1*38fd1498Szrj // Special functions -*- C++ -*- 2*38fd1498Szrj 3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc. 4*38fd1498Szrj // 5*38fd1498Szrj // This file is part of the GNU ISO C++ Library. This library is free 6*38fd1498Szrj // software; you can redistribute it and/or modify it under the 7*38fd1498Szrj // terms of the GNU General Public License as published by the 8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option) 9*38fd1498Szrj // any later version. 10*38fd1498Szrj // 11*38fd1498Szrj // This library is distributed in the hope that it will be useful, 12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of 13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14*38fd1498Szrj // GNU General Public License for more details. 15*38fd1498Szrj // 16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional 17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version 18*38fd1498Szrj // 3.1, as published by the Free Software Foundation. 19*38fd1498Szrj 20*38fd1498Szrj // You should have received a copy of the GNU General Public License and 21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program; 22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23*38fd1498Szrj // <http://www.gnu.org/licenses/>. 24*38fd1498Szrj 25*38fd1498Szrj /** @file tr1/bessel_function.tcc 26*38fd1498Szrj * This is an internal header file, included by other library headers. 27*38fd1498Szrj * Do not attempt to use it directly. @headername{tr1/cmath} 28*38fd1498Szrj */ 29*38fd1498Szrj 30*38fd1498Szrj // 31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2 Special functions 32*38fd1498Szrj // 33*38fd1498Szrj 34*38fd1498Szrj // Written by Edward Smith-Rowland. 35*38fd1498Szrj // 36*38fd1498Szrj // References: 37*38fd1498Szrj // (1) Handbook of Mathematical Functions, 38*38fd1498Szrj // ed. Milton Abramowitz and Irene A. Stegun, 39*38fd1498Szrj // Dover Publications, 40*38fd1498Szrj // Section 9, pp. 355-434, Section 10 pp. 435-478 41*38fd1498Szrj // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 42*38fd1498Szrj // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, 43*38fd1498Szrj // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), 44*38fd1498Szrj // 2nd ed, pp. 240-245 45*38fd1498Szrj 46*38fd1498Szrj #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 47*38fd1498Szrj #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1 48*38fd1498Szrj 49*38fd1498Szrj #include "special_function_util.h" 50*38fd1498Szrj 51*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default) 52*38fd1498Szrj { 53*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION 54*38fd1498Szrj 55*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS 56*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std 57*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH) 58*38fd1498Szrj namespace tr1 59*38fd1498Szrj { 60*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1 61*38fd1498Szrj #else 62*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath> 63*38fd1498Szrj #endif 64*38fd1498Szrj // [5.2] Special functions 65*38fd1498Szrj 66*38fd1498Szrj // Implementation-space details. 67*38fd1498Szrj namespace __detail 68*38fd1498Szrj { 69*38fd1498Szrj /** 70*38fd1498Szrj * @brief Compute the gamma functions required by the Temme series 71*38fd1498Szrj * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$. 72*38fd1498Szrj * @f[ 73*38fd1498Szrj * \Gamma_1 = \frac{1}{2\mu} 74*38fd1498Szrj * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 75*38fd1498Szrj * @f] 76*38fd1498Szrj * and 77*38fd1498Szrj * @f[ 78*38fd1498Szrj * \Gamma_2 = \frac{1}{2} 79*38fd1498Szrj * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 80*38fd1498Szrj * @f] 81*38fd1498Szrj * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$. 82*38fd1498Szrj * is the nearest integer to @f$ \nu @f$. 83*38fd1498Szrj * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 84*38fd1498Szrj * are returned as well. 85*38fd1498Szrj * 86*38fd1498Szrj * The accuracy requirements on this are exquisite. 87*38fd1498Szrj * 88*38fd1498Szrj * @param __mu The input parameter of the gamma functions. 89*38fd1498Szrj * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$ 90*38fd1498Szrj * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$ 91*38fd1498Szrj * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 92*38fd1498Szrj * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$ 93*38fd1498Szrj */ 94*38fd1498Szrj template <typename _Tp> 95*38fd1498Szrj void __gamma_temme(_Tp __mu,_Tp & __gam1,_Tp & __gam2,_Tp & __gampl,_Tp & __gammi)96*38fd1498Szrj __gamma_temme(_Tp __mu, 97*38fd1498Szrj _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi) 98*38fd1498Szrj { 99*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1 100*38fd1498Szrj __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu); 101*38fd1498Szrj __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu); 102*38fd1498Szrj #else 103*38fd1498Szrj __gampl = _Tp(1) / __gamma(_Tp(1) + __mu); 104*38fd1498Szrj __gammi = _Tp(1) / __gamma(_Tp(1) - __mu); 105*38fd1498Szrj #endif 106*38fd1498Szrj 107*38fd1498Szrj if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon()) 108*38fd1498Szrj __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e()); 109*38fd1498Szrj else 110*38fd1498Szrj __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu); 111*38fd1498Szrj 112*38fd1498Szrj __gam2 = (__gammi + __gampl) / (_Tp(2)); 113*38fd1498Szrj 114*38fd1498Szrj return; 115*38fd1498Szrj } 116*38fd1498Szrj 117*38fd1498Szrj 118*38fd1498Szrj /** 119*38fd1498Szrj * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann 120*38fd1498Szrj * @f$ N_\nu(x) @f$ functions and their first derivatives 121*38fd1498Szrj * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively. 122*38fd1498Szrj * These four functions are computed together for numerical 123*38fd1498Szrj * stability. 124*38fd1498Szrj * 125*38fd1498Szrj * @param __nu The order of the Bessel functions. 126*38fd1498Szrj * @param __x The argument of the Bessel functions. 127*38fd1498Szrj * @param __Jnu The output Bessel function of the first kind. 128*38fd1498Szrj * @param __Nnu The output Neumann function (Bessel function of the second kind). 129*38fd1498Szrj * @param __Jpnu The output derivative of the Bessel function of the first kind. 130*38fd1498Szrj * @param __Npnu The output derivative of the Neumann function. 131*38fd1498Szrj */ 132*38fd1498Szrj template <typename _Tp> 133*38fd1498Szrj void __bessel_jn(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu,_Tp & __Jpnu,_Tp & __Npnu)134*38fd1498Szrj __bessel_jn(_Tp __nu, _Tp __x, 135*38fd1498Szrj _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu) 136*38fd1498Szrj { 137*38fd1498Szrj if (__x == _Tp(0)) 138*38fd1498Szrj { 139*38fd1498Szrj if (__nu == _Tp(0)) 140*38fd1498Szrj { 141*38fd1498Szrj __Jnu = _Tp(1); 142*38fd1498Szrj __Jpnu = _Tp(0); 143*38fd1498Szrj } 144*38fd1498Szrj else if (__nu == _Tp(1)) 145*38fd1498Szrj { 146*38fd1498Szrj __Jnu = _Tp(0); 147*38fd1498Szrj __Jpnu = _Tp(0.5L); 148*38fd1498Szrj } 149*38fd1498Szrj else 150*38fd1498Szrj { 151*38fd1498Szrj __Jnu = _Tp(0); 152*38fd1498Szrj __Jpnu = _Tp(0); 153*38fd1498Szrj } 154*38fd1498Szrj __Nnu = -std::numeric_limits<_Tp>::infinity(); 155*38fd1498Szrj __Npnu = std::numeric_limits<_Tp>::infinity(); 156*38fd1498Szrj return; 157*38fd1498Szrj } 158*38fd1498Szrj 159*38fd1498Szrj const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 160*38fd1498Szrj // When the multiplier is N i.e. 161*38fd1498Szrj // fp_min = N * min() 162*38fd1498Szrj // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)! 163*38fd1498Szrj //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min(); 164*38fd1498Szrj const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min()); 165*38fd1498Szrj const int __max_iter = 15000; 166*38fd1498Szrj const _Tp __x_min = _Tp(2); 167*38fd1498Szrj 168*38fd1498Szrj const int __nl = (__x < __x_min 169*38fd1498Szrj ? static_cast<int>(__nu + _Tp(0.5L)) 170*38fd1498Szrj : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L)))); 171*38fd1498Szrj 172*38fd1498Szrj const _Tp __mu = __nu - __nl; 173*38fd1498Szrj const _Tp __mu2 = __mu * __mu; 174*38fd1498Szrj const _Tp __xi = _Tp(1) / __x; 175*38fd1498Szrj const _Tp __xi2 = _Tp(2) * __xi; 176*38fd1498Szrj _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi(); 177*38fd1498Szrj int __isign = 1; 178*38fd1498Szrj _Tp __h = __nu * __xi; 179*38fd1498Szrj if (__h < __fp_min) 180*38fd1498Szrj __h = __fp_min; 181*38fd1498Szrj _Tp __b = __xi2 * __nu; 182*38fd1498Szrj _Tp __d = _Tp(0); 183*38fd1498Szrj _Tp __c = __h; 184*38fd1498Szrj int __i; 185*38fd1498Szrj for (__i = 1; __i <= __max_iter; ++__i) 186*38fd1498Szrj { 187*38fd1498Szrj __b += __xi2; 188*38fd1498Szrj __d = __b - __d; 189*38fd1498Szrj if (std::abs(__d) < __fp_min) 190*38fd1498Szrj __d = __fp_min; 191*38fd1498Szrj __c = __b - _Tp(1) / __c; 192*38fd1498Szrj if (std::abs(__c) < __fp_min) 193*38fd1498Szrj __c = __fp_min; 194*38fd1498Szrj __d = _Tp(1) / __d; 195*38fd1498Szrj const _Tp __del = __c * __d; 196*38fd1498Szrj __h *= __del; 197*38fd1498Szrj if (__d < _Tp(0)) 198*38fd1498Szrj __isign = -__isign; 199*38fd1498Szrj if (std::abs(__del - _Tp(1)) < __eps) 200*38fd1498Szrj break; 201*38fd1498Szrj } 202*38fd1498Szrj if (__i > __max_iter) 203*38fd1498Szrj std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; " 204*38fd1498Szrj "try asymptotic expansion.")); 205*38fd1498Szrj _Tp __Jnul = __isign * __fp_min; 206*38fd1498Szrj _Tp __Jpnul = __h * __Jnul; 207*38fd1498Szrj _Tp __Jnul1 = __Jnul; 208*38fd1498Szrj _Tp __Jpnu1 = __Jpnul; 209*38fd1498Szrj _Tp __fact = __nu * __xi; 210*38fd1498Szrj for ( int __l = __nl; __l >= 1; --__l ) 211*38fd1498Szrj { 212*38fd1498Szrj const _Tp __Jnutemp = __fact * __Jnul + __Jpnul; 213*38fd1498Szrj __fact -= __xi; 214*38fd1498Szrj __Jpnul = __fact * __Jnutemp - __Jnul; 215*38fd1498Szrj __Jnul = __Jnutemp; 216*38fd1498Szrj } 217*38fd1498Szrj if (__Jnul == _Tp(0)) 218*38fd1498Szrj __Jnul = __eps; 219*38fd1498Szrj _Tp __f= __Jpnul / __Jnul; 220*38fd1498Szrj _Tp __Nmu, __Nnu1, __Npmu, __Jmu; 221*38fd1498Szrj if (__x < __x_min) 222*38fd1498Szrj { 223*38fd1498Szrj const _Tp __x2 = __x / _Tp(2); 224*38fd1498Szrj const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; 225*38fd1498Szrj _Tp __fact = (std::abs(__pimu) < __eps 226*38fd1498Szrj ? _Tp(1) : __pimu / std::sin(__pimu)); 227*38fd1498Szrj _Tp __d = -std::log(__x2); 228*38fd1498Szrj _Tp __e = __mu * __d; 229*38fd1498Szrj _Tp __fact2 = (std::abs(__e) < __eps 230*38fd1498Szrj ? _Tp(1) : std::sinh(__e) / __e); 231*38fd1498Szrj _Tp __gam1, __gam2, __gampl, __gammi; 232*38fd1498Szrj __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); 233*38fd1498Szrj _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi()) 234*38fd1498Szrj * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); 235*38fd1498Szrj __e = std::exp(__e); 236*38fd1498Szrj _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl); 237*38fd1498Szrj _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi); 238*38fd1498Szrj const _Tp __pimu2 = __pimu / _Tp(2); 239*38fd1498Szrj _Tp __fact3 = (std::abs(__pimu2) < __eps 240*38fd1498Szrj ? _Tp(1) : std::sin(__pimu2) / __pimu2 ); 241*38fd1498Szrj _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3; 242*38fd1498Szrj _Tp __c = _Tp(1); 243*38fd1498Szrj __d = -__x2 * __x2; 244*38fd1498Szrj _Tp __sum = __ff + __r * __q; 245*38fd1498Szrj _Tp __sum1 = __p; 246*38fd1498Szrj for (__i = 1; __i <= __max_iter; ++__i) 247*38fd1498Szrj { 248*38fd1498Szrj __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); 249*38fd1498Szrj __c *= __d / _Tp(__i); 250*38fd1498Szrj __p /= _Tp(__i) - __mu; 251*38fd1498Szrj __q /= _Tp(__i) + __mu; 252*38fd1498Szrj const _Tp __del = __c * (__ff + __r * __q); 253*38fd1498Szrj __sum += __del; 254*38fd1498Szrj const _Tp __del1 = __c * __p - __i * __del; 255*38fd1498Szrj __sum1 += __del1; 256*38fd1498Szrj if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) ) 257*38fd1498Szrj break; 258*38fd1498Szrj } 259*38fd1498Szrj if ( __i > __max_iter ) 260*38fd1498Szrj std::__throw_runtime_error(__N("Bessel y series failed to converge " 261*38fd1498Szrj "in __bessel_jn.")); 262*38fd1498Szrj __Nmu = -__sum; 263*38fd1498Szrj __Nnu1 = -__sum1 * __xi2; 264*38fd1498Szrj __Npmu = __mu * __xi * __Nmu - __Nnu1; 265*38fd1498Szrj __Jmu = __w / (__Npmu - __f * __Nmu); 266*38fd1498Szrj } 267*38fd1498Szrj else 268*38fd1498Szrj { 269*38fd1498Szrj _Tp __a = _Tp(0.25L) - __mu2; 270*38fd1498Szrj _Tp __q = _Tp(1); 271*38fd1498Szrj _Tp __p = -__xi / _Tp(2); 272*38fd1498Szrj _Tp __br = _Tp(2) * __x; 273*38fd1498Szrj _Tp __bi = _Tp(2); 274*38fd1498Szrj _Tp __fact = __a * __xi / (__p * __p + __q * __q); 275*38fd1498Szrj _Tp __cr = __br + __q * __fact; 276*38fd1498Szrj _Tp __ci = __bi + __p * __fact; 277*38fd1498Szrj _Tp __den = __br * __br + __bi * __bi; 278*38fd1498Szrj _Tp __dr = __br / __den; 279*38fd1498Szrj _Tp __di = -__bi / __den; 280*38fd1498Szrj _Tp __dlr = __cr * __dr - __ci * __di; 281*38fd1498Szrj _Tp __dli = __cr * __di + __ci * __dr; 282*38fd1498Szrj _Tp __temp = __p * __dlr - __q * __dli; 283*38fd1498Szrj __q = __p * __dli + __q * __dlr; 284*38fd1498Szrj __p = __temp; 285*38fd1498Szrj int __i; 286*38fd1498Szrj for (__i = 2; __i <= __max_iter; ++__i) 287*38fd1498Szrj { 288*38fd1498Szrj __a += _Tp(2 * (__i - 1)); 289*38fd1498Szrj __bi += _Tp(2); 290*38fd1498Szrj __dr = __a * __dr + __br; 291*38fd1498Szrj __di = __a * __di + __bi; 292*38fd1498Szrj if (std::abs(__dr) + std::abs(__di) < __fp_min) 293*38fd1498Szrj __dr = __fp_min; 294*38fd1498Szrj __fact = __a / (__cr * __cr + __ci * __ci); 295*38fd1498Szrj __cr = __br + __cr * __fact; 296*38fd1498Szrj __ci = __bi - __ci * __fact; 297*38fd1498Szrj if (std::abs(__cr) + std::abs(__ci) < __fp_min) 298*38fd1498Szrj __cr = __fp_min; 299*38fd1498Szrj __den = __dr * __dr + __di * __di; 300*38fd1498Szrj __dr /= __den; 301*38fd1498Szrj __di /= -__den; 302*38fd1498Szrj __dlr = __cr * __dr - __ci * __di; 303*38fd1498Szrj __dli = __cr * __di + __ci * __dr; 304*38fd1498Szrj __temp = __p * __dlr - __q * __dli; 305*38fd1498Szrj __q = __p * __dli + __q * __dlr; 306*38fd1498Szrj __p = __temp; 307*38fd1498Szrj if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps) 308*38fd1498Szrj break; 309*38fd1498Szrj } 310*38fd1498Szrj if (__i > __max_iter) 311*38fd1498Szrj std::__throw_runtime_error(__N("Lentz's method failed " 312*38fd1498Szrj "in __bessel_jn.")); 313*38fd1498Szrj const _Tp __gam = (__p - __f) / __q; 314*38fd1498Szrj __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q)); 315*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1 316*38fd1498Szrj __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul); 317*38fd1498Szrj #else 318*38fd1498Szrj if (__Jmu * __Jnul < _Tp(0)) 319*38fd1498Szrj __Jmu = -__Jmu; 320*38fd1498Szrj #endif 321*38fd1498Szrj __Nmu = __gam * __Jmu; 322*38fd1498Szrj __Npmu = (__p + __q / __gam) * __Nmu; 323*38fd1498Szrj __Nnu1 = __mu * __xi * __Nmu - __Npmu; 324*38fd1498Szrj } 325*38fd1498Szrj __fact = __Jmu / __Jnul; 326*38fd1498Szrj __Jnu = __fact * __Jnul1; 327*38fd1498Szrj __Jpnu = __fact * __Jpnu1; 328*38fd1498Szrj for (__i = 1; __i <= __nl; ++__i) 329*38fd1498Szrj { 330*38fd1498Szrj const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu; 331*38fd1498Szrj __Nmu = __Nnu1; 332*38fd1498Szrj __Nnu1 = __Nnutemp; 333*38fd1498Szrj } 334*38fd1498Szrj __Nnu = __Nmu; 335*38fd1498Szrj __Npnu = __nu * __xi * __Nmu - __Nnu1; 336*38fd1498Szrj 337*38fd1498Szrj return; 338*38fd1498Szrj } 339*38fd1498Szrj 340*38fd1498Szrj 341*38fd1498Szrj /** 342*38fd1498Szrj * @brief This routine computes the asymptotic cylindrical Bessel 343*38fd1498Szrj * and Neumann functions of order nu: \f$ J_{\nu} \f$, 344*38fd1498Szrj * \f$ N_{\nu} \f$. 345*38fd1498Szrj * 346*38fd1498Szrj * References: 347*38fd1498Szrj * (1) Handbook of Mathematical Functions, 348*38fd1498Szrj * ed. Milton Abramowitz and Irene A. Stegun, 349*38fd1498Szrj * Dover Publications, 350*38fd1498Szrj * Section 9 p. 364, Equations 9.2.5-9.2.10 351*38fd1498Szrj * 352*38fd1498Szrj * @param __nu The order of the Bessel functions. 353*38fd1498Szrj * @param __x The argument of the Bessel functions. 354*38fd1498Szrj * @param __Jnu The output Bessel function of the first kind. 355*38fd1498Szrj * @param __Nnu The output Neumann function (Bessel function of the second kind). 356*38fd1498Szrj */ 357*38fd1498Szrj template <typename _Tp> 358*38fd1498Szrj void __cyl_bessel_jn_asymp(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu)359*38fd1498Szrj __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu) 360*38fd1498Szrj { 361*38fd1498Szrj const _Tp __mu = _Tp(4) * __nu * __nu; 362*38fd1498Szrj const _Tp __mum1 = __mu - _Tp(1); 363*38fd1498Szrj const _Tp __mum9 = __mu - _Tp(9); 364*38fd1498Szrj const _Tp __mum25 = __mu - _Tp(25); 365*38fd1498Szrj const _Tp __mum49 = __mu - _Tp(49); 366*38fd1498Szrj const _Tp __xx = _Tp(64) * __x * __x; 367*38fd1498Szrj const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx) 368*38fd1498Szrj * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx)); 369*38fd1498Szrj const _Tp __Q = __mum1 / (_Tp(8) * __x) 370*38fd1498Szrj * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx)); 371*38fd1498Szrj 372*38fd1498Szrj const _Tp __chi = __x - (__nu + _Tp(0.5L)) 373*38fd1498Szrj * __numeric_constants<_Tp>::__pi_2(); 374*38fd1498Szrj const _Tp __c = std::cos(__chi); 375*38fd1498Szrj const _Tp __s = std::sin(__chi); 376*38fd1498Szrj 377*38fd1498Szrj const _Tp __coef = std::sqrt(_Tp(2) 378*38fd1498Szrj / (__numeric_constants<_Tp>::__pi() * __x)); 379*38fd1498Szrj __Jnu = __coef * (__c * __P - __s * __Q); 380*38fd1498Szrj __Nnu = __coef * (__s * __P + __c * __Q); 381*38fd1498Szrj 382*38fd1498Szrj return; 383*38fd1498Szrj } 384*38fd1498Szrj 385*38fd1498Szrj 386*38fd1498Szrj /** 387*38fd1498Szrj * @brief This routine returns the cylindrical Bessel functions 388*38fd1498Szrj * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$ 389*38fd1498Szrj * by series expansion. 390*38fd1498Szrj * 391*38fd1498Szrj * The modified cylindrical Bessel function is: 392*38fd1498Szrj * @f[ 393*38fd1498Szrj * Z_{\nu}(x) = \sum_{k=0}^{\infty} 394*38fd1498Szrj * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} 395*38fd1498Szrj * @f] 396*38fd1498Szrj * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for 397*38fd1498Szrj * \f$ Z = I \f$ or \f$ J \f$ respectively. 398*38fd1498Szrj * 399*38fd1498Szrj * See Abramowitz & Stegun, 9.1.10 400*38fd1498Szrj * Abramowitz & Stegun, 9.6.7 401*38fd1498Szrj * (1) Handbook of Mathematical Functions, 402*38fd1498Szrj * ed. Milton Abramowitz and Irene A. Stegun, 403*38fd1498Szrj * Dover Publications, 404*38fd1498Szrj * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375 405*38fd1498Szrj * 406*38fd1498Szrj * @param __nu The order of the Bessel function. 407*38fd1498Szrj * @param __x The argument of the Bessel function. 408*38fd1498Szrj * @param __sgn The sign of the alternate terms 409*38fd1498Szrj * -1 for the Bessel function of the first kind. 410*38fd1498Szrj * +1 for the modified Bessel function of the first kind. 411*38fd1498Szrj * @return The output Bessel function. 412*38fd1498Szrj */ 413*38fd1498Szrj template <typename _Tp> 414*38fd1498Szrj _Tp __cyl_bessel_ij_series(_Tp __nu,_Tp __x,_Tp __sgn,unsigned int __max_iter)415*38fd1498Szrj __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn, 416*38fd1498Szrj unsigned int __max_iter) 417*38fd1498Szrj { 418*38fd1498Szrj if (__x == _Tp(0)) 419*38fd1498Szrj return __nu == _Tp(0) ? _Tp(1) : _Tp(0); 420*38fd1498Szrj 421*38fd1498Szrj const _Tp __x2 = __x / _Tp(2); 422*38fd1498Szrj _Tp __fact = __nu * std::log(__x2); 423*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1 424*38fd1498Szrj __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1)); 425*38fd1498Szrj #else 426*38fd1498Szrj __fact -= __log_gamma(__nu + _Tp(1)); 427*38fd1498Szrj #endif 428*38fd1498Szrj __fact = std::exp(__fact); 429*38fd1498Szrj const _Tp __xx4 = __sgn * __x2 * __x2; 430*38fd1498Szrj _Tp __Jn = _Tp(1); 431*38fd1498Szrj _Tp __term = _Tp(1); 432*38fd1498Szrj 433*38fd1498Szrj for (unsigned int __i = 1; __i < __max_iter; ++__i) 434*38fd1498Szrj { 435*38fd1498Szrj __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i))); 436*38fd1498Szrj __Jn += __term; 437*38fd1498Szrj if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon()) 438*38fd1498Szrj break; 439*38fd1498Szrj } 440*38fd1498Szrj 441*38fd1498Szrj return __fact * __Jn; 442*38fd1498Szrj } 443*38fd1498Szrj 444*38fd1498Szrj 445*38fd1498Szrj /** 446*38fd1498Szrj * @brief Return the Bessel function of order \f$ \nu \f$: 447*38fd1498Szrj * \f$ J_{\nu}(x) \f$. 448*38fd1498Szrj * 449*38fd1498Szrj * The cylindrical Bessel function is: 450*38fd1498Szrj * @f[ 451*38fd1498Szrj * J_{\nu}(x) = \sum_{k=0}^{\infty} 452*38fd1498Szrj * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} 453*38fd1498Szrj * @f] 454*38fd1498Szrj * 455*38fd1498Szrj * @param __nu The order of the Bessel function. 456*38fd1498Szrj * @param __x The argument of the Bessel function. 457*38fd1498Szrj * @return The output Bessel function. 458*38fd1498Szrj */ 459*38fd1498Szrj template<typename _Tp> 460*38fd1498Szrj _Tp __cyl_bessel_j(_Tp __nu,_Tp __x)461*38fd1498Szrj __cyl_bessel_j(_Tp __nu, _Tp __x) 462*38fd1498Szrj { 463*38fd1498Szrj if (__nu < _Tp(0) || __x < _Tp(0)) 464*38fd1498Szrj std::__throw_domain_error(__N("Bad argument " 465*38fd1498Szrj "in __cyl_bessel_j.")); 466*38fd1498Szrj else if (__isnan(__nu) || __isnan(__x)) 467*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 468*38fd1498Szrj else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) 469*38fd1498Szrj return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200); 470*38fd1498Szrj else if (__x > _Tp(1000)) 471*38fd1498Szrj { 472*38fd1498Szrj _Tp __J_nu, __N_nu; 473*38fd1498Szrj __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); 474*38fd1498Szrj return __J_nu; 475*38fd1498Szrj } 476*38fd1498Szrj else 477*38fd1498Szrj { 478*38fd1498Szrj _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 479*38fd1498Szrj __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 480*38fd1498Szrj return __J_nu; 481*38fd1498Szrj } 482*38fd1498Szrj } 483*38fd1498Szrj 484*38fd1498Szrj 485*38fd1498Szrj /** 486*38fd1498Szrj * @brief Return the Neumann function of order \f$ \nu \f$: 487*38fd1498Szrj * \f$ N_{\nu}(x) \f$. 488*38fd1498Szrj * 489*38fd1498Szrj * The Neumann function is defined by: 490*38fd1498Szrj * @f[ 491*38fd1498Szrj * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} 492*38fd1498Szrj * {\sin \nu\pi} 493*38fd1498Szrj * @f] 494*38fd1498Szrj * where for integral \f$ \nu = n \f$ a limit is taken: 495*38fd1498Szrj * \f$ lim_{\nu \to n} \f$. 496*38fd1498Szrj * 497*38fd1498Szrj * @param __nu The order of the Neumann function. 498*38fd1498Szrj * @param __x The argument of the Neumann function. 499*38fd1498Szrj * @return The output Neumann function. 500*38fd1498Szrj */ 501*38fd1498Szrj template<typename _Tp> 502*38fd1498Szrj _Tp __cyl_neumann_n(_Tp __nu,_Tp __x)503*38fd1498Szrj __cyl_neumann_n(_Tp __nu, _Tp __x) 504*38fd1498Szrj { 505*38fd1498Szrj if (__nu < _Tp(0) || __x < _Tp(0)) 506*38fd1498Szrj std::__throw_domain_error(__N("Bad argument " 507*38fd1498Szrj "in __cyl_neumann_n.")); 508*38fd1498Szrj else if (__isnan(__nu) || __isnan(__x)) 509*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 510*38fd1498Szrj else if (__x > _Tp(1000)) 511*38fd1498Szrj { 512*38fd1498Szrj _Tp __J_nu, __N_nu; 513*38fd1498Szrj __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); 514*38fd1498Szrj return __N_nu; 515*38fd1498Szrj } 516*38fd1498Szrj else 517*38fd1498Szrj { 518*38fd1498Szrj _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 519*38fd1498Szrj __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 520*38fd1498Szrj return __N_nu; 521*38fd1498Szrj } 522*38fd1498Szrj } 523*38fd1498Szrj 524*38fd1498Szrj 525*38fd1498Szrj /** 526*38fd1498Szrj * @brief Compute the spherical Bessel @f$ j_n(x) @f$ 527*38fd1498Szrj * and Neumann @f$ n_n(x) @f$ functions and their first 528*38fd1498Szrj * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$ 529*38fd1498Szrj * respectively. 530*38fd1498Szrj * 531*38fd1498Szrj * @param __n The order of the spherical Bessel function. 532*38fd1498Szrj * @param __x The argument of the spherical Bessel function. 533*38fd1498Szrj * @param __j_n The output spherical Bessel function. 534*38fd1498Szrj * @param __n_n The output spherical Neumann function. 535*38fd1498Szrj * @param __jp_n The output derivative of the spherical Bessel function. 536*38fd1498Szrj * @param __np_n The output derivative of the spherical Neumann function. 537*38fd1498Szrj */ 538*38fd1498Szrj template <typename _Tp> 539*38fd1498Szrj void __sph_bessel_jn(unsigned int __n,_Tp __x,_Tp & __j_n,_Tp & __n_n,_Tp & __jp_n,_Tp & __np_n)540*38fd1498Szrj __sph_bessel_jn(unsigned int __n, _Tp __x, 541*38fd1498Szrj _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n) 542*38fd1498Szrj { 543*38fd1498Szrj const _Tp __nu = _Tp(__n) + _Tp(0.5L); 544*38fd1498Szrj 545*38fd1498Szrj _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 546*38fd1498Szrj __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 547*38fd1498Szrj 548*38fd1498Szrj const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() 549*38fd1498Szrj / std::sqrt(__x); 550*38fd1498Szrj 551*38fd1498Szrj __j_n = __factor * __J_nu; 552*38fd1498Szrj __n_n = __factor * __N_nu; 553*38fd1498Szrj __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x); 554*38fd1498Szrj __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x); 555*38fd1498Szrj 556*38fd1498Szrj return; 557*38fd1498Szrj } 558*38fd1498Szrj 559*38fd1498Szrj 560*38fd1498Szrj /** 561*38fd1498Szrj * @brief Return the spherical Bessel function 562*38fd1498Szrj * @f$ j_n(x) @f$ of order n. 563*38fd1498Szrj * 564*38fd1498Szrj * The spherical Bessel function is defined by: 565*38fd1498Szrj * @f[ 566*38fd1498Szrj * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) 567*38fd1498Szrj * @f] 568*38fd1498Szrj * 569*38fd1498Szrj * @param __n The order of the spherical Bessel function. 570*38fd1498Szrj * @param __x The argument of the spherical Bessel function. 571*38fd1498Szrj * @return The output spherical Bessel function. 572*38fd1498Szrj */ 573*38fd1498Szrj template <typename _Tp> 574*38fd1498Szrj _Tp __sph_bessel(unsigned int __n,_Tp __x)575*38fd1498Szrj __sph_bessel(unsigned int __n, _Tp __x) 576*38fd1498Szrj { 577*38fd1498Szrj if (__x < _Tp(0)) 578*38fd1498Szrj std::__throw_domain_error(__N("Bad argument " 579*38fd1498Szrj "in __sph_bessel.")); 580*38fd1498Szrj else if (__isnan(__x)) 581*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 582*38fd1498Szrj else if (__x == _Tp(0)) 583*38fd1498Szrj { 584*38fd1498Szrj if (__n == 0) 585*38fd1498Szrj return _Tp(1); 586*38fd1498Szrj else 587*38fd1498Szrj return _Tp(0); 588*38fd1498Szrj } 589*38fd1498Szrj else 590*38fd1498Szrj { 591*38fd1498Szrj _Tp __j_n, __n_n, __jp_n, __np_n; 592*38fd1498Szrj __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); 593*38fd1498Szrj return __j_n; 594*38fd1498Szrj } 595*38fd1498Szrj } 596*38fd1498Szrj 597*38fd1498Szrj 598*38fd1498Szrj /** 599*38fd1498Szrj * @brief Return the spherical Neumann function 600*38fd1498Szrj * @f$ n_n(x) @f$. 601*38fd1498Szrj * 602*38fd1498Szrj * The spherical Neumann function is defined by: 603*38fd1498Szrj * @f[ 604*38fd1498Szrj * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) 605*38fd1498Szrj * @f] 606*38fd1498Szrj * 607*38fd1498Szrj * @param __n The order of the spherical Neumann function. 608*38fd1498Szrj * @param __x The argument of the spherical Neumann function. 609*38fd1498Szrj * @return The output spherical Neumann function. 610*38fd1498Szrj */ 611*38fd1498Szrj template <typename _Tp> 612*38fd1498Szrj _Tp __sph_neumann(unsigned int __n,_Tp __x)613*38fd1498Szrj __sph_neumann(unsigned int __n, _Tp __x) 614*38fd1498Szrj { 615*38fd1498Szrj if (__x < _Tp(0)) 616*38fd1498Szrj std::__throw_domain_error(__N("Bad argument " 617*38fd1498Szrj "in __sph_neumann.")); 618*38fd1498Szrj else if (__isnan(__x)) 619*38fd1498Szrj return std::numeric_limits<_Tp>::quiet_NaN(); 620*38fd1498Szrj else if (__x == _Tp(0)) 621*38fd1498Szrj return -std::numeric_limits<_Tp>::infinity(); 622*38fd1498Szrj else 623*38fd1498Szrj { 624*38fd1498Szrj _Tp __j_n, __n_n, __jp_n, __np_n; 625*38fd1498Szrj __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); 626*38fd1498Szrj return __n_n; 627*38fd1498Szrj } 628*38fd1498Szrj } 629*38fd1498Szrj } // namespace __detail 630*38fd1498Szrj #undef _GLIBCXX_MATH_NS 631*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) 632*38fd1498Szrj } // namespace tr1 633*38fd1498Szrj #endif 634*38fd1498Szrj 635*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION 636*38fd1498Szrj } 637*38fd1498Szrj 638*38fd1498Szrj #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 639