xref: /dflybsd-src/contrib/gcc-8.0/libstdc++-v3/include/tr1/bessel_function.tcc (revision 38fd149817dfbff97799f62fcb70be98c4e32523)
1*38fd1498Szrj // Special functions -*- C++ -*-
2*38fd1498Szrj 
3*38fd1498Szrj // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4*38fd1498Szrj //
5*38fd1498Szrj // This file is part of the GNU ISO C++ Library.  This library is free
6*38fd1498Szrj // software; you can redistribute it and/or modify it under the
7*38fd1498Szrj // terms of the GNU General Public License as published by the
8*38fd1498Szrj // Free Software Foundation; either version 3, or (at your option)
9*38fd1498Szrj // any later version.
10*38fd1498Szrj //
11*38fd1498Szrj // This library is distributed in the hope that it will be useful,
12*38fd1498Szrj // but WITHOUT ANY WARRANTY; without even the implied warranty of
13*38fd1498Szrj // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14*38fd1498Szrj // GNU General Public License for more details.
15*38fd1498Szrj //
16*38fd1498Szrj // Under Section 7 of GPL version 3, you are granted additional
17*38fd1498Szrj // permissions described in the GCC Runtime Library Exception, version
18*38fd1498Szrj // 3.1, as published by the Free Software Foundation.
19*38fd1498Szrj 
20*38fd1498Szrj // You should have received a copy of the GNU General Public License and
21*38fd1498Szrj // a copy of the GCC Runtime Library Exception along with this program;
22*38fd1498Szrj // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23*38fd1498Szrj // <http://www.gnu.org/licenses/>.
24*38fd1498Szrj 
25*38fd1498Szrj /** @file tr1/bessel_function.tcc
26*38fd1498Szrj  *  This is an internal header file, included by other library headers.
27*38fd1498Szrj  *  Do not attempt to use it directly. @headername{tr1/cmath}
28*38fd1498Szrj  */
29*38fd1498Szrj 
30*38fd1498Szrj //
31*38fd1498Szrj // ISO C++ 14882 TR1: 5.2  Special functions
32*38fd1498Szrj //
33*38fd1498Szrj 
34*38fd1498Szrj // Written by Edward Smith-Rowland.
35*38fd1498Szrj //
36*38fd1498Szrj // References:
37*38fd1498Szrj //   (1) Handbook of Mathematical Functions,
38*38fd1498Szrj //       ed. Milton Abramowitz and Irene A. Stegun,
39*38fd1498Szrj //       Dover Publications,
40*38fd1498Szrj //       Section 9, pp. 355-434, Section 10 pp. 435-478
41*38fd1498Szrj //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
42*38fd1498Szrj //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
43*38fd1498Szrj //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
44*38fd1498Szrj //       2nd ed, pp. 240-245
45*38fd1498Szrj 
46*38fd1498Szrj #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
47*38fd1498Szrj #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
48*38fd1498Szrj 
49*38fd1498Szrj #include "special_function_util.h"
50*38fd1498Szrj 
51*38fd1498Szrj namespace std _GLIBCXX_VISIBILITY(default)
52*38fd1498Szrj {
53*38fd1498Szrj _GLIBCXX_BEGIN_NAMESPACE_VERSION
54*38fd1498Szrj 
55*38fd1498Szrj #if _GLIBCXX_USE_STD_SPEC_FUNCS
56*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std
57*38fd1498Szrj #elif defined(_GLIBCXX_TR1_CMATH)
58*38fd1498Szrj namespace tr1
59*38fd1498Szrj {
60*38fd1498Szrj # define _GLIBCXX_MATH_NS ::std::tr1
61*38fd1498Szrj #else
62*38fd1498Szrj # error do not include this header directly, use <cmath> or <tr1/cmath>
63*38fd1498Szrj #endif
64*38fd1498Szrj   // [5.2] Special functions
65*38fd1498Szrj 
66*38fd1498Szrj   // Implementation-space details.
67*38fd1498Szrj   namespace __detail
68*38fd1498Szrj   {
69*38fd1498Szrj     /**
70*38fd1498Szrj      *   @brief Compute the gamma functions required by the Temme series
71*38fd1498Szrj      *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
72*38fd1498Szrj      *   @f[
73*38fd1498Szrj      *     \Gamma_1 = \frac{1}{2\mu}
74*38fd1498Szrj      *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
75*38fd1498Szrj      *   @f]
76*38fd1498Szrj      *   and
77*38fd1498Szrj      *   @f[
78*38fd1498Szrj      *     \Gamma_2 = \frac{1}{2}
79*38fd1498Szrj      *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
80*38fd1498Szrj      *   @f]
81*38fd1498Szrj      *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
82*38fd1498Szrj      *   is the nearest integer to @f$ \nu @f$.
83*38fd1498Szrj      *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
84*38fd1498Szrj      *   are returned as well.
85*38fd1498Szrj      *
86*38fd1498Szrj      *   The accuracy requirements on this are exquisite.
87*38fd1498Szrj      *
88*38fd1498Szrj      *   @param __mu     The input parameter of the gamma functions.
89*38fd1498Szrj      *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
90*38fd1498Szrj      *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
91*38fd1498Szrj      *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
92*38fd1498Szrj      *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
93*38fd1498Szrj      */
94*38fd1498Szrj     template <typename _Tp>
95*38fd1498Szrj     void
__gamma_temme(_Tp __mu,_Tp & __gam1,_Tp & __gam2,_Tp & __gampl,_Tp & __gammi)96*38fd1498Szrj     __gamma_temme(_Tp __mu,
97*38fd1498Szrj                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
98*38fd1498Szrj     {
99*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
100*38fd1498Szrj       __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
101*38fd1498Szrj       __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
102*38fd1498Szrj #else
103*38fd1498Szrj       __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
104*38fd1498Szrj       __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
105*38fd1498Szrj #endif
106*38fd1498Szrj 
107*38fd1498Szrj       if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
108*38fd1498Szrj         __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
109*38fd1498Szrj       else
110*38fd1498Szrj         __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
111*38fd1498Szrj 
112*38fd1498Szrj       __gam2 = (__gammi + __gampl) / (_Tp(2));
113*38fd1498Szrj 
114*38fd1498Szrj       return;
115*38fd1498Szrj     }
116*38fd1498Szrj 
117*38fd1498Szrj 
118*38fd1498Szrj     /**
119*38fd1498Szrj      *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
120*38fd1498Szrj      *           @f$ N_\nu(x) @f$ functions and their first derivatives
121*38fd1498Szrj      *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
122*38fd1498Szrj      *           These four functions are computed together for numerical
123*38fd1498Szrj      *           stability.
124*38fd1498Szrj      *
125*38fd1498Szrj      *   @param  __nu  The order of the Bessel functions.
126*38fd1498Szrj      *   @param  __x   The argument of the Bessel functions.
127*38fd1498Szrj      *   @param  __Jnu  The output Bessel function of the first kind.
128*38fd1498Szrj      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
129*38fd1498Szrj      *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
130*38fd1498Szrj      *   @param  __Npnu  The output derivative of the Neumann function.
131*38fd1498Szrj      */
132*38fd1498Szrj     template <typename _Tp>
133*38fd1498Szrj     void
__bessel_jn(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu,_Tp & __Jpnu,_Tp & __Npnu)134*38fd1498Szrj     __bessel_jn(_Tp __nu, _Tp __x,
135*38fd1498Szrj                 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
136*38fd1498Szrj     {
137*38fd1498Szrj       if (__x == _Tp(0))
138*38fd1498Szrj         {
139*38fd1498Szrj           if (__nu == _Tp(0))
140*38fd1498Szrj             {
141*38fd1498Szrj               __Jnu = _Tp(1);
142*38fd1498Szrj               __Jpnu = _Tp(0);
143*38fd1498Szrj             }
144*38fd1498Szrj           else if (__nu == _Tp(1))
145*38fd1498Szrj             {
146*38fd1498Szrj               __Jnu = _Tp(0);
147*38fd1498Szrj               __Jpnu = _Tp(0.5L);
148*38fd1498Szrj             }
149*38fd1498Szrj           else
150*38fd1498Szrj             {
151*38fd1498Szrj               __Jnu = _Tp(0);
152*38fd1498Szrj               __Jpnu = _Tp(0);
153*38fd1498Szrj             }
154*38fd1498Szrj           __Nnu = -std::numeric_limits<_Tp>::infinity();
155*38fd1498Szrj           __Npnu = std::numeric_limits<_Tp>::infinity();
156*38fd1498Szrj           return;
157*38fd1498Szrj         }
158*38fd1498Szrj 
159*38fd1498Szrj       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
160*38fd1498Szrj       //  When the multiplier is N i.e.
161*38fd1498Szrj       //  fp_min = N * min()
162*38fd1498Szrj       //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
163*38fd1498Szrj       //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
164*38fd1498Szrj       const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
165*38fd1498Szrj       const int __max_iter = 15000;
166*38fd1498Szrj       const _Tp __x_min = _Tp(2);
167*38fd1498Szrj 
168*38fd1498Szrj       const int __nl = (__x < __x_min
169*38fd1498Szrj                     ? static_cast<int>(__nu + _Tp(0.5L))
170*38fd1498Szrj                     : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
171*38fd1498Szrj 
172*38fd1498Szrj       const _Tp __mu = __nu - __nl;
173*38fd1498Szrj       const _Tp __mu2 = __mu * __mu;
174*38fd1498Szrj       const _Tp __xi = _Tp(1) / __x;
175*38fd1498Szrj       const _Tp __xi2 = _Tp(2) * __xi;
176*38fd1498Szrj       _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
177*38fd1498Szrj       int __isign = 1;
178*38fd1498Szrj       _Tp __h = __nu * __xi;
179*38fd1498Szrj       if (__h < __fp_min)
180*38fd1498Szrj         __h = __fp_min;
181*38fd1498Szrj       _Tp __b = __xi2 * __nu;
182*38fd1498Szrj       _Tp __d = _Tp(0);
183*38fd1498Szrj       _Tp __c = __h;
184*38fd1498Szrj       int __i;
185*38fd1498Szrj       for (__i = 1; __i <= __max_iter; ++__i)
186*38fd1498Szrj         {
187*38fd1498Szrj           __b += __xi2;
188*38fd1498Szrj           __d = __b - __d;
189*38fd1498Szrj           if (std::abs(__d) < __fp_min)
190*38fd1498Szrj             __d = __fp_min;
191*38fd1498Szrj           __c = __b - _Tp(1) / __c;
192*38fd1498Szrj           if (std::abs(__c) < __fp_min)
193*38fd1498Szrj             __c = __fp_min;
194*38fd1498Szrj           __d = _Tp(1) / __d;
195*38fd1498Szrj           const _Tp __del = __c * __d;
196*38fd1498Szrj           __h *= __del;
197*38fd1498Szrj           if (__d < _Tp(0))
198*38fd1498Szrj             __isign = -__isign;
199*38fd1498Szrj           if (std::abs(__del - _Tp(1)) < __eps)
200*38fd1498Szrj             break;
201*38fd1498Szrj         }
202*38fd1498Szrj       if (__i > __max_iter)
203*38fd1498Szrj         std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
204*38fd1498Szrj                                        "try asymptotic expansion."));
205*38fd1498Szrj       _Tp __Jnul = __isign * __fp_min;
206*38fd1498Szrj       _Tp __Jpnul = __h * __Jnul;
207*38fd1498Szrj       _Tp __Jnul1 = __Jnul;
208*38fd1498Szrj       _Tp __Jpnu1 = __Jpnul;
209*38fd1498Szrj       _Tp __fact = __nu * __xi;
210*38fd1498Szrj       for ( int __l = __nl; __l >= 1; --__l )
211*38fd1498Szrj         {
212*38fd1498Szrj           const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
213*38fd1498Szrj           __fact -= __xi;
214*38fd1498Szrj           __Jpnul = __fact * __Jnutemp - __Jnul;
215*38fd1498Szrj           __Jnul = __Jnutemp;
216*38fd1498Szrj         }
217*38fd1498Szrj       if (__Jnul == _Tp(0))
218*38fd1498Szrj         __Jnul = __eps;
219*38fd1498Szrj       _Tp __f= __Jpnul / __Jnul;
220*38fd1498Szrj       _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
221*38fd1498Szrj       if (__x < __x_min)
222*38fd1498Szrj         {
223*38fd1498Szrj           const _Tp __x2 = __x / _Tp(2);
224*38fd1498Szrj           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
225*38fd1498Szrj           _Tp __fact = (std::abs(__pimu) < __eps
226*38fd1498Szrj                       ? _Tp(1) : __pimu / std::sin(__pimu));
227*38fd1498Szrj           _Tp __d = -std::log(__x2);
228*38fd1498Szrj           _Tp __e = __mu * __d;
229*38fd1498Szrj           _Tp __fact2 = (std::abs(__e) < __eps
230*38fd1498Szrj                        ? _Tp(1) : std::sinh(__e) / __e);
231*38fd1498Szrj           _Tp __gam1, __gam2, __gampl, __gammi;
232*38fd1498Szrj           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
233*38fd1498Szrj           _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
234*38fd1498Szrj                    * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
235*38fd1498Szrj           __e = std::exp(__e);
236*38fd1498Szrj           _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
237*38fd1498Szrj           _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
238*38fd1498Szrj           const _Tp __pimu2 = __pimu / _Tp(2);
239*38fd1498Szrj           _Tp __fact3 = (std::abs(__pimu2) < __eps
240*38fd1498Szrj                        ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
241*38fd1498Szrj           _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
242*38fd1498Szrj           _Tp __c = _Tp(1);
243*38fd1498Szrj           __d = -__x2 * __x2;
244*38fd1498Szrj           _Tp __sum = __ff + __r * __q;
245*38fd1498Szrj           _Tp __sum1 = __p;
246*38fd1498Szrj           for (__i = 1; __i <= __max_iter; ++__i)
247*38fd1498Szrj             {
248*38fd1498Szrj               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
249*38fd1498Szrj               __c *= __d / _Tp(__i);
250*38fd1498Szrj               __p /= _Tp(__i) - __mu;
251*38fd1498Szrj               __q /= _Tp(__i) + __mu;
252*38fd1498Szrj               const _Tp __del = __c * (__ff + __r * __q);
253*38fd1498Szrj               __sum += __del;
254*38fd1498Szrj               const _Tp __del1 = __c * __p - __i * __del;
255*38fd1498Szrj               __sum1 += __del1;
256*38fd1498Szrj               if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
257*38fd1498Szrj                 break;
258*38fd1498Szrj             }
259*38fd1498Szrj           if ( __i > __max_iter )
260*38fd1498Szrj             std::__throw_runtime_error(__N("Bessel y series failed to converge "
261*38fd1498Szrj                                            "in __bessel_jn."));
262*38fd1498Szrj           __Nmu = -__sum;
263*38fd1498Szrj           __Nnu1 = -__sum1 * __xi2;
264*38fd1498Szrj           __Npmu = __mu * __xi * __Nmu - __Nnu1;
265*38fd1498Szrj           __Jmu = __w / (__Npmu - __f * __Nmu);
266*38fd1498Szrj         }
267*38fd1498Szrj       else
268*38fd1498Szrj         {
269*38fd1498Szrj           _Tp __a = _Tp(0.25L) - __mu2;
270*38fd1498Szrj           _Tp __q = _Tp(1);
271*38fd1498Szrj           _Tp __p = -__xi / _Tp(2);
272*38fd1498Szrj           _Tp __br = _Tp(2) * __x;
273*38fd1498Szrj           _Tp __bi = _Tp(2);
274*38fd1498Szrj           _Tp __fact = __a * __xi / (__p * __p + __q * __q);
275*38fd1498Szrj           _Tp __cr = __br + __q * __fact;
276*38fd1498Szrj           _Tp __ci = __bi + __p * __fact;
277*38fd1498Szrj           _Tp __den = __br * __br + __bi * __bi;
278*38fd1498Szrj           _Tp __dr = __br / __den;
279*38fd1498Szrj           _Tp __di = -__bi / __den;
280*38fd1498Szrj           _Tp __dlr = __cr * __dr - __ci * __di;
281*38fd1498Szrj           _Tp __dli = __cr * __di + __ci * __dr;
282*38fd1498Szrj           _Tp __temp = __p * __dlr - __q * __dli;
283*38fd1498Szrj           __q = __p * __dli + __q * __dlr;
284*38fd1498Szrj           __p = __temp;
285*38fd1498Szrj           int __i;
286*38fd1498Szrj           for (__i = 2; __i <= __max_iter; ++__i)
287*38fd1498Szrj             {
288*38fd1498Szrj               __a += _Tp(2 * (__i - 1));
289*38fd1498Szrj               __bi += _Tp(2);
290*38fd1498Szrj               __dr = __a * __dr + __br;
291*38fd1498Szrj               __di = __a * __di + __bi;
292*38fd1498Szrj               if (std::abs(__dr) + std::abs(__di) < __fp_min)
293*38fd1498Szrj                 __dr = __fp_min;
294*38fd1498Szrj               __fact = __a / (__cr * __cr + __ci * __ci);
295*38fd1498Szrj               __cr = __br + __cr * __fact;
296*38fd1498Szrj               __ci = __bi - __ci * __fact;
297*38fd1498Szrj               if (std::abs(__cr) + std::abs(__ci) < __fp_min)
298*38fd1498Szrj                 __cr = __fp_min;
299*38fd1498Szrj               __den = __dr * __dr + __di * __di;
300*38fd1498Szrj               __dr /= __den;
301*38fd1498Szrj               __di /= -__den;
302*38fd1498Szrj               __dlr = __cr * __dr - __ci * __di;
303*38fd1498Szrj               __dli = __cr * __di + __ci * __dr;
304*38fd1498Szrj               __temp = __p * __dlr - __q * __dli;
305*38fd1498Szrj               __q = __p * __dli + __q * __dlr;
306*38fd1498Szrj               __p = __temp;
307*38fd1498Szrj               if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
308*38fd1498Szrj                 break;
309*38fd1498Szrj           }
310*38fd1498Szrj           if (__i > __max_iter)
311*38fd1498Szrj             std::__throw_runtime_error(__N("Lentz's method failed "
312*38fd1498Szrj                                            "in __bessel_jn."));
313*38fd1498Szrj           const _Tp __gam = (__p - __f) / __q;
314*38fd1498Szrj           __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
315*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
316*38fd1498Szrj           __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
317*38fd1498Szrj #else
318*38fd1498Szrj           if (__Jmu * __Jnul < _Tp(0))
319*38fd1498Szrj             __Jmu = -__Jmu;
320*38fd1498Szrj #endif
321*38fd1498Szrj           __Nmu = __gam * __Jmu;
322*38fd1498Szrj           __Npmu = (__p + __q / __gam) * __Nmu;
323*38fd1498Szrj           __Nnu1 = __mu * __xi * __Nmu - __Npmu;
324*38fd1498Szrj       }
325*38fd1498Szrj       __fact = __Jmu / __Jnul;
326*38fd1498Szrj       __Jnu = __fact * __Jnul1;
327*38fd1498Szrj       __Jpnu = __fact * __Jpnu1;
328*38fd1498Szrj       for (__i = 1; __i <= __nl; ++__i)
329*38fd1498Szrj         {
330*38fd1498Szrj           const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
331*38fd1498Szrj           __Nmu = __Nnu1;
332*38fd1498Szrj           __Nnu1 = __Nnutemp;
333*38fd1498Szrj         }
334*38fd1498Szrj       __Nnu = __Nmu;
335*38fd1498Szrj       __Npnu = __nu * __xi * __Nmu - __Nnu1;
336*38fd1498Szrj 
337*38fd1498Szrj       return;
338*38fd1498Szrj     }
339*38fd1498Szrj 
340*38fd1498Szrj 
341*38fd1498Szrj     /**
342*38fd1498Szrj      *   @brief This routine computes the asymptotic cylindrical Bessel
343*38fd1498Szrj      *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
344*38fd1498Szrj      *          \f$ N_{\nu} \f$.
345*38fd1498Szrj      *
346*38fd1498Szrj      *   References:
347*38fd1498Szrj      *    (1) Handbook of Mathematical Functions,
348*38fd1498Szrj      *        ed. Milton Abramowitz and Irene A. Stegun,
349*38fd1498Szrj      *        Dover Publications,
350*38fd1498Szrj      *        Section 9 p. 364, Equations 9.2.5-9.2.10
351*38fd1498Szrj      *
352*38fd1498Szrj      *   @param  __nu  The order of the Bessel functions.
353*38fd1498Szrj      *   @param  __x   The argument of the Bessel functions.
354*38fd1498Szrj      *   @param  __Jnu  The output Bessel function of the first kind.
355*38fd1498Szrj      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
356*38fd1498Szrj      */
357*38fd1498Szrj     template <typename _Tp>
358*38fd1498Szrj     void
__cyl_bessel_jn_asymp(_Tp __nu,_Tp __x,_Tp & __Jnu,_Tp & __Nnu)359*38fd1498Szrj     __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
360*38fd1498Szrj     {
361*38fd1498Szrj       const _Tp __mu   = _Tp(4) * __nu * __nu;
362*38fd1498Szrj       const _Tp __mum1 = __mu - _Tp(1);
363*38fd1498Szrj       const _Tp __mum9 = __mu - _Tp(9);
364*38fd1498Szrj       const _Tp __mum25 = __mu - _Tp(25);
365*38fd1498Szrj       const _Tp __mum49 = __mu - _Tp(49);
366*38fd1498Szrj       const _Tp __xx = _Tp(64) * __x * __x;
367*38fd1498Szrj       const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
368*38fd1498Szrj                     * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
369*38fd1498Szrj       const _Tp __Q = __mum1 / (_Tp(8) * __x)
370*38fd1498Szrj                     * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
371*38fd1498Szrj 
372*38fd1498Szrj       const _Tp __chi = __x - (__nu + _Tp(0.5L))
373*38fd1498Szrj                             * __numeric_constants<_Tp>::__pi_2();
374*38fd1498Szrj       const _Tp __c = std::cos(__chi);
375*38fd1498Szrj       const _Tp __s = std::sin(__chi);
376*38fd1498Szrj 
377*38fd1498Szrj       const _Tp __coef = std::sqrt(_Tp(2)
378*38fd1498Szrj                              / (__numeric_constants<_Tp>::__pi() * __x));
379*38fd1498Szrj       __Jnu = __coef * (__c * __P - __s * __Q);
380*38fd1498Szrj       __Nnu = __coef * (__s * __P + __c * __Q);
381*38fd1498Szrj 
382*38fd1498Szrj       return;
383*38fd1498Szrj     }
384*38fd1498Szrj 
385*38fd1498Szrj 
386*38fd1498Szrj     /**
387*38fd1498Szrj      *   @brief This routine returns the cylindrical Bessel functions
388*38fd1498Szrj      *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
389*38fd1498Szrj      *          by series expansion.
390*38fd1498Szrj      *
391*38fd1498Szrj      *   The modified cylindrical Bessel function is:
392*38fd1498Szrj      *   @f[
393*38fd1498Szrj      *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
394*38fd1498Szrj      *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
395*38fd1498Szrj      *   @f]
396*38fd1498Szrj      *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
397*38fd1498Szrj      *   \f$ Z = I \f$ or \f$ J \f$ respectively.
398*38fd1498Szrj      *
399*38fd1498Szrj      *   See Abramowitz & Stegun, 9.1.10
400*38fd1498Szrj      *       Abramowitz & Stegun, 9.6.7
401*38fd1498Szrj      *    (1) Handbook of Mathematical Functions,
402*38fd1498Szrj      *        ed. Milton Abramowitz and Irene A. Stegun,
403*38fd1498Szrj      *        Dover Publications,
404*38fd1498Szrj      *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
405*38fd1498Szrj      *
406*38fd1498Szrj      *   @param  __nu  The order of the Bessel function.
407*38fd1498Szrj      *   @param  __x   The argument of the Bessel function.
408*38fd1498Szrj      *   @param  __sgn  The sign of the alternate terms
409*38fd1498Szrj      *                  -1 for the Bessel function of the first kind.
410*38fd1498Szrj      *                  +1 for the modified Bessel function of the first kind.
411*38fd1498Szrj      *   @return  The output Bessel function.
412*38fd1498Szrj      */
413*38fd1498Szrj     template <typename _Tp>
414*38fd1498Szrj     _Tp
__cyl_bessel_ij_series(_Tp __nu,_Tp __x,_Tp __sgn,unsigned int __max_iter)415*38fd1498Szrj     __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
416*38fd1498Szrj                            unsigned int __max_iter)
417*38fd1498Szrj     {
418*38fd1498Szrj       if (__x == _Tp(0))
419*38fd1498Szrj 	return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
420*38fd1498Szrj 
421*38fd1498Szrj       const _Tp __x2 = __x / _Tp(2);
422*38fd1498Szrj       _Tp __fact = __nu * std::log(__x2);
423*38fd1498Szrj #if _GLIBCXX_USE_C99_MATH_TR1
424*38fd1498Szrj       __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
425*38fd1498Szrj #else
426*38fd1498Szrj       __fact -= __log_gamma(__nu + _Tp(1));
427*38fd1498Szrj #endif
428*38fd1498Szrj       __fact = std::exp(__fact);
429*38fd1498Szrj       const _Tp __xx4 = __sgn * __x2 * __x2;
430*38fd1498Szrj       _Tp __Jn = _Tp(1);
431*38fd1498Szrj       _Tp __term = _Tp(1);
432*38fd1498Szrj 
433*38fd1498Szrj       for (unsigned int __i = 1; __i < __max_iter; ++__i)
434*38fd1498Szrj         {
435*38fd1498Szrj           __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
436*38fd1498Szrj           __Jn += __term;
437*38fd1498Szrj           if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
438*38fd1498Szrj             break;
439*38fd1498Szrj         }
440*38fd1498Szrj 
441*38fd1498Szrj       return __fact * __Jn;
442*38fd1498Szrj     }
443*38fd1498Szrj 
444*38fd1498Szrj 
445*38fd1498Szrj     /**
446*38fd1498Szrj      *   @brief  Return the Bessel function of order \f$ \nu \f$:
447*38fd1498Szrj      *           \f$ J_{\nu}(x) \f$.
448*38fd1498Szrj      *
449*38fd1498Szrj      *   The cylindrical Bessel function is:
450*38fd1498Szrj      *   @f[
451*38fd1498Szrj      *    J_{\nu}(x) = \sum_{k=0}^{\infty}
452*38fd1498Szrj      *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
453*38fd1498Szrj      *   @f]
454*38fd1498Szrj      *
455*38fd1498Szrj      *   @param  __nu  The order of the Bessel function.
456*38fd1498Szrj      *   @param  __x   The argument of the Bessel function.
457*38fd1498Szrj      *   @return  The output Bessel function.
458*38fd1498Szrj      */
459*38fd1498Szrj     template<typename _Tp>
460*38fd1498Szrj     _Tp
__cyl_bessel_j(_Tp __nu,_Tp __x)461*38fd1498Szrj     __cyl_bessel_j(_Tp __nu, _Tp __x)
462*38fd1498Szrj     {
463*38fd1498Szrj       if (__nu < _Tp(0) || __x < _Tp(0))
464*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument "
465*38fd1498Szrj                                       "in __cyl_bessel_j."));
466*38fd1498Szrj       else if (__isnan(__nu) || __isnan(__x))
467*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
468*38fd1498Szrj       else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
469*38fd1498Szrj         return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
470*38fd1498Szrj       else if (__x > _Tp(1000))
471*38fd1498Szrj         {
472*38fd1498Szrj           _Tp __J_nu, __N_nu;
473*38fd1498Szrj           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
474*38fd1498Szrj           return __J_nu;
475*38fd1498Szrj         }
476*38fd1498Szrj       else
477*38fd1498Szrj         {
478*38fd1498Szrj           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
479*38fd1498Szrj           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
480*38fd1498Szrj           return __J_nu;
481*38fd1498Szrj         }
482*38fd1498Szrj     }
483*38fd1498Szrj 
484*38fd1498Szrj 
485*38fd1498Szrj     /**
486*38fd1498Szrj      *   @brief  Return the Neumann function of order \f$ \nu \f$:
487*38fd1498Szrj      *           \f$ N_{\nu}(x) \f$.
488*38fd1498Szrj      *
489*38fd1498Szrj      *   The Neumann function is defined by:
490*38fd1498Szrj      *   @f[
491*38fd1498Szrj      *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
492*38fd1498Szrj      *                        {\sin \nu\pi}
493*38fd1498Szrj      *   @f]
494*38fd1498Szrj      *   where for integral \f$ \nu = n \f$ a limit is taken:
495*38fd1498Szrj      *   \f$ lim_{\nu \to n} \f$.
496*38fd1498Szrj      *
497*38fd1498Szrj      *   @param  __nu  The order of the Neumann function.
498*38fd1498Szrj      *   @param  __x   The argument of the Neumann function.
499*38fd1498Szrj      *   @return  The output Neumann function.
500*38fd1498Szrj      */
501*38fd1498Szrj     template<typename _Tp>
502*38fd1498Szrj     _Tp
__cyl_neumann_n(_Tp __nu,_Tp __x)503*38fd1498Szrj     __cyl_neumann_n(_Tp __nu, _Tp __x)
504*38fd1498Szrj     {
505*38fd1498Szrj       if (__nu < _Tp(0) || __x < _Tp(0))
506*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument "
507*38fd1498Szrj                                       "in __cyl_neumann_n."));
508*38fd1498Szrj       else if (__isnan(__nu) || __isnan(__x))
509*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
510*38fd1498Szrj       else if (__x > _Tp(1000))
511*38fd1498Szrj         {
512*38fd1498Szrj           _Tp __J_nu, __N_nu;
513*38fd1498Szrj           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
514*38fd1498Szrj           return __N_nu;
515*38fd1498Szrj         }
516*38fd1498Szrj       else
517*38fd1498Szrj         {
518*38fd1498Szrj           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
519*38fd1498Szrj           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
520*38fd1498Szrj           return __N_nu;
521*38fd1498Szrj         }
522*38fd1498Szrj     }
523*38fd1498Szrj 
524*38fd1498Szrj 
525*38fd1498Szrj     /**
526*38fd1498Szrj      *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
527*38fd1498Szrj      *           and Neumann @f$ n_n(x) @f$ functions and their first
528*38fd1498Szrj      *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
529*38fd1498Szrj      *           respectively.
530*38fd1498Szrj      *
531*38fd1498Szrj      *   @param  __n  The order of the spherical Bessel function.
532*38fd1498Szrj      *   @param  __x  The argument of the spherical Bessel function.
533*38fd1498Szrj      *   @param  __j_n  The output spherical Bessel function.
534*38fd1498Szrj      *   @param  __n_n  The output spherical Neumann function.
535*38fd1498Szrj      *   @param  __jp_n The output derivative of the spherical Bessel function.
536*38fd1498Szrj      *   @param  __np_n The output derivative of the spherical Neumann function.
537*38fd1498Szrj      */
538*38fd1498Szrj     template <typename _Tp>
539*38fd1498Szrj     void
__sph_bessel_jn(unsigned int __n,_Tp __x,_Tp & __j_n,_Tp & __n_n,_Tp & __jp_n,_Tp & __np_n)540*38fd1498Szrj     __sph_bessel_jn(unsigned int __n, _Tp __x,
541*38fd1498Szrj                     _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
542*38fd1498Szrj     {
543*38fd1498Szrj       const _Tp __nu = _Tp(__n) + _Tp(0.5L);
544*38fd1498Szrj 
545*38fd1498Szrj       _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
546*38fd1498Szrj       __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
547*38fd1498Szrj 
548*38fd1498Szrj       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
549*38fd1498Szrj                          / std::sqrt(__x);
550*38fd1498Szrj 
551*38fd1498Szrj       __j_n = __factor * __J_nu;
552*38fd1498Szrj       __n_n = __factor * __N_nu;
553*38fd1498Szrj       __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
554*38fd1498Szrj       __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
555*38fd1498Szrj 
556*38fd1498Szrj       return;
557*38fd1498Szrj     }
558*38fd1498Szrj 
559*38fd1498Szrj 
560*38fd1498Szrj     /**
561*38fd1498Szrj      *   @brief  Return the spherical Bessel function
562*38fd1498Szrj      *           @f$ j_n(x) @f$ of order n.
563*38fd1498Szrj      *
564*38fd1498Szrj      *   The spherical Bessel function is defined by:
565*38fd1498Szrj      *   @f[
566*38fd1498Szrj      *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
567*38fd1498Szrj      *   @f]
568*38fd1498Szrj      *
569*38fd1498Szrj      *   @param  __n  The order of the spherical Bessel function.
570*38fd1498Szrj      *   @param  __x  The argument of the spherical Bessel function.
571*38fd1498Szrj      *   @return  The output spherical Bessel function.
572*38fd1498Szrj      */
573*38fd1498Szrj     template <typename _Tp>
574*38fd1498Szrj     _Tp
__sph_bessel(unsigned int __n,_Tp __x)575*38fd1498Szrj     __sph_bessel(unsigned int __n, _Tp __x)
576*38fd1498Szrj     {
577*38fd1498Szrj       if (__x < _Tp(0))
578*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument "
579*38fd1498Szrj                                       "in __sph_bessel."));
580*38fd1498Szrj       else if (__isnan(__x))
581*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
582*38fd1498Szrj       else if (__x == _Tp(0))
583*38fd1498Szrj         {
584*38fd1498Szrj           if (__n == 0)
585*38fd1498Szrj             return _Tp(1);
586*38fd1498Szrj           else
587*38fd1498Szrj             return _Tp(0);
588*38fd1498Szrj         }
589*38fd1498Szrj       else
590*38fd1498Szrj         {
591*38fd1498Szrj           _Tp __j_n, __n_n, __jp_n, __np_n;
592*38fd1498Szrj           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
593*38fd1498Szrj           return __j_n;
594*38fd1498Szrj         }
595*38fd1498Szrj     }
596*38fd1498Szrj 
597*38fd1498Szrj 
598*38fd1498Szrj     /**
599*38fd1498Szrj      *   @brief  Return the spherical Neumann function
600*38fd1498Szrj      *           @f$ n_n(x) @f$.
601*38fd1498Szrj      *
602*38fd1498Szrj      *   The spherical Neumann function is defined by:
603*38fd1498Szrj      *   @f[
604*38fd1498Szrj      *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
605*38fd1498Szrj      *   @f]
606*38fd1498Szrj      *
607*38fd1498Szrj      *   @param  __n  The order of the spherical Neumann function.
608*38fd1498Szrj      *   @param  __x  The argument of the spherical Neumann function.
609*38fd1498Szrj      *   @return  The output spherical Neumann function.
610*38fd1498Szrj      */
611*38fd1498Szrj     template <typename _Tp>
612*38fd1498Szrj     _Tp
__sph_neumann(unsigned int __n,_Tp __x)613*38fd1498Szrj     __sph_neumann(unsigned int __n, _Tp __x)
614*38fd1498Szrj     {
615*38fd1498Szrj       if (__x < _Tp(0))
616*38fd1498Szrj         std::__throw_domain_error(__N("Bad argument "
617*38fd1498Szrj                                       "in __sph_neumann."));
618*38fd1498Szrj       else if (__isnan(__x))
619*38fd1498Szrj         return std::numeric_limits<_Tp>::quiet_NaN();
620*38fd1498Szrj       else if (__x == _Tp(0))
621*38fd1498Szrj         return -std::numeric_limits<_Tp>::infinity();
622*38fd1498Szrj       else
623*38fd1498Szrj         {
624*38fd1498Szrj           _Tp __j_n, __n_n, __jp_n, __np_n;
625*38fd1498Szrj           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
626*38fd1498Szrj           return __n_n;
627*38fd1498Szrj         }
628*38fd1498Szrj     }
629*38fd1498Szrj   } // namespace __detail
630*38fd1498Szrj #undef _GLIBCXX_MATH_NS
631*38fd1498Szrj #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
632*38fd1498Szrj } // namespace tr1
633*38fd1498Szrj #endif
634*38fd1498Szrj 
635*38fd1498Szrj _GLIBCXX_END_NAMESPACE_VERSION
636*38fd1498Szrj }
637*38fd1498Szrj 
638*38fd1498Szrj #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
639