrj      *   The complete elliptic integral of the second kind is defined as
258*38fd1498Szrj      *   @f[
259*38fd1498Szrj      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
260*38fd1498Szrj      *   @f]
261*38fd1498Szrj      *
262*38fd1498Szrj      *   This routine is not bad as long as |k| is somewhat smaller than 1
263*38fd1498Szrj      *   but is not is good as the Carlson elliptic integral formulation.
264*38fd1498Szrj      *
265*38fd1498Szrj      *   @param  __k  The argument of the complete elliptic function.
266*38fd1498Szrj      *   @return  The complete elliptic function of the second kind.
267*38fd1498Szrj      */
268*38fd1498Szrj     template<typename _Tp>
269*38fd1498Szrj     _Tp
__comp_ellint_2_series(_Tp __k)270*38fd1498Szrj     __comp_ellint_2_series(_Tp __k)
271*38fd1498Szrj     {
272*38fd1498Szrj 
273*38fd1498Szrj       const _Tp __kk = __k * __k;
274*38fd1498Szrj 
275*38fd1498Szrj       _Tp __term = __kk;
276*38fd1498Szrj       _Tp __sum = __term;
277*38fd1498Szrj 
278*38fd1498Szrj       const unsigned int __max_iter = 1000;
279*38fd1498Szrj       for (unsigned int __i = 2; __i < __max_iter; ++__i)
280*38fd1498Szrj         {
281*38fd1498Szrj           const _Tp __i2m = 2 * __i - 1;
282*38fd1498Szrj           const _Tp __i2 = 2 * __i;
283*38fd1498Szrj           __term *= __i2m * __i2m * __kk / (__i2 * __i2);
284*38fd1498Szrj           if (__term < std::numeric_limits<_Tp>::epsilon())
285*38fd1498Szrj             break;
286*38fd1498Szrj           __sum += __term / __i2m;
287*38fd1498Szrj         }
288*38fd1498Szrj 
289*38fd1498Szrj       return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
290*38fd1498Szrj     }
291*38fd1498Szrj 
292*38fd1498Szrj 
293*38fd1498Szrj     /**
294*38fd1498Szrj      *   @brief  Return the Carlson elliptic function of the second kind
295*38fd1498Szrj      *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
296*38fd1498Szrj      *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
297*38fd1498Szrj      *           of the third kind.
298*38fd1498Szrj      *
299*38fd1498Szrj      *   The Carlson elliptic function of the second kind is defined by:
300*38fd1498Szrj      *   @f[
301*38fd1498Szrj      *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty
302*38fd1498Szrj      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
303*38fd1498Szrj      *   @f]
304*38fd1498Szrj      *
305*38fd1498Szrj      *   Based on Carlson's algorithms:
306*38fd1498Szrj      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
307*38fd1498Szrj      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
308*38fd1498Szrj      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
309*38fd1498Szrj      *      by Press, Teukolsky, Vetterling, Flannery (1992)
310*38fd1498Szrj      *
311*38fd1498Szrj      *   @param  __x  The first of two symmetric arguments.
312*38fd1498Szrj      *   @param  __y  The second of two symmetric arguments.
313*38fd1498Szrj      *   @param  __z  The third argument.
314*38fd1498Szrj      *   @return  The Carlson elliptic function of the second kind.
315*38fd1498Szrj      */
316*38fd1498Szrj     template<typename _Tp>
317*38fd1498Szrj     _Tp
__ellint_rd(_Tp __x,_Tp __y,_Tp __z)318*38fd1498Szrj     __ellint_rd(_Tp __x, _Tp __y, _Tp __z)
319*38fd1498Szrj     {
320*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
321*38fd1498Szrj       const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
322*38fd1498Szrj       const _Tp __min = std::numeric_limits<_Tp>::min();
323*38fd1498Szrj       const _Tp __max = std::numeric_limits<_Tp>::max();
324*38fd1498Szrj       const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
325*38fd1498Szrj       const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
326*38fd1498Szrj 
327*38fd1498Szrj       if (__x < _Tp(0) || __y < _Tp(0))
328*38fd1498Szrj         std::__throw_domain_error(__N("Argument less than zero "
329*38fd1498Szrj                                       "in __ellint_rd."));
330*38fd1498Szrj       else if (__x + __y < __lolim || __z < __lolim)
331*38fd1498Szrj         std::__throw_domain_error(__N("Argument too small "
332*38fd1498Szrj                                       "in __ellint_rd."));
333*38fd1498Szrj       else
334*38fd1498Szrj         {
335*38fd1498Szrj           const _Tp __c0 = _Tp(1) / _Tp(4);
336*38fd1498Szrj           const _Tp __c1 = _Tp(3) / _Tp(14);
337*38fd1498Szrj           const _Tp __c2 = _Tp(1) / _Tp(6);
338*38fd1498Szrj           const _Tp __c3 = _Tp(9) / _Tp(22);
339*38fd1498Szrj           const _Tp __c4 = _Tp(3) / _Tp(26);
340*38fd1498Szrj 
341*38fd1498Szrj           _Tp __xn = __x;
342*38fd1498Szrj           _Tp __yn = __y;
343*38fd1498Szrj           _Tp __zn = __z;
344*38fd1498Szrj           _Tp __sigma = _Tp(0);
345*38fd1498Szrj           _Tp __power4 = _Tp(1);
346*38fd1498Szrj 
347*38fd1498Szrj           _Tp __mu;
348*38fd1498Szrj           _Tp __xndev, __yndev, __zndev;
349*38fd1498Szrj 
350*38fd1498Szrj           const unsigned int __max_iter = 100;
351*38fd1498Szrj           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
352*38fd1498Szrj             {
353*38fd1498Szrj               __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
354*38fd1498Szrj               __xndev = (__mu - __xn) / __mu;
355*38fd1498Szrj               __yndev = (__mu - __yn) / __mu;
356*38fd1498Szrj               __zndev = (__mu - __zn) / __mu;
357*38fd1498Szrj               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
358*38fd1498Szrj               __epsilon = std::max(__epsilon, std::abs(__zndev));
359*38fd1498Szrj               if (__epsilon < __errtol)
360*38fd1498Szrj                 break;
361*38fd1498Szrj               _Tp __xnroot = std::sqrt(__xn);
362*38fd1498Szrj               _Tp __ynroot = std::sqrt(__yn);
363*38fd1498Szrj               _Tp __znroot = std::sqrt(__zn);
364*38fd1498Szrj               _Tp __lambda = __xnroot * (__ynroot + __znroot)
365*38fd1498Szrj                            + __ynroot * __znroot;
366*38fd1498Szrj               __sigma += __power4 / (__znroot * (__zn + __lambda));
367*38fd1498Szrj               __power4 *= __c0;
368*38fd1498Szrj               __xn = __c0 * (__xn + __lambda);
369*38fd1498Szrj               __yn = __c0 * (__yn + __lambda);
370*38fd1498Szrj               __zn = __c0 * (__zn + __lambda);
371*38fd1498Szrj             }
372*38fd1498Szrj 
373*38fd1498Szrj 	  // Note: __ea is an SPU badname.
374*38fd1498Szrj           _Tp __eaa = __xndev * __yndev;
375*38fd1498Szrj           _Tp __eb = __zndev * __zndev;
376*38fd1498Szrj           _Tp __ec = __eaa - __eb;
377*38fd1498Szrj           _Tp __ed = __eaa - _Tp(6) * __eb;
378*38fd1498Szrj           _Tp __ef = __ed + __ec + __ec;
379*38fd1498Szrj           _Tp __s1 = __ed * (-__c1 + __c3 * __ed
380*38fd1498Szrj                                    / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
381*38fd1498Szrj                                    / _Tp(2));
382*38fd1498Szrj           _Tp __s2 = __zndev
383*38fd1498Szrj                    * (__c2 * __ef
384*38fd1498Szrj                     + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
385*38fd1498Szrj 
386*38fd1498Szrj           return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
387*38fd1498Szrj                                         / (__mu * std::sqrt(__mu));
388*38fd1498Szrj         }
389*38fd1498Szrj     }
390*38fd1498Szrj 
391*38fd1498Szrj 
392*38fd1498Szrj     /**
393*38fd1498Szrj      *   @brief  Return the complete elliptic integral of the second kind
394*38fd1498Szrj      *           @f$ E(k) @f$ using the Carlson formulation.
395*38fd1498Szrj      *
396*38fd1498Szrj      *   The complete elliptic integral of the second kind is defined as
397*38fd1498Szrj      *   @f[
398*38fd1498Szrj      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
399*38fd1498Szrj      *   @f]
400*38fd1498Szrj      *
401*38fd1498Szrj      *   @param  __k  The argument of the complete elliptic function.
402*38fd1498Szrj      *   @return  The complete elliptic function of the second kind.
403*38fd1498Szrj      */
404*38fd1498Szrj     template<typename _Tp>
405*38fd1498Szrj     _Tp
__comp_ellint_2(_Tp __k)406*38fd1498Szrj     __comp_ellint_2(_Tp __k)
407*38fd1498Szrj     {
408*38fd1498Szrj 
409*38fd1498Szrj       if (__isnan(__k))
410*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
411*38fd1498Szrj       else if (std::abs(__k) == 1)
412*38fd1498Szrj         return _Tp(1);
413*38fd1498Szrj       else if (std::abs(__k) > _Tp(1))
414*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
415*38fd1498Szrj       else
416*38fd1498Szrj         {
417*38fd1498Szrj           const _Tp __kk = __k * __k;
418*38fd1498Szrj 
419*38fd1498Szrj           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
420*38fd1498Szrj                - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
421*38fd1498Szrj         }
422*38fd1498Szrj     }
423*38fd1498Szrj 
424*38fd1498Szrj 
425*38fd1498Szrj     /**
426*38fd1498Szrj      *   @brief  Return the incomplete elliptic integral of the second kind
427*38fd1498Szrj      *           @f$ E(k,\phi) @f$ using the Carlson formulation.
428*38fd1498Szrj      *
429*38fd1498Szrj      *   The incomplete elliptic integral of the second kind is defined as
430*38fd1498Szrj      *   @f[
431*38fd1498Szrj      *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
432*38fd1498Szrj      *   @f]
433*38fd1498Szrj      *
434*38fd1498Szrj      *   @param  __k  The argument of the elliptic function.
435*38fd1498Szrj      *   @param  __phi  The integral limit argument of the elliptic function.
436*38fd1498Szrj      *   @return  The elliptic function of the second kind.
437*38fd1498Szrj      */
438*38fd1498Szrj     template<typename _Tp>
439*38fd1498Szrj     _Tp
__ellint_2(_Tp __k,_Tp __phi)440*38fd1498Szrj     __ellint_2(_Tp __k, _Tp __phi)
441*38fd1498Szrj     {
442*38fd1498Szrj 
443*38fd1498Szrj       if (__isnan(__k) || __isnan(__phi))
444*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
445*38fd1498Szrj       else if (std::abs(__k) > _Tp(1))
446*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in __ellint_2."));
447*38fd1498Szrj       else
448*38fd1498Szrj         {
449*38fd1498Szrj           //  Reduce phi to -pi/2 < phi < +pi/2.
450*38fd1498Szrj           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
451*38fd1498Szrj                                    + _Tp(0.5L));
452*38fd1498Szrj           const _Tp __phi_red = __phi
453*38fd1498Szrj                               - __n * __numeric_constants<_Tp>::__pi();
454*38fd1498Szrj 
455*38fd1498Szrj           const _Tp __kk = __k * __k;
456*38fd1498Szrj           const _Tp __s = std::sin(__phi_red);
457*38fd1498Szrj           const _Tp __ss = __s * __s;
458*38fd1498Szrj           const _Tp __sss = __ss * __s;
459*38fd1498Szrj           const _Tp __c = std::cos(__phi_red);
460*38fd1498Szrj           const _Tp __cc = __c * __c;
461*38fd1498Szrj 
462*38fd1498Szrj           const _Tp __E = __s
463*38fd1498Szrj                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
464*38fd1498Szrj                         - __kk * __sss
465*38fd1498Szrj                         * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
466*38fd1498Szrj                         / _Tp(3);
467*38fd1498Szrj 
468*38fd1498Szrj           if (__n == 0)
469*38fd1498Szrj             return __E;
470*38fd1498Szrj           else
471*38fd1498Szrj             return __E + _Tp(2) * __n * __comp_ellint_2(__k);
472*38fd1498Szrj         }
473*38fd1498Szrj     }
474*38fd1498Szrj 
475*38fd1498Szrj 
476*38fd1498Szrj     /**
477*38fd1498Szrj      *   @brief  Return the Carlson elliptic function
478*38fd1498Szrj      *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
479*38fd1498Szrj      *           is the Carlson elliptic function of the first kind.
480*38fd1498Szrj      *
481*38fd1498Szrj      *   The Carlson elliptic function is defined by:
482*38fd1498Szrj      *   @f[
483*38fd1498Szrj      *       R_C(x,y) = \frac{1}{2} \int_0^\infty
484*38fd1498Szrj      *                 \frac{dt}{(t + x)^{1/2}(t + y)}
485*38fd1498Szrj      *   @f]
486*38fd1498Szrj      *
487*38fd1498Szrj      *   Based on Carlson's algorithms:
488*38fd1498Szrj      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
489*38fd1498Szrj      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
490*38fd1498Szrj      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
491*38fd1498Szrj      *      by Press, Teukolsky, Vetterling, Flannery (1992)
492*38fd1498Szrj      *
493*38fd1498Szrj      *   @param  __x  The first argument.
494*38fd1498Szrj      *   @param  __y  The second argument.
495*38fd1498Szrj      *   @return  The Carlson elliptic function.
496*38fd1498Szrj      */
497*38fd1498Szrj     template<typename _Tp>
498*38fd1498Szrj     _Tp
__ellint_rc(_Tp __x,_Tp __y)499*38fd1498Szrj     __ellint_rc(_Tp __x, _Tp __y)
500*38fd1498Szrj     {
501*38fd1498Szrj       const _Tp __min = std::numeric_limits<_Tp>::min();
502*38fd1498Szrj       const _Tp __max = std::numeric_limits<_Tp>::max();
503*38fd1498Szrj       const _Tp __lolim = _Tp(5) * __min;
504*38fd1498Szrj       const _Tp __uplim = __max / _Tp(5);
505*38fd1498Szrj 
506*38fd1498Szrj       if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
507*38fd1498Szrj         std::__throw_domain_error(__N("Argument less than zero "
508*38fd1498Szrj                                       "in __ellint_rc."));
509*38fd1498Szrj       else
510*38fd1498Szrj         {
511*38fd1498Szrj           const _Tp __c0 = _Tp(1) / _Tp(4);
512*38fd1498Szrj           const _Tp __c1 = _Tp(1) / _Tp(7);
513*38fd1498Szrj           const _Tp __c2 = _Tp(9) / _Tp(22);
514*38fd1498Szrj           const _Tp __c3 = _Tp(3) / _Tp(10);
515*38fd1498Szrj           const _Tp __c4 = _Tp(3) / _Tp(8);
516*38fd1498Szrj 
517*38fd1498Szrj           _Tp __xn = __x;
518*38fd1498Szrj           _Tp __yn = __y;
519*38fd1498Szrj 
520*38fd1498Szrj           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
521*38fd1498Szrj           const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
522*38fd1498Szrj           _Tp __mu;
523*38fd1498Szrj           _Tp __sn;
524*38fd1498Szrj 
525*38fd1498Szrj           const unsigned int __max_iter = 100;
526*38fd1498Szrj           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
527*38fd1498Szrj             {
528*38fd1498Szrj               __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
529*38fd1498Szrj               __sn = (__yn + __mu) / __mu - _Tp(2);
530*38fd1498Szrj               if (std::abs(__sn) < __errtol)
531*38fd1498Szrj                 break;
532*38fd1498Szrj               const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
533*38fd1498Szrj                              + __yn;
534*38fd1498Szrj               __xn = __c0 * (__xn + __lambda);
535*38fd1498Szrj               __yn = __c0 * (__yn + __lambda);
536*38fd1498Szrj             }
537*38fd1498Szrj 
538*38fd1498Szrj           _Tp __s = __sn * __sn
539*38fd1498Szrj                   * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
540*38fd1498Szrj 
541*38fd1498Szrj           return (_Tp(1) + __s) / std::sqrt(__mu);
542*38fd1498Szrj         }
543*38fd1498Szrj     }
544*38fd1498Szrj 
545*38fd1498Szrj 
546*38fd1498Szrj     /**
547*38fd1498Szrj      *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
548*38fd1498Szrj      *           of the third kind.
549*38fd1498Szrj      *
550*38fd1498Szrj      *   The Carlson elliptic function of the third kind is defined by:
551*38fd1498Szrj      *   @f[
552*38fd1498Szrj      *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
553*38fd1498Szrj      *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
554*38fd1498Szrj      *   @f]
555*38fd1498Szrj      *
556*38fd1498Szrj      *   Based on Carlson's algorithms:
557*38fd1498Szrj      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
558*38fd1498Szrj      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
559*38fd1498Szrj      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
560*38fd1498Szrj      *      by Press, Teukolsky, Vetterling, Flannery (1992)
561*38fd1498Szrj      *
562*38fd1498Szrj      *   @param  __x  The first of three symmetric arguments.
563*38fd1498Szrj      *   @param  __y  The second of three symmetric arguments.
564*38fd1498Szrj      *   @param  __z  The third of three symmetric arguments.
565*38fd1498Szrj      *   @param  __p  The fourth argument.
566*38fd1498Szrj      *   @return  The Carlson elliptic function of the fourth kind.
567*38fd1498Szrj      */
568*38fd1498Szrj     template<typename _Tp>
569*38fd1498Szrj     _Tp
__ellint_rj(_Tp __x,_Tp __y,_Tp __z,_Tp __p)570*38fd1498Szrj     __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
571*38fd1498Szrj     {
572*38fd1498Szrj       const _Tp __min = std::numeric_limits<_Tp>::min();
573*38fd1498Szrj       const _Tp __max = std::numeric_limits<_Tp>::max();
574*38fd1498Szrj       const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
575*38fd1498Szrj       const _Tp __uplim = _Tp(0.3L)
576*38fd1498Szrj                         * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
577*38fd1498Szrj 
578*38fd1498Szrj       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
579*38fd1498Szrj         std::__throw_domain_error(__N("Argument less than zero "
580*38fd1498Szrj                                       "in __ellint_rj."));
581*38fd1498Szrj       else if (__x + __y < __lolim || __x + __z < __lolim
582*38fd1498Szrj             || __y + __z < __lolim || __p < __lolim)
583*38fd1498Szrj         std::__throw_domain_error(__N("Argument too small "
584*38fd1498Szrj                                       "in __ellint_rj"));
585*38fd1498Szrj       else
586*38fd1498Szrj         {
587*38fd1498Szrj           const _Tp __c0 = _Tp(1) / _Tp(4);
588*38fd1498Szrj           const _Tp __c1 = _Tp(3) / _Tp(14);
589*38fd1498Szrj           const _Tp __c2 = _Tp(1) / _Tp(3);
590*38fd1498Szrj           const _Tp __c3 = _Tp(3) / _Tp(22);
591*38fd1498Szrj           const _Tp __c4 = _Tp(3) / _Tp(26);
592*38fd1498Szrj 
593*38fd1498Szrj           _Tp __xn = __x;
594*38fd1498Szrj           _Tp __yn = __y;
595*38fd1498Szrj           _Tp __zn = __z;
596*38fd1498Szrj           _Tp __pn = __p;
597*38fd1498Szrj           _Tp __sigma = _Tp(0);
598*38fd1498Szrj           _Tp __power4 = _Tp(1);
599*38fd1498Szrj 
600*38fd1498Szrj           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
601*38fd1498Szrj           const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
602*38fd1498Szrj 
603*38fd1498Szrj           _Tp __lambda, __mu;
604*38fd1498Szrj           _Tp __xndev, __yndev, __zndev, __pndev;
605*38fd1498Szrj 
606*38fd1498Szrj           const unsigned int __max_iter = 100;
607*38fd1498Szrj           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
608*38fd1498Szrj             {
609*38fd1498Szrj               __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
610*38fd1498Szrj               __xndev = (__mu - __xn) / __mu;
611*38fd1498Szrj               __yndev = (__mu - __yn) / __mu;
612*38fd1498Szrj               __zndev = (__mu - __zn) / __mu;
613*38fd1498Szrj               __pndev = (__mu - __pn) / __mu;
614*38fd1498Szrj               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
615*38fd1498Szrj               __epsilon = std::max(__epsilon, std::abs(__zndev));
616*38fd1498Szrj               __epsilon = std::max(__epsilon, std::abs(__pndev));
617*38fd1498Szrj               if (__epsilon < __errtol)
618*38fd1498Szrj                 break;
619*38fd1498Szrj               const _Tp __xnroot = std::sqrt(__xn);
620*38fd1498Szrj               const _Tp __ynroot = std::sqrt(__yn);
621*38fd1498Szrj               const _Tp __znroot = std::sqrt(__zn);
622*38fd1498Szrj               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
623*38fd1498Szrj                                  + __ynroot * __znroot;
624*38fd1498Szrj               const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
625*38fd1498Szrj                                 + __xnroot * __ynroot * __znroot;
626*38fd1498Szrj               const _Tp __alpha2 = __alpha1 * __alpha1;
627*38fd1498Szrj               const _Tp __beta = __pn * (__pn + __lambda)
628*38fd1498Szrj                                       * (__pn + __lambda);
629*38fd1498Szrj               __sigma += __power4 * __ellint_rc(__alpha2, __beta);
630*38fd1498Szrj               __power4 *= __c0;
631*38fd1498Szrj               __xn = __c0 * (__xn + __lambda);
632*38fd1498Szrj               __yn = __c0 * (__yn + __lambda);
633*38fd1498Szrj               __zn = __c0 * (__zn + __lambda);
634*38fd1498Szrj               __pn = __c0 * (__pn + __lambda);
635*38fd1498Szrj             }
636*38fd1498Szrj 
637*38fd1498Szrj 	  // Note: __ea is an SPU badname.
638*38fd1498Szrj           _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
639*38fd1498Szrj           _Tp __eb = __xndev * __yndev * __zndev;
640*38fd1498Szrj           _Tp __ec = __pndev * __pndev;
641*38fd1498Szrj           _Tp __e2 = __eaa - _Tp(3) * __ec;
642*38fd1498Szrj           _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
643*38fd1498Szrj           _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
644*38fd1498Szrj                             - _Tp(3) * __c4 * __e3 / _Tp(2));
645*38fd1498Szrj           _Tp __s2 = __eb * (__c2 / _Tp(2)
646*38fd1498Szrj                    + __pndev * (-__c3 - __c3 + __pndev * __c4));
647*38fd1498Szrj           _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
648*38fd1498Szrj                    - __c2 * __pndev * __ec;
649*38fd1498Szrj 
650*38fd1498Szrj           return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
651*38fd1498Szrj                                              / (__mu * std::sqrt(__mu));
652*38fd1498Szrj         }
653*38fd1498Szrj     }
654*38fd1498Szrj 
655*38fd1498Szrj 
656*38fd1498Szrj     /**
657*38fd1498Szrj      *   @brief Return the complete elliptic integral of the third kind
658*38fd1498Szrj      *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
659*38fd1498Szrj      *          Carlson formulation.
660*38fd1498Szrj      *
661*38fd1498Szrj      *   The complete elliptic integral of the third kind is defined as
662*38fd1498Szrj      *   @f[
663*38fd1498Szrj      *     \Pi(k,\nu) = \int_0^{\pi/2}
664*38fd1498Szrj      *                   \frac{d\theta}
665*38fd1498Szrj      *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
666*38fd1498Szrj      *   @f]
667*38fd1498Szrj      *
668*38fd1498Szrj      *   @param  __k  The argument of the elliptic function.
669*38fd1498Szrj      *   @param  __nu  The second argument of the elliptic function.
670*38fd1498Szrj      *   @return  The complete elliptic function of the third kind.
671*38fd1498Szrj      */
672*38fd1498Szrj     template<typename _Tp>
673*38fd1498Szrj     _Tp
__comp_ellint_3(_Tp __k,_Tp __nu)674*38fd1498Szrj     __comp_ellint_3(_Tp __k, _Tp __nu)
675*38fd1498Szrj     {
676*38fd1498Szrj 
677*38fd1498Szrj       if (__isnan(__k) || __isnan(__nu))
678*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
679*38fd1498Szrj       else if (__nu == _Tp(1))
680*38fd1498Szrj         return std::numeric_limits<_Tp>::infinity();
681*38fd1498Szrj       else if (std::abs(__k) > _Tp(1))
682*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
683*38fd1498Szrj       else
684*38fd1498Szrj         {
685*38fd1498Szrj           const _Tp __kk = __k * __k;
686*38fd1498Szrj 
687*38fd1498Szrj           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
688*38fd1498Szrj                + __nu
689*38fd1498Szrj                * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu)
690*38fd1498Szrj                / _Tp(3);
691*38fd1498Szrj         }
692*38fd1498Szrj     }
693*38fd1498Szrj 
694*38fd1498Szrj 
695*38fd1498Szrj     /**
696*38fd1498Szrj      *   @brief Return the incomplete elliptic integral of the third kind
697*38fd1498Szrj      *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
698*38fd1498Szrj      *
699*38fd1498Szrj      *   The incomplete elliptic integral of the third kind is defined as
700*38fd1498Szrj      *   @f[
701*38fd1498Szrj      *     \Pi(k,\nu,\phi) = \int_0^{\phi}
702*38fd1498Szrj      *                       \frac{d\theta}
703*38fd1498Szrj      *                            {(1 - \nu \sin^2\theta)
704*38fd1498Szrj      *                             \sqrt{1 - k^2 \sin^2\theta}}
705*38fd1498Szrj      *   @f]
706*38fd1498Szrj      *
707*38fd1498Szrj      *   @param  __k  The argument of the elliptic function.
708*38fd1498Szrj      *   @param  __nu  The second argument of the elliptic function.
709*38fd1498Szrj      *   @param  __phi  The integral limit argument of the elliptic function.
710*38fd1498Szrj      *   @return  The elliptic function of the third kind.
711*38fd1498Szrj      */
712*38fd1498Szrj     template<typename _Tp>
713*38fd1498Szrj     _Tp
__ellint_3(_Tp __k,_Tp __nu,_Tp __phi)714*38fd1498Szrj     __ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
715*38fd1498Szrj     {
716*38fd1498Szrj 
717*38fd1498Szrj       if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
718*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
719*38fd1498Szrj       else if (std::abs(__k) > _Tp(1))
720*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument in __ellint_3."));
721*38fd1498Szrj       else
722*38fd1498Szrj         {
723*38fd1498Szrj           //  Reduce phi to -pi/2 < phi < +pi/2.
724*38fd1498Szrj           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
725*38fd1498Szrj                                    + _Tp(0.5L));
726*38fd1498Szrj           const _Tp __phi_red = __phi
727*38fd1498Szrj                               - __n * __numeric_constants<_Tp>::__pi();
728*38fd1498Szrj 
729*38fd1498Szrj           const _Tp __kk = __k * __k;
730*38fd1498Szrj           const _Tp __s = std::sin(__phi_red);
731*38fd1498Szrj           const _Tp __ss = __s * __s;
732*38fd1498Szrj           const _Tp __sss = __ss * __s;
733*38fd1498Szrj           const _Tp __c = std::cos(__phi_red);
734*38fd1498Szrj           const _Tp __cc = __c * __c;
735*38fd1498Szrj 
736*38fd1498Szrj           const _Tp __Pi = __s
737*38fd1498Szrj                          * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
738*38fd1498Szrj                          + __nu * __sss
739*38fd1498Szrj                          * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
740*38fd1498Szrj                                        _Tp(1) - __nu * __ss) / _Tp(3);
741*38fd1498Szrj 
742*38fd1498Szrj           if (__n == 0)
743*38fd1498Szrj             return __Pi;
744*38fd1498Szrj           else
745*38fd1498Szrj             return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
746*38fd1498Szrj         }
747*38fd1498Szrj     }
748*38fd1498Szrj   } // namespace __detail
749*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
750*38fd1498Szrj } // namespace tr1
751*38fd1498Szrj #endif
752*38fd1498Szrj 
753*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
754*38fd1498Szrj }
755*38fd1498Szrj 
756*38fd1498Szrj #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
757*38fd1498Szrj 
758