1 /* SSA Dominator optimizations for trees 2 Copyright (C) 2001-2018 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "tree-pass.h" 28 #include "ssa.h" 29 #include "gimple-pretty-print.h" 30 #include "fold-const.h" 31 #include "cfganal.h" 32 #include "cfgloop.h" 33 #include "gimple-fold.h" 34 #include "tree-eh.h" 35 #include "tree-inline.h" 36 #include "gimple-iterator.h" 37 #include "tree-cfg.h" 38 #include "tree-into-ssa.h" 39 #include "domwalk.h" 40 #include "tree-ssa-propagate.h" 41 #include "tree-ssa-threadupdate.h" 42 #include "params.h" 43 #include "tree-ssa-scopedtables.h" 44 #include "tree-ssa-threadedge.h" 45 #include "tree-ssa-dom.h" 46 #include "gimplify.h" 47 #include "tree-cfgcleanup.h" 48 #include "dbgcnt.h" 49 #include "alloc-pool.h" 50 #include "tree-vrp.h" 51 #include "vr-values.h" 52 #include "gimple-ssa-evrp-analyze.h" 53 54 /* This file implements optimizations on the dominator tree. */ 55 56 /* Structure for recording edge equivalences. 57 58 Computing and storing the edge equivalences instead of creating 59 them on-demand can save significant amounts of time, particularly 60 for pathological cases involving switch statements. 61 62 These structures live for a single iteration of the dominator 63 optimizer in the edge's AUX field. At the end of an iteration we 64 free each of these structures. */ 65 class edge_info 66 { 67 public: 68 typedef std::pair <tree, tree> equiv_pair; 69 edge_info (edge); 70 ~edge_info (); 71 72 /* Record a simple LHS = RHS equivalence. This may trigger 73 calls to derive_equivalences. */ 74 void record_simple_equiv (tree, tree); 75 76 /* If traversing this edge creates simple equivalences, we store 77 them as LHS/RHS pairs within this vector. */ 78 vec<equiv_pair> simple_equivalences; 79 80 /* Traversing an edge may also indicate one or more particular conditions 81 are true or false. */ 82 vec<cond_equivalence> cond_equivalences; 83 84 private: 85 /* Derive equivalences by walking the use-def chains. */ 86 void derive_equivalences (tree, tree, int); 87 }; 88 89 /* Track whether or not we have changed the control flow graph. */ 90 static bool cfg_altered; 91 92 /* Bitmap of blocks that have had EH statements cleaned. We should 93 remove their dead edges eventually. */ 94 static bitmap need_eh_cleanup; 95 static vec<gimple *> need_noreturn_fixup; 96 97 /* Statistics for dominator optimizations. */ 98 struct opt_stats_d 99 { 100 long num_stmts; 101 long num_exprs_considered; 102 long num_re; 103 long num_const_prop; 104 long num_copy_prop; 105 }; 106 107 static struct opt_stats_d opt_stats; 108 109 /* Local functions. */ 110 static void record_equality (tree, tree, class const_and_copies *); 111 static void record_equivalences_from_phis (basic_block); 112 static void record_equivalences_from_incoming_edge (basic_block, 113 class const_and_copies *, 114 class avail_exprs_stack *); 115 static void eliminate_redundant_computations (gimple_stmt_iterator *, 116 class const_and_copies *, 117 class avail_exprs_stack *); 118 static void record_equivalences_from_stmt (gimple *, int, 119 class avail_exprs_stack *); 120 static void dump_dominator_optimization_stats (FILE *file, 121 hash_table<expr_elt_hasher> *); 122 123 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always 124 associated with an edge E. */ 125 126 edge_info::edge_info (edge e) 127 { 128 /* Free the old one associated with E, if it exists and 129 associate our new object with E. */ 130 free_dom_edge_info (e); 131 e->aux = this; 132 133 /* And initialize the embedded vectors. */ 134 simple_equivalences = vNULL; 135 cond_equivalences = vNULL; 136 } 137 138 /* Destructor just needs to release the vectors. */ 139 140 edge_info::~edge_info (void) 141 { 142 this->cond_equivalences.release (); 143 this->simple_equivalences.release (); 144 } 145 146 /* NAME is known to have the value VALUE, which must be a constant. 147 148 Walk through its use-def chain to see if there are other equivalences 149 we might be able to derive. 150 151 RECURSION_LIMIT controls how far back we recurse through the use-def 152 chains. */ 153 154 void 155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit) 156 { 157 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST) 158 return; 159 160 /* This records the equivalence for the toplevel object. Do 161 this before checking the recursion limit. */ 162 simple_equivalences.safe_push (equiv_pair (name, value)); 163 164 /* Limit how far up the use-def chains we are willing to walk. */ 165 if (recursion_limit == 0) 166 return; 167 168 /* We can walk up the use-def chains to potentially find more 169 equivalences. */ 170 gimple *def_stmt = SSA_NAME_DEF_STMT (name); 171 if (is_gimple_assign (def_stmt)) 172 { 173 /* We know the result of DEF_STMT was zero. See if that allows 174 us to deduce anything about the SSA_NAMEs used on the RHS. */ 175 enum tree_code code = gimple_assign_rhs_code (def_stmt); 176 switch (code) 177 { 178 case BIT_IOR_EXPR: 179 if (integer_zerop (value)) 180 { 181 tree rhs1 = gimple_assign_rhs1 (def_stmt); 182 tree rhs2 = gimple_assign_rhs2 (def_stmt); 183 184 value = build_zero_cst (TREE_TYPE (rhs1)); 185 derive_equivalences (rhs1, value, recursion_limit - 1); 186 value = build_zero_cst (TREE_TYPE (rhs2)); 187 derive_equivalences (rhs2, value, recursion_limit - 1); 188 } 189 break; 190 191 /* We know the result of DEF_STMT was one. See if that allows 192 us to deduce anything about the SSA_NAMEs used on the RHS. */ 193 case BIT_AND_EXPR: 194 if (!integer_zerop (value)) 195 { 196 tree rhs1 = gimple_assign_rhs1 (def_stmt); 197 tree rhs2 = gimple_assign_rhs2 (def_stmt); 198 199 /* If either operand has a boolean range, then we 200 know its value must be one, otherwise we just know it 201 is nonzero. The former is clearly useful, I haven't 202 seen cases where the latter is helpful yet. */ 203 if (TREE_CODE (rhs1) == SSA_NAME) 204 { 205 if (ssa_name_has_boolean_range (rhs1)) 206 { 207 value = build_one_cst (TREE_TYPE (rhs1)); 208 derive_equivalences (rhs1, value, recursion_limit - 1); 209 } 210 } 211 if (TREE_CODE (rhs2) == SSA_NAME) 212 { 213 if (ssa_name_has_boolean_range (rhs2)) 214 { 215 value = build_one_cst (TREE_TYPE (rhs2)); 216 derive_equivalences (rhs2, value, recursion_limit - 1); 217 } 218 } 219 } 220 break; 221 222 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was 223 set via a widening type conversion, then we may be able to record 224 additional equivalences. */ 225 case NOP_EXPR: 226 case CONVERT_EXPR: 227 { 228 tree rhs = gimple_assign_rhs1 (def_stmt); 229 tree rhs_type = TREE_TYPE (rhs); 230 if (INTEGRAL_TYPE_P (rhs_type) 231 && (TYPE_PRECISION (TREE_TYPE (name)) 232 >= TYPE_PRECISION (rhs_type)) 233 && int_fits_type_p (value, rhs_type)) 234 derive_equivalences (rhs, 235 fold_convert (rhs_type, value), 236 recursion_limit - 1); 237 break; 238 } 239 240 /* We can invert the operation of these codes trivially if 241 one of the RHS operands is a constant to produce a known 242 value for the other RHS operand. */ 243 case POINTER_PLUS_EXPR: 244 case PLUS_EXPR: 245 { 246 tree rhs1 = gimple_assign_rhs1 (def_stmt); 247 tree rhs2 = gimple_assign_rhs2 (def_stmt); 248 249 /* If either argument is a constant, then we can compute 250 a constant value for the nonconstant argument. */ 251 if (TREE_CODE (rhs1) == INTEGER_CST 252 && TREE_CODE (rhs2) == SSA_NAME) 253 derive_equivalences (rhs2, 254 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), 255 value, rhs1), 256 recursion_limit - 1); 257 else if (TREE_CODE (rhs2) == INTEGER_CST 258 && TREE_CODE (rhs1) == SSA_NAME) 259 derive_equivalences (rhs1, 260 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), 261 value, rhs2), 262 recursion_limit - 1); 263 break; 264 } 265 266 /* If one of the operands is a constant, then we can compute 267 the value of the other operand. If both operands are 268 SSA_NAMEs, then they must be equal if the result is zero. */ 269 case MINUS_EXPR: 270 { 271 tree rhs1 = gimple_assign_rhs1 (def_stmt); 272 tree rhs2 = gimple_assign_rhs2 (def_stmt); 273 274 /* If either argument is a constant, then we can compute 275 a constant value for the nonconstant argument. */ 276 if (TREE_CODE (rhs1) == INTEGER_CST 277 && TREE_CODE (rhs2) == SSA_NAME) 278 derive_equivalences (rhs2, 279 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1), 280 rhs1, value), 281 recursion_limit - 1); 282 else if (TREE_CODE (rhs2) == INTEGER_CST 283 && TREE_CODE (rhs1) == SSA_NAME) 284 derive_equivalences (rhs1, 285 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1), 286 value, rhs2), 287 recursion_limit - 1); 288 else if (integer_zerop (value)) 289 { 290 tree cond = build2 (EQ_EXPR, boolean_type_node, 291 gimple_assign_rhs1 (def_stmt), 292 gimple_assign_rhs2 (def_stmt)); 293 tree inverted = invert_truthvalue (cond); 294 record_conditions (&this->cond_equivalences, cond, inverted); 295 } 296 break; 297 } 298 299 300 case EQ_EXPR: 301 case NE_EXPR: 302 { 303 if ((code == EQ_EXPR && integer_onep (value)) 304 || (code == NE_EXPR && integer_zerop (value))) 305 { 306 tree rhs1 = gimple_assign_rhs1 (def_stmt); 307 tree rhs2 = gimple_assign_rhs2 (def_stmt); 308 309 /* If either argument is a constant, then record the 310 other argument as being the same as that constant. 311 312 If neither operand is a constant, then we have a 313 conditional name == name equivalence. */ 314 if (TREE_CODE (rhs1) == INTEGER_CST) 315 derive_equivalences (rhs2, rhs1, recursion_limit - 1); 316 else if (TREE_CODE (rhs2) == INTEGER_CST) 317 derive_equivalences (rhs1, rhs2, recursion_limit - 1); 318 } 319 else 320 { 321 tree cond = build2 (code, boolean_type_node, 322 gimple_assign_rhs1 (def_stmt), 323 gimple_assign_rhs2 (def_stmt)); 324 tree inverted = invert_truthvalue (cond); 325 if (integer_zerop (value)) 326 std::swap (cond, inverted); 327 record_conditions (&this->cond_equivalences, cond, inverted); 328 } 329 break; 330 } 331 332 /* For BIT_NOT and NEGATE, we can just apply the operation to the 333 VALUE to get the new equivalence. It will always be a constant 334 so we can recurse. */ 335 case BIT_NOT_EXPR: 336 case NEGATE_EXPR: 337 { 338 tree rhs = gimple_assign_rhs1 (def_stmt); 339 tree res = fold_build1 (code, TREE_TYPE (rhs), value); 340 derive_equivalences (rhs, res, recursion_limit - 1); 341 break; 342 } 343 344 default: 345 { 346 if (TREE_CODE_CLASS (code) == tcc_comparison) 347 { 348 tree cond = build2 (code, boolean_type_node, 349 gimple_assign_rhs1 (def_stmt), 350 gimple_assign_rhs2 (def_stmt)); 351 tree inverted = invert_truthvalue (cond); 352 if (integer_zerop (value)) 353 std::swap (cond, inverted); 354 record_conditions (&this->cond_equivalences, cond, inverted); 355 break; 356 } 357 break; 358 } 359 } 360 } 361 } 362 363 void 364 edge_info::record_simple_equiv (tree lhs, tree rhs) 365 { 366 /* If the RHS is a constant, then we may be able to derive 367 further equivalences. Else just record the name = name 368 equivalence. */ 369 if (TREE_CODE (rhs) == INTEGER_CST) 370 derive_equivalences (lhs, rhs, 4); 371 else 372 simple_equivalences.safe_push (equiv_pair (lhs, rhs)); 373 } 374 375 /* Free the edge_info data attached to E, if it exists. */ 376 377 void 378 free_dom_edge_info (edge e) 379 { 380 class edge_info *edge_info = (struct edge_info *)e->aux; 381 382 if (edge_info) 383 delete edge_info; 384 } 385 386 /* Free all EDGE_INFO structures associated with edges in the CFG. 387 If a particular edge can be threaded, copy the redirection 388 target from the EDGE_INFO structure into the edge's AUX field 389 as required by code to update the CFG and SSA graph for 390 jump threading. */ 391 392 static void 393 free_all_edge_infos (void) 394 { 395 basic_block bb; 396 edge_iterator ei; 397 edge e; 398 399 FOR_EACH_BB_FN (bb, cfun) 400 { 401 FOR_EACH_EDGE (e, ei, bb->preds) 402 { 403 free_dom_edge_info (e); 404 e->aux = NULL; 405 } 406 } 407 } 408 409 /* We have finished optimizing BB, record any information implied by 410 taking a specific outgoing edge from BB. */ 411 412 static void 413 record_edge_info (basic_block bb) 414 { 415 gimple_stmt_iterator gsi = gsi_last_bb (bb); 416 class edge_info *edge_info; 417 418 if (! gsi_end_p (gsi)) 419 { 420 gimple *stmt = gsi_stmt (gsi); 421 location_t loc = gimple_location (stmt); 422 423 if (gimple_code (stmt) == GIMPLE_SWITCH) 424 { 425 gswitch *switch_stmt = as_a <gswitch *> (stmt); 426 tree index = gimple_switch_index (switch_stmt); 427 428 if (TREE_CODE (index) == SSA_NAME) 429 { 430 int i; 431 int n_labels = gimple_switch_num_labels (switch_stmt); 432 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun)); 433 edge e; 434 edge_iterator ei; 435 436 for (i = 0; i < n_labels; i++) 437 { 438 tree label = gimple_switch_label (switch_stmt, i); 439 basic_block target_bb = label_to_block (CASE_LABEL (label)); 440 if (CASE_HIGH (label) 441 || !CASE_LOW (label) 442 || info[target_bb->index]) 443 info[target_bb->index] = error_mark_node; 444 else 445 info[target_bb->index] = label; 446 } 447 448 FOR_EACH_EDGE (e, ei, bb->succs) 449 { 450 basic_block target_bb = e->dest; 451 tree label = info[target_bb->index]; 452 453 if (label != NULL && label != error_mark_node) 454 { 455 tree x = fold_convert_loc (loc, TREE_TYPE (index), 456 CASE_LOW (label)); 457 edge_info = new class edge_info (e); 458 edge_info->record_simple_equiv (index, x); 459 } 460 } 461 free (info); 462 } 463 } 464 465 /* A COND_EXPR may create equivalences too. */ 466 if (gimple_code (stmt) == GIMPLE_COND) 467 { 468 edge true_edge; 469 edge false_edge; 470 471 tree op0 = gimple_cond_lhs (stmt); 472 tree op1 = gimple_cond_rhs (stmt); 473 enum tree_code code = gimple_cond_code (stmt); 474 475 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); 476 477 /* Special case comparing booleans against a constant as we 478 know the value of OP0 on both arms of the branch. i.e., we 479 can record an equivalence for OP0 rather than COND. 480 481 However, don't do this if the constant isn't zero or one. 482 Such conditionals will get optimized more thoroughly during 483 the domwalk. */ 484 if ((code == EQ_EXPR || code == NE_EXPR) 485 && TREE_CODE (op0) == SSA_NAME 486 && ssa_name_has_boolean_range (op0) 487 && is_gimple_min_invariant (op1) 488 && (integer_zerop (op1) || integer_onep (op1))) 489 { 490 tree true_val = constant_boolean_node (true, TREE_TYPE (op0)); 491 tree false_val = constant_boolean_node (false, TREE_TYPE (op0)); 492 493 if (code == EQ_EXPR) 494 { 495 edge_info = new class edge_info (true_edge); 496 edge_info->record_simple_equiv (op0, 497 (integer_zerop (op1) 498 ? false_val : true_val)); 499 edge_info = new class edge_info (false_edge); 500 edge_info->record_simple_equiv (op0, 501 (integer_zerop (op1) 502 ? true_val : false_val)); 503 } 504 else 505 { 506 edge_info = new class edge_info (true_edge); 507 edge_info->record_simple_equiv (op0, 508 (integer_zerop (op1) 509 ? true_val : false_val)); 510 edge_info = new class edge_info (false_edge); 511 edge_info->record_simple_equiv (op0, 512 (integer_zerop (op1) 513 ? false_val : true_val)); 514 } 515 } 516 /* This can show up in the IL as a result of copy propagation 517 it will eventually be canonicalized, but we have to cope 518 with this case within the pass. */ 519 else if (is_gimple_min_invariant (op0) 520 && TREE_CODE (op1) == SSA_NAME) 521 { 522 tree cond = build2 (code, boolean_type_node, op0, op1); 523 tree inverted = invert_truthvalue_loc (loc, cond); 524 bool can_infer_simple_equiv 525 = !(HONOR_SIGNED_ZEROS (op0) 526 && real_zerop (op0)); 527 struct edge_info *edge_info; 528 529 edge_info = new class edge_info (true_edge); 530 record_conditions (&edge_info->cond_equivalences, cond, inverted); 531 532 if (can_infer_simple_equiv && code == EQ_EXPR) 533 edge_info->record_simple_equiv (op1, op0); 534 535 edge_info = new class edge_info (false_edge); 536 record_conditions (&edge_info->cond_equivalences, inverted, cond); 537 538 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) 539 edge_info->record_simple_equiv (op1, op0); 540 } 541 542 else if (TREE_CODE (op0) == SSA_NAME 543 && (TREE_CODE (op1) == SSA_NAME 544 || is_gimple_min_invariant (op1))) 545 { 546 tree cond = build2 (code, boolean_type_node, op0, op1); 547 tree inverted = invert_truthvalue_loc (loc, cond); 548 bool can_infer_simple_equiv 549 = !(HONOR_SIGNED_ZEROS (op1) 550 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1))); 551 struct edge_info *edge_info; 552 553 edge_info = new class edge_info (true_edge); 554 record_conditions (&edge_info->cond_equivalences, cond, inverted); 555 556 if (can_infer_simple_equiv && code == EQ_EXPR) 557 edge_info->record_simple_equiv (op0, op1); 558 559 edge_info = new class edge_info (false_edge); 560 record_conditions (&edge_info->cond_equivalences, inverted, cond); 561 562 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR) 563 edge_info->record_simple_equiv (op0, op1); 564 } 565 } 566 } 567 } 568 569 570 class dom_opt_dom_walker : public dom_walker 571 { 572 public: 573 dom_opt_dom_walker (cdi_direction direction, 574 class const_and_copies *const_and_copies, 575 class avail_exprs_stack *avail_exprs_stack, 576 gcond *dummy_cond) 577 : dom_walker (direction, REACHABLE_BLOCKS), 578 m_const_and_copies (const_and_copies), 579 m_avail_exprs_stack (avail_exprs_stack), 580 m_dummy_cond (dummy_cond) { } 581 582 virtual edge before_dom_children (basic_block); 583 virtual void after_dom_children (basic_block); 584 585 private: 586 587 /* Unwindable equivalences, both const/copy and expression varieties. */ 588 class const_and_copies *m_const_and_copies; 589 class avail_exprs_stack *m_avail_exprs_stack; 590 591 /* VRP data. */ 592 class evrp_range_analyzer evrp_range_analyzer; 593 594 /* Dummy condition to avoid creating lots of throw away statements. */ 595 gcond *m_dummy_cond; 596 597 /* Optimize a single statement within a basic block using the 598 various tables mantained by DOM. Returns the taken edge if 599 the statement is a conditional with a statically determined 600 value. */ 601 edge optimize_stmt (basic_block, gimple_stmt_iterator); 602 }; 603 604 /* Jump threading, redundancy elimination and const/copy propagation. 605 606 This pass may expose new symbols that need to be renamed into SSA. For 607 every new symbol exposed, its corresponding bit will be set in 608 VARS_TO_RENAME. */ 609 610 namespace { 611 612 const pass_data pass_data_dominator = 613 { 614 GIMPLE_PASS, /* type */ 615 "dom", /* name */ 616 OPTGROUP_NONE, /* optinfo_flags */ 617 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */ 618 ( PROP_cfg | PROP_ssa ), /* properties_required */ 619 0, /* properties_provided */ 620 0, /* properties_destroyed */ 621 0, /* todo_flags_start */ 622 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */ 623 }; 624 625 class pass_dominator : public gimple_opt_pass 626 { 627 public: 628 pass_dominator (gcc::context *ctxt) 629 : gimple_opt_pass (pass_data_dominator, ctxt), 630 may_peel_loop_headers_p (false) 631 {} 632 633 /* opt_pass methods: */ 634 opt_pass * clone () { return new pass_dominator (m_ctxt); } 635 void set_pass_param (unsigned int n, bool param) 636 { 637 gcc_assert (n == 0); 638 may_peel_loop_headers_p = param; 639 } 640 virtual bool gate (function *) { return flag_tree_dom != 0; } 641 virtual unsigned int execute (function *); 642 643 private: 644 /* This flag is used to prevent loops from being peeled repeatedly in jump 645 threading; it will be removed once we preserve loop structures throughout 646 the compilation -- we will be able to mark the affected loops directly in 647 jump threading, and avoid peeling them next time. */ 648 bool may_peel_loop_headers_p; 649 }; // class pass_dominator 650 651 unsigned int 652 pass_dominator::execute (function *fun) 653 { 654 memset (&opt_stats, 0, sizeof (opt_stats)); 655 656 /* Create our hash tables. */ 657 hash_table<expr_elt_hasher> *avail_exprs 658 = new hash_table<expr_elt_hasher> (1024); 659 class avail_exprs_stack *avail_exprs_stack 660 = new class avail_exprs_stack (avail_exprs); 661 class const_and_copies *const_and_copies = new class const_and_copies (); 662 need_eh_cleanup = BITMAP_ALLOC (NULL); 663 need_noreturn_fixup.create (0); 664 665 calculate_dominance_info (CDI_DOMINATORS); 666 cfg_altered = false; 667 668 /* We need to know loop structures in order to avoid destroying them 669 in jump threading. Note that we still can e.g. thread through loop 670 headers to an exit edge, or through loop header to the loop body, assuming 671 that we update the loop info. 672 673 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due 674 to several overly conservative bail-outs in jump threading, case 675 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is 676 missing. We should improve jump threading in future then 677 LOOPS_HAVE_PREHEADERS won't be needed here. */ 678 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES); 679 680 /* Initialize the value-handle array. */ 681 threadedge_initialize_values (); 682 683 /* We need accurate information regarding back edges in the CFG 684 for jump threading; this may include back edges that are not part of 685 a single loop. */ 686 mark_dfs_back_edges (); 687 688 /* We want to create the edge info structures before the dominator walk 689 so that they'll be in place for the jump threader, particularly when 690 threading through a join block. 691 692 The conditions will be lazily updated with global equivalences as 693 we reach them during the dominator walk. */ 694 basic_block bb; 695 FOR_EACH_BB_FN (bb, fun) 696 record_edge_info (bb); 697 698 gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node, 699 integer_zero_node, NULL, NULL); 700 701 /* Recursively walk the dominator tree optimizing statements. */ 702 dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies, 703 avail_exprs_stack, dummy_cond); 704 walker.walk (fun->cfg->x_entry_block_ptr); 705 706 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing 707 edge. When found, remove jump threads which contain any outgoing 708 edge from the affected block. */ 709 if (cfg_altered) 710 { 711 FOR_EACH_BB_FN (bb, fun) 712 { 713 edge_iterator ei; 714 edge e; 715 716 /* First see if there are any edges without EDGE_EXECUTABLE 717 set. */ 718 bool found = false; 719 FOR_EACH_EDGE (e, ei, bb->succs) 720 { 721 if ((e->flags & EDGE_EXECUTABLE) == 0) 722 { 723 found = true; 724 break; 725 } 726 } 727 728 /* If there were any such edges found, then remove jump threads 729 containing any edge leaving BB. */ 730 if (found) 731 FOR_EACH_EDGE (e, ei, bb->succs) 732 remove_jump_threads_including (e); 733 } 734 } 735 736 { 737 gimple_stmt_iterator gsi; 738 basic_block bb; 739 FOR_EACH_BB_FN (bb, fun) 740 { 741 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 742 update_stmt_if_modified (gsi_stmt (gsi)); 743 } 744 } 745 746 /* If we exposed any new variables, go ahead and put them into 747 SSA form now, before we handle jump threading. This simplifies 748 interactions between rewriting of _DECL nodes into SSA form 749 and rewriting SSA_NAME nodes into SSA form after block 750 duplication and CFG manipulation. */ 751 update_ssa (TODO_update_ssa); 752 753 free_all_edge_infos (); 754 755 /* Thread jumps, creating duplicate blocks as needed. */ 756 cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p); 757 758 if (cfg_altered) 759 free_dominance_info (CDI_DOMINATORS); 760 761 /* Removal of statements may make some EH edges dead. Purge 762 such edges from the CFG as needed. */ 763 if (!bitmap_empty_p (need_eh_cleanup)) 764 { 765 unsigned i; 766 bitmap_iterator bi; 767 768 /* Jump threading may have created forwarder blocks from blocks 769 needing EH cleanup; the new successor of these blocks, which 770 has inherited from the original block, needs the cleanup. 771 Don't clear bits in the bitmap, as that can break the bitmap 772 iterator. */ 773 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi) 774 { 775 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i); 776 if (bb == NULL) 777 continue; 778 while (single_succ_p (bb) 779 && (single_succ_edge (bb)->flags 780 & (EDGE_EH|EDGE_DFS_BACK)) == 0) 781 bb = single_succ (bb); 782 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun)) 783 continue; 784 if ((unsigned) bb->index != i) 785 bitmap_set_bit (need_eh_cleanup, bb->index); 786 } 787 788 gimple_purge_all_dead_eh_edges (need_eh_cleanup); 789 bitmap_clear (need_eh_cleanup); 790 } 791 792 /* Fixup stmts that became noreturn calls. This may require splitting 793 blocks and thus isn't possible during the dominator walk or before 794 jump threading finished. Do this in reverse order so we don't 795 inadvertedly remove a stmt we want to fixup by visiting a dominating 796 now noreturn call first. */ 797 while (!need_noreturn_fixup.is_empty ()) 798 { 799 gimple *stmt = need_noreturn_fixup.pop (); 800 if (dump_file && dump_flags & TDF_DETAILS) 801 { 802 fprintf (dump_file, "Fixing up noreturn call "); 803 print_gimple_stmt (dump_file, stmt, 0); 804 fprintf (dump_file, "\n"); 805 } 806 fixup_noreturn_call (stmt); 807 } 808 809 statistics_counter_event (fun, "Redundant expressions eliminated", 810 opt_stats.num_re); 811 statistics_counter_event (fun, "Constants propagated", 812 opt_stats.num_const_prop); 813 statistics_counter_event (fun, "Copies propagated", 814 opt_stats.num_copy_prop); 815 816 /* Debugging dumps. */ 817 if (dump_file && (dump_flags & TDF_STATS)) 818 dump_dominator_optimization_stats (dump_file, avail_exprs); 819 820 loop_optimizer_finalize (); 821 822 /* Delete our main hashtable. */ 823 delete avail_exprs; 824 avail_exprs = NULL; 825 826 /* Free asserted bitmaps and stacks. */ 827 BITMAP_FREE (need_eh_cleanup); 828 need_noreturn_fixup.release (); 829 delete avail_exprs_stack; 830 delete const_and_copies; 831 832 /* Free the value-handle array. */ 833 threadedge_finalize_values (); 834 835 return 0; 836 } 837 838 } // anon namespace 839 840 gimple_opt_pass * 841 make_pass_dominator (gcc::context *ctxt) 842 { 843 return new pass_dominator (ctxt); 844 } 845 846 /* A hack until we remove threading from tree-vrp.c and bring the 847 simplification routine into the dom_opt_dom_walker class. */ 848 static class vr_values *x_vr_values; 849 850 /* A trivial wrapper so that we can present the generic jump 851 threading code with a simple API for simplifying statements. */ 852 static tree 853 simplify_stmt_for_jump_threading (gimple *stmt, 854 gimple *within_stmt ATTRIBUTE_UNUSED, 855 class avail_exprs_stack *avail_exprs_stack, 856 basic_block bb ATTRIBUTE_UNUSED) 857 { 858 /* First query our hash table to see if the the expression is available 859 there. A non-NULL return value will be either a constant or another 860 SSA_NAME. */ 861 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true); 862 if (cached_lhs) 863 return cached_lhs; 864 865 /* If the hash table query failed, query VRP information. This is 866 essentially the same as tree-vrp's simplification routine. The 867 copy in tree-vrp is scheduled for removal in gcc-9. */ 868 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) 869 { 870 cached_lhs 871 = x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt), 872 gimple_cond_lhs (cond_stmt), 873 gimple_cond_rhs (cond_stmt), 874 within_stmt); 875 return cached_lhs; 876 } 877 878 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt)) 879 { 880 tree op = gimple_switch_index (switch_stmt); 881 if (TREE_CODE (op) != SSA_NAME) 882 return NULL_TREE; 883 884 value_range *vr = x_vr_values->get_value_range (op); 885 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE) 886 || symbolic_range_p (vr)) 887 return NULL_TREE; 888 889 if (vr->type == VR_RANGE) 890 { 891 size_t i, j; 892 893 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j); 894 895 if (i == j) 896 { 897 tree label = gimple_switch_label (switch_stmt, i); 898 899 if (CASE_HIGH (label) != NULL_TREE 900 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0 901 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0) 902 : (tree_int_cst_equal (CASE_LOW (label), vr->min) 903 && tree_int_cst_equal (vr->min, vr->max))) 904 return label; 905 906 if (i > j) 907 return gimple_switch_label (switch_stmt, 0); 908 } 909 } 910 911 if (vr->type == VR_ANTI_RANGE) 912 { 913 unsigned n = gimple_switch_num_labels (switch_stmt); 914 tree min_label = gimple_switch_label (switch_stmt, 1); 915 tree max_label = gimple_switch_label (switch_stmt, n - 1); 916 917 /* The default label will be taken only if the anti-range of the 918 operand is entirely outside the bounds of all the (non-default) 919 case labels. */ 920 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0 921 && (CASE_HIGH (max_label) != NULL_TREE 922 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0 923 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0)) 924 return gimple_switch_label (switch_stmt, 0); 925 } 926 return NULL_TREE; 927 } 928 929 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt)) 930 { 931 tree lhs = gimple_assign_lhs (assign_stmt); 932 if (TREE_CODE (lhs) == SSA_NAME 933 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) 934 || POINTER_TYPE_P (TREE_TYPE (lhs))) 935 && stmt_interesting_for_vrp (stmt)) 936 { 937 edge dummy_e; 938 tree dummy_tree; 939 value_range new_vr = VR_INITIALIZER; 940 x_vr_values->extract_range_from_stmt (stmt, &dummy_e, 941 &dummy_tree, &new_vr); 942 if (range_int_cst_singleton_p (&new_vr)) 943 return new_vr.min; 944 } 945 } 946 return NULL; 947 } 948 949 /* Valueize hook for gimple_fold_stmt_to_constant_1. */ 950 951 static tree 952 dom_valueize (tree t) 953 { 954 if (TREE_CODE (t) == SSA_NAME) 955 { 956 tree tem = SSA_NAME_VALUE (t); 957 if (tem) 958 return tem; 959 } 960 return t; 961 } 962 963 /* We have just found an equivalence for LHS on an edge E. 964 Look backwards to other uses of LHS and see if we can derive 965 additional equivalences that are valid on edge E. */ 966 static void 967 back_propagate_equivalences (tree lhs, edge e, 968 class const_and_copies *const_and_copies) 969 { 970 use_operand_p use_p; 971 imm_use_iterator iter; 972 bitmap domby = NULL; 973 basic_block dest = e->dest; 974 975 /* Iterate over the uses of LHS to see if any dominate E->dest. 976 If so, they may create useful equivalences too. 977 978 ??? If the code gets re-organized to a worklist to catch more 979 indirect opportunities and it is made to handle PHIs then this 980 should only consider use_stmts in basic-blocks we have already visited. */ 981 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs) 982 { 983 gimple *use_stmt = USE_STMT (use_p); 984 985 /* Often the use is in DEST, which we trivially know we can't use. 986 This is cheaper than the dominator set tests below. */ 987 if (dest == gimple_bb (use_stmt)) 988 continue; 989 990 /* Filter out statements that can never produce a useful 991 equivalence. */ 992 tree lhs2 = gimple_get_lhs (use_stmt); 993 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME) 994 continue; 995 996 /* Profiling has shown the domination tests here can be fairly 997 expensive. We get significant improvements by building the 998 set of blocks that dominate BB. We can then just test 999 for set membership below. 1000 1001 We also initialize the set lazily since often the only uses 1002 are going to be in the same block as DEST. */ 1003 if (!domby) 1004 { 1005 domby = BITMAP_ALLOC (NULL); 1006 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest); 1007 while (bb) 1008 { 1009 bitmap_set_bit (domby, bb->index); 1010 bb = get_immediate_dominator (CDI_DOMINATORS, bb); 1011 } 1012 } 1013 1014 /* This tests if USE_STMT does not dominate DEST. */ 1015 if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index)) 1016 continue; 1017 1018 /* At this point USE_STMT dominates DEST and may result in a 1019 useful equivalence. Try to simplify its RHS to a constant 1020 or SSA_NAME. */ 1021 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize, 1022 no_follow_ssa_edges); 1023 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res))) 1024 record_equality (lhs2, res, const_and_copies); 1025 } 1026 1027 if (domby) 1028 BITMAP_FREE (domby); 1029 } 1030 1031 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied 1032 by traversing edge E (which are cached in E->aux). 1033 1034 Callers are responsible for managing the unwinding markers. */ 1035 void 1036 record_temporary_equivalences (edge e, 1037 class const_and_copies *const_and_copies, 1038 class avail_exprs_stack *avail_exprs_stack) 1039 { 1040 int i; 1041 class edge_info *edge_info = (class edge_info *) e->aux; 1042 1043 /* If we have info associated with this edge, record it into 1044 our equivalence tables. */ 1045 if (edge_info) 1046 { 1047 cond_equivalence *eq; 1048 /* If we have 0 = COND or 1 = COND equivalences, record them 1049 into our expression hash tables. */ 1050 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i) 1051 avail_exprs_stack->record_cond (eq); 1052 1053 edge_info::equiv_pair *seq; 1054 for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i) 1055 { 1056 tree lhs = seq->first; 1057 if (!lhs || TREE_CODE (lhs) != SSA_NAME) 1058 continue; 1059 1060 /* Record the simple NAME = VALUE equivalence. */ 1061 tree rhs = seq->second; 1062 1063 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is 1064 cheaper to compute than the other, then set up the equivalence 1065 such that we replace the expensive one with the cheap one. 1066 1067 If they are the same cost to compute, then do not record 1068 anything. */ 1069 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME) 1070 { 1071 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs); 1072 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights); 1073 1074 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs); 1075 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights); 1076 1077 if (rhs_cost > lhs_cost) 1078 record_equality (rhs, lhs, const_and_copies); 1079 else if (rhs_cost < lhs_cost) 1080 record_equality (lhs, rhs, const_and_copies); 1081 } 1082 else 1083 record_equality (lhs, rhs, const_and_copies); 1084 1085 1086 /* Any equivalence found for LHS may result in additional 1087 equivalences for other uses of LHS that we have already 1088 processed. */ 1089 back_propagate_equivalences (lhs, e, const_and_copies); 1090 } 1091 } 1092 } 1093 1094 /* PHI nodes can create equivalences too. 1095 1096 Ignoring any alternatives which are the same as the result, if 1097 all the alternatives are equal, then the PHI node creates an 1098 equivalence. */ 1099 1100 static void 1101 record_equivalences_from_phis (basic_block bb) 1102 { 1103 gphi_iterator gsi; 1104 1105 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1106 { 1107 gphi *phi = gsi.phi (); 1108 1109 tree lhs = gimple_phi_result (phi); 1110 tree rhs = NULL; 1111 size_t i; 1112 1113 for (i = 0; i < gimple_phi_num_args (phi); i++) 1114 { 1115 tree t = gimple_phi_arg_def (phi, i); 1116 1117 /* Ignore alternatives which are the same as our LHS. Since 1118 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we 1119 can simply compare pointers. */ 1120 if (lhs == t) 1121 continue; 1122 1123 /* If the associated edge is not marked as executable, then it 1124 can be ignored. */ 1125 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0) 1126 continue; 1127 1128 t = dom_valueize (t); 1129 1130 /* If T is an SSA_NAME and its associated edge is a backedge, 1131 then quit as we can not utilize this equivalence. */ 1132 if (TREE_CODE (t) == SSA_NAME 1133 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK)) 1134 break; 1135 1136 /* If we have not processed an alternative yet, then set 1137 RHS to this alternative. */ 1138 if (rhs == NULL) 1139 rhs = t; 1140 /* If we have processed an alternative (stored in RHS), then 1141 see if it is equal to this one. If it isn't, then stop 1142 the search. */ 1143 else if (! operand_equal_for_phi_arg_p (rhs, t)) 1144 break; 1145 } 1146 1147 /* If we had no interesting alternatives, then all the RHS alternatives 1148 must have been the same as LHS. */ 1149 if (!rhs) 1150 rhs = lhs; 1151 1152 /* If we managed to iterate through each PHI alternative without 1153 breaking out of the loop, then we have a PHI which may create 1154 a useful equivalence. We do not need to record unwind data for 1155 this, since this is a true assignment and not an equivalence 1156 inferred from a comparison. All uses of this ssa name are dominated 1157 by this assignment, so unwinding just costs time and space. */ 1158 if (i == gimple_phi_num_args (phi) 1159 && may_propagate_copy (lhs, rhs)) 1160 set_ssa_name_value (lhs, rhs); 1161 } 1162 } 1163 1164 /* Record any equivalences created by the incoming edge to BB into 1165 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one 1166 incoming edge, then no equivalence is created. */ 1167 1168 static void 1169 record_equivalences_from_incoming_edge (basic_block bb, 1170 class const_and_copies *const_and_copies, 1171 class avail_exprs_stack *avail_exprs_stack) 1172 { 1173 edge e; 1174 basic_block parent; 1175 1176 /* If our parent block ended with a control statement, then we may be 1177 able to record some equivalences based on which outgoing edge from 1178 the parent was followed. */ 1179 parent = get_immediate_dominator (CDI_DOMINATORS, bb); 1180 1181 e = single_pred_edge_ignoring_loop_edges (bb, true); 1182 1183 /* If we had a single incoming edge from our parent block, then enter 1184 any data associated with the edge into our tables. */ 1185 if (e && e->src == parent) 1186 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack); 1187 } 1188 1189 /* Dump statistics for the hash table HTAB. */ 1190 1191 static void 1192 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab) 1193 { 1194 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", 1195 (long) htab.size (), 1196 (long) htab.elements (), 1197 htab.collisions ()); 1198 } 1199 1200 /* Dump SSA statistics on FILE. */ 1201 1202 static void 1203 dump_dominator_optimization_stats (FILE *file, 1204 hash_table<expr_elt_hasher> *avail_exprs) 1205 { 1206 fprintf (file, "Total number of statements: %6ld\n\n", 1207 opt_stats.num_stmts); 1208 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n", 1209 opt_stats.num_exprs_considered); 1210 1211 fprintf (file, "\nHash table statistics:\n"); 1212 1213 fprintf (file, " avail_exprs: "); 1214 htab_statistics (file, *avail_exprs); 1215 } 1216 1217 1218 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR. 1219 This constrains the cases in which we may treat this as assignment. */ 1220 1221 static void 1222 record_equality (tree x, tree y, class const_and_copies *const_and_copies) 1223 { 1224 tree prev_x = NULL, prev_y = NULL; 1225 1226 if (tree_swap_operands_p (x, y)) 1227 std::swap (x, y); 1228 1229 /* Most of the time tree_swap_operands_p does what we want. But there 1230 are cases where we know one operand is better for copy propagation than 1231 the other. Given no other code cares about ordering of equality 1232 comparison operators for that purpose, we just handle the special cases 1233 here. */ 1234 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME) 1235 { 1236 /* If one operand is a single use operand, then make it 1237 X. This will preserve its single use properly and if this 1238 conditional is eliminated, the computation of X can be 1239 eliminated as well. */ 1240 if (has_single_use (y) && ! has_single_use (x)) 1241 std::swap (x, y); 1242 } 1243 if (TREE_CODE (x) == SSA_NAME) 1244 prev_x = SSA_NAME_VALUE (x); 1245 if (TREE_CODE (y) == SSA_NAME) 1246 prev_y = SSA_NAME_VALUE (y); 1247 1248 /* If one of the previous values is invariant, or invariant in more loops 1249 (by depth), then use that. 1250 Otherwise it doesn't matter which value we choose, just so 1251 long as we canonicalize on one value. */ 1252 if (is_gimple_min_invariant (y)) 1253 ; 1254 else if (is_gimple_min_invariant (x)) 1255 prev_x = x, x = y, y = prev_x, prev_x = prev_y; 1256 else if (prev_x && is_gimple_min_invariant (prev_x)) 1257 x = y, y = prev_x, prev_x = prev_y; 1258 else if (prev_y) 1259 y = prev_y; 1260 1261 /* After the swapping, we must have one SSA_NAME. */ 1262 if (TREE_CODE (x) != SSA_NAME) 1263 return; 1264 1265 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a 1266 variable compared against zero. If we're honoring signed zeros, 1267 then we cannot record this value unless we know that the value is 1268 nonzero. */ 1269 if (HONOR_SIGNED_ZEROS (x) 1270 && (TREE_CODE (y) != REAL_CST 1271 || real_equal (&dconst0, &TREE_REAL_CST (y)))) 1272 return; 1273 1274 const_and_copies->record_const_or_copy (x, y, prev_x); 1275 } 1276 1277 /* Returns true when STMT is a simple iv increment. It detects the 1278 following situation: 1279 1280 i_1 = phi (..., i_k) 1281 [...] 1282 i_j = i_{j-1} for each j : 2 <= j <= k-1 1283 [...] 1284 i_k = i_{k-1} +/- ... */ 1285 1286 bool 1287 simple_iv_increment_p (gimple *stmt) 1288 { 1289 enum tree_code code; 1290 tree lhs, preinc; 1291 gimple *phi; 1292 size_t i; 1293 1294 if (gimple_code (stmt) != GIMPLE_ASSIGN) 1295 return false; 1296 1297 lhs = gimple_assign_lhs (stmt); 1298 if (TREE_CODE (lhs) != SSA_NAME) 1299 return false; 1300 1301 code = gimple_assign_rhs_code (stmt); 1302 if (code != PLUS_EXPR 1303 && code != MINUS_EXPR 1304 && code != POINTER_PLUS_EXPR) 1305 return false; 1306 1307 preinc = gimple_assign_rhs1 (stmt); 1308 if (TREE_CODE (preinc) != SSA_NAME) 1309 return false; 1310 1311 phi = SSA_NAME_DEF_STMT (preinc); 1312 while (gimple_code (phi) != GIMPLE_PHI) 1313 { 1314 /* Follow trivial copies, but not the DEF used in a back edge, 1315 so that we don't prevent coalescing. */ 1316 if (!gimple_assign_ssa_name_copy_p (phi)) 1317 return false; 1318 preinc = gimple_assign_rhs1 (phi); 1319 phi = SSA_NAME_DEF_STMT (preinc); 1320 } 1321 1322 for (i = 0; i < gimple_phi_num_args (phi); i++) 1323 if (gimple_phi_arg_def (phi, i) == lhs) 1324 return true; 1325 1326 return false; 1327 } 1328 1329 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the 1330 successors of BB. */ 1331 1332 static void 1333 cprop_into_successor_phis (basic_block bb, 1334 class const_and_copies *const_and_copies) 1335 { 1336 edge e; 1337 edge_iterator ei; 1338 1339 FOR_EACH_EDGE (e, ei, bb->succs) 1340 { 1341 int indx; 1342 gphi_iterator gsi; 1343 1344 /* If this is an abnormal edge, then we do not want to copy propagate 1345 into the PHI alternative associated with this edge. */ 1346 if (e->flags & EDGE_ABNORMAL) 1347 continue; 1348 1349 gsi = gsi_start_phis (e->dest); 1350 if (gsi_end_p (gsi)) 1351 continue; 1352 1353 /* We may have an equivalence associated with this edge. While 1354 we can not propagate it into non-dominated blocks, we can 1355 propagate them into PHIs in non-dominated blocks. */ 1356 1357 /* Push the unwind marker so we can reset the const and copies 1358 table back to its original state after processing this edge. */ 1359 const_and_copies->push_marker (); 1360 1361 /* Extract and record any simple NAME = VALUE equivalences. 1362 1363 Don't bother with [01] = COND equivalences, they're not useful 1364 here. */ 1365 class edge_info *edge_info = (class edge_info *) e->aux; 1366 1367 if (edge_info) 1368 { 1369 edge_info::equiv_pair *seq; 1370 for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i) 1371 { 1372 tree lhs = seq->first; 1373 tree rhs = seq->second; 1374 1375 if (lhs && TREE_CODE (lhs) == SSA_NAME) 1376 const_and_copies->record_const_or_copy (lhs, rhs); 1377 } 1378 1379 } 1380 1381 indx = e->dest_idx; 1382 for ( ; !gsi_end_p (gsi); gsi_next (&gsi)) 1383 { 1384 tree new_val; 1385 use_operand_p orig_p; 1386 tree orig_val; 1387 gphi *phi = gsi.phi (); 1388 1389 /* The alternative may be associated with a constant, so verify 1390 it is an SSA_NAME before doing anything with it. */ 1391 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx); 1392 orig_val = get_use_from_ptr (orig_p); 1393 if (TREE_CODE (orig_val) != SSA_NAME) 1394 continue; 1395 1396 /* If we have *ORIG_P in our constant/copy table, then replace 1397 ORIG_P with its value in our constant/copy table. */ 1398 new_val = SSA_NAME_VALUE (orig_val); 1399 if (new_val 1400 && new_val != orig_val 1401 && may_propagate_copy (orig_val, new_val)) 1402 propagate_value (orig_p, new_val); 1403 } 1404 1405 const_and_copies->pop_to_marker (); 1406 } 1407 } 1408 1409 edge 1410 dom_opt_dom_walker::before_dom_children (basic_block bb) 1411 { 1412 gimple_stmt_iterator gsi; 1413 1414 if (dump_file && (dump_flags & TDF_DETAILS)) 1415 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index); 1416 1417 evrp_range_analyzer.enter (bb); 1418 1419 /* Push a marker on the stacks of local information so that we know how 1420 far to unwind when we finalize this block. */ 1421 m_avail_exprs_stack->push_marker (); 1422 m_const_and_copies->push_marker (); 1423 1424 record_equivalences_from_incoming_edge (bb, m_const_and_copies, 1425 m_avail_exprs_stack); 1426 1427 /* PHI nodes can create equivalences too. */ 1428 record_equivalences_from_phis (bb); 1429 1430 /* Create equivalences from redundant PHIs. PHIs are only truly 1431 redundant when they exist in the same block, so push another 1432 marker and unwind right afterwards. */ 1433 m_avail_exprs_stack->push_marker (); 1434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1435 eliminate_redundant_computations (&gsi, m_const_and_copies, 1436 m_avail_exprs_stack); 1437 m_avail_exprs_stack->pop_to_marker (); 1438 1439 edge taken_edge = NULL; 1440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1441 { 1442 evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false); 1443 taken_edge = this->optimize_stmt (bb, gsi); 1444 } 1445 1446 /* Now prepare to process dominated blocks. */ 1447 record_edge_info (bb); 1448 cprop_into_successor_phis (bb, m_const_and_copies); 1449 if (taken_edge && !dbg_cnt (dom_unreachable_edges)) 1450 return NULL; 1451 1452 return taken_edge; 1453 } 1454 1455 /* We have finished processing the dominator children of BB, perform 1456 any finalization actions in preparation for leaving this node in 1457 the dominator tree. */ 1458 1459 void 1460 dom_opt_dom_walker::after_dom_children (basic_block bb) 1461 { 1462 x_vr_values = evrp_range_analyzer.get_vr_values (); 1463 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies, 1464 m_avail_exprs_stack, 1465 &evrp_range_analyzer, 1466 simplify_stmt_for_jump_threading); 1467 x_vr_values = NULL; 1468 1469 /* These remove expressions local to BB from the tables. */ 1470 m_avail_exprs_stack->pop_to_marker (); 1471 m_const_and_copies->pop_to_marker (); 1472 evrp_range_analyzer.leave (bb); 1473 } 1474 1475 /* Search for redundant computations in STMT. If any are found, then 1476 replace them with the variable holding the result of the computation. 1477 1478 If safe, record this expression into AVAIL_EXPRS_STACK and 1479 CONST_AND_COPIES. */ 1480 1481 static void 1482 eliminate_redundant_computations (gimple_stmt_iterator* gsi, 1483 class const_and_copies *const_and_copies, 1484 class avail_exprs_stack *avail_exprs_stack) 1485 { 1486 tree expr_type; 1487 tree cached_lhs; 1488 tree def; 1489 bool insert = true; 1490 bool assigns_var_p = false; 1491 1492 gimple *stmt = gsi_stmt (*gsi); 1493 1494 if (gimple_code (stmt) == GIMPLE_PHI) 1495 def = gimple_phi_result (stmt); 1496 else 1497 def = gimple_get_lhs (stmt); 1498 1499 /* Certain expressions on the RHS can be optimized away, but can not 1500 themselves be entered into the hash tables. */ 1501 if (! def 1502 || TREE_CODE (def) != SSA_NAME 1503 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) 1504 || gimple_vdef (stmt) 1505 /* Do not record equivalences for increments of ivs. This would create 1506 overlapping live ranges for a very questionable gain. */ 1507 || simple_iv_increment_p (stmt)) 1508 insert = false; 1509 1510 /* Check if the expression has been computed before. */ 1511 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true); 1512 1513 opt_stats.num_exprs_considered++; 1514 1515 /* Get the type of the expression we are trying to optimize. */ 1516 if (is_gimple_assign (stmt)) 1517 { 1518 expr_type = TREE_TYPE (gimple_assign_lhs (stmt)); 1519 assigns_var_p = true; 1520 } 1521 else if (gimple_code (stmt) == GIMPLE_COND) 1522 expr_type = boolean_type_node; 1523 else if (is_gimple_call (stmt)) 1524 { 1525 gcc_assert (gimple_call_lhs (stmt)); 1526 expr_type = TREE_TYPE (gimple_call_lhs (stmt)); 1527 assigns_var_p = true; 1528 } 1529 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) 1530 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt)); 1531 else if (gimple_code (stmt) == GIMPLE_PHI) 1532 /* We can't propagate into a phi, so the logic below doesn't apply. 1533 Instead record an equivalence between the cached LHS and the 1534 PHI result of this statement, provided they are in the same block. 1535 This should be sufficient to kill the redundant phi. */ 1536 { 1537 if (def && cached_lhs) 1538 const_and_copies->record_const_or_copy (def, cached_lhs); 1539 return; 1540 } 1541 else 1542 gcc_unreachable (); 1543 1544 if (!cached_lhs) 1545 return; 1546 1547 /* It is safe to ignore types here since we have already done 1548 type checking in the hashing and equality routines. In fact 1549 type checking here merely gets in the way of constant 1550 propagation. Also, make sure that it is safe to propagate 1551 CACHED_LHS into the expression in STMT. */ 1552 if ((TREE_CODE (cached_lhs) != SSA_NAME 1553 && (assigns_var_p 1554 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))) 1555 || may_propagate_copy_into_stmt (stmt, cached_lhs)) 1556 { 1557 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME 1558 || is_gimple_min_invariant (cached_lhs)); 1559 1560 if (dump_file && (dump_flags & TDF_DETAILS)) 1561 { 1562 fprintf (dump_file, " Replaced redundant expr '"); 1563 print_gimple_expr (dump_file, stmt, 0, dump_flags); 1564 fprintf (dump_file, "' with '"); 1565 print_generic_expr (dump_file, cached_lhs, dump_flags); 1566 fprintf (dump_file, "'\n"); 1567 } 1568 1569 opt_stats.num_re++; 1570 1571 if (assigns_var_p 1572 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))) 1573 cached_lhs = fold_convert (expr_type, cached_lhs); 1574 1575 propagate_tree_value_into_stmt (gsi, cached_lhs); 1576 1577 /* Since it is always necessary to mark the result as modified, 1578 perhaps we should move this into propagate_tree_value_into_stmt 1579 itself. */ 1580 gimple_set_modified (gsi_stmt (*gsi), true); 1581 } 1582 } 1583 1584 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either 1585 the available expressions table or the const_and_copies table. 1586 Detect and record those equivalences into AVAIL_EXPRS_STACK. 1587 1588 We handle only very simple copy equivalences here. The heavy 1589 lifing is done by eliminate_redundant_computations. */ 1590 1591 static void 1592 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p, 1593 class avail_exprs_stack *avail_exprs_stack) 1594 { 1595 tree lhs; 1596 enum tree_code lhs_code; 1597 1598 gcc_assert (is_gimple_assign (stmt)); 1599 1600 lhs = gimple_assign_lhs (stmt); 1601 lhs_code = TREE_CODE (lhs); 1602 1603 if (lhs_code == SSA_NAME 1604 && gimple_assign_single_p (stmt)) 1605 { 1606 tree rhs = gimple_assign_rhs1 (stmt); 1607 1608 /* If the RHS of the assignment is a constant or another variable that 1609 may be propagated, register it in the CONST_AND_COPIES table. We 1610 do not need to record unwind data for this, since this is a true 1611 assignment and not an equivalence inferred from a comparison. All 1612 uses of this ssa name are dominated by this assignment, so unwinding 1613 just costs time and space. */ 1614 if (may_optimize_p 1615 && (TREE_CODE (rhs) == SSA_NAME 1616 || is_gimple_min_invariant (rhs))) 1617 { 1618 rhs = dom_valueize (rhs); 1619 1620 if (dump_file && (dump_flags & TDF_DETAILS)) 1621 { 1622 fprintf (dump_file, "==== ASGN "); 1623 print_generic_expr (dump_file, lhs); 1624 fprintf (dump_file, " = "); 1625 print_generic_expr (dump_file, rhs); 1626 fprintf (dump_file, "\n"); 1627 } 1628 1629 set_ssa_name_value (lhs, rhs); 1630 } 1631 } 1632 1633 /* Make sure we can propagate &x + CST. */ 1634 if (lhs_code == SSA_NAME 1635 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR 1636 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR 1637 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST) 1638 { 1639 tree op0 = gimple_assign_rhs1 (stmt); 1640 tree op1 = gimple_assign_rhs2 (stmt); 1641 tree new_rhs 1642 = build_fold_addr_expr (fold_build2 (MEM_REF, 1643 TREE_TYPE (TREE_TYPE (op0)), 1644 unshare_expr (op0), 1645 fold_convert (ptr_type_node, 1646 op1))); 1647 if (dump_file && (dump_flags & TDF_DETAILS)) 1648 { 1649 fprintf (dump_file, "==== ASGN "); 1650 print_generic_expr (dump_file, lhs); 1651 fprintf (dump_file, " = "); 1652 print_generic_expr (dump_file, new_rhs); 1653 fprintf (dump_file, "\n"); 1654 } 1655 1656 set_ssa_name_value (lhs, new_rhs); 1657 } 1658 1659 /* A memory store, even an aliased store, creates a useful 1660 equivalence. By exchanging the LHS and RHS, creating suitable 1661 vops and recording the result in the available expression table, 1662 we may be able to expose more redundant loads. */ 1663 if (!gimple_has_volatile_ops (stmt) 1664 && gimple_references_memory_p (stmt) 1665 && gimple_assign_single_p (stmt) 1666 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME 1667 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) 1668 && !is_gimple_reg (lhs)) 1669 { 1670 tree rhs = gimple_assign_rhs1 (stmt); 1671 gassign *new_stmt; 1672 1673 /* Build a new statement with the RHS and LHS exchanged. */ 1674 if (TREE_CODE (rhs) == SSA_NAME) 1675 { 1676 /* NOTE tuples. The call to gimple_build_assign below replaced 1677 a call to build_gimple_modify_stmt, which did not set the 1678 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so 1679 may cause an SSA validation failure, as the LHS may be a 1680 default-initialized name and should have no definition. I'm 1681 a bit dubious of this, as the artificial statement that we 1682 generate here may in fact be ill-formed, but it is simply 1683 used as an internal device in this pass, and never becomes 1684 part of the CFG. */ 1685 gimple *defstmt = SSA_NAME_DEF_STMT (rhs); 1686 new_stmt = gimple_build_assign (rhs, lhs); 1687 SSA_NAME_DEF_STMT (rhs) = defstmt; 1688 } 1689 else 1690 new_stmt = gimple_build_assign (rhs, lhs); 1691 1692 gimple_set_vuse (new_stmt, gimple_vdef (stmt)); 1693 1694 /* Finally enter the statement into the available expression 1695 table. */ 1696 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true); 1697 } 1698 } 1699 1700 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from 1701 CONST_AND_COPIES. */ 1702 1703 static void 1704 cprop_operand (gimple *stmt, use_operand_p op_p) 1705 { 1706 tree val; 1707 tree op = USE_FROM_PTR (op_p); 1708 1709 /* If the operand has a known constant value or it is known to be a 1710 copy of some other variable, use the value or copy stored in 1711 CONST_AND_COPIES. */ 1712 val = SSA_NAME_VALUE (op); 1713 if (val && val != op) 1714 { 1715 /* Do not replace hard register operands in asm statements. */ 1716 if (gimple_code (stmt) == GIMPLE_ASM 1717 && !may_propagate_copy_into_asm (op)) 1718 return; 1719 1720 /* Certain operands are not allowed to be copy propagated due 1721 to their interaction with exception handling and some GCC 1722 extensions. */ 1723 if (!may_propagate_copy (op, val)) 1724 return; 1725 1726 /* Do not propagate copies into BIVs. 1727 See PR23821 and PR62217 for how this can disturb IV and 1728 number of iteration analysis. */ 1729 if (TREE_CODE (val) != INTEGER_CST) 1730 { 1731 gimple *def = SSA_NAME_DEF_STMT (op); 1732 if (gimple_code (def) == GIMPLE_PHI 1733 && gimple_bb (def)->loop_father->header == gimple_bb (def)) 1734 return; 1735 } 1736 1737 /* Dump details. */ 1738 if (dump_file && (dump_flags & TDF_DETAILS)) 1739 { 1740 fprintf (dump_file, " Replaced '"); 1741 print_generic_expr (dump_file, op, dump_flags); 1742 fprintf (dump_file, "' with %s '", 1743 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable")); 1744 print_generic_expr (dump_file, val, dump_flags); 1745 fprintf (dump_file, "'\n"); 1746 } 1747 1748 if (TREE_CODE (val) != SSA_NAME) 1749 opt_stats.num_const_prop++; 1750 else 1751 opt_stats.num_copy_prop++; 1752 1753 propagate_value (op_p, val); 1754 1755 /* And note that we modified this statement. This is now 1756 safe, even if we changed virtual operands since we will 1757 rescan the statement and rewrite its operands again. */ 1758 gimple_set_modified (stmt, true); 1759 } 1760 } 1761 1762 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current 1763 known value for that SSA_NAME (or NULL if no value is known). 1764 1765 Propagate values from CONST_AND_COPIES into the uses, vuses and 1766 vdef_ops of STMT. */ 1767 1768 static void 1769 cprop_into_stmt (gimple *stmt) 1770 { 1771 use_operand_p op_p; 1772 ssa_op_iter iter; 1773 tree last_copy_propagated_op = NULL; 1774 1775 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE) 1776 { 1777 tree old_op = USE_FROM_PTR (op_p); 1778 1779 /* If we have A = B and B = A in the copy propagation tables 1780 (due to an equality comparison), avoid substituting B for A 1781 then A for B in the trivially discovered cases. This allows 1782 optimization of statements were A and B appear as input 1783 operands. */ 1784 if (old_op != last_copy_propagated_op) 1785 { 1786 cprop_operand (stmt, op_p); 1787 1788 tree new_op = USE_FROM_PTR (op_p); 1789 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME) 1790 last_copy_propagated_op = new_op; 1791 } 1792 } 1793 } 1794 1795 /* If STMT contains a relational test, try to convert it into an 1796 equality test if there is only a single value which can ever 1797 make the test true. 1798 1799 For example, if the expression hash table contains: 1800 1801 TRUE = (i <= 1) 1802 1803 And we have a test within statement of i >= 1, then we can safely 1804 rewrite the test as i == 1 since there only a single value where 1805 the test is true. 1806 1807 This is similar to code in VRP. */ 1808 1809 static void 1810 test_for_singularity (gimple *stmt, gcond *dummy_cond, 1811 avail_exprs_stack *avail_exprs_stack) 1812 { 1813 /* We want to support gimple conditionals as well as assignments 1814 where the RHS contains a conditional. */ 1815 if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND) 1816 { 1817 enum tree_code code = ERROR_MARK; 1818 tree lhs, rhs; 1819 1820 /* Extract the condition of interest from both forms we support. */ 1821 if (is_gimple_assign (stmt)) 1822 { 1823 code = gimple_assign_rhs_code (stmt); 1824 lhs = gimple_assign_rhs1 (stmt); 1825 rhs = gimple_assign_rhs2 (stmt); 1826 } 1827 else if (gimple_code (stmt) == GIMPLE_COND) 1828 { 1829 code = gimple_cond_code (as_a <gcond *> (stmt)); 1830 lhs = gimple_cond_lhs (as_a <gcond *> (stmt)); 1831 rhs = gimple_cond_rhs (as_a <gcond *> (stmt)); 1832 } 1833 1834 /* We're looking for a relational test using LE/GE. Also note we can 1835 canonicalize LT/GT tests against constants into LE/GT tests. */ 1836 if (code == LE_EXPR || code == GE_EXPR 1837 || ((code == LT_EXPR || code == GT_EXPR) 1838 && TREE_CODE (rhs) == INTEGER_CST)) 1839 { 1840 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */ 1841 if (code == LT_EXPR) 1842 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs), 1843 rhs, build_int_cst (TREE_TYPE (rhs), 1)); 1844 1845 if (code == GT_EXPR) 1846 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs), 1847 rhs, build_int_cst (TREE_TYPE (rhs), 1)); 1848 1849 /* Determine the code we want to check for in the hash table. */ 1850 enum tree_code test_code; 1851 if (code == GE_EXPR || code == GT_EXPR) 1852 test_code = LE_EXPR; 1853 else 1854 test_code = GE_EXPR; 1855 1856 /* Update the dummy statement so we can query the hash tables. */ 1857 gimple_cond_set_code (dummy_cond, test_code); 1858 gimple_cond_set_lhs (dummy_cond, lhs); 1859 gimple_cond_set_rhs (dummy_cond, rhs); 1860 tree cached_lhs 1861 = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false); 1862 1863 /* If the lookup returned 1 (true), then the expression we 1864 queried was in the hash table. As a result there is only 1865 one value that makes the original conditional true. Update 1866 STMT accordingly. */ 1867 if (cached_lhs && integer_onep (cached_lhs)) 1868 { 1869 if (is_gimple_assign (stmt)) 1870 { 1871 gimple_assign_set_rhs_code (stmt, EQ_EXPR); 1872 gimple_assign_set_rhs2 (stmt, rhs); 1873 gimple_set_modified (stmt, true); 1874 } 1875 else 1876 { 1877 gimple_set_modified (stmt, true); 1878 gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR); 1879 gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs); 1880 gimple_set_modified (stmt, true); 1881 } 1882 } 1883 } 1884 } 1885 } 1886 1887 /* Optimize the statement in block BB pointed to by iterator SI. 1888 1889 We try to perform some simplistic global redundancy elimination and 1890 constant propagation: 1891 1892 1- To detect global redundancy, we keep track of expressions that have 1893 been computed in this block and its dominators. If we find that the 1894 same expression is computed more than once, we eliminate repeated 1895 computations by using the target of the first one. 1896 1897 2- Constant values and copy assignments. This is used to do very 1898 simplistic constant and copy propagation. When a constant or copy 1899 assignment is found, we map the value on the RHS of the assignment to 1900 the variable in the LHS in the CONST_AND_COPIES table. 1901 1902 3- Very simple redundant store elimination is performed. 1903 1904 4- We can simpify a condition to a constant or from a relational 1905 condition to an equality condition. */ 1906 1907 edge 1908 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator si) 1909 { 1910 gimple *stmt, *old_stmt; 1911 bool may_optimize_p; 1912 bool modified_p = false; 1913 bool was_noreturn; 1914 edge retval = NULL; 1915 1916 old_stmt = stmt = gsi_stmt (si); 1917 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt); 1918 1919 if (dump_file && (dump_flags & TDF_DETAILS)) 1920 { 1921 fprintf (dump_file, "Optimizing statement "); 1922 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1923 } 1924 1925 update_stmt_if_modified (stmt); 1926 opt_stats.num_stmts++; 1927 1928 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */ 1929 cprop_into_stmt (stmt); 1930 1931 /* If the statement has been modified with constant replacements, 1932 fold its RHS before checking for redundant computations. */ 1933 if (gimple_modified_p (stmt)) 1934 { 1935 tree rhs = NULL; 1936 1937 /* Try to fold the statement making sure that STMT is kept 1938 up to date. */ 1939 if (fold_stmt (&si)) 1940 { 1941 stmt = gsi_stmt (si); 1942 gimple_set_modified (stmt, true); 1943 1944 if (dump_file && (dump_flags & TDF_DETAILS)) 1945 { 1946 fprintf (dump_file, " Folded to: "); 1947 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1948 } 1949 } 1950 1951 /* We only need to consider cases that can yield a gimple operand. */ 1952 if (gimple_assign_single_p (stmt)) 1953 rhs = gimple_assign_rhs1 (stmt); 1954 else if (gimple_code (stmt) == GIMPLE_GOTO) 1955 rhs = gimple_goto_dest (stmt); 1956 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) 1957 /* This should never be an ADDR_EXPR. */ 1958 rhs = gimple_switch_index (swtch_stmt); 1959 1960 if (rhs && TREE_CODE (rhs) == ADDR_EXPR) 1961 recompute_tree_invariant_for_addr_expr (rhs); 1962 1963 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called, 1964 even if fold_stmt updated the stmt already and thus cleared 1965 gimple_modified_p flag on it. */ 1966 modified_p = true; 1967 } 1968 1969 /* Check for redundant computations. Do this optimization only 1970 for assignments that have no volatile ops and conditionals. */ 1971 may_optimize_p = (!gimple_has_side_effects (stmt) 1972 && (is_gimple_assign (stmt) 1973 || (is_gimple_call (stmt) 1974 && gimple_call_lhs (stmt) != NULL_TREE) 1975 || gimple_code (stmt) == GIMPLE_COND 1976 || gimple_code (stmt) == GIMPLE_SWITCH)); 1977 1978 if (may_optimize_p) 1979 { 1980 if (gimple_code (stmt) == GIMPLE_CALL) 1981 { 1982 /* Resolve __builtin_constant_p. If it hasn't been 1983 folded to integer_one_node by now, it's fairly 1984 certain that the value simply isn't constant. */ 1985 tree callee = gimple_call_fndecl (stmt); 1986 if (callee 1987 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL 1988 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P) 1989 { 1990 propagate_tree_value_into_stmt (&si, integer_zero_node); 1991 stmt = gsi_stmt (si); 1992 } 1993 } 1994 1995 if (gimple_code (stmt) == GIMPLE_COND) 1996 { 1997 tree lhs = gimple_cond_lhs (stmt); 1998 tree rhs = gimple_cond_rhs (stmt); 1999 2000 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1], 2001 then this conditional is computable at compile time. We can just 2002 shove either 0 or 1 into the LHS, mark the statement as modified 2003 and all the right things will just happen below. 2004 2005 Note this would apply to any case where LHS has a range 2006 narrower than its type implies and RHS is outside that 2007 narrower range. Future work. */ 2008 if (TREE_CODE (lhs) == SSA_NAME 2009 && ssa_name_has_boolean_range (lhs) 2010 && TREE_CODE (rhs) == INTEGER_CST 2011 && ! (integer_zerop (rhs) || integer_onep (rhs))) 2012 { 2013 gimple_cond_set_lhs (as_a <gcond *> (stmt), 2014 fold_convert (TREE_TYPE (lhs), 2015 integer_zero_node)); 2016 gimple_set_modified (stmt, true); 2017 } 2018 else if (TREE_CODE (lhs) == SSA_NAME) 2019 { 2020 /* Exploiting EVRP data is not yet fully integrated into DOM 2021 but we need to do something for this case to avoid regressing 2022 udr4.f90 and new1.C which have unexecutable blocks with 2023 undefined behavior that get diagnosed if they're left in the 2024 IL because we've attached range information to new 2025 SSA_NAMES. */ 2026 update_stmt_if_modified (stmt); 2027 edge taken_edge = NULL; 2028 evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt), 2029 &taken_edge); 2030 if (taken_edge) 2031 { 2032 if (taken_edge->flags & EDGE_TRUE_VALUE) 2033 gimple_cond_make_true (as_a <gcond *> (stmt)); 2034 else if (taken_edge->flags & EDGE_FALSE_VALUE) 2035 gimple_cond_make_false (as_a <gcond *> (stmt)); 2036 else 2037 gcc_unreachable (); 2038 gimple_set_modified (stmt, true); 2039 update_stmt (stmt); 2040 cfg_altered = true; 2041 return taken_edge; 2042 } 2043 } 2044 } 2045 2046 update_stmt_if_modified (stmt); 2047 eliminate_redundant_computations (&si, m_const_and_copies, 2048 m_avail_exprs_stack); 2049 stmt = gsi_stmt (si); 2050 2051 /* Perform simple redundant store elimination. */ 2052 if (gimple_assign_single_p (stmt) 2053 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) 2054 { 2055 tree lhs = gimple_assign_lhs (stmt); 2056 tree rhs = gimple_assign_rhs1 (stmt); 2057 tree cached_lhs; 2058 gassign *new_stmt; 2059 rhs = dom_valueize (rhs); 2060 /* Build a new statement with the RHS and LHS exchanged. */ 2061 if (TREE_CODE (rhs) == SSA_NAME) 2062 { 2063 gimple *defstmt = SSA_NAME_DEF_STMT (rhs); 2064 new_stmt = gimple_build_assign (rhs, lhs); 2065 SSA_NAME_DEF_STMT (rhs) = defstmt; 2066 } 2067 else 2068 new_stmt = gimple_build_assign (rhs, lhs); 2069 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 2070 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false, 2071 false); 2072 if (cached_lhs && operand_equal_p (rhs, cached_lhs, 0)) 2073 { 2074 basic_block bb = gimple_bb (stmt); 2075 unlink_stmt_vdef (stmt); 2076 if (gsi_remove (&si, true)) 2077 { 2078 bitmap_set_bit (need_eh_cleanup, bb->index); 2079 if (dump_file && (dump_flags & TDF_DETAILS)) 2080 fprintf (dump_file, " Flagged to clear EH edges.\n"); 2081 } 2082 release_defs (stmt); 2083 return retval; 2084 } 2085 } 2086 2087 /* If this statement was not redundant, we may still be able to simplify 2088 it, which may in turn allow other part of DOM or other passes to do 2089 a better job. */ 2090 test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack); 2091 } 2092 2093 /* Record any additional equivalences created by this statement. */ 2094 if (is_gimple_assign (stmt)) 2095 record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack); 2096 2097 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may 2098 know where it goes. */ 2099 if (gimple_modified_p (stmt) || modified_p) 2100 { 2101 tree val = NULL; 2102 2103 if (gimple_code (stmt) == GIMPLE_COND) 2104 val = fold_binary_loc (gimple_location (stmt), 2105 gimple_cond_code (stmt), boolean_type_node, 2106 gimple_cond_lhs (stmt), 2107 gimple_cond_rhs (stmt)); 2108 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) 2109 val = gimple_switch_index (swtch_stmt); 2110 2111 if (val && TREE_CODE (val) == INTEGER_CST) 2112 { 2113 retval = find_taken_edge (bb, val); 2114 if (retval) 2115 { 2116 /* Fix the condition to be either true or false. */ 2117 if (gimple_code (stmt) == GIMPLE_COND) 2118 { 2119 if (integer_zerop (val)) 2120 gimple_cond_make_false (as_a <gcond *> (stmt)); 2121 else if (integer_onep (val)) 2122 gimple_cond_make_true (as_a <gcond *> (stmt)); 2123 else 2124 gcc_unreachable (); 2125 2126 gimple_set_modified (stmt, true); 2127 } 2128 2129 /* Further simplifications may be possible. */ 2130 cfg_altered = true; 2131 } 2132 } 2133 2134 update_stmt_if_modified (stmt); 2135 2136 /* If we simplified a statement in such a way as to be shown that it 2137 cannot trap, update the eh information and the cfg to match. */ 2138 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 2139 { 2140 bitmap_set_bit (need_eh_cleanup, bb->index); 2141 if (dump_file && (dump_flags & TDF_DETAILS)) 2142 fprintf (dump_file, " Flagged to clear EH edges.\n"); 2143 } 2144 2145 if (!was_noreturn 2146 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt)) 2147 need_noreturn_fixup.safe_push (stmt); 2148 } 2149 return retval; 2150 } 2151