1 /* Control flow functions for trees. 2 Copyright (C) 2001-2018 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "target.h" 26 #include "rtl.h" 27 #include "tree.h" 28 #include "gimple.h" 29 #include "cfghooks.h" 30 #include "tree-pass.h" 31 #include "ssa.h" 32 #include "cgraph.h" 33 #include "gimple-pretty-print.h" 34 #include "diagnostic-core.h" 35 #include "fold-const.h" 36 #include "trans-mem.h" 37 #include "stor-layout.h" 38 #include "print-tree.h" 39 #include "cfganal.h" 40 #include "gimple-fold.h" 41 #include "tree-eh.h" 42 #include "gimple-iterator.h" 43 #include "gimplify-me.h" 44 #include "gimple-walk.h" 45 #include "tree-cfg.h" 46 #include "tree-ssa-loop-manip.h" 47 #include "tree-ssa-loop-niter.h" 48 #include "tree-into-ssa.h" 49 #include "tree-dfa.h" 50 #include "tree-ssa.h" 51 #include "except.h" 52 #include "cfgloop.h" 53 #include "tree-ssa-propagate.h" 54 #include "value-prof.h" 55 #include "tree-inline.h" 56 #include "tree-ssa-live.h" 57 #include "omp-general.h" 58 #include "omp-expand.h" 59 #include "tree-cfgcleanup.h" 60 #include "gimplify.h" 61 #include "attribs.h" 62 #include "selftest.h" 63 #include "opts.h" 64 #include "asan.h" 65 66 /* This file contains functions for building the Control Flow Graph (CFG) 67 for a function tree. */ 68 69 /* Local declarations. */ 70 71 /* Initial capacity for the basic block array. */ 72 static const int initial_cfg_capacity = 20; 73 74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs 75 which use a particular edge. The CASE_LABEL_EXPRs are chained together 76 via their CASE_CHAIN field, which we clear after we're done with the 77 hash table to prevent problems with duplication of GIMPLE_SWITCHes. 78 79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently 80 update the case vector in response to edge redirections. 81 82 Right now this table is set up and torn down at key points in the 83 compilation process. It would be nice if we could make the table 84 more persistent. The key is getting notification of changes to 85 the CFG (particularly edge removal, creation and redirection). */ 86 87 static hash_map<edge, tree> *edge_to_cases; 88 89 /* If we record edge_to_cases, this bitmap will hold indexes 90 of basic blocks that end in a GIMPLE_SWITCH which we touched 91 due to edge manipulations. */ 92 93 static bitmap touched_switch_bbs; 94 95 /* CFG statistics. */ 96 struct cfg_stats_d 97 { 98 long num_merged_labels; 99 }; 100 101 static struct cfg_stats_d cfg_stats; 102 103 /* Data to pass to replace_block_vars_by_duplicates_1. */ 104 struct replace_decls_d 105 { 106 hash_map<tree, tree> *vars_map; 107 tree to_context; 108 }; 109 110 /* Hash table to store last discriminator assigned for each locus. */ 111 struct locus_discrim_map 112 { 113 location_t locus; 114 int discriminator; 115 }; 116 117 /* Hashtable helpers. */ 118 119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map> 120 { 121 static inline hashval_t hash (const locus_discrim_map *); 122 static inline bool equal (const locus_discrim_map *, 123 const locus_discrim_map *); 124 }; 125 126 /* Trivial hash function for a location_t. ITEM is a pointer to 127 a hash table entry that maps a location_t to a discriminator. */ 128 129 inline hashval_t 130 locus_discrim_hasher::hash (const locus_discrim_map *item) 131 { 132 return LOCATION_LINE (item->locus); 133 } 134 135 /* Equality function for the locus-to-discriminator map. A and B 136 point to the two hash table entries to compare. */ 137 138 inline bool 139 locus_discrim_hasher::equal (const locus_discrim_map *a, 140 const locus_discrim_map *b) 141 { 142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus); 143 } 144 145 static hash_table<locus_discrim_hasher> *discriminator_per_locus; 146 147 /* Basic blocks and flowgraphs. */ 148 static void make_blocks (gimple_seq); 149 150 /* Edges. */ 151 static void make_edges (void); 152 static void assign_discriminators (void); 153 static void make_cond_expr_edges (basic_block); 154 static void make_gimple_switch_edges (gswitch *, basic_block); 155 static bool make_goto_expr_edges (basic_block); 156 static void make_gimple_asm_edges (basic_block); 157 static edge gimple_redirect_edge_and_branch (edge, basic_block); 158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block); 159 160 /* Various helpers. */ 161 static inline bool stmt_starts_bb_p (gimple *, gimple *); 162 static int gimple_verify_flow_info (void); 163 static void gimple_make_forwarder_block (edge); 164 static gimple *first_non_label_stmt (basic_block); 165 static bool verify_gimple_transaction (gtransaction *); 166 static bool call_can_make_abnormal_goto (gimple *); 167 168 /* Flowgraph optimization and cleanup. */ 169 static void gimple_merge_blocks (basic_block, basic_block); 170 static bool gimple_can_merge_blocks_p (basic_block, basic_block); 171 static void remove_bb (basic_block); 172 static edge find_taken_edge_computed_goto (basic_block, tree); 173 static edge find_taken_edge_cond_expr (const gcond *, tree); 174 static edge find_taken_edge_switch_expr (const gswitch *, tree); 175 static tree find_case_label_for_value (const gswitch *, tree); 176 static void lower_phi_internal_fn (); 177 178 void 179 init_empty_tree_cfg_for_function (struct function *fn) 180 { 181 /* Initialize the basic block array. */ 182 init_flow (fn); 183 profile_status_for_fn (fn) = PROFILE_ABSENT; 184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS; 185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS; 186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity); 187 vec_safe_grow_cleared (basic_block_info_for_fn (fn), 188 initial_cfg_capacity); 189 190 /* Build a mapping of labels to their associated blocks. */ 191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity); 192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn), 193 initial_cfg_capacity); 194 195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn)); 196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn)); 197 198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb 199 = EXIT_BLOCK_PTR_FOR_FN (fn); 200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb 201 = ENTRY_BLOCK_PTR_FOR_FN (fn); 202 } 203 204 void 205 init_empty_tree_cfg (void) 206 { 207 init_empty_tree_cfg_for_function (cfun); 208 } 209 210 /*--------------------------------------------------------------------------- 211 Create basic blocks 212 ---------------------------------------------------------------------------*/ 213 214 /* Entry point to the CFG builder for trees. SEQ is the sequence of 215 statements to be added to the flowgraph. */ 216 217 static void 218 build_gimple_cfg (gimple_seq seq) 219 { 220 /* Register specific gimple functions. */ 221 gimple_register_cfg_hooks (); 222 223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats)); 224 225 init_empty_tree_cfg (); 226 227 make_blocks (seq); 228 229 /* Make sure there is always at least one block, even if it's empty. */ 230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 232 233 /* Adjust the size of the array. */ 234 if (basic_block_info_for_fn (cfun)->length () 235 < (size_t) n_basic_blocks_for_fn (cfun)) 236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), 237 n_basic_blocks_for_fn (cfun)); 238 239 /* To speed up statement iterator walks, we first purge dead labels. */ 240 cleanup_dead_labels (); 241 242 /* Group case nodes to reduce the number of edges. 243 We do this after cleaning up dead labels because otherwise we miss 244 a lot of obvious case merging opportunities. */ 245 group_case_labels (); 246 247 /* Create the edges of the flowgraph. */ 248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13); 249 make_edges (); 250 assign_discriminators (); 251 lower_phi_internal_fn (); 252 cleanup_dead_labels (); 253 delete discriminator_per_locus; 254 discriminator_per_locus = NULL; 255 } 256 257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove 258 them and propagate the information to LOOP. We assume that the annotations 259 come immediately before the condition in BB, if any. */ 260 261 static void 262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop) 263 { 264 gimple_stmt_iterator gsi = gsi_last_bb (bb); 265 gimple *stmt = gsi_stmt (gsi); 266 267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND)) 268 return; 269 270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 271 { 272 stmt = gsi_stmt (gsi); 273 if (gimple_code (stmt) != GIMPLE_CALL) 274 break; 275 if (!gimple_call_internal_p (stmt) 276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) 277 break; 278 279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) 280 { 281 case annot_expr_ivdep_kind: 282 loop->safelen = INT_MAX; 283 break; 284 case annot_expr_unroll_kind: 285 loop->unroll 286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2)); 287 cfun->has_unroll = true; 288 break; 289 case annot_expr_no_vector_kind: 290 loop->dont_vectorize = true; 291 break; 292 case annot_expr_vector_kind: 293 loop->force_vectorize = true; 294 cfun->has_force_vectorize_loops = true; 295 break; 296 case annot_expr_parallel_kind: 297 loop->can_be_parallel = true; 298 loop->safelen = INT_MAX; 299 break; 300 default: 301 gcc_unreachable (); 302 } 303 304 stmt = gimple_build_assign (gimple_call_lhs (stmt), 305 gimple_call_arg (stmt, 0)); 306 gsi_replace (&gsi, stmt, true); 307 } 308 } 309 310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove 311 them and propagate the information to the loop. We assume that the 312 annotations come immediately before the condition of the loop. */ 313 314 static void 315 replace_loop_annotate (void) 316 { 317 struct loop *loop; 318 basic_block bb; 319 gimple_stmt_iterator gsi; 320 gimple *stmt; 321 322 FOR_EACH_LOOP (loop, 0) 323 { 324 /* First look into the header. */ 325 replace_loop_annotate_in_block (loop->header, loop); 326 327 /* Then look into the latch, if any. */ 328 if (loop->latch) 329 replace_loop_annotate_in_block (loop->latch, loop); 330 } 331 332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */ 333 FOR_EACH_BB_FN (bb, cfun) 334 { 335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 336 { 337 stmt = gsi_stmt (gsi); 338 if (gimple_code (stmt) != GIMPLE_CALL) 339 continue; 340 if (!gimple_call_internal_p (stmt) 341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) 342 continue; 343 344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) 345 { 346 case annot_expr_ivdep_kind: 347 case annot_expr_unroll_kind: 348 case annot_expr_no_vector_kind: 349 case annot_expr_vector_kind: 350 case annot_expr_parallel_kind: 351 break; 352 default: 353 gcc_unreachable (); 354 } 355 356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation"); 357 stmt = gimple_build_assign (gimple_call_lhs (stmt), 358 gimple_call_arg (stmt, 0)); 359 gsi_replace (&gsi, stmt, true); 360 } 361 } 362 } 363 364 /* Lower internal PHI function from GIMPLE FE. */ 365 366 static void 367 lower_phi_internal_fn () 368 { 369 basic_block bb, pred = NULL; 370 gimple_stmt_iterator gsi; 371 tree lhs; 372 gphi *phi_node; 373 gimple *stmt; 374 375 /* After edge creation, handle __PHI function from GIMPLE FE. */ 376 FOR_EACH_BB_FN (bb, cfun) 377 { 378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) 379 { 380 stmt = gsi_stmt (gsi); 381 if (! gimple_call_internal_p (stmt, IFN_PHI)) 382 break; 383 384 lhs = gimple_call_lhs (stmt); 385 phi_node = create_phi_node (lhs, bb); 386 387 /* Add arguments to the PHI node. */ 388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i) 389 { 390 tree arg = gimple_call_arg (stmt, i); 391 if (TREE_CODE (arg) == LABEL_DECL) 392 pred = label_to_block (arg); 393 else 394 { 395 edge e = find_edge (pred, bb); 396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION); 397 } 398 } 399 400 gsi_remove (&gsi, true); 401 } 402 } 403 } 404 405 static unsigned int 406 execute_build_cfg (void) 407 { 408 gimple_seq body = gimple_body (current_function_decl); 409 410 build_gimple_cfg (body); 411 gimple_set_body (current_function_decl, NULL); 412 if (dump_file && (dump_flags & TDF_DETAILS)) 413 { 414 fprintf (dump_file, "Scope blocks:\n"); 415 dump_scope_blocks (dump_file, dump_flags); 416 } 417 cleanup_tree_cfg (); 418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 419 replace_loop_annotate (); 420 return 0; 421 } 422 423 namespace { 424 425 const pass_data pass_data_build_cfg = 426 { 427 GIMPLE_PASS, /* type */ 428 "cfg", /* name */ 429 OPTGROUP_NONE, /* optinfo_flags */ 430 TV_TREE_CFG, /* tv_id */ 431 PROP_gimple_leh, /* properties_required */ 432 ( PROP_cfg | PROP_loops ), /* properties_provided */ 433 0, /* properties_destroyed */ 434 0, /* todo_flags_start */ 435 0, /* todo_flags_finish */ 436 }; 437 438 class pass_build_cfg : public gimple_opt_pass 439 { 440 public: 441 pass_build_cfg (gcc::context *ctxt) 442 : gimple_opt_pass (pass_data_build_cfg, ctxt) 443 {} 444 445 /* opt_pass methods: */ 446 virtual unsigned int execute (function *) { return execute_build_cfg (); } 447 448 }; // class pass_build_cfg 449 450 } // anon namespace 451 452 gimple_opt_pass * 453 make_pass_build_cfg (gcc::context *ctxt) 454 { 455 return new pass_build_cfg (ctxt); 456 } 457 458 459 /* Return true if T is a computed goto. */ 460 461 bool 462 computed_goto_p (gimple *t) 463 { 464 return (gimple_code (t) == GIMPLE_GOTO 465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL); 466 } 467 468 /* Returns true if the sequence of statements STMTS only contains 469 a call to __builtin_unreachable (). */ 470 471 bool 472 gimple_seq_unreachable_p (gimple_seq stmts) 473 { 474 if (stmts == NULL 475 /* Return false if -fsanitize=unreachable, we don't want to 476 optimize away those calls, but rather turn them into 477 __ubsan_handle_builtin_unreachable () or __builtin_trap () 478 later. */ 479 || sanitize_flags_p (SANITIZE_UNREACHABLE)) 480 return false; 481 482 gimple_stmt_iterator gsi = gsi_last (stmts); 483 484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE)) 485 return false; 486 487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 488 { 489 gimple *stmt = gsi_stmt (gsi); 490 if (gimple_code (stmt) != GIMPLE_LABEL 491 && !is_gimple_debug (stmt) 492 && !gimple_clobber_p (stmt)) 493 return false; 494 } 495 return true; 496 } 497 498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and 499 the other edge points to a bb with just __builtin_unreachable (). 500 I.e. return true for C->M edge in: 501 <bb C>: 502 ... 503 if (something) 504 goto <bb N>; 505 else 506 goto <bb M>; 507 <bb N>: 508 __builtin_unreachable (); 509 <bb M>: */ 510 511 bool 512 assert_unreachable_fallthru_edge_p (edge e) 513 { 514 basic_block pred_bb = e->src; 515 gimple *last = last_stmt (pred_bb); 516 if (last && gimple_code (last) == GIMPLE_COND) 517 { 518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest; 519 if (other_bb == e->dest) 520 other_bb = EDGE_SUCC (pred_bb, 1)->dest; 521 if (EDGE_COUNT (other_bb->succs) == 0) 522 return gimple_seq_unreachable_p (bb_seq (other_bb)); 523 } 524 return false; 525 } 526 527 528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call 529 could alter control flow except via eh. We initialize the flag at 530 CFG build time and only ever clear it later. */ 531 532 static void 533 gimple_call_initialize_ctrl_altering (gimple *stmt) 534 { 535 int flags = gimple_call_flags (stmt); 536 537 /* A call alters control flow if it can make an abnormal goto. */ 538 if (call_can_make_abnormal_goto (stmt) 539 /* A call also alters control flow if it does not return. */ 540 || flags & ECF_NORETURN 541 /* TM ending statements have backedges out of the transaction. 542 Return true so we split the basic block containing them. 543 Note that the TM_BUILTIN test is merely an optimization. */ 544 || ((flags & ECF_TM_BUILTIN) 545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt))) 546 /* BUILT_IN_RETURN call is same as return statement. */ 547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN) 548 /* IFN_UNIQUE should be the last insn, to make checking for it 549 as cheap as possible. */ 550 || (gimple_call_internal_p (stmt) 551 && gimple_call_internal_unique_p (stmt))) 552 gimple_call_set_ctrl_altering (stmt, true); 553 else 554 gimple_call_set_ctrl_altering (stmt, false); 555 } 556 557 558 /* Insert SEQ after BB and build a flowgraph. */ 559 560 static basic_block 561 make_blocks_1 (gimple_seq seq, basic_block bb) 562 { 563 gimple_stmt_iterator i = gsi_start (seq); 564 gimple *stmt = NULL; 565 gimple *prev_stmt = NULL; 566 bool start_new_block = true; 567 bool first_stmt_of_seq = true; 568 569 while (!gsi_end_p (i)) 570 { 571 /* PREV_STMT should only be set to a debug stmt if the debug 572 stmt is before nondebug stmts. Once stmt reaches a nondebug 573 nonlabel, prev_stmt will be set to it, so that 574 stmt_starts_bb_p will know to start a new block if a label is 575 found. However, if stmt was a label after debug stmts only, 576 keep the label in prev_stmt even if we find further debug 577 stmts, for there may be other labels after them, and they 578 should land in the same block. */ 579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt)) 580 prev_stmt = stmt; 581 stmt = gsi_stmt (i); 582 583 if (stmt && is_gimple_call (stmt)) 584 gimple_call_initialize_ctrl_altering (stmt); 585 586 /* If the statement starts a new basic block or if we have determined 587 in a previous pass that we need to create a new block for STMT, do 588 so now. */ 589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt)) 590 { 591 if (!first_stmt_of_seq) 592 gsi_split_seq_before (&i, &seq); 593 bb = create_basic_block (seq, bb); 594 start_new_block = false; 595 prev_stmt = NULL; 596 } 597 598 /* Now add STMT to BB and create the subgraphs for special statement 599 codes. */ 600 gimple_set_bb (stmt, bb); 601 602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the 603 next iteration. */ 604 if (stmt_ends_bb_p (stmt)) 605 { 606 /* If the stmt can make abnormal goto use a new temporary 607 for the assignment to the LHS. This makes sure the old value 608 of the LHS is available on the abnormal edge. Otherwise 609 we will end up with overlapping life-ranges for abnormal 610 SSA names. */ 611 if (gimple_has_lhs (stmt) 612 && stmt_can_make_abnormal_goto (stmt) 613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) 614 { 615 tree lhs = gimple_get_lhs (stmt); 616 tree tmp = create_tmp_var (TREE_TYPE (lhs)); 617 gimple *s = gimple_build_assign (lhs, tmp); 618 gimple_set_location (s, gimple_location (stmt)); 619 gimple_set_block (s, gimple_block (stmt)); 620 gimple_set_lhs (stmt, tmp); 621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE 622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) 623 DECL_GIMPLE_REG_P (tmp) = 1; 624 gsi_insert_after (&i, s, GSI_SAME_STMT); 625 } 626 start_new_block = true; 627 } 628 629 gsi_next (&i); 630 first_stmt_of_seq = false; 631 } 632 return bb; 633 } 634 635 /* Build a flowgraph for the sequence of stmts SEQ. */ 636 637 static void 638 make_blocks (gimple_seq seq) 639 { 640 /* Look for debug markers right before labels, and move the debug 641 stmts after the labels. Accepting labels among debug markers 642 adds no value, just complexity; if we wanted to annotate labels 643 with view numbers (so sequencing among markers would matter) or 644 somesuch, we're probably better off still moving the labels, but 645 adding other debug annotations in their original positions or 646 emitting nonbind or bind markers associated with the labels in 647 the original position of the labels. 648 649 Moving labels would probably be simpler, but we can't do that: 650 moving labels assigns label ids to them, and doing so because of 651 debug markers makes for -fcompare-debug and possibly even codegen 652 differences. So, we have to move the debug stmts instead. To 653 that end, we scan SEQ backwards, marking the position of the 654 latest (earliest we find) label, and moving debug stmts that are 655 not separated from it by nondebug nonlabel stmts after the 656 label. */ 657 if (MAY_HAVE_DEBUG_MARKER_STMTS) 658 { 659 gimple_stmt_iterator label = gsi_none (); 660 661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i)) 662 { 663 gimple *stmt = gsi_stmt (i); 664 665 /* If this is the first label we encounter (latest in SEQ) 666 before nondebug stmts, record its position. */ 667 if (is_a <glabel *> (stmt)) 668 { 669 if (gsi_end_p (label)) 670 label = i; 671 continue; 672 } 673 674 /* Without a recorded label position to move debug stmts to, 675 there's nothing to do. */ 676 if (gsi_end_p (label)) 677 continue; 678 679 /* Move the debug stmt at I after LABEL. */ 680 if (is_gimple_debug (stmt)) 681 { 682 gcc_assert (gimple_debug_nonbind_marker_p (stmt)); 683 /* As STMT is removed, I advances to the stmt after 684 STMT, so the gsi_prev in the for "increment" 685 expression gets us to the stmt we're to visit after 686 STMT. LABEL, however, would advance to the moved 687 stmt if we passed it to gsi_move_after, so pass it a 688 copy instead, so as to keep LABEL pointing to the 689 LABEL. */ 690 gimple_stmt_iterator copy = label; 691 gsi_move_after (&i, ©); 692 continue; 693 } 694 695 /* There aren't any (more?) debug stmts before label, so 696 there isn't anything else to move after it. */ 697 label = gsi_none (); 698 } 699 } 700 701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun)); 702 } 703 704 /* Create and return a new empty basic block after bb AFTER. */ 705 706 static basic_block 707 create_bb (void *h, void *e, basic_block after) 708 { 709 basic_block bb; 710 711 gcc_assert (!e); 712 713 /* Create and initialize a new basic block. Since alloc_block uses 714 GC allocation that clears memory to allocate a basic block, we do 715 not have to clear the newly allocated basic block here. */ 716 bb = alloc_block (); 717 718 bb->index = last_basic_block_for_fn (cfun); 719 bb->flags = BB_NEW; 720 set_bb_seq (bb, h ? (gimple_seq) h : NULL); 721 722 /* Add the new block to the linked list of blocks. */ 723 link_block (bb, after); 724 725 /* Grow the basic block array if needed. */ 726 if ((size_t) last_basic_block_for_fn (cfun) 727 == basic_block_info_for_fn (cfun)->length ()) 728 { 729 size_t new_size = 730 (last_basic_block_for_fn (cfun) 731 + (last_basic_block_for_fn (cfun) + 3) / 4); 732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size); 733 } 734 735 /* Add the newly created block to the array. */ 736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb); 737 738 n_basic_blocks_for_fn (cfun)++; 739 last_basic_block_for_fn (cfun)++; 740 741 return bb; 742 } 743 744 745 /*--------------------------------------------------------------------------- 746 Edge creation 747 ---------------------------------------------------------------------------*/ 748 749 /* If basic block BB has an abnormal edge to a basic block 750 containing IFN_ABNORMAL_DISPATCHER internal call, return 751 that the dispatcher's basic block, otherwise return NULL. */ 752 753 basic_block 754 get_abnormal_succ_dispatcher (basic_block bb) 755 { 756 edge e; 757 edge_iterator ei; 758 759 FOR_EACH_EDGE (e, ei, bb->succs) 760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL) 761 { 762 gimple_stmt_iterator gsi 763 = gsi_start_nondebug_after_labels_bb (e->dest); 764 gimple *g = gsi_stmt (gsi); 765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER)) 766 return e->dest; 767 } 768 return NULL; 769 } 770 771 /* Helper function for make_edges. Create a basic block with 772 with ABNORMAL_DISPATCHER internal call in it if needed, and 773 create abnormal edges from BBS to it and from it to FOR_BB 774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */ 775 776 static void 777 handle_abnormal_edges (basic_block *dispatcher_bbs, 778 basic_block for_bb, int *bb_to_omp_idx, 779 auto_vec<basic_block> *bbs, bool computed_goto) 780 { 781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0); 782 unsigned int idx = 0; 783 basic_block bb; 784 bool inner = false; 785 786 if (bb_to_omp_idx) 787 { 788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index]; 789 if (bb_to_omp_idx[for_bb->index] != 0) 790 inner = true; 791 } 792 793 /* If the dispatcher has been created already, then there are basic 794 blocks with abnormal edges to it, so just make a new edge to 795 for_bb. */ 796 if (*dispatcher == NULL) 797 { 798 /* Check if there are any basic blocks that need to have 799 abnormal edges to this dispatcher. If there are none, return 800 early. */ 801 if (bb_to_omp_idx == NULL) 802 { 803 if (bbs->is_empty ()) 804 return; 805 } 806 else 807 { 808 FOR_EACH_VEC_ELT (*bbs, idx, bb) 809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index]) 810 break; 811 if (bb == NULL) 812 return; 813 } 814 815 /* Create the dispatcher bb. */ 816 *dispatcher = create_basic_block (NULL, for_bb); 817 if (computed_goto) 818 { 819 /* Factor computed gotos into a common computed goto site. Also 820 record the location of that site so that we can un-factor the 821 gotos after we have converted back to normal form. */ 822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher); 823 824 /* Create the destination of the factored goto. Each original 825 computed goto will put its desired destination into this 826 variable and jump to the label we create immediately below. */ 827 tree var = create_tmp_var (ptr_type_node, "gotovar"); 828 829 /* Build a label for the new block which will contain the 830 factored computed goto. */ 831 tree factored_label_decl 832 = create_artificial_label (UNKNOWN_LOCATION); 833 gimple *factored_computed_goto_label 834 = gimple_build_label (factored_label_decl); 835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT); 836 837 /* Build our new computed goto. */ 838 gimple *factored_computed_goto = gimple_build_goto (var); 839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT); 840 841 FOR_EACH_VEC_ELT (*bbs, idx, bb) 842 { 843 if (bb_to_omp_idx 844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) 845 continue; 846 847 gsi = gsi_last_bb (bb); 848 gimple *last = gsi_stmt (gsi); 849 850 gcc_assert (computed_goto_p (last)); 851 852 /* Copy the original computed goto's destination into VAR. */ 853 gimple *assignment 854 = gimple_build_assign (var, gimple_goto_dest (last)); 855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT); 856 857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU); 858 e->goto_locus = gimple_location (last); 859 gsi_remove (&gsi, true); 860 } 861 } 862 else 863 { 864 tree arg = inner ? boolean_true_node : boolean_false_node; 865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER, 866 1, arg); 867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher); 868 gsi_insert_after (&gsi, g, GSI_NEW_STMT); 869 870 /* Create predecessor edges of the dispatcher. */ 871 FOR_EACH_VEC_ELT (*bbs, idx, bb) 872 { 873 if (bb_to_omp_idx 874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) 875 continue; 876 make_edge (bb, *dispatcher, EDGE_ABNORMAL); 877 } 878 } 879 } 880 881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL); 882 } 883 884 /* Creates outgoing edges for BB. Returns 1 when it ends with an 885 computed goto, returns 2 when it ends with a statement that 886 might return to this function via an nonlocal goto, otherwise 887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */ 888 889 static int 890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index) 891 { 892 gimple *last = last_stmt (bb); 893 bool fallthru = false; 894 int ret = 0; 895 896 if (!last) 897 return ret; 898 899 switch (gimple_code (last)) 900 { 901 case GIMPLE_GOTO: 902 if (make_goto_expr_edges (bb)) 903 ret = 1; 904 fallthru = false; 905 break; 906 case GIMPLE_RETURN: 907 { 908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 909 e->goto_locus = gimple_location (last); 910 fallthru = false; 911 } 912 break; 913 case GIMPLE_COND: 914 make_cond_expr_edges (bb); 915 fallthru = false; 916 break; 917 case GIMPLE_SWITCH: 918 make_gimple_switch_edges (as_a <gswitch *> (last), bb); 919 fallthru = false; 920 break; 921 case GIMPLE_RESX: 922 make_eh_edges (last); 923 fallthru = false; 924 break; 925 case GIMPLE_EH_DISPATCH: 926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last)); 927 break; 928 929 case GIMPLE_CALL: 930 /* If this function receives a nonlocal goto, then we need to 931 make edges from this call site to all the nonlocal goto 932 handlers. */ 933 if (stmt_can_make_abnormal_goto (last)) 934 ret = 2; 935 936 /* If this statement has reachable exception handlers, then 937 create abnormal edges to them. */ 938 make_eh_edges (last); 939 940 /* BUILTIN_RETURN is really a return statement. */ 941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN)) 942 { 943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 944 fallthru = false; 945 } 946 /* Some calls are known not to return. */ 947 else 948 fallthru = !gimple_call_noreturn_p (last); 949 break; 950 951 case GIMPLE_ASSIGN: 952 /* A GIMPLE_ASSIGN may throw internally and thus be considered 953 control-altering. */ 954 if (is_ctrl_altering_stmt (last)) 955 make_eh_edges (last); 956 fallthru = true; 957 break; 958 959 case GIMPLE_ASM: 960 make_gimple_asm_edges (bb); 961 fallthru = true; 962 break; 963 964 CASE_GIMPLE_OMP: 965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index); 966 break; 967 968 case GIMPLE_TRANSACTION: 969 { 970 gtransaction *txn = as_a <gtransaction *> (last); 971 tree label1 = gimple_transaction_label_norm (txn); 972 tree label2 = gimple_transaction_label_uninst (txn); 973 974 if (label1) 975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU); 976 if (label2) 977 make_edge (bb, label_to_block (label2), 978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU)); 979 980 tree label3 = gimple_transaction_label_over (txn); 981 if (gimple_transaction_subcode (txn) 982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER)) 983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT); 984 985 fallthru = false; 986 } 987 break; 988 989 default: 990 gcc_assert (!stmt_ends_bb_p (last)); 991 fallthru = true; 992 break; 993 } 994 995 if (fallthru) 996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU); 997 998 return ret; 999 } 1000 1001 /* Join all the blocks in the flowgraph. */ 1002 1003 static void 1004 make_edges (void) 1005 { 1006 basic_block bb; 1007 struct omp_region *cur_region = NULL; 1008 auto_vec<basic_block> ab_edge_goto; 1009 auto_vec<basic_block> ab_edge_call; 1010 int *bb_to_omp_idx = NULL; 1011 int cur_omp_region_idx = 0; 1012 1013 /* Create an edge from entry to the first block with executable 1014 statements in it. */ 1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), 1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS), 1017 EDGE_FALLTHRU); 1018 1019 /* Traverse the basic block array placing edges. */ 1020 FOR_EACH_BB_FN (bb, cfun) 1021 { 1022 int mer; 1023 1024 if (bb_to_omp_idx) 1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx; 1026 1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); 1028 if (mer == 1) 1029 ab_edge_goto.safe_push (bb); 1030 else if (mer == 2) 1031 ab_edge_call.safe_push (bb); 1032 1033 if (cur_region && bb_to_omp_idx == NULL) 1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun)); 1035 } 1036 1037 /* Computed gotos are hell to deal with, especially if there are 1038 lots of them with a large number of destinations. So we factor 1039 them to a common computed goto location before we build the 1040 edge list. After we convert back to normal form, we will un-factor 1041 the computed gotos since factoring introduces an unwanted jump. 1042 For non-local gotos and abnormal edges from calls to calls that return 1043 twice or forced labels, factor the abnormal edges too, by having all 1044 abnormal edges from the calls go to a common artificial basic block 1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that 1046 basic block to all forced labels and calls returning twice. 1047 We do this per-OpenMP structured block, because those regions 1048 are guaranteed to be single entry single exit by the standard, 1049 so it is not allowed to enter or exit such regions abnormally this way, 1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls 1051 must not transfer control across SESE region boundaries. */ 1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ()) 1053 { 1054 gimple_stmt_iterator gsi; 1055 basic_block dispatcher_bb_array[2] = { NULL, NULL }; 1056 basic_block *dispatcher_bbs = dispatcher_bb_array; 1057 int count = n_basic_blocks_for_fn (cfun); 1058 1059 if (bb_to_omp_idx) 1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count); 1061 1062 FOR_EACH_BB_FN (bb, cfun) 1063 { 1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1065 { 1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 1067 tree target; 1068 1069 if (!label_stmt) 1070 break; 1071 1072 target = gimple_label_label (label_stmt); 1073 1074 /* Make an edge to every label block that has been marked as a 1075 potential target for a computed goto or a non-local goto. */ 1076 if (FORCED_LABEL (target)) 1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 1078 &ab_edge_goto, true); 1079 if (DECL_NONLOCAL (target)) 1080 { 1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 1082 &ab_edge_call, false); 1083 break; 1084 } 1085 } 1086 1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) 1088 gsi_next_nondebug (&gsi); 1089 if (!gsi_end_p (gsi)) 1090 { 1091 /* Make an edge to every setjmp-like call. */ 1092 gimple *call_stmt = gsi_stmt (gsi); 1093 if (is_gimple_call (call_stmt) 1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE) 1095 || gimple_call_builtin_p (call_stmt, 1096 BUILT_IN_SETJMP_RECEIVER))) 1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 1098 &ab_edge_call, false); 1099 } 1100 } 1101 1102 if (bb_to_omp_idx) 1103 XDELETE (dispatcher_bbs); 1104 } 1105 1106 XDELETE (bb_to_omp_idx); 1107 1108 omp_free_regions (); 1109 } 1110 1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as 1112 needed. Returns true if new bbs were created. 1113 Note: This is transitional code, and should not be used for new code. We 1114 should be able to get rid of this by rewriting all target va-arg 1115 gimplification hooks to use an interface gimple_build_cond_value as described 1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */ 1117 1118 bool 1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi) 1120 { 1121 gimple *stmt = gsi_stmt (*gsi); 1122 basic_block bb = gimple_bb (stmt); 1123 basic_block lastbb, afterbb; 1124 int old_num_bbs = n_basic_blocks_for_fn (cfun); 1125 edge e; 1126 lastbb = make_blocks_1 (seq, bb); 1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun)) 1128 return false; 1129 e = split_block (bb, stmt); 1130 /* Move e->dest to come after the new basic blocks. */ 1131 afterbb = e->dest; 1132 unlink_block (afterbb); 1133 link_block (afterbb, lastbb); 1134 redirect_edge_succ (e, bb->next_bb); 1135 bb = bb->next_bb; 1136 while (bb != afterbb) 1137 { 1138 struct omp_region *cur_region = NULL; 1139 profile_count cnt = profile_count::zero (); 1140 bool all = true; 1141 1142 int cur_omp_region_idx = 0; 1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); 1144 gcc_assert (!mer && !cur_region); 1145 add_bb_to_loop (bb, afterbb->loop_father); 1146 1147 edge e; 1148 edge_iterator ei; 1149 FOR_EACH_EDGE (e, ei, bb->preds) 1150 { 1151 if (e->count ().initialized_p ()) 1152 cnt += e->count (); 1153 else 1154 all = false; 1155 } 1156 tree_guess_outgoing_edge_probabilities (bb); 1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ) 1158 bb->count = cnt; 1159 1160 bb = bb->next_bb; 1161 } 1162 return true; 1163 } 1164 1165 /* Find the next available discriminator value for LOCUS. The 1166 discriminator distinguishes among several basic blocks that 1167 share a common locus, allowing for more accurate sample-based 1168 profiling. */ 1169 1170 static int 1171 next_discriminator_for_locus (location_t locus) 1172 { 1173 struct locus_discrim_map item; 1174 struct locus_discrim_map **slot; 1175 1176 item.locus = locus; 1177 item.discriminator = 0; 1178 slot = discriminator_per_locus->find_slot_with_hash ( 1179 &item, LOCATION_LINE (locus), INSERT); 1180 gcc_assert (slot); 1181 if (*slot == HTAB_EMPTY_ENTRY) 1182 { 1183 *slot = XNEW (struct locus_discrim_map); 1184 gcc_assert (*slot); 1185 (*slot)->locus = locus; 1186 (*slot)->discriminator = 0; 1187 } 1188 (*slot)->discriminator++; 1189 return (*slot)->discriminator; 1190 } 1191 1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */ 1193 1194 static bool 1195 same_line_p (location_t locus1, location_t locus2) 1196 { 1197 expanded_location from, to; 1198 1199 if (locus1 == locus2) 1200 return true; 1201 1202 from = expand_location (locus1); 1203 to = expand_location (locus2); 1204 1205 if (from.line != to.line) 1206 return false; 1207 if (from.file == to.file) 1208 return true; 1209 return (from.file != NULL 1210 && to.file != NULL 1211 && filename_cmp (from.file, to.file) == 0); 1212 } 1213 1214 /* Assign discriminators to each basic block. */ 1215 1216 static void 1217 assign_discriminators (void) 1218 { 1219 basic_block bb; 1220 1221 FOR_EACH_BB_FN (bb, cfun) 1222 { 1223 edge e; 1224 edge_iterator ei; 1225 gimple *last = last_stmt (bb); 1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION; 1227 1228 if (locus == UNKNOWN_LOCATION) 1229 continue; 1230 1231 FOR_EACH_EDGE (e, ei, bb->succs) 1232 { 1233 gimple *first = first_non_label_stmt (e->dest); 1234 gimple *last = last_stmt (e->dest); 1235 if ((first && same_line_p (locus, gimple_location (first))) 1236 || (last && same_line_p (locus, gimple_location (last)))) 1237 { 1238 if (e->dest->discriminator != 0 && bb->discriminator == 0) 1239 bb->discriminator = next_discriminator_for_locus (locus); 1240 else 1241 e->dest->discriminator = next_discriminator_for_locus (locus); 1242 } 1243 } 1244 } 1245 } 1246 1247 /* Create the edges for a GIMPLE_COND starting at block BB. */ 1248 1249 static void 1250 make_cond_expr_edges (basic_block bb) 1251 { 1252 gcond *entry = as_a <gcond *> (last_stmt (bb)); 1253 gimple *then_stmt, *else_stmt; 1254 basic_block then_bb, else_bb; 1255 tree then_label, else_label; 1256 edge e; 1257 1258 gcc_assert (entry); 1259 gcc_assert (gimple_code (entry) == GIMPLE_COND); 1260 1261 /* Entry basic blocks for each component. */ 1262 then_label = gimple_cond_true_label (entry); 1263 else_label = gimple_cond_false_label (entry); 1264 then_bb = label_to_block (then_label); 1265 else_bb = label_to_block (else_label); 1266 then_stmt = first_stmt (then_bb); 1267 else_stmt = first_stmt (else_bb); 1268 1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE); 1270 e->goto_locus = gimple_location (then_stmt); 1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE); 1272 if (e) 1273 e->goto_locus = gimple_location (else_stmt); 1274 1275 /* We do not need the labels anymore. */ 1276 gimple_cond_set_true_label (entry, NULL_TREE); 1277 gimple_cond_set_false_label (entry, NULL_TREE); 1278 } 1279 1280 1281 /* Called for each element in the hash table (P) as we delete the 1282 edge to cases hash table. 1283 1284 Clear all the CASE_CHAINs to prevent problems with copying of 1285 SWITCH_EXPRs and structure sharing rules, then free the hash table 1286 element. */ 1287 1288 bool 1289 edge_to_cases_cleanup (edge const &, tree const &value, void *) 1290 { 1291 tree t, next; 1292 1293 for (t = value; t; t = next) 1294 { 1295 next = CASE_CHAIN (t); 1296 CASE_CHAIN (t) = NULL; 1297 } 1298 1299 return true; 1300 } 1301 1302 /* Start recording information mapping edges to case labels. */ 1303 1304 void 1305 start_recording_case_labels (void) 1306 { 1307 gcc_assert (edge_to_cases == NULL); 1308 edge_to_cases = new hash_map<edge, tree>; 1309 touched_switch_bbs = BITMAP_ALLOC (NULL); 1310 } 1311 1312 /* Return nonzero if we are recording information for case labels. */ 1313 1314 static bool 1315 recording_case_labels_p (void) 1316 { 1317 return (edge_to_cases != NULL); 1318 } 1319 1320 /* Stop recording information mapping edges to case labels and 1321 remove any information we have recorded. */ 1322 void 1323 end_recording_case_labels (void) 1324 { 1325 bitmap_iterator bi; 1326 unsigned i; 1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL); 1328 delete edge_to_cases; 1329 edge_to_cases = NULL; 1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi) 1331 { 1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 1333 if (bb) 1334 { 1335 gimple *stmt = last_stmt (bb); 1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 1337 group_case_labels_stmt (as_a <gswitch *> (stmt)); 1338 } 1339 } 1340 BITMAP_FREE (touched_switch_bbs); 1341 } 1342 1343 /* If we are inside a {start,end}_recording_cases block, then return 1344 a chain of CASE_LABEL_EXPRs from T which reference E. 1345 1346 Otherwise return NULL. */ 1347 1348 static tree 1349 get_cases_for_edge (edge e, gswitch *t) 1350 { 1351 tree *slot; 1352 size_t i, n; 1353 1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR 1355 chains available. Return NULL so the caller can detect this case. */ 1356 if (!recording_case_labels_p ()) 1357 return NULL; 1358 1359 slot = edge_to_cases->get (e); 1360 if (slot) 1361 return *slot; 1362 1363 /* If we did not find E in the hash table, then this must be the first 1364 time we have been queried for information about E & T. Add all the 1365 elements from T to the hash table then perform the query again. */ 1366 1367 n = gimple_switch_num_labels (t); 1368 for (i = 0; i < n; i++) 1369 { 1370 tree elt = gimple_switch_label (t, i); 1371 tree lab = CASE_LABEL (elt); 1372 basic_block label_bb = label_to_block (lab); 1373 edge this_edge = find_edge (e->src, label_bb); 1374 1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create 1376 a new chain. */ 1377 tree &s = edge_to_cases->get_or_insert (this_edge); 1378 CASE_CHAIN (elt) = s; 1379 s = elt; 1380 } 1381 1382 return *edge_to_cases->get (e); 1383 } 1384 1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */ 1386 1387 static void 1388 make_gimple_switch_edges (gswitch *entry, basic_block bb) 1389 { 1390 size_t i, n; 1391 1392 n = gimple_switch_num_labels (entry); 1393 1394 for (i = 0; i < n; ++i) 1395 { 1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i)); 1397 basic_block label_bb = label_to_block (lab); 1398 make_edge (bb, label_bb, 0); 1399 } 1400 } 1401 1402 1403 /* Return the basic block holding label DEST. */ 1404 1405 basic_block 1406 label_to_block_fn (struct function *ifun, tree dest) 1407 { 1408 int uid = LABEL_DECL_UID (dest); 1409 1410 /* We would die hard when faced by an undefined label. Emit a label to 1411 the very first basic block. This will hopefully make even the dataflow 1412 and undefined variable warnings quite right. */ 1413 if (seen_error () && uid < 0) 1414 { 1415 gimple_stmt_iterator gsi = 1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS)); 1417 gimple *stmt; 1418 1419 stmt = gimple_build_label (dest); 1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 1421 uid = LABEL_DECL_UID (dest); 1422 } 1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid) 1424 return NULL; 1425 return (*ifun->cfg->x_label_to_block_map)[uid]; 1426 } 1427 1428 /* Create edges for a goto statement at block BB. Returns true 1429 if abnormal edges should be created. */ 1430 1431 static bool 1432 make_goto_expr_edges (basic_block bb) 1433 { 1434 gimple_stmt_iterator last = gsi_last_bb (bb); 1435 gimple *goto_t = gsi_stmt (last); 1436 1437 /* A simple GOTO creates normal edges. */ 1438 if (simple_goto_p (goto_t)) 1439 { 1440 tree dest = gimple_goto_dest (goto_t); 1441 basic_block label_bb = label_to_block (dest); 1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU); 1443 e->goto_locus = gimple_location (goto_t); 1444 gsi_remove (&last, true); 1445 return false; 1446 } 1447 1448 /* A computed GOTO creates abnormal edges. */ 1449 return true; 1450 } 1451 1452 /* Create edges for an asm statement with labels at block BB. */ 1453 1454 static void 1455 make_gimple_asm_edges (basic_block bb) 1456 { 1457 gasm *stmt = as_a <gasm *> (last_stmt (bb)); 1458 int i, n = gimple_asm_nlabels (stmt); 1459 1460 for (i = 0; i < n; ++i) 1461 { 1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); 1463 basic_block label_bb = label_to_block (label); 1464 make_edge (bb, label_bb, 0); 1465 } 1466 } 1467 1468 /*--------------------------------------------------------------------------- 1469 Flowgraph analysis 1470 ---------------------------------------------------------------------------*/ 1471 1472 /* Cleanup useless labels in basic blocks. This is something we wish 1473 to do early because it allows us to group case labels before creating 1474 the edges for the CFG, and it speeds up block statement iterators in 1475 all passes later on. 1476 We rerun this pass after CFG is created, to get rid of the labels that 1477 are no longer referenced. After then we do not run it any more, since 1478 (almost) no new labels should be created. */ 1479 1480 /* A map from basic block index to the leading label of that block. */ 1481 static struct label_record 1482 { 1483 /* The label. */ 1484 tree label; 1485 1486 /* True if the label is referenced from somewhere. */ 1487 bool used; 1488 } *label_for_bb; 1489 1490 /* Given LABEL return the first label in the same basic block. */ 1491 1492 static tree 1493 main_block_label (tree label) 1494 { 1495 basic_block bb = label_to_block (label); 1496 tree main_label = label_for_bb[bb->index].label; 1497 1498 /* label_to_block possibly inserted undefined label into the chain. */ 1499 if (!main_label) 1500 { 1501 label_for_bb[bb->index].label = label; 1502 main_label = label; 1503 } 1504 1505 label_for_bb[bb->index].used = true; 1506 return main_label; 1507 } 1508 1509 /* Clean up redundant labels within the exception tree. */ 1510 1511 static void 1512 cleanup_dead_labels_eh (void) 1513 { 1514 eh_landing_pad lp; 1515 eh_region r; 1516 tree lab; 1517 int i; 1518 1519 if (cfun->eh == NULL) 1520 return; 1521 1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) 1523 if (lp && lp->post_landing_pad) 1524 { 1525 lab = main_block_label (lp->post_landing_pad); 1526 if (lab != lp->post_landing_pad) 1527 { 1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0; 1529 EH_LANDING_PAD_NR (lab) = lp->index; 1530 } 1531 } 1532 1533 FOR_ALL_EH_REGION (r) 1534 switch (r->type) 1535 { 1536 case ERT_CLEANUP: 1537 case ERT_MUST_NOT_THROW: 1538 break; 1539 1540 case ERT_TRY: 1541 { 1542 eh_catch c; 1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 1544 { 1545 lab = c->label; 1546 if (lab) 1547 c->label = main_block_label (lab); 1548 } 1549 } 1550 break; 1551 1552 case ERT_ALLOWED_EXCEPTIONS: 1553 lab = r->u.allowed.label; 1554 if (lab) 1555 r->u.allowed.label = main_block_label (lab); 1556 break; 1557 } 1558 } 1559 1560 1561 /* Cleanup redundant labels. This is a three-step process: 1562 1) Find the leading label for each block. 1563 2) Redirect all references to labels to the leading labels. 1564 3) Cleanup all useless labels. */ 1565 1566 void 1567 cleanup_dead_labels (void) 1568 { 1569 basic_block bb; 1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun)); 1571 1572 /* Find a suitable label for each block. We use the first user-defined 1573 label if there is one, or otherwise just the first label we see. */ 1574 FOR_EACH_BB_FN (bb, cfun) 1575 { 1576 gimple_stmt_iterator i; 1577 1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) 1579 { 1580 tree label; 1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); 1582 1583 if (!label_stmt) 1584 break; 1585 1586 label = gimple_label_label (label_stmt); 1587 1588 /* If we have not yet seen a label for the current block, 1589 remember this one and see if there are more labels. */ 1590 if (!label_for_bb[bb->index].label) 1591 { 1592 label_for_bb[bb->index].label = label; 1593 continue; 1594 } 1595 1596 /* If we did see a label for the current block already, but it 1597 is an artificially created label, replace it if the current 1598 label is a user defined label. */ 1599 if (!DECL_ARTIFICIAL (label) 1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label)) 1601 { 1602 label_for_bb[bb->index].label = label; 1603 break; 1604 } 1605 } 1606 } 1607 1608 /* Now redirect all jumps/branches to the selected label. 1609 First do so for each block ending in a control statement. */ 1610 FOR_EACH_BB_FN (bb, cfun) 1611 { 1612 gimple *stmt = last_stmt (bb); 1613 tree label, new_label; 1614 1615 if (!stmt) 1616 continue; 1617 1618 switch (gimple_code (stmt)) 1619 { 1620 case GIMPLE_COND: 1621 { 1622 gcond *cond_stmt = as_a <gcond *> (stmt); 1623 label = gimple_cond_true_label (cond_stmt); 1624 if (label) 1625 { 1626 new_label = main_block_label (label); 1627 if (new_label != label) 1628 gimple_cond_set_true_label (cond_stmt, new_label); 1629 } 1630 1631 label = gimple_cond_false_label (cond_stmt); 1632 if (label) 1633 { 1634 new_label = main_block_label (label); 1635 if (new_label != label) 1636 gimple_cond_set_false_label (cond_stmt, new_label); 1637 } 1638 } 1639 break; 1640 1641 case GIMPLE_SWITCH: 1642 { 1643 gswitch *switch_stmt = as_a <gswitch *> (stmt); 1644 size_t i, n = gimple_switch_num_labels (switch_stmt); 1645 1646 /* Replace all destination labels. */ 1647 for (i = 0; i < n; ++i) 1648 { 1649 tree case_label = gimple_switch_label (switch_stmt, i); 1650 label = CASE_LABEL (case_label); 1651 new_label = main_block_label (label); 1652 if (new_label != label) 1653 CASE_LABEL (case_label) = new_label; 1654 } 1655 break; 1656 } 1657 1658 case GIMPLE_ASM: 1659 { 1660 gasm *asm_stmt = as_a <gasm *> (stmt); 1661 int i, n = gimple_asm_nlabels (asm_stmt); 1662 1663 for (i = 0; i < n; ++i) 1664 { 1665 tree cons = gimple_asm_label_op (asm_stmt, i); 1666 tree label = main_block_label (TREE_VALUE (cons)); 1667 TREE_VALUE (cons) = label; 1668 } 1669 break; 1670 } 1671 1672 /* We have to handle gotos until they're removed, and we don't 1673 remove them until after we've created the CFG edges. */ 1674 case GIMPLE_GOTO: 1675 if (!computed_goto_p (stmt)) 1676 { 1677 ggoto *goto_stmt = as_a <ggoto *> (stmt); 1678 label = gimple_goto_dest (goto_stmt); 1679 new_label = main_block_label (label); 1680 if (new_label != label) 1681 gimple_goto_set_dest (goto_stmt, new_label); 1682 } 1683 break; 1684 1685 case GIMPLE_TRANSACTION: 1686 { 1687 gtransaction *txn = as_a <gtransaction *> (stmt); 1688 1689 label = gimple_transaction_label_norm (txn); 1690 if (label) 1691 { 1692 new_label = main_block_label (label); 1693 if (new_label != label) 1694 gimple_transaction_set_label_norm (txn, new_label); 1695 } 1696 1697 label = gimple_transaction_label_uninst (txn); 1698 if (label) 1699 { 1700 new_label = main_block_label (label); 1701 if (new_label != label) 1702 gimple_transaction_set_label_uninst (txn, new_label); 1703 } 1704 1705 label = gimple_transaction_label_over (txn); 1706 if (label) 1707 { 1708 new_label = main_block_label (label); 1709 if (new_label != label) 1710 gimple_transaction_set_label_over (txn, new_label); 1711 } 1712 } 1713 break; 1714 1715 default: 1716 break; 1717 } 1718 } 1719 1720 /* Do the same for the exception region tree labels. */ 1721 cleanup_dead_labels_eh (); 1722 1723 /* Finally, purge dead labels. All user-defined labels and labels that 1724 can be the target of non-local gotos and labels which have their 1725 address taken are preserved. */ 1726 FOR_EACH_BB_FN (bb, cfun) 1727 { 1728 gimple_stmt_iterator i; 1729 tree label_for_this_bb = label_for_bb[bb->index].label; 1730 1731 if (!label_for_this_bb) 1732 continue; 1733 1734 /* If the main label of the block is unused, we may still remove it. */ 1735 if (!label_for_bb[bb->index].used) 1736 label_for_this_bb = NULL; 1737 1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); ) 1739 { 1740 tree label; 1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); 1742 1743 if (!label_stmt) 1744 break; 1745 1746 label = gimple_label_label (label_stmt); 1747 1748 if (label == label_for_this_bb 1749 || !DECL_ARTIFICIAL (label) 1750 || DECL_NONLOCAL (label) 1751 || FORCED_LABEL (label)) 1752 gsi_next (&i); 1753 else 1754 gsi_remove (&i, true); 1755 } 1756 } 1757 1758 free (label_for_bb); 1759 } 1760 1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine 1762 the ones jumping to the same label. 1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */ 1764 1765 bool 1766 group_case_labels_stmt (gswitch *stmt) 1767 { 1768 int old_size = gimple_switch_num_labels (stmt); 1769 int i, next_index, new_size; 1770 basic_block default_bb = NULL; 1771 1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt))); 1773 1774 /* Look for possible opportunities to merge cases. */ 1775 new_size = i = 1; 1776 while (i < old_size) 1777 { 1778 tree base_case, base_high; 1779 basic_block base_bb; 1780 1781 base_case = gimple_switch_label (stmt, i); 1782 1783 gcc_assert (base_case); 1784 base_bb = label_to_block (CASE_LABEL (base_case)); 1785 1786 /* Discard cases that have the same destination as the default case or 1787 whose destiniation blocks have already been removed as unreachable. */ 1788 if (base_bb == NULL || base_bb == default_bb) 1789 { 1790 i++; 1791 continue; 1792 } 1793 1794 base_high = CASE_HIGH (base_case) 1795 ? CASE_HIGH (base_case) 1796 : CASE_LOW (base_case); 1797 next_index = i + 1; 1798 1799 /* Try to merge case labels. Break out when we reach the end 1800 of the label vector or when we cannot merge the next case 1801 label with the current one. */ 1802 while (next_index < old_size) 1803 { 1804 tree merge_case = gimple_switch_label (stmt, next_index); 1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case)); 1806 wide_int bhp1 = wi::to_wide (base_high) + 1; 1807 1808 /* Merge the cases if they jump to the same place, 1809 and their ranges are consecutive. */ 1810 if (merge_bb == base_bb 1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1) 1812 { 1813 base_high = CASE_HIGH (merge_case) ? 1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case); 1815 CASE_HIGH (base_case) = base_high; 1816 next_index++; 1817 } 1818 else 1819 break; 1820 } 1821 1822 /* Discard cases that have an unreachable destination block. */ 1823 if (EDGE_COUNT (base_bb->succs) == 0 1824 && gimple_seq_unreachable_p (bb_seq (base_bb)) 1825 /* Don't optimize this if __builtin_unreachable () is the 1826 implicitly added one by the C++ FE too early, before 1827 -Wreturn-type can be diagnosed. We'll optimize it later 1828 during switchconv pass or any other cfg cleanup. */ 1829 && (gimple_in_ssa_p (cfun) 1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb))) 1831 != BUILTINS_LOCATION))) 1832 { 1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb); 1834 if (base_edge != NULL) 1835 remove_edge_and_dominated_blocks (base_edge); 1836 i = next_index; 1837 continue; 1838 } 1839 1840 if (new_size < i) 1841 gimple_switch_set_label (stmt, new_size, 1842 gimple_switch_label (stmt, i)); 1843 i = next_index; 1844 new_size++; 1845 } 1846 1847 gcc_assert (new_size <= old_size); 1848 1849 if (new_size < old_size) 1850 gimple_switch_set_num_labels (stmt, new_size); 1851 1852 return new_size < old_size; 1853 } 1854 1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH), 1856 and scan the sorted vector of cases. Combine the ones jumping to the 1857 same label. */ 1858 1859 bool 1860 group_case_labels (void) 1861 { 1862 basic_block bb; 1863 bool changed = false; 1864 1865 FOR_EACH_BB_FN (bb, cfun) 1866 { 1867 gimple *stmt = last_stmt (bb); 1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt)); 1870 } 1871 1872 return changed; 1873 } 1874 1875 /* Checks whether we can merge block B into block A. */ 1876 1877 static bool 1878 gimple_can_merge_blocks_p (basic_block a, basic_block b) 1879 { 1880 gimple *stmt; 1881 1882 if (!single_succ_p (a)) 1883 return false; 1884 1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX) 1886 return false; 1887 1888 if (single_succ (a) != b) 1889 return false; 1890 1891 if (!single_pred_p (b)) 1892 return false; 1893 1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun) 1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1896 return false; 1897 1898 /* If A ends by a statement causing exceptions or something similar, we 1899 cannot merge the blocks. */ 1900 stmt = last_stmt (a); 1901 if (stmt && stmt_ends_bb_p (stmt)) 1902 return false; 1903 1904 /* Do not allow a block with only a non-local label to be merged. */ 1905 if (stmt) 1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt))) 1908 return false; 1909 1910 /* Examine the labels at the beginning of B. */ 1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi); 1912 gsi_next (&gsi)) 1913 { 1914 tree lab; 1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 1916 if (!label_stmt) 1917 break; 1918 lab = gimple_label_label (label_stmt); 1919 1920 /* Do not remove user forced labels or for -O0 any user labels. */ 1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab))) 1922 return false; 1923 } 1924 1925 /* Protect simple loop latches. We only want to avoid merging 1926 the latch with the loop header or with a block in another 1927 loop in this case. */ 1928 if (current_loops 1929 && b->loop_father->latch == b 1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES) 1931 && (b->loop_father->header == a 1932 || b->loop_father != a->loop_father)) 1933 return false; 1934 1935 /* It must be possible to eliminate all phi nodes in B. If ssa form 1936 is not up-to-date and a name-mapping is registered, we cannot eliminate 1937 any phis. Symbols marked for renaming are never a problem though. */ 1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi); 1939 gsi_next (&gsi)) 1940 { 1941 gphi *phi = gsi.phi (); 1942 /* Technically only new names matter. */ 1943 if (name_registered_for_update_p (PHI_RESULT (phi))) 1944 return false; 1945 } 1946 1947 /* When not optimizing, don't merge if we'd lose goto_locus. */ 1948 if (!optimize 1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION) 1950 { 1951 location_t goto_locus = single_succ_edge (a)->goto_locus; 1952 gimple_stmt_iterator prev, next; 1953 prev = gsi_last_nondebug_bb (a); 1954 next = gsi_after_labels (b); 1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next))) 1956 gsi_next_nondebug (&next); 1957 if ((gsi_end_p (prev) 1958 || gimple_location (gsi_stmt (prev)) != goto_locus) 1959 && (gsi_end_p (next) 1960 || gimple_location (gsi_stmt (next)) != goto_locus)) 1961 return false; 1962 } 1963 1964 return true; 1965 } 1966 1967 /* Replaces all uses of NAME by VAL. */ 1968 1969 void 1970 replace_uses_by (tree name, tree val) 1971 { 1972 imm_use_iterator imm_iter; 1973 use_operand_p use; 1974 gimple *stmt; 1975 edge e; 1976 1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name) 1978 { 1979 /* Mark the block if we change the last stmt in it. */ 1980 if (cfgcleanup_altered_bbs 1981 && stmt_ends_bb_p (stmt)) 1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index); 1983 1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter) 1985 { 1986 replace_exp (use, val); 1987 1988 if (gimple_code (stmt) == GIMPLE_PHI) 1989 { 1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt), 1991 PHI_ARG_INDEX_FROM_USE (use)); 1992 if (e->flags & EDGE_ABNORMAL 1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 1994 { 1995 /* This can only occur for virtual operands, since 1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) 1997 would prevent replacement. */ 1998 gcc_checking_assert (virtual_operand_p (name)); 1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 2000 } 2001 } 2002 } 2003 2004 if (gimple_code (stmt) != GIMPLE_PHI) 2005 { 2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 2007 gimple *orig_stmt = stmt; 2008 size_t i; 2009 2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT 2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will 2012 only change sth from non-invariant to invariant, and only 2013 when propagating constants. */ 2014 if (is_gimple_min_invariant (val)) 2015 for (i = 0; i < gimple_num_ops (stmt); i++) 2016 { 2017 tree op = gimple_op (stmt, i); 2018 /* Operands may be empty here. For example, the labels 2019 of a GIMPLE_COND are nulled out following the creation 2020 of the corresponding CFG edges. */ 2021 if (op && TREE_CODE (op) == ADDR_EXPR) 2022 recompute_tree_invariant_for_addr_expr (op); 2023 } 2024 2025 if (fold_stmt (&gsi)) 2026 stmt = gsi_stmt (gsi); 2027 2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)) 2029 gimple_purge_dead_eh_edges (gimple_bb (stmt)); 2030 2031 update_stmt (stmt); 2032 } 2033 } 2034 2035 gcc_checking_assert (has_zero_uses (name)); 2036 2037 /* Also update the trees stored in loop structures. */ 2038 if (current_loops) 2039 { 2040 struct loop *loop; 2041 2042 FOR_EACH_LOOP (loop, 0) 2043 { 2044 substitute_in_loop_info (loop, name, val); 2045 } 2046 } 2047 } 2048 2049 /* Merge block B into block A. */ 2050 2051 static void 2052 gimple_merge_blocks (basic_block a, basic_block b) 2053 { 2054 gimple_stmt_iterator last, gsi; 2055 gphi_iterator psi; 2056 2057 if (dump_file) 2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index); 2059 2060 /* Remove all single-valued PHI nodes from block B of the form 2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */ 2062 gsi = gsi_last_bb (a); 2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); ) 2064 { 2065 gimple *phi = gsi_stmt (psi); 2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0); 2067 gimple *copy; 2068 bool may_replace_uses = (virtual_operand_p (def) 2069 || may_propagate_copy (def, use)); 2070 2071 /* In case we maintain loop closed ssa form, do not propagate arguments 2072 of loop exit phi nodes. */ 2073 if (current_loops 2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA) 2075 && !virtual_operand_p (def) 2076 && TREE_CODE (use) == SSA_NAME 2077 && a->loop_father != b->loop_father) 2078 may_replace_uses = false; 2079 2080 if (!may_replace_uses) 2081 { 2082 gcc_assert (!virtual_operand_p (def)); 2083 2084 /* Note that just emitting the copies is fine -- there is no problem 2085 with ordering of phi nodes. This is because A is the single 2086 predecessor of B, therefore results of the phi nodes cannot 2087 appear as arguments of the phi nodes. */ 2088 copy = gimple_build_assign (def, use); 2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT); 2090 remove_phi_node (&psi, false); 2091 } 2092 else 2093 { 2094 /* If we deal with a PHI for virtual operands, we can simply 2095 propagate these without fussing with folding or updating 2096 the stmt. */ 2097 if (virtual_operand_p (def)) 2098 { 2099 imm_use_iterator iter; 2100 use_operand_p use_p; 2101 gimple *stmt; 2102 2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def) 2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 2105 SET_USE (use_p, use); 2106 2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) 2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1; 2109 } 2110 else 2111 replace_uses_by (def, use); 2112 2113 remove_phi_node (&psi, true); 2114 } 2115 } 2116 2117 /* Ensure that B follows A. */ 2118 move_block_after (b, a); 2119 2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU); 2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a))); 2122 2123 /* Remove labels from B and set gimple_bb to A for other statements. */ 2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);) 2125 { 2126 gimple *stmt = gsi_stmt (gsi); 2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 2128 { 2129 tree label = gimple_label_label (label_stmt); 2130 int lp_nr; 2131 2132 gsi_remove (&gsi, false); 2133 2134 /* Now that we can thread computed gotos, we might have 2135 a situation where we have a forced label in block B 2136 However, the label at the start of block B might still be 2137 used in other ways (think about the runtime checking for 2138 Fortran assigned gotos). So we can not just delete the 2139 label. Instead we move the label to the start of block A. */ 2140 if (FORCED_LABEL (label)) 2141 { 2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a); 2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT); 2144 } 2145 /* Other user labels keep around in a form of a debug stmt. */ 2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS) 2147 { 2148 gimple *dbg = gimple_build_debug_bind (label, 2149 integer_zero_node, 2150 stmt); 2151 gimple_debug_bind_reset_value (dbg); 2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT); 2153 } 2154 2155 lp_nr = EH_LANDING_PAD_NR (label); 2156 if (lp_nr) 2157 { 2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); 2159 lp->post_landing_pad = NULL; 2160 } 2161 } 2162 else 2163 { 2164 gimple_set_bb (stmt, a); 2165 gsi_next (&gsi); 2166 } 2167 } 2168 2169 /* When merging two BBs, if their counts are different, the larger count 2170 is selected as the new bb count. This is to handle inconsistent 2171 profiles. */ 2172 if (a->loop_father == b->loop_father) 2173 { 2174 a->count = a->count.merge (b->count); 2175 } 2176 2177 /* Merge the sequences. */ 2178 last = gsi_last_bb (a); 2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT); 2180 set_bb_seq (b, NULL); 2181 2182 if (cfgcleanup_altered_bbs) 2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index); 2184 } 2185 2186 2187 /* Return the one of two successors of BB that is not reachable by a 2188 complex edge, if there is one. Else, return BB. We use 2189 this in optimizations that use post-dominators for their heuristics, 2190 to catch the cases in C++ where function calls are involved. */ 2191 2192 basic_block 2193 single_noncomplex_succ (basic_block bb) 2194 { 2195 edge e0, e1; 2196 if (EDGE_COUNT (bb->succs) != 2) 2197 return bb; 2198 2199 e0 = EDGE_SUCC (bb, 0); 2200 e1 = EDGE_SUCC (bb, 1); 2201 if (e0->flags & EDGE_COMPLEX) 2202 return e1->dest; 2203 if (e1->flags & EDGE_COMPLEX) 2204 return e0->dest; 2205 2206 return bb; 2207 } 2208 2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */ 2210 2211 void 2212 notice_special_calls (gcall *call) 2213 { 2214 int flags = gimple_call_flags (call); 2215 2216 if (flags & ECF_MAY_BE_ALLOCA) 2217 cfun->calls_alloca = true; 2218 if (flags & ECF_RETURNS_TWICE) 2219 cfun->calls_setjmp = true; 2220 } 2221 2222 2223 /* Clear flags set by notice_special_calls. Used by dead code removal 2224 to update the flags. */ 2225 2226 void 2227 clear_special_calls (void) 2228 { 2229 cfun->calls_alloca = false; 2230 cfun->calls_setjmp = false; 2231 } 2232 2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */ 2234 2235 static void 2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb) 2237 { 2238 /* Since this block is no longer reachable, we can just delete all 2239 of its PHI nodes. */ 2240 remove_phi_nodes (bb); 2241 2242 /* Remove edges to BB's successors. */ 2243 while (EDGE_COUNT (bb->succs) > 0) 2244 remove_edge (EDGE_SUCC (bb, 0)); 2245 } 2246 2247 2248 /* Remove statements of basic block BB. */ 2249 2250 static void 2251 remove_bb (basic_block bb) 2252 { 2253 gimple_stmt_iterator i; 2254 2255 if (dump_file) 2256 { 2257 fprintf (dump_file, "Removing basic block %d\n", bb->index); 2258 if (dump_flags & TDF_DETAILS) 2259 { 2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS); 2261 fprintf (dump_file, "\n"); 2262 } 2263 } 2264 2265 if (current_loops) 2266 { 2267 struct loop *loop = bb->loop_father; 2268 2269 /* If a loop gets removed, clean up the information associated 2270 with it. */ 2271 if (loop->latch == bb 2272 || loop->header == bb) 2273 free_numbers_of_iterations_estimates (loop); 2274 } 2275 2276 /* Remove all the instructions in the block. */ 2277 if (bb_seq (bb) != NULL) 2278 { 2279 /* Walk backwards so as to get a chance to substitute all 2280 released DEFs into debug stmts. See 2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more 2282 details. */ 2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);) 2284 { 2285 gimple *stmt = gsi_stmt (i); 2286 glabel *label_stmt = dyn_cast <glabel *> (stmt); 2287 if (label_stmt 2288 && (FORCED_LABEL (gimple_label_label (label_stmt)) 2289 || DECL_NONLOCAL (gimple_label_label (label_stmt)))) 2290 { 2291 basic_block new_bb; 2292 gimple_stmt_iterator new_gsi; 2293 2294 /* A non-reachable non-local label may still be referenced. 2295 But it no longer needs to carry the extra semantics of 2296 non-locality. */ 2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt))) 2298 { 2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0; 2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1; 2301 } 2302 2303 new_bb = bb->prev_bb; 2304 /* Don't move any labels into ENTRY block. */ 2305 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 2306 { 2307 new_bb = single_succ (new_bb); 2308 gcc_assert (new_bb != bb); 2309 } 2310 new_gsi = gsi_start_bb (new_bb); 2311 gsi_remove (&i, false); 2312 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT); 2313 } 2314 else 2315 { 2316 /* Release SSA definitions. */ 2317 release_defs (stmt); 2318 gsi_remove (&i, true); 2319 } 2320 2321 if (gsi_end_p (i)) 2322 i = gsi_last_bb (bb); 2323 else 2324 gsi_prev (&i); 2325 } 2326 } 2327 2328 remove_phi_nodes_and_edges_for_unreachable_block (bb); 2329 bb->il.gimple.seq = NULL; 2330 bb->il.gimple.phi_nodes = NULL; 2331 } 2332 2333 2334 /* Given a basic block BB and a value VAL for use in the final statement 2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return 2336 the edge that will be taken out of the block. 2337 If VAL is NULL_TREE, then the current value of the final statement's 2338 predicate or index is used. 2339 If the value does not match a unique edge, NULL is returned. */ 2340 2341 edge 2342 find_taken_edge (basic_block bb, tree val) 2343 { 2344 gimple *stmt; 2345 2346 stmt = last_stmt (bb); 2347 2348 /* Handle ENTRY and EXIT. */ 2349 if (!stmt) 2350 return NULL; 2351 2352 if (gimple_code (stmt) == GIMPLE_COND) 2353 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val); 2354 2355 if (gimple_code (stmt) == GIMPLE_SWITCH) 2356 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val); 2357 2358 if (computed_goto_p (stmt)) 2359 { 2360 /* Only optimize if the argument is a label, if the argument is 2361 not a label then we can not construct a proper CFG. 2362 2363 It may be the case that we only need to allow the LABEL_REF to 2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to 2365 appear inside a LABEL_EXPR just to be safe. */ 2366 if (val 2367 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR) 2368 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL) 2369 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0)); 2370 } 2371 2372 /* Otherwise we only know the taken successor edge if it's unique. */ 2373 return single_succ_p (bb) ? single_succ_edge (bb) : NULL; 2374 } 2375 2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR 2377 statement, determine which of the outgoing edges will be taken out of the 2378 block. Return NULL if either edge may be taken. */ 2379 2380 static edge 2381 find_taken_edge_computed_goto (basic_block bb, tree val) 2382 { 2383 basic_block dest; 2384 edge e = NULL; 2385 2386 dest = label_to_block (val); 2387 if (dest) 2388 e = find_edge (bb, dest); 2389 2390 /* It's possible for find_edge to return NULL here on invalid code 2391 that abuses the labels-as-values extension (e.g. code that attempts to 2392 jump *between* functions via stored labels-as-values; PR 84136). 2393 If so, then we simply return that NULL for the edge. 2394 We don't currently have a way of detecting such invalid code, so we 2395 can't assert that it was the case when a NULL edge occurs here. */ 2396 2397 return e; 2398 } 2399 2400 /* Given COND_STMT and a constant value VAL for use as the predicate, 2401 determine which of the two edges will be taken out of 2402 the statement's block. Return NULL if either edge may be taken. 2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate 2404 is used. */ 2405 2406 static edge 2407 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val) 2408 { 2409 edge true_edge, false_edge; 2410 2411 if (val == NULL_TREE) 2412 { 2413 /* Use the current value of the predicate. */ 2414 if (gimple_cond_true_p (cond_stmt)) 2415 val = integer_one_node; 2416 else if (gimple_cond_false_p (cond_stmt)) 2417 val = integer_zero_node; 2418 else 2419 return NULL; 2420 } 2421 else if (TREE_CODE (val) != INTEGER_CST) 2422 return NULL; 2423 2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt), 2425 &true_edge, &false_edge); 2426 2427 return (integer_zerop (val) ? false_edge : true_edge); 2428 } 2429 2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine 2431 which edge will be taken out of the statement's block. Return NULL if any 2432 edge may be taken. 2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index 2434 is used. */ 2435 2436 static edge 2437 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val) 2438 { 2439 basic_block dest_bb; 2440 edge e; 2441 tree taken_case; 2442 2443 if (gimple_switch_num_labels (switch_stmt) == 1) 2444 taken_case = gimple_switch_default_label (switch_stmt); 2445 else 2446 { 2447 if (val == NULL_TREE) 2448 val = gimple_switch_index (switch_stmt); 2449 if (TREE_CODE (val) != INTEGER_CST) 2450 return NULL; 2451 else 2452 taken_case = find_case_label_for_value (switch_stmt, val); 2453 } 2454 dest_bb = label_to_block (CASE_LABEL (taken_case)); 2455 2456 e = find_edge (gimple_bb (switch_stmt), dest_bb); 2457 gcc_assert (e); 2458 return e; 2459 } 2460 2461 2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL. 2463 We can make optimal use here of the fact that the case labels are 2464 sorted: We can do a binary search for a case matching VAL. */ 2465 2466 static tree 2467 find_case_label_for_value (const gswitch *switch_stmt, tree val) 2468 { 2469 size_t low, high, n = gimple_switch_num_labels (switch_stmt); 2470 tree default_case = gimple_switch_default_label (switch_stmt); 2471 2472 for (low = 0, high = n; high - low > 1; ) 2473 { 2474 size_t i = (high + low) / 2; 2475 tree t = gimple_switch_label (switch_stmt, i); 2476 int cmp; 2477 2478 /* Cache the result of comparing CASE_LOW and val. */ 2479 cmp = tree_int_cst_compare (CASE_LOW (t), val); 2480 2481 if (cmp > 0) 2482 high = i; 2483 else 2484 low = i; 2485 2486 if (CASE_HIGH (t) == NULL) 2487 { 2488 /* A singe-valued case label. */ 2489 if (cmp == 0) 2490 return t; 2491 } 2492 else 2493 { 2494 /* A case range. We can only handle integer ranges. */ 2495 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) 2496 return t; 2497 } 2498 } 2499 2500 return default_case; 2501 } 2502 2503 2504 /* Dump a basic block on stderr. */ 2505 2506 void 2507 gimple_debug_bb (basic_block bb) 2508 { 2509 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS); 2510 } 2511 2512 2513 /* Dump basic block with index N on stderr. */ 2514 2515 basic_block 2516 gimple_debug_bb_n (int n) 2517 { 2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n)); 2519 return BASIC_BLOCK_FOR_FN (cfun, n); 2520 } 2521 2522 2523 /* Dump the CFG on stderr. 2524 2525 FLAGS are the same used by the tree dumping functions 2526 (see TDF_* in dumpfile.h). */ 2527 2528 void 2529 gimple_debug_cfg (dump_flags_t flags) 2530 { 2531 gimple_dump_cfg (stderr, flags); 2532 } 2533 2534 2535 /* Dump the program showing basic block boundaries on the given FILE. 2536 2537 FLAGS are the same used by the tree dumping functions (see TDF_* in 2538 tree.h). */ 2539 2540 void 2541 gimple_dump_cfg (FILE *file, dump_flags_t flags) 2542 { 2543 if (flags & TDF_DETAILS) 2544 { 2545 dump_function_header (file, current_function_decl, flags); 2546 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n", 2547 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun), 2548 last_basic_block_for_fn (cfun)); 2549 2550 brief_dump_cfg (file, flags); 2551 fprintf (file, "\n"); 2552 } 2553 2554 if (flags & TDF_STATS) 2555 dump_cfg_stats (file); 2556 2557 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS); 2558 } 2559 2560 2561 /* Dump CFG statistics on FILE. */ 2562 2563 void 2564 dump_cfg_stats (FILE *file) 2565 { 2566 static long max_num_merged_labels = 0; 2567 unsigned long size, total = 0; 2568 long num_edges; 2569 basic_block bb; 2570 const char * const fmt_str = "%-30s%-13s%12s\n"; 2571 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n"; 2572 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n"; 2573 const char * const fmt_str_3 = "%-43s%11lu%c\n"; 2574 const char *funcname = current_function_name (); 2575 2576 fprintf (file, "\nCFG Statistics for %s\n\n", funcname); 2577 2578 fprintf (file, "---------------------------------------------------------\n"); 2579 fprintf (file, fmt_str, "", " Number of ", "Memory"); 2580 fprintf (file, fmt_str, "", " instances ", "used "); 2581 fprintf (file, "---------------------------------------------------------\n"); 2582 2583 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def); 2584 total += size; 2585 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun), 2586 SCALE (size), LABEL (size)); 2587 2588 num_edges = 0; 2589 FOR_EACH_BB_FN (bb, cfun) 2590 num_edges += EDGE_COUNT (bb->succs); 2591 size = num_edges * sizeof (struct edge_def); 2592 total += size; 2593 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size)); 2594 2595 fprintf (file, "---------------------------------------------------------\n"); 2596 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total), 2597 LABEL (total)); 2598 fprintf (file, "---------------------------------------------------------\n"); 2599 fprintf (file, "\n"); 2600 2601 if (cfg_stats.num_merged_labels > max_num_merged_labels) 2602 max_num_merged_labels = cfg_stats.num_merged_labels; 2603 2604 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n", 2605 cfg_stats.num_merged_labels, max_num_merged_labels); 2606 2607 fprintf (file, "\n"); 2608 } 2609 2610 2611 /* Dump CFG statistics on stderr. Keep extern so that it's always 2612 linked in the final executable. */ 2613 2614 DEBUG_FUNCTION void 2615 debug_cfg_stats (void) 2616 { 2617 dump_cfg_stats (stderr); 2618 } 2619 2620 /*--------------------------------------------------------------------------- 2621 Miscellaneous helpers 2622 ---------------------------------------------------------------------------*/ 2623 2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control 2625 flow. Transfers of control flow associated with EH are excluded. */ 2626 2627 static bool 2628 call_can_make_abnormal_goto (gimple *t) 2629 { 2630 /* If the function has no non-local labels, then a call cannot make an 2631 abnormal transfer of control. */ 2632 if (!cfun->has_nonlocal_label 2633 && !cfun->calls_setjmp) 2634 return false; 2635 2636 /* Likewise if the call has no side effects. */ 2637 if (!gimple_has_side_effects (t)) 2638 return false; 2639 2640 /* Likewise if the called function is leaf. */ 2641 if (gimple_call_flags (t) & ECF_LEAF) 2642 return false; 2643 2644 return true; 2645 } 2646 2647 2648 /* Return true if T can make an abnormal transfer of control flow. 2649 Transfers of control flow associated with EH are excluded. */ 2650 2651 bool 2652 stmt_can_make_abnormal_goto (gimple *t) 2653 { 2654 if (computed_goto_p (t)) 2655 return true; 2656 if (is_gimple_call (t)) 2657 return call_can_make_abnormal_goto (t); 2658 return false; 2659 } 2660 2661 2662 /* Return true if T represents a stmt that always transfers control. */ 2663 2664 bool 2665 is_ctrl_stmt (gimple *t) 2666 { 2667 switch (gimple_code (t)) 2668 { 2669 case GIMPLE_COND: 2670 case GIMPLE_SWITCH: 2671 case GIMPLE_GOTO: 2672 case GIMPLE_RETURN: 2673 case GIMPLE_RESX: 2674 return true; 2675 default: 2676 return false; 2677 } 2678 } 2679 2680 2681 /* Return true if T is a statement that may alter the flow of control 2682 (e.g., a call to a non-returning function). */ 2683 2684 bool 2685 is_ctrl_altering_stmt (gimple *t) 2686 { 2687 gcc_assert (t); 2688 2689 switch (gimple_code (t)) 2690 { 2691 case GIMPLE_CALL: 2692 /* Per stmt call flag indicates whether the call could alter 2693 controlflow. */ 2694 if (gimple_call_ctrl_altering_p (t)) 2695 return true; 2696 break; 2697 2698 case GIMPLE_EH_DISPATCH: 2699 /* EH_DISPATCH branches to the individual catch handlers at 2700 this level of a try or allowed-exceptions region. It can 2701 fallthru to the next statement as well. */ 2702 return true; 2703 2704 case GIMPLE_ASM: 2705 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0) 2706 return true; 2707 break; 2708 2709 CASE_GIMPLE_OMP: 2710 /* OpenMP directives alter control flow. */ 2711 return true; 2712 2713 case GIMPLE_TRANSACTION: 2714 /* A transaction start alters control flow. */ 2715 return true; 2716 2717 default: 2718 break; 2719 } 2720 2721 /* If a statement can throw, it alters control flow. */ 2722 return stmt_can_throw_internal (t); 2723 } 2724 2725 2726 /* Return true if T is a simple local goto. */ 2727 2728 bool 2729 simple_goto_p (gimple *t) 2730 { 2731 return (gimple_code (t) == GIMPLE_GOTO 2732 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL); 2733 } 2734 2735 2736 /* Return true if STMT should start a new basic block. PREV_STMT is 2737 the statement preceding STMT. It is used when STMT is a label or a 2738 case label. Labels should only start a new basic block if their 2739 previous statement wasn't a label. Otherwise, sequence of labels 2740 would generate unnecessary basic blocks that only contain a single 2741 label. */ 2742 2743 static inline bool 2744 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt) 2745 { 2746 if (stmt == NULL) 2747 return false; 2748 2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before 2750 any nondebug stmts in the block. We don't want to start another 2751 block in this case: the debug stmt will already have started the 2752 one STMT would start if we weren't outputting debug stmts. */ 2753 if (prev_stmt && is_gimple_debug (prev_stmt)) 2754 return false; 2755 2756 /* Labels start a new basic block only if the preceding statement 2757 wasn't a label of the same type. This prevents the creation of 2758 consecutive blocks that have nothing but a single label. */ 2759 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 2760 { 2761 /* Nonlocal and computed GOTO targets always start a new block. */ 2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt)) 2763 || FORCED_LABEL (gimple_label_label (label_stmt))) 2764 return true; 2765 2766 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL) 2767 { 2768 if (DECL_NONLOCAL (gimple_label_label ( 2769 as_a <glabel *> (prev_stmt)))) 2770 return true; 2771 2772 cfg_stats.num_merged_labels++; 2773 return false; 2774 } 2775 else 2776 return true; 2777 } 2778 else if (gimple_code (stmt) == GIMPLE_CALL) 2779 { 2780 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE) 2781 /* setjmp acts similar to a nonlocal GOTO target and thus should 2782 start a new block. */ 2783 return true; 2784 if (gimple_call_internal_p (stmt, IFN_PHI) 2785 && prev_stmt 2786 && gimple_code (prev_stmt) != GIMPLE_LABEL 2787 && (gimple_code (prev_stmt) != GIMPLE_CALL 2788 || ! gimple_call_internal_p (prev_stmt, IFN_PHI))) 2789 /* PHI nodes start a new block unless preceeded by a label 2790 or another PHI. */ 2791 return true; 2792 } 2793 2794 return false; 2795 } 2796 2797 2798 /* Return true if T should end a basic block. */ 2799 2800 bool 2801 stmt_ends_bb_p (gimple *t) 2802 { 2803 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t); 2804 } 2805 2806 /* Remove block annotations and other data structures. */ 2807 2808 void 2809 delete_tree_cfg_annotations (struct function *fn) 2810 { 2811 vec_free (label_to_block_map_for_fn (fn)); 2812 } 2813 2814 /* Return the virtual phi in BB. */ 2815 2816 gphi * 2817 get_virtual_phi (basic_block bb) 2818 { 2819 for (gphi_iterator gsi = gsi_start_phis (bb); 2820 !gsi_end_p (gsi); 2821 gsi_next (&gsi)) 2822 { 2823 gphi *phi = gsi.phi (); 2824 2825 if (virtual_operand_p (PHI_RESULT (phi))) 2826 return phi; 2827 } 2828 2829 return NULL; 2830 } 2831 2832 /* Return the first statement in basic block BB. */ 2833 2834 gimple * 2835 first_stmt (basic_block bb) 2836 { 2837 gimple_stmt_iterator i = gsi_start_bb (bb); 2838 gimple *stmt = NULL; 2839 2840 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) 2841 { 2842 gsi_next (&i); 2843 stmt = NULL; 2844 } 2845 return stmt; 2846 } 2847 2848 /* Return the first non-label statement in basic block BB. */ 2849 2850 static gimple * 2851 first_non_label_stmt (basic_block bb) 2852 { 2853 gimple_stmt_iterator i = gsi_start_bb (bb); 2854 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL) 2855 gsi_next (&i); 2856 return !gsi_end_p (i) ? gsi_stmt (i) : NULL; 2857 } 2858 2859 /* Return the last statement in basic block BB. */ 2860 2861 gimple * 2862 last_stmt (basic_block bb) 2863 { 2864 gimple_stmt_iterator i = gsi_last_bb (bb); 2865 gimple *stmt = NULL; 2866 2867 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) 2868 { 2869 gsi_prev (&i); 2870 stmt = NULL; 2871 } 2872 return stmt; 2873 } 2874 2875 /* Return the last statement of an otherwise empty block. Return NULL 2876 if the block is totally empty, or if it contains more than one 2877 statement. */ 2878 2879 gimple * 2880 last_and_only_stmt (basic_block bb) 2881 { 2882 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb); 2883 gimple *last, *prev; 2884 2885 if (gsi_end_p (i)) 2886 return NULL; 2887 2888 last = gsi_stmt (i); 2889 gsi_prev_nondebug (&i); 2890 if (gsi_end_p (i)) 2891 return last; 2892 2893 /* Empty statements should no longer appear in the instruction stream. 2894 Everything that might have appeared before should be deleted by 2895 remove_useless_stmts, and the optimizers should just gsi_remove 2896 instead of smashing with build_empty_stmt. 2897 2898 Thus the only thing that should appear here in a block containing 2899 one executable statement is a label. */ 2900 prev = gsi_stmt (i); 2901 if (gimple_code (prev) == GIMPLE_LABEL) 2902 return last; 2903 else 2904 return NULL; 2905 } 2906 2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */ 2908 2909 static void 2910 reinstall_phi_args (edge new_edge, edge old_edge) 2911 { 2912 edge_var_map *vm; 2913 int i; 2914 gphi_iterator phis; 2915 2916 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge); 2917 if (!v) 2918 return; 2919 2920 for (i = 0, phis = gsi_start_phis (new_edge->dest); 2921 v->iterate (i, &vm) && !gsi_end_p (phis); 2922 i++, gsi_next (&phis)) 2923 { 2924 gphi *phi = phis.phi (); 2925 tree result = redirect_edge_var_map_result (vm); 2926 tree arg = redirect_edge_var_map_def (vm); 2927 2928 gcc_assert (result == gimple_phi_result (phi)); 2929 2930 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm)); 2931 } 2932 2933 redirect_edge_var_map_clear (old_edge); 2934 } 2935 2936 /* Returns the basic block after which the new basic block created 2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block 2938 near its "logical" location. This is of most help to humans looking 2939 at debugging dumps. */ 2940 2941 basic_block 2942 split_edge_bb_loc (edge edge_in) 2943 { 2944 basic_block dest = edge_in->dest; 2945 basic_block dest_prev = dest->prev_bb; 2946 2947 if (dest_prev) 2948 { 2949 edge e = find_edge (dest_prev, dest); 2950 if (e && !(e->flags & EDGE_COMPLEX)) 2951 return edge_in->src; 2952 } 2953 return dest_prev; 2954 } 2955 2956 /* Split a (typically critical) edge EDGE_IN. Return the new block. 2957 Abort on abnormal edges. */ 2958 2959 static basic_block 2960 gimple_split_edge (edge edge_in) 2961 { 2962 basic_block new_bb, after_bb, dest; 2963 edge new_edge, e; 2964 2965 /* Abnormal edges cannot be split. */ 2966 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); 2967 2968 dest = edge_in->dest; 2969 2970 after_bb = split_edge_bb_loc (edge_in); 2971 2972 new_bb = create_empty_bb (after_bb); 2973 new_bb->count = edge_in->count (); 2974 2975 e = redirect_edge_and_branch (edge_in, new_bb); 2976 gcc_assert (e == edge_in); 2977 2978 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU); 2979 reinstall_phi_args (new_edge, e); 2980 2981 return new_bb; 2982 } 2983 2984 2985 /* Verify properties of the address expression T with base object BASE. */ 2986 2987 static tree 2988 verify_address (tree t, tree base) 2989 { 2990 bool old_constant; 2991 bool old_side_effects; 2992 bool new_constant; 2993 bool new_side_effects; 2994 2995 old_constant = TREE_CONSTANT (t); 2996 old_side_effects = TREE_SIDE_EFFECTS (t); 2997 2998 recompute_tree_invariant_for_addr_expr (t); 2999 new_side_effects = TREE_SIDE_EFFECTS (t); 3000 new_constant = TREE_CONSTANT (t); 3001 3002 if (old_constant != new_constant) 3003 { 3004 error ("constant not recomputed when ADDR_EXPR changed"); 3005 return t; 3006 } 3007 if (old_side_effects != new_side_effects) 3008 { 3009 error ("side effects not recomputed when ADDR_EXPR changed"); 3010 return t; 3011 } 3012 3013 if (!(VAR_P (base) 3014 || TREE_CODE (base) == PARM_DECL 3015 || TREE_CODE (base) == RESULT_DECL)) 3016 return NULL_TREE; 3017 3018 if (DECL_GIMPLE_REG_P (base)) 3019 { 3020 error ("DECL_GIMPLE_REG_P set on a variable with address taken"); 3021 return base; 3022 } 3023 3024 return NULL_TREE; 3025 } 3026 3027 /* Callback for walk_tree, check that all elements with address taken are 3028 properly noticed as such. The DATA is an int* that is 1 if TP was seen 3029 inside a PHI node. */ 3030 3031 static tree 3032 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) 3033 { 3034 tree t = *tp, x; 3035 3036 if (TYPE_P (t)) 3037 *walk_subtrees = 0; 3038 3039 /* Check operand N for being valid GIMPLE and give error MSG if not. */ 3040 #define CHECK_OP(N, MSG) \ 3041 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \ 3042 { error (MSG); return TREE_OPERAND (t, N); }} while (0) 3043 3044 switch (TREE_CODE (t)) 3045 { 3046 case SSA_NAME: 3047 if (SSA_NAME_IN_FREE_LIST (t)) 3048 { 3049 error ("SSA name in freelist but still referenced"); 3050 return *tp; 3051 } 3052 break; 3053 3054 case PARM_DECL: 3055 case VAR_DECL: 3056 case RESULT_DECL: 3057 { 3058 tree context = decl_function_context (t); 3059 if (context != cfun->decl 3060 && !SCOPE_FILE_SCOPE_P (context) 3061 && !TREE_STATIC (t) 3062 && !DECL_EXTERNAL (t)) 3063 { 3064 error ("Local declaration from a different function"); 3065 return t; 3066 } 3067 } 3068 break; 3069 3070 case INDIRECT_REF: 3071 error ("INDIRECT_REF in gimple IL"); 3072 return t; 3073 3074 case MEM_REF: 3075 x = TREE_OPERAND (t, 0); 3076 if (!POINTER_TYPE_P (TREE_TYPE (x)) 3077 || !is_gimple_mem_ref_addr (x)) 3078 { 3079 error ("invalid first operand of MEM_REF"); 3080 return x; 3081 } 3082 if (!poly_int_tree_p (TREE_OPERAND (t, 1)) 3083 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1)))) 3084 { 3085 error ("invalid offset operand of MEM_REF"); 3086 return TREE_OPERAND (t, 1); 3087 } 3088 if (TREE_CODE (x) == ADDR_EXPR) 3089 { 3090 tree va = verify_address (x, TREE_OPERAND (x, 0)); 3091 if (va) 3092 return va; 3093 x = TREE_OPERAND (x, 0); 3094 } 3095 walk_tree (&x, verify_expr, data, NULL); 3096 *walk_subtrees = 0; 3097 break; 3098 3099 case ASSERT_EXPR: 3100 x = fold (ASSERT_EXPR_COND (t)); 3101 if (x == boolean_false_node) 3102 { 3103 error ("ASSERT_EXPR with an always-false condition"); 3104 return *tp; 3105 } 3106 break; 3107 3108 case MODIFY_EXPR: 3109 error ("MODIFY_EXPR not expected while having tuples"); 3110 return *tp; 3111 3112 case ADDR_EXPR: 3113 { 3114 tree tem; 3115 3116 gcc_assert (is_gimple_address (t)); 3117 3118 /* Skip any references (they will be checked when we recurse down the 3119 tree) and ensure that any variable used as a prefix is marked 3120 addressable. */ 3121 for (x = TREE_OPERAND (t, 0); 3122 handled_component_p (x); 3123 x = TREE_OPERAND (x, 0)) 3124 ; 3125 3126 if ((tem = verify_address (t, x))) 3127 return tem; 3128 3129 if (!(VAR_P (x) 3130 || TREE_CODE (x) == PARM_DECL 3131 || TREE_CODE (x) == RESULT_DECL)) 3132 return NULL; 3133 3134 if (!TREE_ADDRESSABLE (x)) 3135 { 3136 error ("address taken, but ADDRESSABLE bit not set"); 3137 return x; 3138 } 3139 3140 break; 3141 } 3142 3143 case COND_EXPR: 3144 x = COND_EXPR_COND (t); 3145 if (!INTEGRAL_TYPE_P (TREE_TYPE (x))) 3146 { 3147 error ("non-integral used in condition"); 3148 return x; 3149 } 3150 if (!is_gimple_condexpr (x)) 3151 { 3152 error ("invalid conditional operand"); 3153 return x; 3154 } 3155 break; 3156 3157 case NON_LVALUE_EXPR: 3158 case TRUTH_NOT_EXPR: 3159 gcc_unreachable (); 3160 3161 CASE_CONVERT: 3162 case FIX_TRUNC_EXPR: 3163 case FLOAT_EXPR: 3164 case NEGATE_EXPR: 3165 case ABS_EXPR: 3166 case BIT_NOT_EXPR: 3167 CHECK_OP (0, "invalid operand to unary operator"); 3168 break; 3169 3170 case REALPART_EXPR: 3171 case IMAGPART_EXPR: 3172 case BIT_FIELD_REF: 3173 if (!is_gimple_reg_type (TREE_TYPE (t))) 3174 { 3175 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR"); 3176 return t; 3177 } 3178 3179 if (TREE_CODE (t) == BIT_FIELD_REF) 3180 { 3181 tree t0 = TREE_OPERAND (t, 0); 3182 tree t1 = TREE_OPERAND (t, 1); 3183 tree t2 = TREE_OPERAND (t, 2); 3184 poly_uint64 size, bitpos; 3185 if (!poly_int_tree_p (t1, &size) 3186 || !poly_int_tree_p (t2, &bitpos) 3187 || !types_compatible_p (bitsizetype, TREE_TYPE (t1)) 3188 || !types_compatible_p (bitsizetype, TREE_TYPE (t2))) 3189 { 3190 error ("invalid position or size operand to BIT_FIELD_REF"); 3191 return t; 3192 } 3193 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 3194 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size)) 3195 { 3196 error ("integral result type precision does not match " 3197 "field size of BIT_FIELD_REF"); 3198 return t; 3199 } 3200 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t)) 3201 && TYPE_MODE (TREE_TYPE (t)) != BLKmode 3202 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))), 3203 size)) 3204 { 3205 error ("mode size of non-integral result does not " 3206 "match field size of BIT_FIELD_REF"); 3207 return t; 3208 } 3209 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0)) 3210 && maybe_gt (size + bitpos, 3211 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0))))) 3212 { 3213 error ("position plus size exceeds size of referenced object in " 3214 "BIT_FIELD_REF"); 3215 return t; 3216 } 3217 } 3218 t = TREE_OPERAND (t, 0); 3219 3220 /* Fall-through. */ 3221 case COMPONENT_REF: 3222 case ARRAY_REF: 3223 case ARRAY_RANGE_REF: 3224 case VIEW_CONVERT_EXPR: 3225 /* We have a nest of references. Verify that each of the operands 3226 that determine where to reference is either a constant or a variable, 3227 verify that the base is valid, and then show we've already checked 3228 the subtrees. */ 3229 while (handled_component_p (t)) 3230 { 3231 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2)) 3232 CHECK_OP (2, "invalid COMPONENT_REF offset operator"); 3233 else if (TREE_CODE (t) == ARRAY_REF 3234 || TREE_CODE (t) == ARRAY_RANGE_REF) 3235 { 3236 CHECK_OP (1, "invalid array index"); 3237 if (TREE_OPERAND (t, 2)) 3238 CHECK_OP (2, "invalid array lower bound"); 3239 if (TREE_OPERAND (t, 3)) 3240 CHECK_OP (3, "invalid array stride"); 3241 } 3242 else if (TREE_CODE (t) == BIT_FIELD_REF 3243 || TREE_CODE (t) == REALPART_EXPR 3244 || TREE_CODE (t) == IMAGPART_EXPR) 3245 { 3246 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or " 3247 "REALPART_EXPR"); 3248 return t; 3249 } 3250 3251 t = TREE_OPERAND (t, 0); 3252 } 3253 3254 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t)) 3255 { 3256 error ("invalid reference prefix"); 3257 return t; 3258 } 3259 walk_tree (&t, verify_expr, data, NULL); 3260 *walk_subtrees = 0; 3261 break; 3262 case PLUS_EXPR: 3263 case MINUS_EXPR: 3264 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using 3265 POINTER_PLUS_EXPR. */ 3266 if (POINTER_TYPE_P (TREE_TYPE (t))) 3267 { 3268 error ("invalid operand to plus/minus, type is a pointer"); 3269 return t; 3270 } 3271 CHECK_OP (0, "invalid operand to binary operator"); 3272 CHECK_OP (1, "invalid operand to binary operator"); 3273 break; 3274 3275 case POINTER_DIFF_EXPR: 3276 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))) 3277 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1)))) 3278 { 3279 error ("invalid operand to pointer diff, operand is not a pointer"); 3280 return t; 3281 } 3282 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE 3283 || TYPE_UNSIGNED (TREE_TYPE (t)) 3284 || (TYPE_PRECISION (TREE_TYPE (t)) 3285 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0))))) 3286 { 3287 error ("invalid type for pointer diff"); 3288 return t; 3289 } 3290 CHECK_OP (0, "invalid operand to pointer diff"); 3291 CHECK_OP (1, "invalid operand to pointer diff"); 3292 break; 3293 3294 case POINTER_PLUS_EXPR: 3295 /* Check to make sure the first operand is a pointer or reference type. */ 3296 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))) 3297 { 3298 error ("invalid operand to pointer plus, first operand is not a pointer"); 3299 return t; 3300 } 3301 /* Check to make sure the second operand is a ptrofftype. */ 3302 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1)))) 3303 { 3304 error ("invalid operand to pointer plus, second operand is not an " 3305 "integer type of appropriate width"); 3306 return t; 3307 } 3308 /* FALLTHROUGH */ 3309 case LT_EXPR: 3310 case LE_EXPR: 3311 case GT_EXPR: 3312 case GE_EXPR: 3313 case EQ_EXPR: 3314 case NE_EXPR: 3315 case UNORDERED_EXPR: 3316 case ORDERED_EXPR: 3317 case UNLT_EXPR: 3318 case UNLE_EXPR: 3319 case UNGT_EXPR: 3320 case UNGE_EXPR: 3321 case UNEQ_EXPR: 3322 case LTGT_EXPR: 3323 case MULT_EXPR: 3324 case TRUNC_DIV_EXPR: 3325 case CEIL_DIV_EXPR: 3326 case FLOOR_DIV_EXPR: 3327 case ROUND_DIV_EXPR: 3328 case TRUNC_MOD_EXPR: 3329 case CEIL_MOD_EXPR: 3330 case FLOOR_MOD_EXPR: 3331 case ROUND_MOD_EXPR: 3332 case RDIV_EXPR: 3333 case EXACT_DIV_EXPR: 3334 case MIN_EXPR: 3335 case MAX_EXPR: 3336 case LSHIFT_EXPR: 3337 case RSHIFT_EXPR: 3338 case LROTATE_EXPR: 3339 case RROTATE_EXPR: 3340 case BIT_IOR_EXPR: 3341 case BIT_XOR_EXPR: 3342 case BIT_AND_EXPR: 3343 CHECK_OP (0, "invalid operand to binary operator"); 3344 CHECK_OP (1, "invalid operand to binary operator"); 3345 break; 3346 3347 case CONSTRUCTOR: 3348 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) 3349 *walk_subtrees = 0; 3350 break; 3351 3352 case CASE_LABEL_EXPR: 3353 if (CASE_CHAIN (t)) 3354 { 3355 error ("invalid CASE_CHAIN"); 3356 return t; 3357 } 3358 break; 3359 3360 default: 3361 break; 3362 } 3363 return NULL; 3364 3365 #undef CHECK_OP 3366 } 3367 3368 3369 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference. 3370 Returns true if there is an error, otherwise false. */ 3371 3372 static bool 3373 verify_types_in_gimple_min_lval (tree expr) 3374 { 3375 tree op; 3376 3377 if (is_gimple_id (expr)) 3378 return false; 3379 3380 if (TREE_CODE (expr) != TARGET_MEM_REF 3381 && TREE_CODE (expr) != MEM_REF) 3382 { 3383 error ("invalid expression for min lvalue"); 3384 return true; 3385 } 3386 3387 /* TARGET_MEM_REFs are strange beasts. */ 3388 if (TREE_CODE (expr) == TARGET_MEM_REF) 3389 return false; 3390 3391 op = TREE_OPERAND (expr, 0); 3392 if (!is_gimple_val (op)) 3393 { 3394 error ("invalid operand in indirect reference"); 3395 debug_generic_stmt (op); 3396 return true; 3397 } 3398 /* Memory references now generally can involve a value conversion. */ 3399 3400 return false; 3401 } 3402 3403 /* Verify if EXPR is a valid GIMPLE reference expression. If 3404 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true 3405 if there is an error, otherwise false. */ 3406 3407 static bool 3408 verify_types_in_gimple_reference (tree expr, bool require_lvalue) 3409 { 3410 while (handled_component_p (expr)) 3411 { 3412 tree op = TREE_OPERAND (expr, 0); 3413 3414 if (TREE_CODE (expr) == ARRAY_REF 3415 || TREE_CODE (expr) == ARRAY_RANGE_REF) 3416 { 3417 if (!is_gimple_val (TREE_OPERAND (expr, 1)) 3418 || (TREE_OPERAND (expr, 2) 3419 && !is_gimple_val (TREE_OPERAND (expr, 2))) 3420 || (TREE_OPERAND (expr, 3) 3421 && !is_gimple_val (TREE_OPERAND (expr, 3)))) 3422 { 3423 error ("invalid operands to array reference"); 3424 debug_generic_stmt (expr); 3425 return true; 3426 } 3427 } 3428 3429 /* Verify if the reference array element types are compatible. */ 3430 if (TREE_CODE (expr) == ARRAY_REF 3431 && !useless_type_conversion_p (TREE_TYPE (expr), 3432 TREE_TYPE (TREE_TYPE (op)))) 3433 { 3434 error ("type mismatch in array reference"); 3435 debug_generic_stmt (TREE_TYPE (expr)); 3436 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3437 return true; 3438 } 3439 if (TREE_CODE (expr) == ARRAY_RANGE_REF 3440 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)), 3441 TREE_TYPE (TREE_TYPE (op)))) 3442 { 3443 error ("type mismatch in array range reference"); 3444 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr))); 3445 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3446 return true; 3447 } 3448 3449 if ((TREE_CODE (expr) == REALPART_EXPR 3450 || TREE_CODE (expr) == IMAGPART_EXPR) 3451 && !useless_type_conversion_p (TREE_TYPE (expr), 3452 TREE_TYPE (TREE_TYPE (op)))) 3453 { 3454 error ("type mismatch in real/imagpart reference"); 3455 debug_generic_stmt (TREE_TYPE (expr)); 3456 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3457 return true; 3458 } 3459 3460 if (TREE_CODE (expr) == COMPONENT_REF 3461 && !useless_type_conversion_p (TREE_TYPE (expr), 3462 TREE_TYPE (TREE_OPERAND (expr, 1)))) 3463 { 3464 error ("type mismatch in component reference"); 3465 debug_generic_stmt (TREE_TYPE (expr)); 3466 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1))); 3467 return true; 3468 } 3469 3470 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) 3471 { 3472 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check 3473 that their operand is not an SSA name or an invariant when 3474 requiring an lvalue (this usually means there is a SRA or IPA-SRA 3475 bug). Otherwise there is nothing to verify, gross mismatches at 3476 most invoke undefined behavior. */ 3477 if (require_lvalue 3478 && (TREE_CODE (op) == SSA_NAME 3479 || is_gimple_min_invariant (op))) 3480 { 3481 error ("conversion of an SSA_NAME on the left hand side"); 3482 debug_generic_stmt (expr); 3483 return true; 3484 } 3485 else if (TREE_CODE (op) == SSA_NAME 3486 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op))) 3487 { 3488 error ("conversion of register to a different size"); 3489 debug_generic_stmt (expr); 3490 return true; 3491 } 3492 else if (!handled_component_p (op)) 3493 return false; 3494 } 3495 3496 expr = op; 3497 } 3498 3499 if (TREE_CODE (expr) == MEM_REF) 3500 { 3501 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))) 3502 { 3503 error ("invalid address operand in MEM_REF"); 3504 debug_generic_stmt (expr); 3505 return true; 3506 } 3507 if (!poly_int_tree_p (TREE_OPERAND (expr, 1)) 3508 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) 3509 { 3510 error ("invalid offset operand in MEM_REF"); 3511 debug_generic_stmt (expr); 3512 return true; 3513 } 3514 } 3515 else if (TREE_CODE (expr) == TARGET_MEM_REF) 3516 { 3517 if (!TMR_BASE (expr) 3518 || !is_gimple_mem_ref_addr (TMR_BASE (expr))) 3519 { 3520 error ("invalid address operand in TARGET_MEM_REF"); 3521 return true; 3522 } 3523 if (!TMR_OFFSET (expr) 3524 || !poly_int_tree_p (TMR_OFFSET (expr)) 3525 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr)))) 3526 { 3527 error ("invalid offset operand in TARGET_MEM_REF"); 3528 debug_generic_stmt (expr); 3529 return true; 3530 } 3531 } 3532 3533 return ((require_lvalue || !is_gimple_min_invariant (expr)) 3534 && verify_types_in_gimple_min_lval (expr)); 3535 } 3536 3537 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ) 3538 list of pointer-to types that is trivially convertible to DEST. */ 3539 3540 static bool 3541 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj) 3542 { 3543 tree src; 3544 3545 if (!TYPE_POINTER_TO (src_obj)) 3546 return true; 3547 3548 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src)) 3549 if (useless_type_conversion_p (dest, src)) 3550 return true; 3551 3552 return false; 3553 } 3554 3555 /* Return true if TYPE1 is a fixed-point type and if conversions to and 3556 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */ 3557 3558 static bool 3559 valid_fixed_convert_types_p (tree type1, tree type2) 3560 { 3561 return (FIXED_POINT_TYPE_P (type1) 3562 && (INTEGRAL_TYPE_P (type2) 3563 || SCALAR_FLOAT_TYPE_P (type2) 3564 || FIXED_POINT_TYPE_P (type2))); 3565 } 3566 3567 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there 3568 is a problem, otherwise false. */ 3569 3570 static bool 3571 verify_gimple_call (gcall *stmt) 3572 { 3573 tree fn = gimple_call_fn (stmt); 3574 tree fntype, fndecl; 3575 unsigned i; 3576 3577 if (gimple_call_internal_p (stmt)) 3578 { 3579 if (fn) 3580 { 3581 error ("gimple call has two targets"); 3582 debug_generic_stmt (fn); 3583 return true; 3584 } 3585 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/ 3586 else if (gimple_call_internal_fn (stmt) == IFN_PHI) 3587 { 3588 return false; 3589 } 3590 } 3591 else 3592 { 3593 if (!fn) 3594 { 3595 error ("gimple call has no target"); 3596 return true; 3597 } 3598 } 3599 3600 if (fn && !is_gimple_call_addr (fn)) 3601 { 3602 error ("invalid function in gimple call"); 3603 debug_generic_stmt (fn); 3604 return true; 3605 } 3606 3607 if (fn 3608 && (!POINTER_TYPE_P (TREE_TYPE (fn)) 3609 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE 3610 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))) 3611 { 3612 error ("non-function in gimple call"); 3613 return true; 3614 } 3615 3616 fndecl = gimple_call_fndecl (stmt); 3617 if (fndecl 3618 && TREE_CODE (fndecl) == FUNCTION_DECL 3619 && DECL_LOOPING_CONST_OR_PURE_P (fndecl) 3620 && !DECL_PURE_P (fndecl) 3621 && !TREE_READONLY (fndecl)) 3622 { 3623 error ("invalid pure const state for function"); 3624 return true; 3625 } 3626 3627 tree lhs = gimple_call_lhs (stmt); 3628 if (lhs 3629 && (!is_gimple_lvalue (lhs) 3630 || verify_types_in_gimple_reference (lhs, true))) 3631 { 3632 error ("invalid LHS in gimple call"); 3633 return true; 3634 } 3635 3636 if (gimple_call_ctrl_altering_p (stmt) 3637 && gimple_call_noreturn_p (stmt) 3638 && should_remove_lhs_p (lhs)) 3639 { 3640 error ("LHS in noreturn call"); 3641 return true; 3642 } 3643 3644 fntype = gimple_call_fntype (stmt); 3645 if (fntype 3646 && lhs 3647 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype)) 3648 /* ??? At least C++ misses conversions at assignments from 3649 void * call results. 3650 For now simply allow arbitrary pointer type conversions. */ 3651 && !(POINTER_TYPE_P (TREE_TYPE (lhs)) 3652 && POINTER_TYPE_P (TREE_TYPE (fntype)))) 3653 { 3654 error ("invalid conversion in gimple call"); 3655 debug_generic_stmt (TREE_TYPE (lhs)); 3656 debug_generic_stmt (TREE_TYPE (fntype)); 3657 return true; 3658 } 3659 3660 if (gimple_call_chain (stmt) 3661 && !is_gimple_val (gimple_call_chain (stmt))) 3662 { 3663 error ("invalid static chain in gimple call"); 3664 debug_generic_stmt (gimple_call_chain (stmt)); 3665 return true; 3666 } 3667 3668 /* If there is a static chain argument, the call should either be 3669 indirect, or the decl should have DECL_STATIC_CHAIN set. */ 3670 if (gimple_call_chain (stmt) 3671 && fndecl 3672 && !DECL_STATIC_CHAIN (fndecl)) 3673 { 3674 error ("static chain with function that doesn%'t use one"); 3675 return true; 3676 } 3677 3678 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) 3679 { 3680 switch (DECL_FUNCTION_CODE (fndecl)) 3681 { 3682 case BUILT_IN_UNREACHABLE: 3683 case BUILT_IN_TRAP: 3684 if (gimple_call_num_args (stmt) > 0) 3685 { 3686 /* Built-in unreachable with parameters might not be caught by 3687 undefined behavior sanitizer. Front-ends do check users do not 3688 call them that way but we also produce calls to 3689 __builtin_unreachable internally, for example when IPA figures 3690 out a call cannot happen in a legal program. In such cases, 3691 we must make sure arguments are stripped off. */ 3692 error ("__builtin_unreachable or __builtin_trap call with " 3693 "arguments"); 3694 return true; 3695 } 3696 break; 3697 default: 3698 break; 3699 } 3700 } 3701 3702 /* ??? The C frontend passes unpromoted arguments in case it 3703 didn't see a function declaration before the call. So for now 3704 leave the call arguments mostly unverified. Once we gimplify 3705 unit-at-a-time we have a chance to fix this. */ 3706 3707 for (i = 0; i < gimple_call_num_args (stmt); ++i) 3708 { 3709 tree arg = gimple_call_arg (stmt, i); 3710 if ((is_gimple_reg_type (TREE_TYPE (arg)) 3711 && !is_gimple_val (arg)) 3712 || (!is_gimple_reg_type (TREE_TYPE (arg)) 3713 && !is_gimple_lvalue (arg))) 3714 { 3715 error ("invalid argument to gimple call"); 3716 debug_generic_expr (arg); 3717 return true; 3718 } 3719 } 3720 3721 return false; 3722 } 3723 3724 /* Verifies the gimple comparison with the result type TYPE and 3725 the operands OP0 and OP1, comparison code is CODE. */ 3726 3727 static bool 3728 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code) 3729 { 3730 tree op0_type = TREE_TYPE (op0); 3731 tree op1_type = TREE_TYPE (op1); 3732 3733 if (!is_gimple_val (op0) || !is_gimple_val (op1)) 3734 { 3735 error ("invalid operands in gimple comparison"); 3736 return true; 3737 } 3738 3739 /* For comparisons we do not have the operations type as the 3740 effective type the comparison is carried out in. Instead 3741 we require that either the first operand is trivially 3742 convertible into the second, or the other way around. 3743 Because we special-case pointers to void we allow 3744 comparisons of pointers with the same mode as well. */ 3745 if (!useless_type_conversion_p (op0_type, op1_type) 3746 && !useless_type_conversion_p (op1_type, op0_type) 3747 && (!POINTER_TYPE_P (op0_type) 3748 || !POINTER_TYPE_P (op1_type) 3749 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type))) 3750 { 3751 error ("mismatching comparison operand types"); 3752 debug_generic_expr (op0_type); 3753 debug_generic_expr (op1_type); 3754 return true; 3755 } 3756 3757 /* The resulting type of a comparison may be an effective boolean type. */ 3758 if (INTEGRAL_TYPE_P (type) 3759 && (TREE_CODE (type) == BOOLEAN_TYPE 3760 || TYPE_PRECISION (type) == 1)) 3761 { 3762 if ((TREE_CODE (op0_type) == VECTOR_TYPE 3763 || TREE_CODE (op1_type) == VECTOR_TYPE) 3764 && code != EQ_EXPR && code != NE_EXPR 3765 && !VECTOR_BOOLEAN_TYPE_P (op0_type) 3766 && !VECTOR_INTEGER_TYPE_P (op0_type)) 3767 { 3768 error ("unsupported operation or type for vector comparison" 3769 " returning a boolean"); 3770 debug_generic_expr (op0_type); 3771 debug_generic_expr (op1_type); 3772 return true; 3773 } 3774 } 3775 /* Or a boolean vector type with the same element count 3776 as the comparison operand types. */ 3777 else if (TREE_CODE (type) == VECTOR_TYPE 3778 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE) 3779 { 3780 if (TREE_CODE (op0_type) != VECTOR_TYPE 3781 || TREE_CODE (op1_type) != VECTOR_TYPE) 3782 { 3783 error ("non-vector operands in vector comparison"); 3784 debug_generic_expr (op0_type); 3785 debug_generic_expr (op1_type); 3786 return true; 3787 } 3788 3789 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type), 3790 TYPE_VECTOR_SUBPARTS (op0_type))) 3791 { 3792 error ("invalid vector comparison resulting type"); 3793 debug_generic_expr (type); 3794 return true; 3795 } 3796 } 3797 else 3798 { 3799 error ("bogus comparison result type"); 3800 debug_generic_expr (type); 3801 return true; 3802 } 3803 3804 return false; 3805 } 3806 3807 /* Verify a gimple assignment statement STMT with an unary rhs. 3808 Returns true if anything is wrong. */ 3809 3810 static bool 3811 verify_gimple_assign_unary (gassign *stmt) 3812 { 3813 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 3814 tree lhs = gimple_assign_lhs (stmt); 3815 tree lhs_type = TREE_TYPE (lhs); 3816 tree rhs1 = gimple_assign_rhs1 (stmt); 3817 tree rhs1_type = TREE_TYPE (rhs1); 3818 3819 if (!is_gimple_reg (lhs)) 3820 { 3821 error ("non-register as LHS of unary operation"); 3822 return true; 3823 } 3824 3825 if (!is_gimple_val (rhs1)) 3826 { 3827 error ("invalid operand in unary operation"); 3828 return true; 3829 } 3830 3831 /* First handle conversions. */ 3832 switch (rhs_code) 3833 { 3834 CASE_CONVERT: 3835 { 3836 /* Allow conversions from pointer type to integral type only if 3837 there is no sign or zero extension involved. 3838 For targets were the precision of ptrofftype doesn't match that 3839 of pointers we need to allow arbitrary conversions to ptrofftype. */ 3840 if ((POINTER_TYPE_P (lhs_type) 3841 && INTEGRAL_TYPE_P (rhs1_type)) 3842 || (POINTER_TYPE_P (rhs1_type) 3843 && INTEGRAL_TYPE_P (lhs_type) 3844 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type) 3845 || ptrofftype_p (sizetype)))) 3846 return false; 3847 3848 /* Allow conversion from integral to offset type and vice versa. */ 3849 if ((TREE_CODE (lhs_type) == OFFSET_TYPE 3850 && INTEGRAL_TYPE_P (rhs1_type)) 3851 || (INTEGRAL_TYPE_P (lhs_type) 3852 && TREE_CODE (rhs1_type) == OFFSET_TYPE)) 3853 return false; 3854 3855 /* Otherwise assert we are converting between types of the 3856 same kind. */ 3857 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type)) 3858 { 3859 error ("invalid types in nop conversion"); 3860 debug_generic_expr (lhs_type); 3861 debug_generic_expr (rhs1_type); 3862 return true; 3863 } 3864 3865 return false; 3866 } 3867 3868 case ADDR_SPACE_CONVERT_EXPR: 3869 { 3870 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type) 3871 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type)) 3872 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type)))) 3873 { 3874 error ("invalid types in address space conversion"); 3875 debug_generic_expr (lhs_type); 3876 debug_generic_expr (rhs1_type); 3877 return true; 3878 } 3879 3880 return false; 3881 } 3882 3883 case FIXED_CONVERT_EXPR: 3884 { 3885 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type) 3886 && !valid_fixed_convert_types_p (rhs1_type, lhs_type)) 3887 { 3888 error ("invalid types in fixed-point conversion"); 3889 debug_generic_expr (lhs_type); 3890 debug_generic_expr (rhs1_type); 3891 return true; 3892 } 3893 3894 return false; 3895 } 3896 3897 case FLOAT_EXPR: 3898 { 3899 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type)) 3900 && (!VECTOR_INTEGER_TYPE_P (rhs1_type) 3901 || !VECTOR_FLOAT_TYPE_P (lhs_type))) 3902 { 3903 error ("invalid types in conversion to floating point"); 3904 debug_generic_expr (lhs_type); 3905 debug_generic_expr (rhs1_type); 3906 return true; 3907 } 3908 3909 return false; 3910 } 3911 3912 case FIX_TRUNC_EXPR: 3913 { 3914 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type)) 3915 && (!VECTOR_INTEGER_TYPE_P (lhs_type) 3916 || !VECTOR_FLOAT_TYPE_P (rhs1_type))) 3917 { 3918 error ("invalid types in conversion to integer"); 3919 debug_generic_expr (lhs_type); 3920 debug_generic_expr (rhs1_type); 3921 return true; 3922 } 3923 3924 return false; 3925 } 3926 3927 case VEC_UNPACK_HI_EXPR: 3928 case VEC_UNPACK_LO_EXPR: 3929 case VEC_UNPACK_FLOAT_HI_EXPR: 3930 case VEC_UNPACK_FLOAT_LO_EXPR: 3931 /* FIXME. */ 3932 return false; 3933 3934 case NEGATE_EXPR: 3935 case ABS_EXPR: 3936 case BIT_NOT_EXPR: 3937 case PAREN_EXPR: 3938 case CONJ_EXPR: 3939 break; 3940 3941 case VEC_DUPLICATE_EXPR: 3942 if (TREE_CODE (lhs_type) != VECTOR_TYPE 3943 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type)) 3944 { 3945 error ("vec_duplicate should be from a scalar to a like vector"); 3946 debug_generic_expr (lhs_type); 3947 debug_generic_expr (rhs1_type); 3948 return true; 3949 } 3950 return false; 3951 3952 default: 3953 gcc_unreachable (); 3954 } 3955 3956 /* For the remaining codes assert there is no conversion involved. */ 3957 if (!useless_type_conversion_p (lhs_type, rhs1_type)) 3958 { 3959 error ("non-trivial conversion in unary operation"); 3960 debug_generic_expr (lhs_type); 3961 debug_generic_expr (rhs1_type); 3962 return true; 3963 } 3964 3965 return false; 3966 } 3967 3968 /* Verify a gimple assignment statement STMT with a binary rhs. 3969 Returns true if anything is wrong. */ 3970 3971 static bool 3972 verify_gimple_assign_binary (gassign *stmt) 3973 { 3974 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 3975 tree lhs = gimple_assign_lhs (stmt); 3976 tree lhs_type = TREE_TYPE (lhs); 3977 tree rhs1 = gimple_assign_rhs1 (stmt); 3978 tree rhs1_type = TREE_TYPE (rhs1); 3979 tree rhs2 = gimple_assign_rhs2 (stmt); 3980 tree rhs2_type = TREE_TYPE (rhs2); 3981 3982 if (!is_gimple_reg (lhs)) 3983 { 3984 error ("non-register as LHS of binary operation"); 3985 return true; 3986 } 3987 3988 if (!is_gimple_val (rhs1) 3989 || !is_gimple_val (rhs2)) 3990 { 3991 error ("invalid operands in binary operation"); 3992 return true; 3993 } 3994 3995 /* First handle operations that involve different types. */ 3996 switch (rhs_code) 3997 { 3998 case COMPLEX_EXPR: 3999 { 4000 if (TREE_CODE (lhs_type) != COMPLEX_TYPE 4001 || !(INTEGRAL_TYPE_P (rhs1_type) 4002 || SCALAR_FLOAT_TYPE_P (rhs1_type)) 4003 || !(INTEGRAL_TYPE_P (rhs2_type) 4004 || SCALAR_FLOAT_TYPE_P (rhs2_type))) 4005 { 4006 error ("type mismatch in complex expression"); 4007 debug_generic_expr (lhs_type); 4008 debug_generic_expr (rhs1_type); 4009 debug_generic_expr (rhs2_type); 4010 return true; 4011 } 4012 4013 return false; 4014 } 4015 4016 case LSHIFT_EXPR: 4017 case RSHIFT_EXPR: 4018 case LROTATE_EXPR: 4019 case RROTATE_EXPR: 4020 { 4021 /* Shifts and rotates are ok on integral types, fixed point 4022 types and integer vector types. */ 4023 if ((!INTEGRAL_TYPE_P (rhs1_type) 4024 && !FIXED_POINT_TYPE_P (rhs1_type) 4025 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE 4026 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) 4027 || (!INTEGRAL_TYPE_P (rhs2_type) 4028 /* Vector shifts of vectors are also ok. */ 4029 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE 4030 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) 4031 && TREE_CODE (rhs2_type) == VECTOR_TYPE 4032 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) 4033 || !useless_type_conversion_p (lhs_type, rhs1_type)) 4034 { 4035 error ("type mismatch in shift expression"); 4036 debug_generic_expr (lhs_type); 4037 debug_generic_expr (rhs1_type); 4038 debug_generic_expr (rhs2_type); 4039 return true; 4040 } 4041 4042 return false; 4043 } 4044 4045 case WIDEN_LSHIFT_EXPR: 4046 { 4047 if (!INTEGRAL_TYPE_P (lhs_type) 4048 || !INTEGRAL_TYPE_P (rhs1_type) 4049 || TREE_CODE (rhs2) != INTEGER_CST 4050 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))) 4051 { 4052 error ("type mismatch in widening vector shift expression"); 4053 debug_generic_expr (lhs_type); 4054 debug_generic_expr (rhs1_type); 4055 debug_generic_expr (rhs2_type); 4056 return true; 4057 } 4058 4059 return false; 4060 } 4061 4062 case VEC_WIDEN_LSHIFT_HI_EXPR: 4063 case VEC_WIDEN_LSHIFT_LO_EXPR: 4064 { 4065 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4066 || TREE_CODE (lhs_type) != VECTOR_TYPE 4067 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) 4068 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) 4069 || TREE_CODE (rhs2) != INTEGER_CST 4070 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type)) 4071 > TYPE_PRECISION (TREE_TYPE (lhs_type)))) 4072 { 4073 error ("type mismatch in widening vector shift expression"); 4074 debug_generic_expr (lhs_type); 4075 debug_generic_expr (rhs1_type); 4076 debug_generic_expr (rhs2_type); 4077 return true; 4078 } 4079 4080 return false; 4081 } 4082 4083 case PLUS_EXPR: 4084 case MINUS_EXPR: 4085 { 4086 tree lhs_etype = lhs_type; 4087 tree rhs1_etype = rhs1_type; 4088 tree rhs2_etype = rhs2_type; 4089 if (TREE_CODE (lhs_type) == VECTOR_TYPE) 4090 { 4091 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4092 || TREE_CODE (rhs2_type) != VECTOR_TYPE) 4093 { 4094 error ("invalid non-vector operands to vector valued plus"); 4095 return true; 4096 } 4097 lhs_etype = TREE_TYPE (lhs_type); 4098 rhs1_etype = TREE_TYPE (rhs1_type); 4099 rhs2_etype = TREE_TYPE (rhs2_type); 4100 } 4101 if (POINTER_TYPE_P (lhs_etype) 4102 || POINTER_TYPE_P (rhs1_etype) 4103 || POINTER_TYPE_P (rhs2_etype)) 4104 { 4105 error ("invalid (pointer) operands to plus/minus"); 4106 return true; 4107 } 4108 4109 /* Continue with generic binary expression handling. */ 4110 break; 4111 } 4112 4113 case POINTER_PLUS_EXPR: 4114 { 4115 if (!POINTER_TYPE_P (rhs1_type) 4116 || !useless_type_conversion_p (lhs_type, rhs1_type) 4117 || !ptrofftype_p (rhs2_type)) 4118 { 4119 error ("type mismatch in pointer plus expression"); 4120 debug_generic_stmt (lhs_type); 4121 debug_generic_stmt (rhs1_type); 4122 debug_generic_stmt (rhs2_type); 4123 return true; 4124 } 4125 4126 return false; 4127 } 4128 4129 case POINTER_DIFF_EXPR: 4130 { 4131 if (!POINTER_TYPE_P (rhs1_type) 4132 || !POINTER_TYPE_P (rhs2_type) 4133 /* Because we special-case pointers to void we allow difference 4134 of arbitrary pointers with the same mode. */ 4135 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type) 4136 || TREE_CODE (lhs_type) != INTEGER_TYPE 4137 || TYPE_UNSIGNED (lhs_type) 4138 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type)) 4139 { 4140 error ("type mismatch in pointer diff expression"); 4141 debug_generic_stmt (lhs_type); 4142 debug_generic_stmt (rhs1_type); 4143 debug_generic_stmt (rhs2_type); 4144 return true; 4145 } 4146 4147 return false; 4148 } 4149 4150 case TRUTH_ANDIF_EXPR: 4151 case TRUTH_ORIF_EXPR: 4152 case TRUTH_AND_EXPR: 4153 case TRUTH_OR_EXPR: 4154 case TRUTH_XOR_EXPR: 4155 4156 gcc_unreachable (); 4157 4158 case LT_EXPR: 4159 case LE_EXPR: 4160 case GT_EXPR: 4161 case GE_EXPR: 4162 case EQ_EXPR: 4163 case NE_EXPR: 4164 case UNORDERED_EXPR: 4165 case ORDERED_EXPR: 4166 case UNLT_EXPR: 4167 case UNLE_EXPR: 4168 case UNGT_EXPR: 4169 case UNGE_EXPR: 4170 case UNEQ_EXPR: 4171 case LTGT_EXPR: 4172 /* Comparisons are also binary, but the result type is not 4173 connected to the operand types. */ 4174 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code); 4175 4176 case WIDEN_MULT_EXPR: 4177 if (TREE_CODE (lhs_type) != INTEGER_TYPE) 4178 return true; 4179 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)) 4180 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))); 4181 4182 case WIDEN_SUM_EXPR: 4183 { 4184 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE 4185 || TREE_CODE (lhs_type) != VECTOR_TYPE) 4186 && ((!INTEGRAL_TYPE_P (rhs1_type) 4187 && !SCALAR_FLOAT_TYPE_P (rhs1_type)) 4188 || (!INTEGRAL_TYPE_P (lhs_type) 4189 && !SCALAR_FLOAT_TYPE_P (lhs_type)))) 4190 || !useless_type_conversion_p (lhs_type, rhs2_type) 4191 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)), 4192 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) 4193 { 4194 error ("type mismatch in widening sum reduction"); 4195 debug_generic_expr (lhs_type); 4196 debug_generic_expr (rhs1_type); 4197 debug_generic_expr (rhs2_type); 4198 return true; 4199 } 4200 return false; 4201 } 4202 4203 case VEC_WIDEN_MULT_HI_EXPR: 4204 case VEC_WIDEN_MULT_LO_EXPR: 4205 case VEC_WIDEN_MULT_EVEN_EXPR: 4206 case VEC_WIDEN_MULT_ODD_EXPR: 4207 { 4208 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4209 || TREE_CODE (lhs_type) != VECTOR_TYPE 4210 || !types_compatible_p (rhs1_type, rhs2_type) 4211 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)), 4212 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) 4213 { 4214 error ("type mismatch in vector widening multiplication"); 4215 debug_generic_expr (lhs_type); 4216 debug_generic_expr (rhs1_type); 4217 debug_generic_expr (rhs2_type); 4218 return true; 4219 } 4220 return false; 4221 } 4222 4223 case VEC_PACK_TRUNC_EXPR: 4224 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat 4225 vector boolean types. */ 4226 if (VECTOR_BOOLEAN_TYPE_P (lhs_type) 4227 && VECTOR_BOOLEAN_TYPE_P (rhs1_type) 4228 && types_compatible_p (rhs1_type, rhs2_type) 4229 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type), 4230 2 * TYPE_VECTOR_SUBPARTS (rhs1_type))) 4231 return false; 4232 4233 /* Fallthru. */ 4234 case VEC_PACK_SAT_EXPR: 4235 case VEC_PACK_FIX_TRUNC_EXPR: 4236 { 4237 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4238 || TREE_CODE (lhs_type) != VECTOR_TYPE 4239 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR 4240 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)) 4241 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))) 4242 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) 4243 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))) 4244 || !types_compatible_p (rhs1_type, rhs2_type) 4245 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)), 4246 2 * GET_MODE_SIZE (element_mode (lhs_type)))) 4247 { 4248 error ("type mismatch in vector pack expression"); 4249 debug_generic_expr (lhs_type); 4250 debug_generic_expr (rhs1_type); 4251 debug_generic_expr (rhs2_type); 4252 return true; 4253 } 4254 4255 return false; 4256 } 4257 4258 case MULT_EXPR: 4259 case MULT_HIGHPART_EXPR: 4260 case TRUNC_DIV_EXPR: 4261 case CEIL_DIV_EXPR: 4262 case FLOOR_DIV_EXPR: 4263 case ROUND_DIV_EXPR: 4264 case TRUNC_MOD_EXPR: 4265 case CEIL_MOD_EXPR: 4266 case FLOOR_MOD_EXPR: 4267 case ROUND_MOD_EXPR: 4268 case RDIV_EXPR: 4269 case EXACT_DIV_EXPR: 4270 case MIN_EXPR: 4271 case MAX_EXPR: 4272 case BIT_IOR_EXPR: 4273 case BIT_XOR_EXPR: 4274 case BIT_AND_EXPR: 4275 /* Continue with generic binary expression handling. */ 4276 break; 4277 4278 case VEC_SERIES_EXPR: 4279 if (!useless_type_conversion_p (rhs1_type, rhs2_type)) 4280 { 4281 error ("type mismatch in series expression"); 4282 debug_generic_expr (rhs1_type); 4283 debug_generic_expr (rhs2_type); 4284 return true; 4285 } 4286 if (TREE_CODE (lhs_type) != VECTOR_TYPE 4287 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type)) 4288 { 4289 error ("vector type expected in series expression"); 4290 debug_generic_expr (lhs_type); 4291 return true; 4292 } 4293 return false; 4294 4295 default: 4296 gcc_unreachable (); 4297 } 4298 4299 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4300 || !useless_type_conversion_p (lhs_type, rhs2_type)) 4301 { 4302 error ("type mismatch in binary expression"); 4303 debug_generic_stmt (lhs_type); 4304 debug_generic_stmt (rhs1_type); 4305 debug_generic_stmt (rhs2_type); 4306 return true; 4307 } 4308 4309 return false; 4310 } 4311 4312 /* Verify a gimple assignment statement STMT with a ternary rhs. 4313 Returns true if anything is wrong. */ 4314 4315 static bool 4316 verify_gimple_assign_ternary (gassign *stmt) 4317 { 4318 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 4319 tree lhs = gimple_assign_lhs (stmt); 4320 tree lhs_type = TREE_TYPE (lhs); 4321 tree rhs1 = gimple_assign_rhs1 (stmt); 4322 tree rhs1_type = TREE_TYPE (rhs1); 4323 tree rhs2 = gimple_assign_rhs2 (stmt); 4324 tree rhs2_type = TREE_TYPE (rhs2); 4325 tree rhs3 = gimple_assign_rhs3 (stmt); 4326 tree rhs3_type = TREE_TYPE (rhs3); 4327 4328 if (!is_gimple_reg (lhs)) 4329 { 4330 error ("non-register as LHS of ternary operation"); 4331 return true; 4332 } 4333 4334 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR) 4335 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1)) 4336 || !is_gimple_val (rhs2) 4337 || !is_gimple_val (rhs3)) 4338 { 4339 error ("invalid operands in ternary operation"); 4340 return true; 4341 } 4342 4343 /* First handle operations that involve different types. */ 4344 switch (rhs_code) 4345 { 4346 case WIDEN_MULT_PLUS_EXPR: 4347 case WIDEN_MULT_MINUS_EXPR: 4348 if ((!INTEGRAL_TYPE_P (rhs1_type) 4349 && !FIXED_POINT_TYPE_P (rhs1_type)) 4350 || !useless_type_conversion_p (rhs1_type, rhs2_type) 4351 || !useless_type_conversion_p (lhs_type, rhs3_type) 4352 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type) 4353 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)) 4354 { 4355 error ("type mismatch in widening multiply-accumulate expression"); 4356 debug_generic_expr (lhs_type); 4357 debug_generic_expr (rhs1_type); 4358 debug_generic_expr (rhs2_type); 4359 debug_generic_expr (rhs3_type); 4360 return true; 4361 } 4362 break; 4363 4364 case FMA_EXPR: 4365 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4366 || !useless_type_conversion_p (lhs_type, rhs2_type) 4367 || !useless_type_conversion_p (lhs_type, rhs3_type)) 4368 { 4369 error ("type mismatch in fused multiply-add expression"); 4370 debug_generic_expr (lhs_type); 4371 debug_generic_expr (rhs1_type); 4372 debug_generic_expr (rhs2_type); 4373 debug_generic_expr (rhs3_type); 4374 return true; 4375 } 4376 break; 4377 4378 case VEC_COND_EXPR: 4379 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type) 4380 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type), 4381 TYPE_VECTOR_SUBPARTS (lhs_type))) 4382 { 4383 error ("the first argument of a VEC_COND_EXPR must be of a " 4384 "boolean vector type of the same number of elements " 4385 "as the result"); 4386 debug_generic_expr (lhs_type); 4387 debug_generic_expr (rhs1_type); 4388 return true; 4389 } 4390 /* Fallthrough. */ 4391 case COND_EXPR: 4392 if (!useless_type_conversion_p (lhs_type, rhs2_type) 4393 || !useless_type_conversion_p (lhs_type, rhs3_type)) 4394 { 4395 error ("type mismatch in conditional expression"); 4396 debug_generic_expr (lhs_type); 4397 debug_generic_expr (rhs2_type); 4398 debug_generic_expr (rhs3_type); 4399 return true; 4400 } 4401 break; 4402 4403 case VEC_PERM_EXPR: 4404 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4405 || !useless_type_conversion_p (lhs_type, rhs2_type)) 4406 { 4407 error ("type mismatch in vector permute expression"); 4408 debug_generic_expr (lhs_type); 4409 debug_generic_expr (rhs1_type); 4410 debug_generic_expr (rhs2_type); 4411 debug_generic_expr (rhs3_type); 4412 return true; 4413 } 4414 4415 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4416 || TREE_CODE (rhs2_type) != VECTOR_TYPE 4417 || TREE_CODE (rhs3_type) != VECTOR_TYPE) 4418 { 4419 error ("vector types expected in vector permute expression"); 4420 debug_generic_expr (lhs_type); 4421 debug_generic_expr (rhs1_type); 4422 debug_generic_expr (rhs2_type); 4423 debug_generic_expr (rhs3_type); 4424 return true; 4425 } 4426 4427 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type), 4428 TYPE_VECTOR_SUBPARTS (rhs2_type)) 4429 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type), 4430 TYPE_VECTOR_SUBPARTS (rhs3_type)) 4431 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type), 4432 TYPE_VECTOR_SUBPARTS (lhs_type))) 4433 { 4434 error ("vectors with different element number found " 4435 "in vector permute expression"); 4436 debug_generic_expr (lhs_type); 4437 debug_generic_expr (rhs1_type); 4438 debug_generic_expr (rhs2_type); 4439 debug_generic_expr (rhs3_type); 4440 return true; 4441 } 4442 4443 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE 4444 || (TREE_CODE (rhs3) != VECTOR_CST 4445 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE 4446 (TREE_TYPE (rhs3_type))) 4447 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE 4448 (TREE_TYPE (rhs1_type)))))) 4449 { 4450 error ("invalid mask type in vector permute expression"); 4451 debug_generic_expr (lhs_type); 4452 debug_generic_expr (rhs1_type); 4453 debug_generic_expr (rhs2_type); 4454 debug_generic_expr (rhs3_type); 4455 return true; 4456 } 4457 4458 return false; 4459 4460 case SAD_EXPR: 4461 if (!useless_type_conversion_p (rhs1_type, rhs2_type) 4462 || !useless_type_conversion_p (lhs_type, rhs3_type) 4463 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))) 4464 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type)))) 4465 { 4466 error ("type mismatch in sad expression"); 4467 debug_generic_expr (lhs_type); 4468 debug_generic_expr (rhs1_type); 4469 debug_generic_expr (rhs2_type); 4470 debug_generic_expr (rhs3_type); 4471 return true; 4472 } 4473 4474 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4475 || TREE_CODE (rhs2_type) != VECTOR_TYPE 4476 || TREE_CODE (rhs3_type) != VECTOR_TYPE) 4477 { 4478 error ("vector types expected in sad expression"); 4479 debug_generic_expr (lhs_type); 4480 debug_generic_expr (rhs1_type); 4481 debug_generic_expr (rhs2_type); 4482 debug_generic_expr (rhs3_type); 4483 return true; 4484 } 4485 4486 return false; 4487 4488 case BIT_INSERT_EXPR: 4489 if (! useless_type_conversion_p (lhs_type, rhs1_type)) 4490 { 4491 error ("type mismatch in BIT_INSERT_EXPR"); 4492 debug_generic_expr (lhs_type); 4493 debug_generic_expr (rhs1_type); 4494 return true; 4495 } 4496 if (! ((INTEGRAL_TYPE_P (rhs1_type) 4497 && INTEGRAL_TYPE_P (rhs2_type)) 4498 || (VECTOR_TYPE_P (rhs1_type) 4499 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type)))) 4500 { 4501 error ("not allowed type combination in BIT_INSERT_EXPR"); 4502 debug_generic_expr (rhs1_type); 4503 debug_generic_expr (rhs2_type); 4504 return true; 4505 } 4506 if (! tree_fits_uhwi_p (rhs3) 4507 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3)) 4508 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type))) 4509 { 4510 error ("invalid position or size in BIT_INSERT_EXPR"); 4511 return true; 4512 } 4513 if (INTEGRAL_TYPE_P (rhs1_type)) 4514 { 4515 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); 4516 if (bitpos >= TYPE_PRECISION (rhs1_type) 4517 || (bitpos + TYPE_PRECISION (rhs2_type) 4518 > TYPE_PRECISION (rhs1_type))) 4519 { 4520 error ("insertion out of range in BIT_INSERT_EXPR"); 4521 return true; 4522 } 4523 } 4524 else if (VECTOR_TYPE_P (rhs1_type)) 4525 { 4526 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); 4527 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type)); 4528 if (bitpos % bitsize != 0) 4529 { 4530 error ("vector insertion not at element boundary"); 4531 return true; 4532 } 4533 } 4534 return false; 4535 4536 case DOT_PROD_EXPR: 4537 { 4538 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE 4539 || TREE_CODE (lhs_type) != VECTOR_TYPE) 4540 && ((!INTEGRAL_TYPE_P (rhs1_type) 4541 && !SCALAR_FLOAT_TYPE_P (rhs1_type)) 4542 || (!INTEGRAL_TYPE_P (lhs_type) 4543 && !SCALAR_FLOAT_TYPE_P (lhs_type)))) 4544 || !types_compatible_p (rhs1_type, rhs2_type) 4545 || !useless_type_conversion_p (lhs_type, rhs3_type) 4546 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)), 4547 2 * GET_MODE_SIZE (element_mode (rhs1_type)))) 4548 { 4549 error ("type mismatch in dot product reduction"); 4550 debug_generic_expr (lhs_type); 4551 debug_generic_expr (rhs1_type); 4552 debug_generic_expr (rhs2_type); 4553 return true; 4554 } 4555 return false; 4556 } 4557 4558 case REALIGN_LOAD_EXPR: 4559 /* FIXME. */ 4560 return false; 4561 4562 default: 4563 gcc_unreachable (); 4564 } 4565 return false; 4566 } 4567 4568 /* Verify a gimple assignment statement STMT with a single rhs. 4569 Returns true if anything is wrong. */ 4570 4571 static bool 4572 verify_gimple_assign_single (gassign *stmt) 4573 { 4574 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 4575 tree lhs = gimple_assign_lhs (stmt); 4576 tree lhs_type = TREE_TYPE (lhs); 4577 tree rhs1 = gimple_assign_rhs1 (stmt); 4578 tree rhs1_type = TREE_TYPE (rhs1); 4579 bool res = false; 4580 4581 if (!useless_type_conversion_p (lhs_type, rhs1_type)) 4582 { 4583 error ("non-trivial conversion at assignment"); 4584 debug_generic_expr (lhs_type); 4585 debug_generic_expr (rhs1_type); 4586 return true; 4587 } 4588 4589 if (gimple_clobber_p (stmt) 4590 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF)) 4591 { 4592 error ("non-decl/MEM_REF LHS in clobber statement"); 4593 debug_generic_expr (lhs); 4594 return true; 4595 } 4596 4597 if (handled_component_p (lhs) 4598 || TREE_CODE (lhs) == MEM_REF 4599 || TREE_CODE (lhs) == TARGET_MEM_REF) 4600 res |= verify_types_in_gimple_reference (lhs, true); 4601 4602 /* Special codes we cannot handle via their class. */ 4603 switch (rhs_code) 4604 { 4605 case ADDR_EXPR: 4606 { 4607 tree op = TREE_OPERAND (rhs1, 0); 4608 if (!is_gimple_addressable (op)) 4609 { 4610 error ("invalid operand in unary expression"); 4611 return true; 4612 } 4613 4614 /* Technically there is no longer a need for matching types, but 4615 gimple hygiene asks for this check. In LTO we can end up 4616 combining incompatible units and thus end up with addresses 4617 of globals that change their type to a common one. */ 4618 if (!in_lto_p 4619 && !types_compatible_p (TREE_TYPE (op), 4620 TREE_TYPE (TREE_TYPE (rhs1))) 4621 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1), 4622 TREE_TYPE (op))) 4623 { 4624 error ("type mismatch in address expression"); 4625 debug_generic_stmt (TREE_TYPE (rhs1)); 4626 debug_generic_stmt (TREE_TYPE (op)); 4627 return true; 4628 } 4629 4630 return verify_types_in_gimple_reference (op, true); 4631 } 4632 4633 /* tcc_reference */ 4634 case INDIRECT_REF: 4635 error ("INDIRECT_REF in gimple IL"); 4636 return true; 4637 4638 case COMPONENT_REF: 4639 case BIT_FIELD_REF: 4640 case ARRAY_REF: 4641 case ARRAY_RANGE_REF: 4642 case VIEW_CONVERT_EXPR: 4643 case REALPART_EXPR: 4644 case IMAGPART_EXPR: 4645 case TARGET_MEM_REF: 4646 case MEM_REF: 4647 if (!is_gimple_reg (lhs) 4648 && is_gimple_reg_type (TREE_TYPE (lhs))) 4649 { 4650 error ("invalid rhs for gimple memory store"); 4651 debug_generic_stmt (lhs); 4652 debug_generic_stmt (rhs1); 4653 return true; 4654 } 4655 return res || verify_types_in_gimple_reference (rhs1, false); 4656 4657 /* tcc_constant */ 4658 case SSA_NAME: 4659 case INTEGER_CST: 4660 case REAL_CST: 4661 case FIXED_CST: 4662 case COMPLEX_CST: 4663 case VECTOR_CST: 4664 case STRING_CST: 4665 return res; 4666 4667 /* tcc_declaration */ 4668 case CONST_DECL: 4669 return res; 4670 case VAR_DECL: 4671 case PARM_DECL: 4672 if (!is_gimple_reg (lhs) 4673 && !is_gimple_reg (rhs1) 4674 && is_gimple_reg_type (TREE_TYPE (lhs))) 4675 { 4676 error ("invalid rhs for gimple memory store"); 4677 debug_generic_stmt (lhs); 4678 debug_generic_stmt (rhs1); 4679 return true; 4680 } 4681 return res; 4682 4683 case CONSTRUCTOR: 4684 if (TREE_CODE (rhs1_type) == VECTOR_TYPE) 4685 { 4686 unsigned int i; 4687 tree elt_i, elt_v, elt_t = NULL_TREE; 4688 4689 if (CONSTRUCTOR_NELTS (rhs1) == 0) 4690 return res; 4691 /* For vector CONSTRUCTORs we require that either it is empty 4692 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements 4693 (then the element count must be correct to cover the whole 4694 outer vector and index must be NULL on all elements, or it is 4695 a CONSTRUCTOR of scalar elements, where we as an exception allow 4696 smaller number of elements (assuming zero filling) and 4697 consecutive indexes as compared to NULL indexes (such 4698 CONSTRUCTORs can appear in the IL from FEs). */ 4699 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v) 4700 { 4701 if (elt_t == NULL_TREE) 4702 { 4703 elt_t = TREE_TYPE (elt_v); 4704 if (TREE_CODE (elt_t) == VECTOR_TYPE) 4705 { 4706 tree elt_t = TREE_TYPE (elt_v); 4707 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), 4708 TREE_TYPE (elt_t))) 4709 { 4710 error ("incorrect type of vector CONSTRUCTOR" 4711 " elements"); 4712 debug_generic_stmt (rhs1); 4713 return true; 4714 } 4715 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1) 4716 * TYPE_VECTOR_SUBPARTS (elt_t), 4717 TYPE_VECTOR_SUBPARTS (rhs1_type))) 4718 { 4719 error ("incorrect number of vector CONSTRUCTOR" 4720 " elements"); 4721 debug_generic_stmt (rhs1); 4722 return true; 4723 } 4724 } 4725 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), 4726 elt_t)) 4727 { 4728 error ("incorrect type of vector CONSTRUCTOR elements"); 4729 debug_generic_stmt (rhs1); 4730 return true; 4731 } 4732 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1), 4733 TYPE_VECTOR_SUBPARTS (rhs1_type))) 4734 { 4735 error ("incorrect number of vector CONSTRUCTOR elements"); 4736 debug_generic_stmt (rhs1); 4737 return true; 4738 } 4739 } 4740 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v))) 4741 { 4742 error ("incorrect type of vector CONSTRUCTOR elements"); 4743 debug_generic_stmt (rhs1); 4744 return true; 4745 } 4746 if (elt_i != NULL_TREE 4747 && (TREE_CODE (elt_t) == VECTOR_TYPE 4748 || TREE_CODE (elt_i) != INTEGER_CST 4749 || compare_tree_int (elt_i, i) != 0)) 4750 { 4751 error ("vector CONSTRUCTOR with non-NULL element index"); 4752 debug_generic_stmt (rhs1); 4753 return true; 4754 } 4755 if (!is_gimple_val (elt_v)) 4756 { 4757 error ("vector CONSTRUCTOR element is not a GIMPLE value"); 4758 debug_generic_stmt (rhs1); 4759 return true; 4760 } 4761 } 4762 } 4763 else if (CONSTRUCTOR_NELTS (rhs1) != 0) 4764 { 4765 error ("non-vector CONSTRUCTOR with elements"); 4766 debug_generic_stmt (rhs1); 4767 return true; 4768 } 4769 return res; 4770 case OBJ_TYPE_REF: 4771 case ASSERT_EXPR: 4772 case WITH_SIZE_EXPR: 4773 /* FIXME. */ 4774 return res; 4775 4776 default:; 4777 } 4778 4779 return res; 4780 } 4781 4782 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there 4783 is a problem, otherwise false. */ 4784 4785 static bool 4786 verify_gimple_assign (gassign *stmt) 4787 { 4788 switch (gimple_assign_rhs_class (stmt)) 4789 { 4790 case GIMPLE_SINGLE_RHS: 4791 return verify_gimple_assign_single (stmt); 4792 4793 case GIMPLE_UNARY_RHS: 4794 return verify_gimple_assign_unary (stmt); 4795 4796 case GIMPLE_BINARY_RHS: 4797 return verify_gimple_assign_binary (stmt); 4798 4799 case GIMPLE_TERNARY_RHS: 4800 return verify_gimple_assign_ternary (stmt); 4801 4802 default: 4803 gcc_unreachable (); 4804 } 4805 } 4806 4807 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there 4808 is a problem, otherwise false. */ 4809 4810 static bool 4811 verify_gimple_return (greturn *stmt) 4812 { 4813 tree op = gimple_return_retval (stmt); 4814 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl)); 4815 4816 /* We cannot test for present return values as we do not fix up missing 4817 return values from the original source. */ 4818 if (op == NULL) 4819 return false; 4820 4821 if (!is_gimple_val (op) 4822 && TREE_CODE (op) != RESULT_DECL) 4823 { 4824 error ("invalid operand in return statement"); 4825 debug_generic_stmt (op); 4826 return true; 4827 } 4828 4829 if ((TREE_CODE (op) == RESULT_DECL 4830 && DECL_BY_REFERENCE (op)) 4831 || (TREE_CODE (op) == SSA_NAME 4832 && SSA_NAME_VAR (op) 4833 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL 4834 && DECL_BY_REFERENCE (SSA_NAME_VAR (op)))) 4835 op = TREE_TYPE (op); 4836 4837 if (!useless_type_conversion_p (restype, TREE_TYPE (op))) 4838 { 4839 error ("invalid conversion in return statement"); 4840 debug_generic_stmt (restype); 4841 debug_generic_stmt (TREE_TYPE (op)); 4842 return true; 4843 } 4844 4845 return false; 4846 } 4847 4848 4849 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there 4850 is a problem, otherwise false. */ 4851 4852 static bool 4853 verify_gimple_goto (ggoto *stmt) 4854 { 4855 tree dest = gimple_goto_dest (stmt); 4856 4857 /* ??? We have two canonical forms of direct goto destinations, a 4858 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */ 4859 if (TREE_CODE (dest) != LABEL_DECL 4860 && (!is_gimple_val (dest) 4861 || !POINTER_TYPE_P (TREE_TYPE (dest)))) 4862 { 4863 error ("goto destination is neither a label nor a pointer"); 4864 return true; 4865 } 4866 4867 return false; 4868 } 4869 4870 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there 4871 is a problem, otherwise false. */ 4872 4873 static bool 4874 verify_gimple_switch (gswitch *stmt) 4875 { 4876 unsigned int i, n; 4877 tree elt, prev_upper_bound = NULL_TREE; 4878 tree index_type, elt_type = NULL_TREE; 4879 4880 if (!is_gimple_val (gimple_switch_index (stmt))) 4881 { 4882 error ("invalid operand to switch statement"); 4883 debug_generic_stmt (gimple_switch_index (stmt)); 4884 return true; 4885 } 4886 4887 index_type = TREE_TYPE (gimple_switch_index (stmt)); 4888 if (! INTEGRAL_TYPE_P (index_type)) 4889 { 4890 error ("non-integral type switch statement"); 4891 debug_generic_expr (index_type); 4892 return true; 4893 } 4894 4895 elt = gimple_switch_label (stmt, 0); 4896 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE) 4897 { 4898 error ("invalid default case label in switch statement"); 4899 debug_generic_expr (elt); 4900 return true; 4901 } 4902 4903 n = gimple_switch_num_labels (stmt); 4904 for (i = 1; i < n; i++) 4905 { 4906 elt = gimple_switch_label (stmt, i); 4907 4908 if (! CASE_LOW (elt)) 4909 { 4910 error ("invalid case label in switch statement"); 4911 debug_generic_expr (elt); 4912 return true; 4913 } 4914 if (CASE_HIGH (elt) 4915 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt))) 4916 { 4917 error ("invalid case range in switch statement"); 4918 debug_generic_expr (elt); 4919 return true; 4920 } 4921 4922 if (elt_type) 4923 { 4924 if (TREE_TYPE (CASE_LOW (elt)) != elt_type 4925 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type)) 4926 { 4927 error ("type mismatch for case label in switch statement"); 4928 debug_generic_expr (elt); 4929 return true; 4930 } 4931 } 4932 else 4933 { 4934 elt_type = TREE_TYPE (CASE_LOW (elt)); 4935 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type)) 4936 { 4937 error ("type precision mismatch in switch statement"); 4938 return true; 4939 } 4940 } 4941 4942 if (prev_upper_bound) 4943 { 4944 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt))) 4945 { 4946 error ("case labels not sorted in switch statement"); 4947 return true; 4948 } 4949 } 4950 4951 prev_upper_bound = CASE_HIGH (elt); 4952 if (! prev_upper_bound) 4953 prev_upper_bound = CASE_LOW (elt); 4954 } 4955 4956 return false; 4957 } 4958 4959 /* Verify a gimple debug statement STMT. 4960 Returns true if anything is wrong. */ 4961 4962 static bool 4963 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED) 4964 { 4965 /* There isn't much that could be wrong in a gimple debug stmt. A 4966 gimple debug bind stmt, for example, maps a tree, that's usually 4967 a VAR_DECL or a PARM_DECL, but that could also be some scalarized 4968 component or member of an aggregate type, to another tree, that 4969 can be an arbitrary expression. These stmts expand into debug 4970 insns, and are converted to debug notes by var-tracking.c. */ 4971 return false; 4972 } 4973 4974 /* Verify a gimple label statement STMT. 4975 Returns true if anything is wrong. */ 4976 4977 static bool 4978 verify_gimple_label (glabel *stmt) 4979 { 4980 tree decl = gimple_label_label (stmt); 4981 int uid; 4982 bool err = false; 4983 4984 if (TREE_CODE (decl) != LABEL_DECL) 4985 return true; 4986 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl) 4987 && DECL_CONTEXT (decl) != current_function_decl) 4988 { 4989 error ("label's context is not the current function decl"); 4990 err |= true; 4991 } 4992 4993 uid = LABEL_DECL_UID (decl); 4994 if (cfun->cfg 4995 && (uid == -1 4996 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt))) 4997 { 4998 error ("incorrect entry in label_to_block_map"); 4999 err |= true; 5000 } 5001 5002 uid = EH_LANDING_PAD_NR (decl); 5003 if (uid) 5004 { 5005 eh_landing_pad lp = get_eh_landing_pad_from_number (uid); 5006 if (decl != lp->post_landing_pad) 5007 { 5008 error ("incorrect setting of landing pad number"); 5009 err |= true; 5010 } 5011 } 5012 5013 return err; 5014 } 5015 5016 /* Verify a gimple cond statement STMT. 5017 Returns true if anything is wrong. */ 5018 5019 static bool 5020 verify_gimple_cond (gcond *stmt) 5021 { 5022 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison) 5023 { 5024 error ("invalid comparison code in gimple cond"); 5025 return true; 5026 } 5027 if (!(!gimple_cond_true_label (stmt) 5028 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL) 5029 || !(!gimple_cond_false_label (stmt) 5030 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL)) 5031 { 5032 error ("invalid labels in gimple cond"); 5033 return true; 5034 } 5035 5036 return verify_gimple_comparison (boolean_type_node, 5037 gimple_cond_lhs (stmt), 5038 gimple_cond_rhs (stmt), 5039 gimple_cond_code (stmt)); 5040 } 5041 5042 /* Verify the GIMPLE statement STMT. Returns true if there is an 5043 error, otherwise false. */ 5044 5045 static bool 5046 verify_gimple_stmt (gimple *stmt) 5047 { 5048 switch (gimple_code (stmt)) 5049 { 5050 case GIMPLE_ASSIGN: 5051 return verify_gimple_assign (as_a <gassign *> (stmt)); 5052 5053 case GIMPLE_LABEL: 5054 return verify_gimple_label (as_a <glabel *> (stmt)); 5055 5056 case GIMPLE_CALL: 5057 return verify_gimple_call (as_a <gcall *> (stmt)); 5058 5059 case GIMPLE_COND: 5060 return verify_gimple_cond (as_a <gcond *> (stmt)); 5061 5062 case GIMPLE_GOTO: 5063 return verify_gimple_goto (as_a <ggoto *> (stmt)); 5064 5065 case GIMPLE_SWITCH: 5066 return verify_gimple_switch (as_a <gswitch *> (stmt)); 5067 5068 case GIMPLE_RETURN: 5069 return verify_gimple_return (as_a <greturn *> (stmt)); 5070 5071 case GIMPLE_ASM: 5072 return false; 5073 5074 case GIMPLE_TRANSACTION: 5075 return verify_gimple_transaction (as_a <gtransaction *> (stmt)); 5076 5077 /* Tuples that do not have tree operands. */ 5078 case GIMPLE_NOP: 5079 case GIMPLE_PREDICT: 5080 case GIMPLE_RESX: 5081 case GIMPLE_EH_DISPATCH: 5082 case GIMPLE_EH_MUST_NOT_THROW: 5083 return false; 5084 5085 CASE_GIMPLE_OMP: 5086 /* OpenMP directives are validated by the FE and never operated 5087 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain 5088 non-gimple expressions when the main index variable has had 5089 its address taken. This does not affect the loop itself 5090 because the header of an GIMPLE_OMP_FOR is merely used to determine 5091 how to setup the parallel iteration. */ 5092 return false; 5093 5094 case GIMPLE_DEBUG: 5095 return verify_gimple_debug (stmt); 5096 5097 default: 5098 gcc_unreachable (); 5099 } 5100 } 5101 5102 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem, 5103 and false otherwise. */ 5104 5105 static bool 5106 verify_gimple_phi (gimple *phi) 5107 { 5108 bool err = false; 5109 unsigned i; 5110 tree phi_result = gimple_phi_result (phi); 5111 bool virtual_p; 5112 5113 if (!phi_result) 5114 { 5115 error ("invalid PHI result"); 5116 return true; 5117 } 5118 5119 virtual_p = virtual_operand_p (phi_result); 5120 if (TREE_CODE (phi_result) != SSA_NAME 5121 || (virtual_p 5122 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun))) 5123 { 5124 error ("invalid PHI result"); 5125 err = true; 5126 } 5127 5128 for (i = 0; i < gimple_phi_num_args (phi); i++) 5129 { 5130 tree t = gimple_phi_arg_def (phi, i); 5131 5132 if (!t) 5133 { 5134 error ("missing PHI def"); 5135 err |= true; 5136 continue; 5137 } 5138 /* Addressable variables do have SSA_NAMEs but they 5139 are not considered gimple values. */ 5140 else if ((TREE_CODE (t) == SSA_NAME 5141 && virtual_p != virtual_operand_p (t)) 5142 || (virtual_p 5143 && (TREE_CODE (t) != SSA_NAME 5144 || SSA_NAME_VAR (t) != gimple_vop (cfun))) 5145 || (!virtual_p 5146 && !is_gimple_val (t))) 5147 { 5148 error ("invalid PHI argument"); 5149 debug_generic_expr (t); 5150 err |= true; 5151 } 5152 #ifdef ENABLE_TYPES_CHECKING 5153 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t))) 5154 { 5155 error ("incompatible types in PHI argument %u", i); 5156 debug_generic_stmt (TREE_TYPE (phi_result)); 5157 debug_generic_stmt (TREE_TYPE (t)); 5158 err |= true; 5159 } 5160 #endif 5161 } 5162 5163 return err; 5164 } 5165 5166 /* Verify the GIMPLE statements inside the sequence STMTS. */ 5167 5168 static bool 5169 verify_gimple_in_seq_2 (gimple_seq stmts) 5170 { 5171 gimple_stmt_iterator ittr; 5172 bool err = false; 5173 5174 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr)) 5175 { 5176 gimple *stmt = gsi_stmt (ittr); 5177 5178 switch (gimple_code (stmt)) 5179 { 5180 case GIMPLE_BIND: 5181 err |= verify_gimple_in_seq_2 ( 5182 gimple_bind_body (as_a <gbind *> (stmt))); 5183 break; 5184 5185 case GIMPLE_TRY: 5186 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt)); 5187 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt)); 5188 break; 5189 5190 case GIMPLE_EH_FILTER: 5191 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt)); 5192 break; 5193 5194 case GIMPLE_EH_ELSE: 5195 { 5196 geh_else *eh_else = as_a <geh_else *> (stmt); 5197 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else)); 5198 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else)); 5199 } 5200 break; 5201 5202 case GIMPLE_CATCH: 5203 err |= verify_gimple_in_seq_2 (gimple_catch_handler ( 5204 as_a <gcatch *> (stmt))); 5205 break; 5206 5207 case GIMPLE_TRANSACTION: 5208 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt)); 5209 break; 5210 5211 default: 5212 { 5213 bool err2 = verify_gimple_stmt (stmt); 5214 if (err2) 5215 debug_gimple_stmt (stmt); 5216 err |= err2; 5217 } 5218 } 5219 } 5220 5221 return err; 5222 } 5223 5224 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there 5225 is a problem, otherwise false. */ 5226 5227 static bool 5228 verify_gimple_transaction (gtransaction *stmt) 5229 { 5230 tree lab; 5231 5232 lab = gimple_transaction_label_norm (stmt); 5233 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 5234 return true; 5235 lab = gimple_transaction_label_uninst (stmt); 5236 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 5237 return true; 5238 lab = gimple_transaction_label_over (stmt); 5239 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 5240 return true; 5241 5242 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt)); 5243 } 5244 5245 5246 /* Verify the GIMPLE statements inside the statement list STMTS. */ 5247 5248 DEBUG_FUNCTION void 5249 verify_gimple_in_seq (gimple_seq stmts) 5250 { 5251 timevar_push (TV_TREE_STMT_VERIFY); 5252 if (verify_gimple_in_seq_2 (stmts)) 5253 internal_error ("verify_gimple failed"); 5254 timevar_pop (TV_TREE_STMT_VERIFY); 5255 } 5256 5257 /* Return true when the T can be shared. */ 5258 5259 static bool 5260 tree_node_can_be_shared (tree t) 5261 { 5262 if (IS_TYPE_OR_DECL_P (t) 5263 || is_gimple_min_invariant (t) 5264 || TREE_CODE (t) == SSA_NAME 5265 || t == error_mark_node 5266 || TREE_CODE (t) == IDENTIFIER_NODE) 5267 return true; 5268 5269 if (TREE_CODE (t) == CASE_LABEL_EXPR) 5270 return true; 5271 5272 if (DECL_P (t)) 5273 return true; 5274 5275 return false; 5276 } 5277 5278 /* Called via walk_tree. Verify tree sharing. */ 5279 5280 static tree 5281 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data) 5282 { 5283 hash_set<void *> *visited = (hash_set<void *> *) data; 5284 5285 if (tree_node_can_be_shared (*tp)) 5286 { 5287 *walk_subtrees = false; 5288 return NULL; 5289 } 5290 5291 if (visited->add (*tp)) 5292 return *tp; 5293 5294 return NULL; 5295 } 5296 5297 /* Called via walk_gimple_stmt. Verify tree sharing. */ 5298 5299 static tree 5300 verify_node_sharing (tree *tp, int *walk_subtrees, void *data) 5301 { 5302 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 5303 return verify_node_sharing_1 (tp, walk_subtrees, wi->info); 5304 } 5305 5306 static bool eh_error_found; 5307 bool 5308 verify_eh_throw_stmt_node (gimple *const &stmt, const int &, 5309 hash_set<gimple *> *visited) 5310 { 5311 if (!visited->contains (stmt)) 5312 { 5313 error ("dead STMT in EH table"); 5314 debug_gimple_stmt (stmt); 5315 eh_error_found = true; 5316 } 5317 return true; 5318 } 5319 5320 /* Verify if the location LOCs block is in BLOCKS. */ 5321 5322 static bool 5323 verify_location (hash_set<tree> *blocks, location_t loc) 5324 { 5325 tree block = LOCATION_BLOCK (loc); 5326 if (block != NULL_TREE 5327 && !blocks->contains (block)) 5328 { 5329 error ("location references block not in block tree"); 5330 return true; 5331 } 5332 if (block != NULL_TREE) 5333 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block)); 5334 return false; 5335 } 5336 5337 /* Called via walk_tree. Verify that expressions have no blocks. */ 5338 5339 static tree 5340 verify_expr_no_block (tree *tp, int *walk_subtrees, void *) 5341 { 5342 if (!EXPR_P (*tp)) 5343 { 5344 *walk_subtrees = false; 5345 return NULL; 5346 } 5347 5348 location_t loc = EXPR_LOCATION (*tp); 5349 if (LOCATION_BLOCK (loc) != NULL) 5350 return *tp; 5351 5352 return NULL; 5353 } 5354 5355 /* Called via walk_tree. Verify locations of expressions. */ 5356 5357 static tree 5358 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data) 5359 { 5360 hash_set<tree> *blocks = (hash_set<tree> *) data; 5361 5362 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp)) 5363 { 5364 tree t = DECL_DEBUG_EXPR (*tp); 5365 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); 5366 if (addr) 5367 return addr; 5368 } 5369 if ((VAR_P (*tp) 5370 || TREE_CODE (*tp) == PARM_DECL 5371 || TREE_CODE (*tp) == RESULT_DECL) 5372 && DECL_HAS_VALUE_EXPR_P (*tp)) 5373 { 5374 tree t = DECL_VALUE_EXPR (*tp); 5375 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); 5376 if (addr) 5377 return addr; 5378 } 5379 5380 if (!EXPR_P (*tp)) 5381 { 5382 *walk_subtrees = false; 5383 return NULL; 5384 } 5385 5386 location_t loc = EXPR_LOCATION (*tp); 5387 if (verify_location (blocks, loc)) 5388 return *tp; 5389 5390 return NULL; 5391 } 5392 5393 /* Called via walk_gimple_op. Verify locations of expressions. */ 5394 5395 static tree 5396 verify_expr_location (tree *tp, int *walk_subtrees, void *data) 5397 { 5398 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 5399 return verify_expr_location_1 (tp, walk_subtrees, wi->info); 5400 } 5401 5402 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */ 5403 5404 static void 5405 collect_subblocks (hash_set<tree> *blocks, tree block) 5406 { 5407 tree t; 5408 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t)) 5409 { 5410 blocks->add (t); 5411 collect_subblocks (blocks, t); 5412 } 5413 } 5414 5415 /* Verify the GIMPLE statements in the CFG of FN. */ 5416 5417 DEBUG_FUNCTION void 5418 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow) 5419 { 5420 basic_block bb; 5421 bool err = false; 5422 5423 timevar_push (TV_TREE_STMT_VERIFY); 5424 hash_set<void *> visited; 5425 hash_set<gimple *> visited_stmts; 5426 5427 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */ 5428 hash_set<tree> blocks; 5429 if (DECL_INITIAL (fn->decl)) 5430 { 5431 blocks.add (DECL_INITIAL (fn->decl)); 5432 collect_subblocks (&blocks, DECL_INITIAL (fn->decl)); 5433 } 5434 5435 FOR_EACH_BB_FN (bb, fn) 5436 { 5437 gimple_stmt_iterator gsi; 5438 5439 for (gphi_iterator gpi = gsi_start_phis (bb); 5440 !gsi_end_p (gpi); 5441 gsi_next (&gpi)) 5442 { 5443 gphi *phi = gpi.phi (); 5444 bool err2 = false; 5445 unsigned i; 5446 5447 visited_stmts.add (phi); 5448 5449 if (gimple_bb (phi) != bb) 5450 { 5451 error ("gimple_bb (phi) is set to a wrong basic block"); 5452 err2 = true; 5453 } 5454 5455 err2 |= verify_gimple_phi (phi); 5456 5457 /* Only PHI arguments have locations. */ 5458 if (gimple_location (phi) != UNKNOWN_LOCATION) 5459 { 5460 error ("PHI node with location"); 5461 err2 = true; 5462 } 5463 5464 for (i = 0; i < gimple_phi_num_args (phi); i++) 5465 { 5466 tree arg = gimple_phi_arg_def (phi, i); 5467 tree addr = walk_tree (&arg, verify_node_sharing_1, 5468 &visited, NULL); 5469 if (addr) 5470 { 5471 error ("incorrect sharing of tree nodes"); 5472 debug_generic_expr (addr); 5473 err2 |= true; 5474 } 5475 location_t loc = gimple_phi_arg_location (phi, i); 5476 if (virtual_operand_p (gimple_phi_result (phi)) 5477 && loc != UNKNOWN_LOCATION) 5478 { 5479 error ("virtual PHI with argument locations"); 5480 err2 = true; 5481 } 5482 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL); 5483 if (addr) 5484 { 5485 debug_generic_expr (addr); 5486 err2 = true; 5487 } 5488 err2 |= verify_location (&blocks, loc); 5489 } 5490 5491 if (err2) 5492 debug_gimple_stmt (phi); 5493 err |= err2; 5494 } 5495 5496 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 5497 { 5498 gimple *stmt = gsi_stmt (gsi); 5499 bool err2 = false; 5500 struct walk_stmt_info wi; 5501 tree addr; 5502 int lp_nr; 5503 5504 visited_stmts.add (stmt); 5505 5506 if (gimple_bb (stmt) != bb) 5507 { 5508 error ("gimple_bb (stmt) is set to a wrong basic block"); 5509 err2 = true; 5510 } 5511 5512 err2 |= verify_gimple_stmt (stmt); 5513 err2 |= verify_location (&blocks, gimple_location (stmt)); 5514 5515 memset (&wi, 0, sizeof (wi)); 5516 wi.info = (void *) &visited; 5517 addr = walk_gimple_op (stmt, verify_node_sharing, &wi); 5518 if (addr) 5519 { 5520 error ("incorrect sharing of tree nodes"); 5521 debug_generic_expr (addr); 5522 err2 |= true; 5523 } 5524 5525 memset (&wi, 0, sizeof (wi)); 5526 wi.info = (void *) &blocks; 5527 addr = walk_gimple_op (stmt, verify_expr_location, &wi); 5528 if (addr) 5529 { 5530 debug_generic_expr (addr); 5531 err2 |= true; 5532 } 5533 5534 /* ??? Instead of not checking these stmts at all the walker 5535 should know its context via wi. */ 5536 if (!is_gimple_debug (stmt) 5537 && !is_gimple_omp (stmt)) 5538 { 5539 memset (&wi, 0, sizeof (wi)); 5540 addr = walk_gimple_op (stmt, verify_expr, &wi); 5541 if (addr) 5542 { 5543 debug_generic_expr (addr); 5544 inform (gimple_location (stmt), "in statement"); 5545 err2 |= true; 5546 } 5547 } 5548 5549 /* If the statement is marked as part of an EH region, then it is 5550 expected that the statement could throw. Verify that when we 5551 have optimizations that simplify statements such that we prove 5552 that they cannot throw, that we update other data structures 5553 to match. */ 5554 lp_nr = lookup_stmt_eh_lp (stmt); 5555 if (lp_nr > 0) 5556 { 5557 if (!stmt_could_throw_p (stmt)) 5558 { 5559 if (verify_nothrow) 5560 { 5561 error ("statement marked for throw, but doesn%'t"); 5562 err2 |= true; 5563 } 5564 } 5565 else if (!gsi_one_before_end_p (gsi)) 5566 { 5567 error ("statement marked for throw in middle of block"); 5568 err2 |= true; 5569 } 5570 } 5571 5572 if (err2) 5573 debug_gimple_stmt (stmt); 5574 err |= err2; 5575 } 5576 } 5577 5578 eh_error_found = false; 5579 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun); 5580 if (eh_table) 5581 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node> 5582 (&visited_stmts); 5583 5584 if (err || eh_error_found) 5585 internal_error ("verify_gimple failed"); 5586 5587 verify_histograms (); 5588 timevar_pop (TV_TREE_STMT_VERIFY); 5589 } 5590 5591 5592 /* Verifies that the flow information is OK. */ 5593 5594 static int 5595 gimple_verify_flow_info (void) 5596 { 5597 int err = 0; 5598 basic_block bb; 5599 gimple_stmt_iterator gsi; 5600 gimple *stmt; 5601 edge e; 5602 edge_iterator ei; 5603 5604 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq 5605 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) 5606 { 5607 error ("ENTRY_BLOCK has IL associated with it"); 5608 err = 1; 5609 } 5610 5611 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq 5612 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) 5613 { 5614 error ("EXIT_BLOCK has IL associated with it"); 5615 err = 1; 5616 } 5617 5618 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 5619 if (e->flags & EDGE_FALLTHRU) 5620 { 5621 error ("fallthru to exit from bb %d", e->src->index); 5622 err = 1; 5623 } 5624 5625 FOR_EACH_BB_FN (bb, cfun) 5626 { 5627 bool found_ctrl_stmt = false; 5628 5629 stmt = NULL; 5630 5631 /* Skip labels on the start of basic block. */ 5632 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 5633 { 5634 tree label; 5635 gimple *prev_stmt = stmt; 5636 5637 stmt = gsi_stmt (gsi); 5638 5639 if (gimple_code (stmt) != GIMPLE_LABEL) 5640 break; 5641 5642 label = gimple_label_label (as_a <glabel *> (stmt)); 5643 if (prev_stmt && DECL_NONLOCAL (label)) 5644 { 5645 error ("nonlocal label "); 5646 print_generic_expr (stderr, label); 5647 fprintf (stderr, " is not first in a sequence of labels in bb %d", 5648 bb->index); 5649 err = 1; 5650 } 5651 5652 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0) 5653 { 5654 error ("EH landing pad label "); 5655 print_generic_expr (stderr, label); 5656 fprintf (stderr, " is not first in a sequence of labels in bb %d", 5657 bb->index); 5658 err = 1; 5659 } 5660 5661 if (label_to_block (label) != bb) 5662 { 5663 error ("label "); 5664 print_generic_expr (stderr, label); 5665 fprintf (stderr, " to block does not match in bb %d", 5666 bb->index); 5667 err = 1; 5668 } 5669 5670 if (decl_function_context (label) != current_function_decl) 5671 { 5672 error ("label "); 5673 print_generic_expr (stderr, label); 5674 fprintf (stderr, " has incorrect context in bb %d", 5675 bb->index); 5676 err = 1; 5677 } 5678 } 5679 5680 /* Verify that body of basic block BB is free of control flow. */ 5681 for (; !gsi_end_p (gsi); gsi_next (&gsi)) 5682 { 5683 gimple *stmt = gsi_stmt (gsi); 5684 5685 if (found_ctrl_stmt) 5686 { 5687 error ("control flow in the middle of basic block %d", 5688 bb->index); 5689 err = 1; 5690 } 5691 5692 if (stmt_ends_bb_p (stmt)) 5693 found_ctrl_stmt = true; 5694 5695 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 5696 { 5697 error ("label "); 5698 print_generic_expr (stderr, gimple_label_label (label_stmt)); 5699 fprintf (stderr, " in the middle of basic block %d", bb->index); 5700 err = 1; 5701 } 5702 } 5703 5704 gsi = gsi_last_nondebug_bb (bb); 5705 if (gsi_end_p (gsi)) 5706 continue; 5707 5708 stmt = gsi_stmt (gsi); 5709 5710 if (gimple_code (stmt) == GIMPLE_LABEL) 5711 continue; 5712 5713 err |= verify_eh_edges (stmt); 5714 5715 if (is_ctrl_stmt (stmt)) 5716 { 5717 FOR_EACH_EDGE (e, ei, bb->succs) 5718 if (e->flags & EDGE_FALLTHRU) 5719 { 5720 error ("fallthru edge after a control statement in bb %d", 5721 bb->index); 5722 err = 1; 5723 } 5724 } 5725 5726 if (gimple_code (stmt) != GIMPLE_COND) 5727 { 5728 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set 5729 after anything else but if statement. */ 5730 FOR_EACH_EDGE (e, ei, bb->succs) 5731 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) 5732 { 5733 error ("true/false edge after a non-GIMPLE_COND in bb %d", 5734 bb->index); 5735 err = 1; 5736 } 5737 } 5738 5739 switch (gimple_code (stmt)) 5740 { 5741 case GIMPLE_COND: 5742 { 5743 edge true_edge; 5744 edge false_edge; 5745 5746 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); 5747 5748 if (!true_edge 5749 || !false_edge 5750 || !(true_edge->flags & EDGE_TRUE_VALUE) 5751 || !(false_edge->flags & EDGE_FALSE_VALUE) 5752 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) 5753 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) 5754 || EDGE_COUNT (bb->succs) >= 3) 5755 { 5756 error ("wrong outgoing edge flags at end of bb %d", 5757 bb->index); 5758 err = 1; 5759 } 5760 } 5761 break; 5762 5763 case GIMPLE_GOTO: 5764 if (simple_goto_p (stmt)) 5765 { 5766 error ("explicit goto at end of bb %d", bb->index); 5767 err = 1; 5768 } 5769 else 5770 { 5771 /* FIXME. We should double check that the labels in the 5772 destination blocks have their address taken. */ 5773 FOR_EACH_EDGE (e, ei, bb->succs) 5774 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE 5775 | EDGE_FALSE_VALUE)) 5776 || !(e->flags & EDGE_ABNORMAL)) 5777 { 5778 error ("wrong outgoing edge flags at end of bb %d", 5779 bb->index); 5780 err = 1; 5781 } 5782 } 5783 break; 5784 5785 case GIMPLE_CALL: 5786 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN)) 5787 break; 5788 /* fallthru */ 5789 case GIMPLE_RETURN: 5790 if (!single_succ_p (bb) 5791 || (single_succ_edge (bb)->flags 5792 & (EDGE_FALLTHRU | EDGE_ABNORMAL 5793 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 5794 { 5795 error ("wrong outgoing edge flags at end of bb %d", bb->index); 5796 err = 1; 5797 } 5798 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun)) 5799 { 5800 error ("return edge does not point to exit in bb %d", 5801 bb->index); 5802 err = 1; 5803 } 5804 break; 5805 5806 case GIMPLE_SWITCH: 5807 { 5808 gswitch *switch_stmt = as_a <gswitch *> (stmt); 5809 tree prev; 5810 edge e; 5811 size_t i, n; 5812 5813 n = gimple_switch_num_labels (switch_stmt); 5814 5815 /* Mark all the destination basic blocks. */ 5816 for (i = 0; i < n; ++i) 5817 { 5818 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i)); 5819 basic_block label_bb = label_to_block (lab); 5820 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1); 5821 label_bb->aux = (void *)1; 5822 } 5823 5824 /* Verify that the case labels are sorted. */ 5825 prev = gimple_switch_label (switch_stmt, 0); 5826 for (i = 1; i < n; ++i) 5827 { 5828 tree c = gimple_switch_label (switch_stmt, i); 5829 if (!CASE_LOW (c)) 5830 { 5831 error ("found default case not at the start of " 5832 "case vector"); 5833 err = 1; 5834 continue; 5835 } 5836 if (CASE_LOW (prev) 5837 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c))) 5838 { 5839 error ("case labels not sorted: "); 5840 print_generic_expr (stderr, prev); 5841 fprintf (stderr," is greater than "); 5842 print_generic_expr (stderr, c); 5843 fprintf (stderr," but comes before it.\n"); 5844 err = 1; 5845 } 5846 prev = c; 5847 } 5848 /* VRP will remove the default case if it can prove it will 5849 never be executed. So do not verify there always exists 5850 a default case here. */ 5851 5852 FOR_EACH_EDGE (e, ei, bb->succs) 5853 { 5854 if (!e->dest->aux) 5855 { 5856 error ("extra outgoing edge %d->%d", 5857 bb->index, e->dest->index); 5858 err = 1; 5859 } 5860 5861 e->dest->aux = (void *)2; 5862 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL 5863 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 5864 { 5865 error ("wrong outgoing edge flags at end of bb %d", 5866 bb->index); 5867 err = 1; 5868 } 5869 } 5870 5871 /* Check that we have all of them. */ 5872 for (i = 0; i < n; ++i) 5873 { 5874 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i)); 5875 basic_block label_bb = label_to_block (lab); 5876 5877 if (label_bb->aux != (void *)2) 5878 { 5879 error ("missing edge %i->%i", bb->index, label_bb->index); 5880 err = 1; 5881 } 5882 } 5883 5884 FOR_EACH_EDGE (e, ei, bb->succs) 5885 e->dest->aux = (void *)0; 5886 } 5887 break; 5888 5889 case GIMPLE_EH_DISPATCH: 5890 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt)); 5891 break; 5892 5893 default: 5894 break; 5895 } 5896 } 5897 5898 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY) 5899 verify_dominators (CDI_DOMINATORS); 5900 5901 return err; 5902 } 5903 5904 5905 /* Updates phi nodes after creating a forwarder block joined 5906 by edge FALLTHRU. */ 5907 5908 static void 5909 gimple_make_forwarder_block (edge fallthru) 5910 { 5911 edge e; 5912 edge_iterator ei; 5913 basic_block dummy, bb; 5914 tree var; 5915 gphi_iterator gsi; 5916 5917 dummy = fallthru->src; 5918 bb = fallthru->dest; 5919 5920 if (single_pred_p (bb)) 5921 return; 5922 5923 /* If we redirected a branch we must create new PHI nodes at the 5924 start of BB. */ 5925 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi)) 5926 { 5927 gphi *phi, *new_phi; 5928 5929 phi = gsi.phi (); 5930 var = gimple_phi_result (phi); 5931 new_phi = create_phi_node (var, bb); 5932 gimple_phi_set_result (phi, copy_ssa_name (var, phi)); 5933 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru, 5934 UNKNOWN_LOCATION); 5935 } 5936 5937 /* Add the arguments we have stored on edges. */ 5938 FOR_EACH_EDGE (e, ei, bb->preds) 5939 { 5940 if (e == fallthru) 5941 continue; 5942 5943 flush_pending_stmts (e); 5944 } 5945 } 5946 5947 5948 /* Return a non-special label in the head of basic block BLOCK. 5949 Create one if it doesn't exist. */ 5950 5951 tree 5952 gimple_block_label (basic_block bb) 5953 { 5954 gimple_stmt_iterator i, s = gsi_start_bb (bb); 5955 bool first = true; 5956 tree label; 5957 glabel *stmt; 5958 5959 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i)) 5960 { 5961 stmt = dyn_cast <glabel *> (gsi_stmt (i)); 5962 if (!stmt) 5963 break; 5964 label = gimple_label_label (stmt); 5965 if (!DECL_NONLOCAL (label)) 5966 { 5967 if (!first) 5968 gsi_move_before (&i, &s); 5969 return label; 5970 } 5971 } 5972 5973 label = create_artificial_label (UNKNOWN_LOCATION); 5974 stmt = gimple_build_label (label); 5975 gsi_insert_before (&s, stmt, GSI_NEW_STMT); 5976 return label; 5977 } 5978 5979 5980 /* Attempt to perform edge redirection by replacing a possibly complex 5981 jump instruction by a goto or by removing the jump completely. 5982 This can apply only if all edges now point to the same block. The 5983 parameters and return values are equivalent to 5984 redirect_edge_and_branch. */ 5985 5986 static edge 5987 gimple_try_redirect_by_replacing_jump (edge e, basic_block target) 5988 { 5989 basic_block src = e->src; 5990 gimple_stmt_iterator i; 5991 gimple *stmt; 5992 5993 /* We can replace or remove a complex jump only when we have exactly 5994 two edges. */ 5995 if (EDGE_COUNT (src->succs) != 2 5996 /* Verify that all targets will be TARGET. Specifically, the 5997 edge that is not E must also go to TARGET. */ 5998 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target) 5999 return NULL; 6000 6001 i = gsi_last_bb (src); 6002 if (gsi_end_p (i)) 6003 return NULL; 6004 6005 stmt = gsi_stmt (i); 6006 6007 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) 6008 { 6009 gsi_remove (&i, true); 6010 e = ssa_redirect_edge (e, target); 6011 e->flags = EDGE_FALLTHRU; 6012 return e; 6013 } 6014 6015 return NULL; 6016 } 6017 6018 6019 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the 6020 edge representing the redirected branch. */ 6021 6022 static edge 6023 gimple_redirect_edge_and_branch (edge e, basic_block dest) 6024 { 6025 basic_block bb = e->src; 6026 gimple_stmt_iterator gsi; 6027 edge ret; 6028 gimple *stmt; 6029 6030 if (e->flags & EDGE_ABNORMAL) 6031 return NULL; 6032 6033 if (e->dest == dest) 6034 return NULL; 6035 6036 if (e->flags & EDGE_EH) 6037 return redirect_eh_edge (e, dest); 6038 6039 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 6040 { 6041 ret = gimple_try_redirect_by_replacing_jump (e, dest); 6042 if (ret) 6043 return ret; 6044 } 6045 6046 gsi = gsi_last_nondebug_bb (bb); 6047 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi); 6048 6049 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK) 6050 { 6051 case GIMPLE_COND: 6052 /* For COND_EXPR, we only need to redirect the edge. */ 6053 break; 6054 6055 case GIMPLE_GOTO: 6056 /* No non-abnormal edges should lead from a non-simple goto, and 6057 simple ones should be represented implicitly. */ 6058 gcc_unreachable (); 6059 6060 case GIMPLE_SWITCH: 6061 { 6062 gswitch *switch_stmt = as_a <gswitch *> (stmt); 6063 tree label = gimple_block_label (dest); 6064 tree cases = get_cases_for_edge (e, switch_stmt); 6065 6066 /* If we have a list of cases associated with E, then use it 6067 as it's a lot faster than walking the entire case vector. */ 6068 if (cases) 6069 { 6070 edge e2 = find_edge (e->src, dest); 6071 tree last, first; 6072 6073 first = cases; 6074 while (cases) 6075 { 6076 last = cases; 6077 CASE_LABEL (cases) = label; 6078 cases = CASE_CHAIN (cases); 6079 } 6080 6081 /* If there was already an edge in the CFG, then we need 6082 to move all the cases associated with E to E2. */ 6083 if (e2) 6084 { 6085 tree cases2 = get_cases_for_edge (e2, switch_stmt); 6086 6087 CASE_CHAIN (last) = CASE_CHAIN (cases2); 6088 CASE_CHAIN (cases2) = first; 6089 } 6090 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index); 6091 } 6092 else 6093 { 6094 size_t i, n = gimple_switch_num_labels (switch_stmt); 6095 6096 for (i = 0; i < n; i++) 6097 { 6098 tree elt = gimple_switch_label (switch_stmt, i); 6099 if (label_to_block (CASE_LABEL (elt)) == e->dest) 6100 CASE_LABEL (elt) = label; 6101 } 6102 } 6103 } 6104 break; 6105 6106 case GIMPLE_ASM: 6107 { 6108 gasm *asm_stmt = as_a <gasm *> (stmt); 6109 int i, n = gimple_asm_nlabels (asm_stmt); 6110 tree label = NULL; 6111 6112 for (i = 0; i < n; ++i) 6113 { 6114 tree cons = gimple_asm_label_op (asm_stmt, i); 6115 if (label_to_block (TREE_VALUE (cons)) == e->dest) 6116 { 6117 if (!label) 6118 label = gimple_block_label (dest); 6119 TREE_VALUE (cons) = label; 6120 } 6121 } 6122 6123 /* If we didn't find any label matching the former edge in the 6124 asm labels, we must be redirecting the fallthrough 6125 edge. */ 6126 gcc_assert (label || (e->flags & EDGE_FALLTHRU)); 6127 } 6128 break; 6129 6130 case GIMPLE_RETURN: 6131 gsi_remove (&gsi, true); 6132 e->flags |= EDGE_FALLTHRU; 6133 break; 6134 6135 case GIMPLE_OMP_RETURN: 6136 case GIMPLE_OMP_CONTINUE: 6137 case GIMPLE_OMP_SECTIONS_SWITCH: 6138 case GIMPLE_OMP_FOR: 6139 /* The edges from OMP constructs can be simply redirected. */ 6140 break; 6141 6142 case GIMPLE_EH_DISPATCH: 6143 if (!(e->flags & EDGE_FALLTHRU)) 6144 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest); 6145 break; 6146 6147 case GIMPLE_TRANSACTION: 6148 if (e->flags & EDGE_TM_ABORT) 6149 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt), 6150 gimple_block_label (dest)); 6151 else if (e->flags & EDGE_TM_UNINSTRUMENTED) 6152 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt), 6153 gimple_block_label (dest)); 6154 else 6155 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt), 6156 gimple_block_label (dest)); 6157 break; 6158 6159 default: 6160 /* Otherwise it must be a fallthru edge, and we don't need to 6161 do anything besides redirecting it. */ 6162 gcc_assert (e->flags & EDGE_FALLTHRU); 6163 break; 6164 } 6165 6166 /* Update/insert PHI nodes as necessary. */ 6167 6168 /* Now update the edges in the CFG. */ 6169 e = ssa_redirect_edge (e, dest); 6170 6171 return e; 6172 } 6173 6174 /* Returns true if it is possible to remove edge E by redirecting 6175 it to the destination of the other edge from E->src. */ 6176 6177 static bool 6178 gimple_can_remove_branch_p (const_edge e) 6179 { 6180 if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) 6181 return false; 6182 6183 return true; 6184 } 6185 6186 /* Simple wrapper, as we can always redirect fallthru edges. */ 6187 6188 static basic_block 6189 gimple_redirect_edge_and_branch_force (edge e, basic_block dest) 6190 { 6191 e = gimple_redirect_edge_and_branch (e, dest); 6192 gcc_assert (e); 6193 6194 return NULL; 6195 } 6196 6197 6198 /* Splits basic block BB after statement STMT (but at least after the 6199 labels). If STMT is NULL, BB is split just after the labels. */ 6200 6201 static basic_block 6202 gimple_split_block (basic_block bb, void *stmt) 6203 { 6204 gimple_stmt_iterator gsi; 6205 gimple_stmt_iterator gsi_tgt; 6206 gimple_seq list; 6207 basic_block new_bb; 6208 edge e; 6209 edge_iterator ei; 6210 6211 new_bb = create_empty_bb (bb); 6212 6213 /* Redirect the outgoing edges. */ 6214 new_bb->succs = bb->succs; 6215 bb->succs = NULL; 6216 FOR_EACH_EDGE (e, ei, new_bb->succs) 6217 e->src = new_bb; 6218 6219 /* Get a stmt iterator pointing to the first stmt to move. */ 6220 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL) 6221 gsi = gsi_after_labels (bb); 6222 else 6223 { 6224 gsi = gsi_for_stmt ((gimple *) stmt); 6225 gsi_next (&gsi); 6226 } 6227 6228 /* Move everything from GSI to the new basic block. */ 6229 if (gsi_end_p (gsi)) 6230 return new_bb; 6231 6232 /* Split the statement list - avoid re-creating new containers as this 6233 brings ugly quadratic memory consumption in the inliner. 6234 (We are still quadratic since we need to update stmt BB pointers, 6235 sadly.) */ 6236 gsi_split_seq_before (&gsi, &list); 6237 set_bb_seq (new_bb, list); 6238 for (gsi_tgt = gsi_start (list); 6239 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt)) 6240 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb); 6241 6242 return new_bb; 6243 } 6244 6245 6246 /* Moves basic block BB after block AFTER. */ 6247 6248 static bool 6249 gimple_move_block_after (basic_block bb, basic_block after) 6250 { 6251 if (bb->prev_bb == after) 6252 return true; 6253 6254 unlink_block (bb); 6255 link_block (bb, after); 6256 6257 return true; 6258 } 6259 6260 6261 /* Return TRUE if block BB has no executable statements, otherwise return 6262 FALSE. */ 6263 6264 static bool 6265 gimple_empty_block_p (basic_block bb) 6266 { 6267 /* BB must have no executable statements. */ 6268 gimple_stmt_iterator gsi = gsi_after_labels (bb); 6269 if (phi_nodes (bb)) 6270 return false; 6271 if (gsi_end_p (gsi)) 6272 return true; 6273 if (is_gimple_debug (gsi_stmt (gsi))) 6274 gsi_next_nondebug (&gsi); 6275 return gsi_end_p (gsi); 6276 } 6277 6278 6279 /* Split a basic block if it ends with a conditional branch and if the 6280 other part of the block is not empty. */ 6281 6282 static basic_block 6283 gimple_split_block_before_cond_jump (basic_block bb) 6284 { 6285 gimple *last, *split_point; 6286 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 6287 if (gsi_end_p (gsi)) 6288 return NULL; 6289 last = gsi_stmt (gsi); 6290 if (gimple_code (last) != GIMPLE_COND 6291 && gimple_code (last) != GIMPLE_SWITCH) 6292 return NULL; 6293 gsi_prev (&gsi); 6294 split_point = gsi_stmt (gsi); 6295 return split_block (bb, split_point)->dest; 6296 } 6297 6298 6299 /* Return true if basic_block can be duplicated. */ 6300 6301 static bool 6302 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED) 6303 { 6304 return true; 6305 } 6306 6307 /* Create a duplicate of the basic block BB. NOTE: This does not 6308 preserve SSA form. */ 6309 6310 static basic_block 6311 gimple_duplicate_bb (basic_block bb) 6312 { 6313 basic_block new_bb; 6314 gimple_stmt_iterator gsi_tgt; 6315 6316 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); 6317 6318 /* Copy the PHI nodes. We ignore PHI node arguments here because 6319 the incoming edges have not been setup yet. */ 6320 for (gphi_iterator gpi = gsi_start_phis (bb); 6321 !gsi_end_p (gpi); 6322 gsi_next (&gpi)) 6323 { 6324 gphi *phi, *copy; 6325 phi = gpi.phi (); 6326 copy = create_phi_node (NULL_TREE, new_bb); 6327 create_new_def_for (gimple_phi_result (phi), copy, 6328 gimple_phi_result_ptr (copy)); 6329 gimple_set_uid (copy, gimple_uid (phi)); 6330 } 6331 6332 gsi_tgt = gsi_start_bb (new_bb); 6333 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); 6334 !gsi_end_p (gsi); 6335 gsi_next (&gsi)) 6336 { 6337 def_operand_p def_p; 6338 ssa_op_iter op_iter; 6339 tree lhs; 6340 gimple *stmt, *copy; 6341 6342 stmt = gsi_stmt (gsi); 6343 if (gimple_code (stmt) == GIMPLE_LABEL) 6344 continue; 6345 6346 /* Don't duplicate label debug stmts. */ 6347 if (gimple_debug_bind_p (stmt) 6348 && TREE_CODE (gimple_debug_bind_get_var (stmt)) 6349 == LABEL_DECL) 6350 continue; 6351 6352 /* Create a new copy of STMT and duplicate STMT's virtual 6353 operands. */ 6354 copy = gimple_copy (stmt); 6355 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); 6356 6357 maybe_duplicate_eh_stmt (copy, stmt); 6358 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); 6359 6360 /* When copying around a stmt writing into a local non-user 6361 aggregate, make sure it won't share stack slot with other 6362 vars. */ 6363 lhs = gimple_get_lhs (stmt); 6364 if (lhs && TREE_CODE (lhs) != SSA_NAME) 6365 { 6366 tree base = get_base_address (lhs); 6367 if (base 6368 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL) 6369 && DECL_IGNORED_P (base) 6370 && !TREE_STATIC (base) 6371 && !DECL_EXTERNAL (base) 6372 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base))) 6373 DECL_NONSHAREABLE (base) = 1; 6374 } 6375 6376 /* Create new names for all the definitions created by COPY and 6377 add replacement mappings for each new name. */ 6378 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) 6379 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p); 6380 } 6381 6382 return new_bb; 6383 } 6384 6385 /* Adds phi node arguments for edge E_COPY after basic block duplication. */ 6386 6387 static void 6388 add_phi_args_after_copy_edge (edge e_copy) 6389 { 6390 basic_block bb, bb_copy = e_copy->src, dest; 6391 edge e; 6392 edge_iterator ei; 6393 gphi *phi, *phi_copy; 6394 tree def; 6395 gphi_iterator psi, psi_copy; 6396 6397 if (gimple_seq_empty_p (phi_nodes (e_copy->dest))) 6398 return; 6399 6400 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy; 6401 6402 if (e_copy->dest->flags & BB_DUPLICATED) 6403 dest = get_bb_original (e_copy->dest); 6404 else 6405 dest = e_copy->dest; 6406 6407 e = find_edge (bb, dest); 6408 if (!e) 6409 { 6410 /* During loop unrolling the target of the latch edge is copied. 6411 In this case we are not looking for edge to dest, but to 6412 duplicated block whose original was dest. */ 6413 FOR_EACH_EDGE (e, ei, bb->succs) 6414 { 6415 if ((e->dest->flags & BB_DUPLICATED) 6416 && get_bb_original (e->dest) == dest) 6417 break; 6418 } 6419 6420 gcc_assert (e != NULL); 6421 } 6422 6423 for (psi = gsi_start_phis (e->dest), 6424 psi_copy = gsi_start_phis (e_copy->dest); 6425 !gsi_end_p (psi); 6426 gsi_next (&psi), gsi_next (&psi_copy)) 6427 { 6428 phi = psi.phi (); 6429 phi_copy = psi_copy.phi (); 6430 def = PHI_ARG_DEF_FROM_EDGE (phi, e); 6431 add_phi_arg (phi_copy, def, e_copy, 6432 gimple_phi_arg_location_from_edge (phi, e)); 6433 } 6434 } 6435 6436 6437 /* Basic block BB_COPY was created by code duplication. Add phi node 6438 arguments for edges going out of BB_COPY. The blocks that were 6439 duplicated have BB_DUPLICATED set. */ 6440 6441 void 6442 add_phi_args_after_copy_bb (basic_block bb_copy) 6443 { 6444 edge e_copy; 6445 edge_iterator ei; 6446 6447 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs) 6448 { 6449 add_phi_args_after_copy_edge (e_copy); 6450 } 6451 } 6452 6453 /* Blocks in REGION_COPY array of length N_REGION were created by 6454 duplication of basic blocks. Add phi node arguments for edges 6455 going from these blocks. If E_COPY is not NULL, also add 6456 phi node arguments for its destination.*/ 6457 6458 void 6459 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region, 6460 edge e_copy) 6461 { 6462 unsigned i; 6463 6464 for (i = 0; i < n_region; i++) 6465 region_copy[i]->flags |= BB_DUPLICATED; 6466 6467 for (i = 0; i < n_region; i++) 6468 add_phi_args_after_copy_bb (region_copy[i]); 6469 if (e_copy) 6470 add_phi_args_after_copy_edge (e_copy); 6471 6472 for (i = 0; i < n_region; i++) 6473 region_copy[i]->flags &= ~BB_DUPLICATED; 6474 } 6475 6476 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single 6477 important exit edge EXIT. By important we mean that no SSA name defined 6478 inside region is live over the other exit edges of the region. All entry 6479 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected 6480 to the duplicate of the region. Dominance and loop information is 6481 updated if UPDATE_DOMINANCE is true, but not the SSA web. If 6482 UPDATE_DOMINANCE is false then we assume that the caller will update the 6483 dominance information after calling this function. The new basic 6484 blocks are stored to REGION_COPY in the same order as they had in REGION, 6485 provided that REGION_COPY is not NULL. 6486 The function returns false if it is unable to copy the region, 6487 true otherwise. */ 6488 6489 bool 6490 gimple_duplicate_sese_region (edge entry, edge exit, 6491 basic_block *region, unsigned n_region, 6492 basic_block *region_copy, 6493 bool update_dominance) 6494 { 6495 unsigned i; 6496 bool free_region_copy = false, copying_header = false; 6497 struct loop *loop = entry->dest->loop_father; 6498 edge exit_copy; 6499 vec<basic_block> doms = vNULL; 6500 edge redirected; 6501 profile_count total_count = profile_count::uninitialized (); 6502 profile_count entry_count = profile_count::uninitialized (); 6503 6504 if (!can_copy_bbs_p (region, n_region)) 6505 return false; 6506 6507 /* Some sanity checking. Note that we do not check for all possible 6508 missuses of the functions. I.e. if you ask to copy something weird, 6509 it will work, but the state of structures probably will not be 6510 correct. */ 6511 for (i = 0; i < n_region; i++) 6512 { 6513 /* We do not handle subloops, i.e. all the blocks must belong to the 6514 same loop. */ 6515 if (region[i]->loop_father != loop) 6516 return false; 6517 6518 if (region[i] != entry->dest 6519 && region[i] == loop->header) 6520 return false; 6521 } 6522 6523 /* In case the function is used for loop header copying (which is the primary 6524 use), ensure that EXIT and its copy will be new latch and entry edges. */ 6525 if (loop->header == entry->dest) 6526 { 6527 copying_header = true; 6528 6529 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) 6530 return false; 6531 6532 for (i = 0; i < n_region; i++) 6533 if (region[i] != exit->src 6534 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src)) 6535 return false; 6536 } 6537 6538 initialize_original_copy_tables (); 6539 6540 if (copying_header) 6541 set_loop_copy (loop, loop_outer (loop)); 6542 else 6543 set_loop_copy (loop, loop); 6544 6545 if (!region_copy) 6546 { 6547 region_copy = XNEWVEC (basic_block, n_region); 6548 free_region_copy = true; 6549 } 6550 6551 /* Record blocks outside the region that are dominated by something 6552 inside. */ 6553 if (update_dominance) 6554 { 6555 doms.create (0); 6556 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); 6557 } 6558 6559 if (entry->dest->count.initialized_p ()) 6560 { 6561 total_count = entry->dest->count; 6562 entry_count = entry->count (); 6563 /* Fix up corner cases, to avoid division by zero or creation of negative 6564 frequencies. */ 6565 if (entry_count > total_count) 6566 entry_count = total_count; 6567 } 6568 6569 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop, 6570 split_edge_bb_loc (entry), update_dominance); 6571 if (total_count.initialized_p () && entry_count.initialized_p ()) 6572 { 6573 scale_bbs_frequencies_profile_count (region, n_region, 6574 total_count - entry_count, 6575 total_count); 6576 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count, 6577 total_count); 6578 } 6579 6580 if (copying_header) 6581 { 6582 loop->header = exit->dest; 6583 loop->latch = exit->src; 6584 } 6585 6586 /* Redirect the entry and add the phi node arguments. */ 6587 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest)); 6588 gcc_assert (redirected != NULL); 6589 flush_pending_stmts (entry); 6590 6591 /* Concerning updating of dominators: We must recount dominators 6592 for entry block and its copy. Anything that is outside of the 6593 region, but was dominated by something inside needs recounting as 6594 well. */ 6595 if (update_dominance) 6596 { 6597 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src); 6598 doms.safe_push (get_bb_original (entry->dest)); 6599 iterate_fix_dominators (CDI_DOMINATORS, doms, false); 6600 doms.release (); 6601 } 6602 6603 /* Add the other PHI node arguments. */ 6604 add_phi_args_after_copy (region_copy, n_region, NULL); 6605 6606 if (free_region_copy) 6607 free (region_copy); 6608 6609 free_original_copy_tables (); 6610 return true; 6611 } 6612 6613 /* Checks if BB is part of the region defined by N_REGION BBS. */ 6614 static bool 6615 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region) 6616 { 6617 unsigned int n; 6618 6619 for (n = 0; n < n_region; n++) 6620 { 6621 if (bb == bbs[n]) 6622 return true; 6623 } 6624 return false; 6625 } 6626 6627 /* Duplicates REGION consisting of N_REGION blocks. The new blocks 6628 are stored to REGION_COPY in the same order in that they appear 6629 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to 6630 the region, EXIT an exit from it. The condition guarding EXIT 6631 is moved to ENTRY. Returns true if duplication succeeds, false 6632 otherwise. 6633 6634 For example, 6635 6636 some_code; 6637 if (cond) 6638 A; 6639 else 6640 B; 6641 6642 is transformed to 6643 6644 if (cond) 6645 { 6646 some_code; 6647 A; 6648 } 6649 else 6650 { 6651 some_code; 6652 B; 6653 } 6654 */ 6655 6656 bool 6657 gimple_duplicate_sese_tail (edge entry, edge exit, 6658 basic_block *region, unsigned n_region, 6659 basic_block *region_copy) 6660 { 6661 unsigned i; 6662 bool free_region_copy = false; 6663 struct loop *loop = exit->dest->loop_father; 6664 struct loop *orig_loop = entry->dest->loop_father; 6665 basic_block switch_bb, entry_bb, nentry_bb; 6666 vec<basic_block> doms; 6667 profile_count total_count = profile_count::uninitialized (), 6668 exit_count = profile_count::uninitialized (); 6669 edge exits[2], nexits[2], e; 6670 gimple_stmt_iterator gsi; 6671 gimple *cond_stmt; 6672 edge sorig, snew; 6673 basic_block exit_bb; 6674 gphi_iterator psi; 6675 gphi *phi; 6676 tree def; 6677 struct loop *target, *aloop, *cloop; 6678 6679 gcc_assert (EDGE_COUNT (exit->src->succs) == 2); 6680 exits[0] = exit; 6681 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); 6682 6683 if (!can_copy_bbs_p (region, n_region)) 6684 return false; 6685 6686 initialize_original_copy_tables (); 6687 set_loop_copy (orig_loop, loop); 6688 6689 target= loop; 6690 for (aloop = orig_loop->inner; aloop; aloop = aloop->next) 6691 { 6692 if (bb_part_of_region_p (aloop->header, region, n_region)) 6693 { 6694 cloop = duplicate_loop (aloop, target); 6695 duplicate_subloops (aloop, cloop); 6696 } 6697 } 6698 6699 if (!region_copy) 6700 { 6701 region_copy = XNEWVEC (basic_block, n_region); 6702 free_region_copy = true; 6703 } 6704 6705 gcc_assert (!need_ssa_update_p (cfun)); 6706 6707 /* Record blocks outside the region that are dominated by something 6708 inside. */ 6709 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); 6710 6711 total_count = exit->src->count; 6712 exit_count = exit->count (); 6713 /* Fix up corner cases, to avoid division by zero or creation of negative 6714 frequencies. */ 6715 if (exit_count > total_count) 6716 exit_count = total_count; 6717 6718 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop, 6719 split_edge_bb_loc (exit), true); 6720 if (total_count.initialized_p () && exit_count.initialized_p ()) 6721 { 6722 scale_bbs_frequencies_profile_count (region, n_region, 6723 total_count - exit_count, 6724 total_count); 6725 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count, 6726 total_count); 6727 } 6728 6729 /* Create the switch block, and put the exit condition to it. */ 6730 entry_bb = entry->dest; 6731 nentry_bb = get_bb_copy (entry_bb); 6732 if (!last_stmt (entry->src) 6733 || !stmt_ends_bb_p (last_stmt (entry->src))) 6734 switch_bb = entry->src; 6735 else 6736 switch_bb = split_edge (entry); 6737 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb); 6738 6739 gsi = gsi_last_bb (switch_bb); 6740 cond_stmt = last_stmt (exit->src); 6741 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND); 6742 cond_stmt = gimple_copy (cond_stmt); 6743 6744 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); 6745 6746 sorig = single_succ_edge (switch_bb); 6747 sorig->flags = exits[1]->flags; 6748 sorig->probability = exits[1]->probability; 6749 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags); 6750 snew->probability = exits[0]->probability; 6751 6752 6753 /* Register the new edge from SWITCH_BB in loop exit lists. */ 6754 rescan_loop_exit (snew, true, false); 6755 6756 /* Add the PHI node arguments. */ 6757 add_phi_args_after_copy (region_copy, n_region, snew); 6758 6759 /* Get rid of now superfluous conditions and associated edges (and phi node 6760 arguments). */ 6761 exit_bb = exit->dest; 6762 6763 e = redirect_edge_and_branch (exits[0], exits[1]->dest); 6764 PENDING_STMT (e) = NULL; 6765 6766 /* The latch of ORIG_LOOP was copied, and so was the backedge 6767 to the original header. We redirect this backedge to EXIT_BB. */ 6768 for (i = 0; i < n_region; i++) 6769 if (get_bb_original (region_copy[i]) == orig_loop->latch) 6770 { 6771 gcc_assert (single_succ_edge (region_copy[i])); 6772 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb); 6773 PENDING_STMT (e) = NULL; 6774 for (psi = gsi_start_phis (exit_bb); 6775 !gsi_end_p (psi); 6776 gsi_next (&psi)) 6777 { 6778 phi = psi.phi (); 6779 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx); 6780 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e)); 6781 } 6782 } 6783 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest); 6784 PENDING_STMT (e) = NULL; 6785 6786 /* Anything that is outside of the region, but was dominated by something 6787 inside needs to update dominance info. */ 6788 iterate_fix_dominators (CDI_DOMINATORS, doms, false); 6789 doms.release (); 6790 /* Update the SSA web. */ 6791 update_ssa (TODO_update_ssa); 6792 6793 if (free_region_copy) 6794 free (region_copy); 6795 6796 free_original_copy_tables (); 6797 return true; 6798 } 6799 6800 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop 6801 adding blocks when the dominator traversal reaches EXIT. This 6802 function silently assumes that ENTRY strictly dominates EXIT. */ 6803 6804 void 6805 gather_blocks_in_sese_region (basic_block entry, basic_block exit, 6806 vec<basic_block> *bbs_p) 6807 { 6808 basic_block son; 6809 6810 for (son = first_dom_son (CDI_DOMINATORS, entry); 6811 son; 6812 son = next_dom_son (CDI_DOMINATORS, son)) 6813 { 6814 bbs_p->safe_push (son); 6815 if (son != exit) 6816 gather_blocks_in_sese_region (son, exit, bbs_p); 6817 } 6818 } 6819 6820 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT). 6821 The duplicates are recorded in VARS_MAP. */ 6822 6823 static void 6824 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map, 6825 tree to_context) 6826 { 6827 tree t = *tp, new_t; 6828 struct function *f = DECL_STRUCT_FUNCTION (to_context); 6829 6830 if (DECL_CONTEXT (t) == to_context) 6831 return; 6832 6833 bool existed; 6834 tree &loc = vars_map->get_or_insert (t, &existed); 6835 6836 if (!existed) 6837 { 6838 if (SSA_VAR_P (t)) 6839 { 6840 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t)); 6841 add_local_decl (f, new_t); 6842 } 6843 else 6844 { 6845 gcc_assert (TREE_CODE (t) == CONST_DECL); 6846 new_t = copy_node (t); 6847 } 6848 DECL_CONTEXT (new_t) = to_context; 6849 6850 loc = new_t; 6851 } 6852 else 6853 new_t = loc; 6854 6855 *tp = new_t; 6856 } 6857 6858 6859 /* Creates an ssa name in TO_CONTEXT equivalent to NAME. 6860 VARS_MAP maps old ssa names and var_decls to the new ones. */ 6861 6862 static tree 6863 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map, 6864 tree to_context) 6865 { 6866 tree new_name; 6867 6868 gcc_assert (!virtual_operand_p (name)); 6869 6870 tree *loc = vars_map->get (name); 6871 6872 if (!loc) 6873 { 6874 tree decl = SSA_NAME_VAR (name); 6875 if (decl) 6876 { 6877 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name)); 6878 replace_by_duplicate_decl (&decl, vars_map, to_context); 6879 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), 6880 decl, SSA_NAME_DEF_STMT (name)); 6881 } 6882 else 6883 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), 6884 name, SSA_NAME_DEF_STMT (name)); 6885 6886 /* Now that we've used the def stmt to define new_name, make sure it 6887 doesn't define name anymore. */ 6888 SSA_NAME_DEF_STMT (name) = NULL; 6889 6890 vars_map->put (name, new_name); 6891 } 6892 else 6893 new_name = *loc; 6894 6895 return new_name; 6896 } 6897 6898 struct move_stmt_d 6899 { 6900 tree orig_block; 6901 tree new_block; 6902 tree from_context; 6903 tree to_context; 6904 hash_map<tree, tree> *vars_map; 6905 htab_t new_label_map; 6906 hash_map<void *, void *> *eh_map; 6907 bool remap_decls_p; 6908 }; 6909 6910 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression 6911 contained in *TP if it has been ORIG_BLOCK previously and change the 6912 DECL_CONTEXT of every local variable referenced in *TP. */ 6913 6914 static tree 6915 move_stmt_op (tree *tp, int *walk_subtrees, void *data) 6916 { 6917 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 6918 struct move_stmt_d *p = (struct move_stmt_d *) wi->info; 6919 tree t = *tp; 6920 6921 if (EXPR_P (t)) 6922 { 6923 tree block = TREE_BLOCK (t); 6924 if (block == NULL_TREE) 6925 ; 6926 else if (block == p->orig_block 6927 || p->orig_block == NULL_TREE) 6928 TREE_SET_BLOCK (t, p->new_block); 6929 else if (flag_checking) 6930 { 6931 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block) 6932 block = BLOCK_SUPERCONTEXT (block); 6933 gcc_assert (block == p->orig_block); 6934 } 6935 } 6936 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME) 6937 { 6938 if (TREE_CODE (t) == SSA_NAME) 6939 *tp = replace_ssa_name (t, p->vars_map, p->to_context); 6940 else if (TREE_CODE (t) == PARM_DECL 6941 && gimple_in_ssa_p (cfun)) 6942 *tp = *(p->vars_map->get (t)); 6943 else if (TREE_CODE (t) == LABEL_DECL) 6944 { 6945 if (p->new_label_map) 6946 { 6947 struct tree_map in, *out; 6948 in.base.from = t; 6949 out = (struct tree_map *) 6950 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t)); 6951 if (out) 6952 *tp = t = out->to; 6953 } 6954 6955 /* For FORCED_LABELs we can end up with references from other 6956 functions if some SESE regions are outlined. It is UB to 6957 jump in between them, but they could be used just for printing 6958 addresses etc. In that case, DECL_CONTEXT on the label should 6959 be the function containing the glabel stmt with that LABEL_DECL, 6960 rather than whatever function a reference to the label was seen 6961 last time. */ 6962 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t)) 6963 DECL_CONTEXT (t) = p->to_context; 6964 } 6965 else if (p->remap_decls_p) 6966 { 6967 /* Replace T with its duplicate. T should no longer appear in the 6968 parent function, so this looks wasteful; however, it may appear 6969 in referenced_vars, and more importantly, as virtual operands of 6970 statements, and in alias lists of other variables. It would be 6971 quite difficult to expunge it from all those places. ??? It might 6972 suffice to do this for addressable variables. */ 6973 if ((VAR_P (t) && !is_global_var (t)) 6974 || TREE_CODE (t) == CONST_DECL) 6975 replace_by_duplicate_decl (tp, p->vars_map, p->to_context); 6976 } 6977 *walk_subtrees = 0; 6978 } 6979 else if (TYPE_P (t)) 6980 *walk_subtrees = 0; 6981 6982 return NULL_TREE; 6983 } 6984 6985 /* Helper for move_stmt_r. Given an EH region number for the source 6986 function, map that to the duplicate EH regio number in the dest. */ 6987 6988 static int 6989 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p) 6990 { 6991 eh_region old_r, new_r; 6992 6993 old_r = get_eh_region_from_number (old_nr); 6994 new_r = static_cast<eh_region> (*p->eh_map->get (old_r)); 6995 6996 return new_r->index; 6997 } 6998 6999 /* Similar, but operate on INTEGER_CSTs. */ 7000 7001 static tree 7002 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p) 7003 { 7004 int old_nr, new_nr; 7005 7006 old_nr = tree_to_shwi (old_t_nr); 7007 new_nr = move_stmt_eh_region_nr (old_nr, p); 7008 7009 return build_int_cst (integer_type_node, new_nr); 7010 } 7011 7012 /* Like move_stmt_op, but for gimple statements. 7013 7014 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression 7015 contained in the current statement in *GSI_P and change the 7016 DECL_CONTEXT of every local variable referenced in the current 7017 statement. */ 7018 7019 static tree 7020 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, 7021 struct walk_stmt_info *wi) 7022 { 7023 struct move_stmt_d *p = (struct move_stmt_d *) wi->info; 7024 gimple *stmt = gsi_stmt (*gsi_p); 7025 tree block = gimple_block (stmt); 7026 7027 if (block == p->orig_block 7028 || (p->orig_block == NULL_TREE 7029 && block != NULL_TREE)) 7030 gimple_set_block (stmt, p->new_block); 7031 7032 switch (gimple_code (stmt)) 7033 { 7034 case GIMPLE_CALL: 7035 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */ 7036 { 7037 tree r, fndecl = gimple_call_fndecl (stmt); 7038 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) 7039 switch (DECL_FUNCTION_CODE (fndecl)) 7040 { 7041 case BUILT_IN_EH_COPY_VALUES: 7042 r = gimple_call_arg (stmt, 1); 7043 r = move_stmt_eh_region_tree_nr (r, p); 7044 gimple_call_set_arg (stmt, 1, r); 7045 /* FALLTHRU */ 7046 7047 case BUILT_IN_EH_POINTER: 7048 case BUILT_IN_EH_FILTER: 7049 r = gimple_call_arg (stmt, 0); 7050 r = move_stmt_eh_region_tree_nr (r, p); 7051 gimple_call_set_arg (stmt, 0, r); 7052 break; 7053 7054 default: 7055 break; 7056 } 7057 } 7058 break; 7059 7060 case GIMPLE_RESX: 7061 { 7062 gresx *resx_stmt = as_a <gresx *> (stmt); 7063 int r = gimple_resx_region (resx_stmt); 7064 r = move_stmt_eh_region_nr (r, p); 7065 gimple_resx_set_region (resx_stmt, r); 7066 } 7067 break; 7068 7069 case GIMPLE_EH_DISPATCH: 7070 { 7071 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt); 7072 int r = gimple_eh_dispatch_region (eh_dispatch_stmt); 7073 r = move_stmt_eh_region_nr (r, p); 7074 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r); 7075 } 7076 break; 7077 7078 case GIMPLE_OMP_RETURN: 7079 case GIMPLE_OMP_CONTINUE: 7080 break; 7081 7082 case GIMPLE_LABEL: 7083 { 7084 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT, 7085 so that such labels can be referenced from other regions. 7086 Make sure to update it when seeing a GIMPLE_LABEL though, 7087 that is the owner of the label. */ 7088 walk_gimple_op (stmt, move_stmt_op, wi); 7089 *handled_ops_p = true; 7090 tree label = gimple_label_label (as_a <glabel *> (stmt)); 7091 if (FORCED_LABEL (label) || DECL_NONLOCAL (label)) 7092 DECL_CONTEXT (label) = p->to_context; 7093 } 7094 break; 7095 7096 default: 7097 if (is_gimple_omp (stmt)) 7098 { 7099 /* Do not remap variables inside OMP directives. Variables 7100 referenced in clauses and directive header belong to the 7101 parent function and should not be moved into the child 7102 function. */ 7103 bool save_remap_decls_p = p->remap_decls_p; 7104 p->remap_decls_p = false; 7105 *handled_ops_p = true; 7106 7107 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r, 7108 move_stmt_op, wi); 7109 7110 p->remap_decls_p = save_remap_decls_p; 7111 } 7112 break; 7113 } 7114 7115 return NULL_TREE; 7116 } 7117 7118 /* Move basic block BB from function CFUN to function DEST_FN. The 7119 block is moved out of the original linked list and placed after 7120 block AFTER in the new list. Also, the block is removed from the 7121 original array of blocks and placed in DEST_FN's array of blocks. 7122 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is 7123 updated to reflect the moved edges. 7124 7125 The local variables are remapped to new instances, VARS_MAP is used 7126 to record the mapping. */ 7127 7128 static void 7129 move_block_to_fn (struct function *dest_cfun, basic_block bb, 7130 basic_block after, bool update_edge_count_p, 7131 struct move_stmt_d *d) 7132 { 7133 struct control_flow_graph *cfg; 7134 edge_iterator ei; 7135 edge e; 7136 gimple_stmt_iterator si; 7137 unsigned old_len, new_len; 7138 7139 /* Remove BB from dominance structures. */ 7140 delete_from_dominance_info (CDI_DOMINATORS, bb); 7141 7142 /* Move BB from its current loop to the copy in the new function. */ 7143 if (current_loops) 7144 { 7145 struct loop *new_loop = (struct loop *)bb->loop_father->aux; 7146 if (new_loop) 7147 bb->loop_father = new_loop; 7148 } 7149 7150 /* Link BB to the new linked list. */ 7151 move_block_after (bb, after); 7152 7153 /* Update the edge count in the corresponding flowgraphs. */ 7154 if (update_edge_count_p) 7155 FOR_EACH_EDGE (e, ei, bb->succs) 7156 { 7157 cfun->cfg->x_n_edges--; 7158 dest_cfun->cfg->x_n_edges++; 7159 } 7160 7161 /* Remove BB from the original basic block array. */ 7162 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL; 7163 cfun->cfg->x_n_basic_blocks--; 7164 7165 /* Grow DEST_CFUN's basic block array if needed. */ 7166 cfg = dest_cfun->cfg; 7167 cfg->x_n_basic_blocks++; 7168 if (bb->index >= cfg->x_last_basic_block) 7169 cfg->x_last_basic_block = bb->index + 1; 7170 7171 old_len = vec_safe_length (cfg->x_basic_block_info); 7172 if ((unsigned) cfg->x_last_basic_block >= old_len) 7173 { 7174 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4; 7175 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len); 7176 } 7177 7178 (*cfg->x_basic_block_info)[bb->index] = bb; 7179 7180 /* Remap the variables in phi nodes. */ 7181 for (gphi_iterator psi = gsi_start_phis (bb); 7182 !gsi_end_p (psi); ) 7183 { 7184 gphi *phi = psi.phi (); 7185 use_operand_p use; 7186 tree op = PHI_RESULT (phi); 7187 ssa_op_iter oi; 7188 unsigned i; 7189 7190 if (virtual_operand_p (op)) 7191 { 7192 /* Remove the phi nodes for virtual operands (alias analysis will be 7193 run for the new function, anyway). */ 7194 remove_phi_node (&psi, true); 7195 continue; 7196 } 7197 7198 SET_PHI_RESULT (phi, 7199 replace_ssa_name (op, d->vars_map, dest_cfun->decl)); 7200 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) 7201 { 7202 op = USE_FROM_PTR (use); 7203 if (TREE_CODE (op) == SSA_NAME) 7204 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); 7205 } 7206 7207 for (i = 0; i < EDGE_COUNT (bb->preds); i++) 7208 { 7209 location_t locus = gimple_phi_arg_location (phi, i); 7210 tree block = LOCATION_BLOCK (locus); 7211 7212 if (locus == UNKNOWN_LOCATION) 7213 continue; 7214 if (d->orig_block == NULL_TREE || block == d->orig_block) 7215 { 7216 locus = set_block (locus, d->new_block); 7217 gimple_phi_arg_set_location (phi, i, locus); 7218 } 7219 } 7220 7221 gsi_next (&psi); 7222 } 7223 7224 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 7225 { 7226 gimple *stmt = gsi_stmt (si); 7227 struct walk_stmt_info wi; 7228 7229 memset (&wi, 0, sizeof (wi)); 7230 wi.info = d; 7231 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi); 7232 7233 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 7234 { 7235 tree label = gimple_label_label (label_stmt); 7236 int uid = LABEL_DECL_UID (label); 7237 7238 gcc_assert (uid > -1); 7239 7240 old_len = vec_safe_length (cfg->x_label_to_block_map); 7241 if (old_len <= (unsigned) uid) 7242 { 7243 new_len = 3 * uid / 2 + 1; 7244 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len); 7245 } 7246 7247 (*cfg->x_label_to_block_map)[uid] = bb; 7248 (*cfun->cfg->x_label_to_block_map)[uid] = NULL; 7249 7250 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl); 7251 7252 if (uid >= dest_cfun->cfg->last_label_uid) 7253 dest_cfun->cfg->last_label_uid = uid + 1; 7254 } 7255 7256 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0); 7257 remove_stmt_from_eh_lp_fn (cfun, stmt); 7258 7259 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt); 7260 gimple_remove_stmt_histograms (cfun, stmt); 7261 7262 /* We cannot leave any operands allocated from the operand caches of 7263 the current function. */ 7264 free_stmt_operands (cfun, stmt); 7265 push_cfun (dest_cfun); 7266 update_stmt (stmt); 7267 pop_cfun (); 7268 } 7269 7270 FOR_EACH_EDGE (e, ei, bb->succs) 7271 if (e->goto_locus != UNKNOWN_LOCATION) 7272 { 7273 tree block = LOCATION_BLOCK (e->goto_locus); 7274 if (d->orig_block == NULL_TREE 7275 || block == d->orig_block) 7276 e->goto_locus = set_block (e->goto_locus, d->new_block); 7277 } 7278 } 7279 7280 /* Examine the statements in BB (which is in SRC_CFUN); find and return 7281 the outermost EH region. Use REGION as the incoming base EH region. */ 7282 7283 static eh_region 7284 find_outermost_region_in_block (struct function *src_cfun, 7285 basic_block bb, eh_region region) 7286 { 7287 gimple_stmt_iterator si; 7288 7289 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 7290 { 7291 gimple *stmt = gsi_stmt (si); 7292 eh_region stmt_region; 7293 int lp_nr; 7294 7295 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt); 7296 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr); 7297 if (stmt_region) 7298 { 7299 if (region == NULL) 7300 region = stmt_region; 7301 else if (stmt_region != region) 7302 { 7303 region = eh_region_outermost (src_cfun, stmt_region, region); 7304 gcc_assert (region != NULL); 7305 } 7306 } 7307 } 7308 7309 return region; 7310 } 7311 7312 static tree 7313 new_label_mapper (tree decl, void *data) 7314 { 7315 htab_t hash = (htab_t) data; 7316 struct tree_map *m; 7317 void **slot; 7318 7319 gcc_assert (TREE_CODE (decl) == LABEL_DECL); 7320 7321 m = XNEW (struct tree_map); 7322 m->hash = DECL_UID (decl); 7323 m->base.from = decl; 7324 m->to = create_artificial_label (UNKNOWN_LOCATION); 7325 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl); 7326 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid) 7327 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1; 7328 7329 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT); 7330 gcc_assert (*slot == NULL); 7331 7332 *slot = m; 7333 7334 return m->to; 7335 } 7336 7337 /* Tree walker to replace the decls used inside value expressions by 7338 duplicates. */ 7339 7340 static tree 7341 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data) 7342 { 7343 struct replace_decls_d *rd = (struct replace_decls_d *)data; 7344 7345 switch (TREE_CODE (*tp)) 7346 { 7347 case VAR_DECL: 7348 case PARM_DECL: 7349 case RESULT_DECL: 7350 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context); 7351 break; 7352 default: 7353 break; 7354 } 7355 7356 if (IS_TYPE_OR_DECL_P (*tp)) 7357 *walk_subtrees = false; 7358 7359 return NULL; 7360 } 7361 7362 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including 7363 subblocks. */ 7364 7365 static void 7366 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map, 7367 tree to_context) 7368 { 7369 tree *tp, t; 7370 7371 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp)) 7372 { 7373 t = *tp; 7374 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL) 7375 continue; 7376 replace_by_duplicate_decl (&t, vars_map, to_context); 7377 if (t != *tp) 7378 { 7379 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp)) 7380 { 7381 tree x = DECL_VALUE_EXPR (*tp); 7382 struct replace_decls_d rd = { vars_map, to_context }; 7383 unshare_expr (x); 7384 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL); 7385 SET_DECL_VALUE_EXPR (t, x); 7386 DECL_HAS_VALUE_EXPR_P (t) = 1; 7387 } 7388 DECL_CHAIN (t) = DECL_CHAIN (*tp); 7389 *tp = t; 7390 } 7391 } 7392 7393 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block)) 7394 replace_block_vars_by_duplicates (block, vars_map, to_context); 7395 } 7396 7397 /* Fixup the loop arrays and numbers after moving LOOP and its subloops 7398 from FN1 to FN2. */ 7399 7400 static void 7401 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2, 7402 struct loop *loop) 7403 { 7404 /* Discard it from the old loop array. */ 7405 (*get_loops (fn1))[loop->num] = NULL; 7406 7407 /* Place it in the new loop array, assigning it a new number. */ 7408 loop->num = number_of_loops (fn2); 7409 vec_safe_push (loops_for_fn (fn2)->larray, loop); 7410 7411 /* Recurse to children. */ 7412 for (loop = loop->inner; loop; loop = loop->next) 7413 fixup_loop_arrays_after_move (fn1, fn2, loop); 7414 } 7415 7416 /* Verify that the blocks in BBS_P are a single-entry, single-exit region 7417 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */ 7418 7419 DEBUG_FUNCTION void 7420 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p) 7421 { 7422 basic_block bb; 7423 edge_iterator ei; 7424 edge e; 7425 bitmap bbs = BITMAP_ALLOC (NULL); 7426 int i; 7427 7428 gcc_assert (entry != NULL); 7429 gcc_assert (entry != exit); 7430 gcc_assert (bbs_p != NULL); 7431 7432 gcc_assert (bbs_p->length () > 0); 7433 7434 FOR_EACH_VEC_ELT (*bbs_p, i, bb) 7435 bitmap_set_bit (bbs, bb->index); 7436 7437 gcc_assert (bitmap_bit_p (bbs, entry->index)); 7438 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index)); 7439 7440 FOR_EACH_VEC_ELT (*bbs_p, i, bb) 7441 { 7442 if (bb == entry) 7443 { 7444 gcc_assert (single_pred_p (entry)); 7445 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index)); 7446 } 7447 else 7448 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei)) 7449 { 7450 e = ei_edge (ei); 7451 gcc_assert (bitmap_bit_p (bbs, e->src->index)); 7452 } 7453 7454 if (bb == exit) 7455 { 7456 gcc_assert (single_succ_p (exit)); 7457 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index)); 7458 } 7459 else 7460 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei)) 7461 { 7462 e = ei_edge (ei); 7463 gcc_assert (bitmap_bit_p (bbs, e->dest->index)); 7464 } 7465 } 7466 7467 BITMAP_FREE (bbs); 7468 } 7469 7470 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */ 7471 7472 bool 7473 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data) 7474 { 7475 bitmap release_names = (bitmap)data; 7476 7477 if (TREE_CODE (from) != SSA_NAME) 7478 return true; 7479 7480 bitmap_set_bit (release_names, SSA_NAME_VERSION (from)); 7481 return true; 7482 } 7483 7484 /* Return LOOP_DIST_ALIAS call if present in BB. */ 7485 7486 static gimple * 7487 find_loop_dist_alias (basic_block bb) 7488 { 7489 gimple *g = last_stmt (bb); 7490 if (g == NULL || gimple_code (g) != GIMPLE_COND) 7491 return NULL; 7492 7493 gimple_stmt_iterator gsi = gsi_for_stmt (g); 7494 gsi_prev (&gsi); 7495 if (gsi_end_p (gsi)) 7496 return NULL; 7497 7498 g = gsi_stmt (gsi); 7499 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)) 7500 return g; 7501 return NULL; 7502 } 7503 7504 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS 7505 to VALUE and update any immediate uses of it's LHS. */ 7506 7507 void 7508 fold_loop_internal_call (gimple *g, tree value) 7509 { 7510 tree lhs = gimple_call_lhs (g); 7511 use_operand_p use_p; 7512 imm_use_iterator iter; 7513 gimple *use_stmt; 7514 gimple_stmt_iterator gsi = gsi_for_stmt (g); 7515 7516 update_call_from_tree (&gsi, value); 7517 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) 7518 { 7519 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 7520 SET_USE (use_p, value); 7521 update_stmt (use_stmt); 7522 } 7523 } 7524 7525 /* Move a single-entry, single-exit region delimited by ENTRY_BB and 7526 EXIT_BB to function DEST_CFUN. The whole region is replaced by a 7527 single basic block in the original CFG and the new basic block is 7528 returned. DEST_CFUN must not have a CFG yet. 7529 7530 Note that the region need not be a pure SESE region. Blocks inside 7531 the region may contain calls to abort/exit. The only restriction 7532 is that ENTRY_BB should be the only entry point and it must 7533 dominate EXIT_BB. 7534 7535 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new 7536 functions outermost BLOCK, move all subblocks of ORIG_BLOCK 7537 to the new function. 7538 7539 All local variables referenced in the region are assumed to be in 7540 the corresponding BLOCK_VARS and unexpanded variable lists 7541 associated with DEST_CFUN. 7542 7543 TODO: investigate whether we can reuse gimple_duplicate_sese_region to 7544 reimplement move_sese_region_to_fn by duplicating the region rather than 7545 moving it. */ 7546 7547 basic_block 7548 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb, 7549 basic_block exit_bb, tree orig_block) 7550 { 7551 vec<basic_block> bbs, dom_bbs; 7552 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb); 7553 basic_block after, bb, *entry_pred, *exit_succ, abb; 7554 struct function *saved_cfun = cfun; 7555 int *entry_flag, *exit_flag; 7556 profile_probability *entry_prob, *exit_prob; 7557 unsigned i, num_entry_edges, num_exit_edges, num_nodes; 7558 edge e; 7559 edge_iterator ei; 7560 htab_t new_label_map; 7561 hash_map<void *, void *> *eh_map; 7562 struct loop *loop = entry_bb->loop_father; 7563 struct loop *loop0 = get_loop (saved_cfun, 0); 7564 struct move_stmt_d d; 7565 7566 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE 7567 region. */ 7568 gcc_assert (entry_bb != exit_bb 7569 && (!exit_bb 7570 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb))); 7571 7572 /* Collect all the blocks in the region. Manually add ENTRY_BB 7573 because it won't be added by dfs_enumerate_from. */ 7574 bbs.create (0); 7575 bbs.safe_push (entry_bb); 7576 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs); 7577 7578 if (flag_checking) 7579 verify_sese (entry_bb, exit_bb, &bbs); 7580 7581 /* The blocks that used to be dominated by something in BBS will now be 7582 dominated by the new block. */ 7583 dom_bbs = get_dominated_by_region (CDI_DOMINATORS, 7584 bbs.address (), 7585 bbs.length ()); 7586 7587 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember 7588 the predecessor edges to ENTRY_BB and the successor edges to 7589 EXIT_BB so that we can re-attach them to the new basic block that 7590 will replace the region. */ 7591 num_entry_edges = EDGE_COUNT (entry_bb->preds); 7592 entry_pred = XNEWVEC (basic_block, num_entry_edges); 7593 entry_flag = XNEWVEC (int, num_entry_edges); 7594 entry_prob = XNEWVEC (profile_probability, num_entry_edges); 7595 i = 0; 7596 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;) 7597 { 7598 entry_prob[i] = e->probability; 7599 entry_flag[i] = e->flags; 7600 entry_pred[i++] = e->src; 7601 remove_edge (e); 7602 } 7603 7604 if (exit_bb) 7605 { 7606 num_exit_edges = EDGE_COUNT (exit_bb->succs); 7607 exit_succ = XNEWVEC (basic_block, num_exit_edges); 7608 exit_flag = XNEWVEC (int, num_exit_edges); 7609 exit_prob = XNEWVEC (profile_probability, num_exit_edges); 7610 i = 0; 7611 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;) 7612 { 7613 exit_prob[i] = e->probability; 7614 exit_flag[i] = e->flags; 7615 exit_succ[i++] = e->dest; 7616 remove_edge (e); 7617 } 7618 } 7619 else 7620 { 7621 num_exit_edges = 0; 7622 exit_succ = NULL; 7623 exit_flag = NULL; 7624 exit_prob = NULL; 7625 } 7626 7627 /* Switch context to the child function to initialize DEST_FN's CFG. */ 7628 gcc_assert (dest_cfun->cfg == NULL); 7629 push_cfun (dest_cfun); 7630 7631 init_empty_tree_cfg (); 7632 7633 /* Initialize EH information for the new function. */ 7634 eh_map = NULL; 7635 new_label_map = NULL; 7636 if (saved_cfun->eh) 7637 { 7638 eh_region region = NULL; 7639 7640 FOR_EACH_VEC_ELT (bbs, i, bb) 7641 region = find_outermost_region_in_block (saved_cfun, bb, region); 7642 7643 init_eh_for_function (); 7644 if (region != NULL) 7645 { 7646 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free); 7647 eh_map = duplicate_eh_regions (saved_cfun, region, 0, 7648 new_label_mapper, new_label_map); 7649 } 7650 } 7651 7652 /* Initialize an empty loop tree. */ 7653 struct loops *loops = ggc_cleared_alloc<struct loops> (); 7654 init_loops_structure (dest_cfun, loops, 1); 7655 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES; 7656 set_loops_for_fn (dest_cfun, loops); 7657 7658 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy (); 7659 7660 /* Move the outlined loop tree part. */ 7661 num_nodes = bbs.length (); 7662 FOR_EACH_VEC_ELT (bbs, i, bb) 7663 { 7664 if (bb->loop_father->header == bb) 7665 { 7666 struct loop *this_loop = bb->loop_father; 7667 struct loop *outer = loop_outer (this_loop); 7668 if (outer == loop 7669 /* If the SESE region contains some bbs ending with 7670 a noreturn call, those are considered to belong 7671 to the outermost loop in saved_cfun, rather than 7672 the entry_bb's loop_father. */ 7673 || outer == loop0) 7674 { 7675 if (outer != loop) 7676 num_nodes -= this_loop->num_nodes; 7677 flow_loop_tree_node_remove (bb->loop_father); 7678 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop); 7679 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop); 7680 } 7681 } 7682 else if (bb->loop_father == loop0 && loop0 != loop) 7683 num_nodes--; 7684 7685 /* Remove loop exits from the outlined region. */ 7686 if (loops_for_fn (saved_cfun)->exits) 7687 FOR_EACH_EDGE (e, ei, bb->succs) 7688 { 7689 struct loops *l = loops_for_fn (saved_cfun); 7690 loop_exit **slot 7691 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e), 7692 NO_INSERT); 7693 if (slot) 7694 l->exits->clear_slot (slot); 7695 } 7696 } 7697 7698 /* Adjust the number of blocks in the tree root of the outlined part. */ 7699 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2; 7700 7701 /* Setup a mapping to be used by move_block_to_fn. */ 7702 loop->aux = current_loops->tree_root; 7703 loop0->aux = current_loops->tree_root; 7704 7705 /* Fix up orig_loop_num. If the block referenced in it has been moved 7706 to dest_cfun, update orig_loop_num field, otherwise clear it. */ 7707 struct loop *dloop; 7708 signed char *moved_orig_loop_num = NULL; 7709 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0) 7710 if (dloop->orig_loop_num) 7711 { 7712 if (moved_orig_loop_num == NULL) 7713 moved_orig_loop_num 7714 = XCNEWVEC (signed char, vec_safe_length (larray)); 7715 if ((*larray)[dloop->orig_loop_num] != NULL 7716 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL) 7717 { 7718 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0 7719 && moved_orig_loop_num[dloop->orig_loop_num] < 2) 7720 moved_orig_loop_num[dloop->orig_loop_num]++; 7721 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num; 7722 } 7723 else 7724 { 7725 moved_orig_loop_num[dloop->orig_loop_num] = -1; 7726 dloop->orig_loop_num = 0; 7727 } 7728 } 7729 pop_cfun (); 7730 7731 if (moved_orig_loop_num) 7732 { 7733 FOR_EACH_VEC_ELT (bbs, i, bb) 7734 { 7735 gimple *g = find_loop_dist_alias (bb); 7736 if (g == NULL) 7737 continue; 7738 7739 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0)); 7740 gcc_assert (orig_loop_num 7741 && (unsigned) orig_loop_num < vec_safe_length (larray)); 7742 if (moved_orig_loop_num[orig_loop_num] == 2) 7743 { 7744 /* If we have moved both loops with this orig_loop_num into 7745 dest_cfun and the LOOP_DIST_ALIAS call is being moved there 7746 too, update the first argument. */ 7747 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL 7748 && (get_loop (saved_cfun, dloop->orig_loop_num) 7749 == NULL)); 7750 tree t = build_int_cst (integer_type_node, 7751 (*larray)[dloop->orig_loop_num]->num); 7752 gimple_call_set_arg (g, 0, t); 7753 update_stmt (g); 7754 /* Make sure the following loop will not update it. */ 7755 moved_orig_loop_num[orig_loop_num] = 0; 7756 } 7757 else 7758 /* Otherwise at least one of the loops stayed in saved_cfun. 7759 Remove the LOOP_DIST_ALIAS call. */ 7760 fold_loop_internal_call (g, gimple_call_arg (g, 1)); 7761 } 7762 FOR_EACH_BB_FN (bb, saved_cfun) 7763 { 7764 gimple *g = find_loop_dist_alias (bb); 7765 if (g == NULL) 7766 continue; 7767 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0)); 7768 gcc_assert (orig_loop_num 7769 && (unsigned) orig_loop_num < vec_safe_length (larray)); 7770 if (moved_orig_loop_num[orig_loop_num]) 7771 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one 7772 of the corresponding loops was moved, remove it. */ 7773 fold_loop_internal_call (g, gimple_call_arg (g, 1)); 7774 } 7775 XDELETEVEC (moved_orig_loop_num); 7776 } 7777 ggc_free (larray); 7778 7779 /* Move blocks from BBS into DEST_CFUN. */ 7780 gcc_assert (bbs.length () >= 2); 7781 after = dest_cfun->cfg->x_entry_block_ptr; 7782 hash_map<tree, tree> vars_map; 7783 7784 memset (&d, 0, sizeof (d)); 7785 d.orig_block = orig_block; 7786 d.new_block = DECL_INITIAL (dest_cfun->decl); 7787 d.from_context = cfun->decl; 7788 d.to_context = dest_cfun->decl; 7789 d.vars_map = &vars_map; 7790 d.new_label_map = new_label_map; 7791 d.eh_map = eh_map; 7792 d.remap_decls_p = true; 7793 7794 if (gimple_in_ssa_p (cfun)) 7795 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg)) 7796 { 7797 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ()); 7798 set_ssa_default_def (dest_cfun, arg, narg); 7799 vars_map.put (arg, narg); 7800 } 7801 7802 FOR_EACH_VEC_ELT (bbs, i, bb) 7803 { 7804 /* No need to update edge counts on the last block. It has 7805 already been updated earlier when we detached the region from 7806 the original CFG. */ 7807 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d); 7808 after = bb; 7809 } 7810 7811 loop->aux = NULL; 7812 loop0->aux = NULL; 7813 /* Loop sizes are no longer correct, fix them up. */ 7814 loop->num_nodes -= num_nodes; 7815 for (struct loop *outer = loop_outer (loop); 7816 outer; outer = loop_outer (outer)) 7817 outer->num_nodes -= num_nodes; 7818 loop0->num_nodes -= bbs.length () - num_nodes; 7819 7820 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops) 7821 { 7822 struct loop *aloop; 7823 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++) 7824 if (aloop != NULL) 7825 { 7826 if (aloop->simduid) 7827 { 7828 replace_by_duplicate_decl (&aloop->simduid, d.vars_map, 7829 d.to_context); 7830 dest_cfun->has_simduid_loops = true; 7831 } 7832 if (aloop->force_vectorize) 7833 dest_cfun->has_force_vectorize_loops = true; 7834 } 7835 } 7836 7837 /* Rewire BLOCK_SUBBLOCKS of orig_block. */ 7838 if (orig_block) 7839 { 7840 tree block; 7841 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) 7842 == NULL_TREE); 7843 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) 7844 = BLOCK_SUBBLOCKS (orig_block); 7845 for (block = BLOCK_SUBBLOCKS (orig_block); 7846 block; block = BLOCK_CHAIN (block)) 7847 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl); 7848 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE; 7849 } 7850 7851 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl), 7852 &vars_map, dest_cfun->decl); 7853 7854 if (new_label_map) 7855 htab_delete (new_label_map); 7856 if (eh_map) 7857 delete eh_map; 7858 7859 if (gimple_in_ssa_p (cfun)) 7860 { 7861 /* We need to release ssa-names in a defined order, so first find them, 7862 and then iterate in ascending version order. */ 7863 bitmap release_names = BITMAP_ALLOC (NULL); 7864 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names); 7865 bitmap_iterator bi; 7866 unsigned i; 7867 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi) 7868 release_ssa_name (ssa_name (i)); 7869 BITMAP_FREE (release_names); 7870 } 7871 7872 /* Rewire the entry and exit blocks. The successor to the entry 7873 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in 7874 the child function. Similarly, the predecessor of DEST_FN's 7875 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We 7876 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the 7877 various CFG manipulation function get to the right CFG. 7878 7879 FIXME, this is silly. The CFG ought to become a parameter to 7880 these helpers. */ 7881 push_cfun (dest_cfun); 7882 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count; 7883 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU); 7884 if (exit_bb) 7885 { 7886 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 7887 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count; 7888 } 7889 else 7890 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero (); 7891 pop_cfun (); 7892 7893 /* Back in the original function, the SESE region has disappeared, 7894 create a new basic block in its place. */ 7895 bb = create_empty_bb (entry_pred[0]); 7896 if (current_loops) 7897 add_bb_to_loop (bb, loop); 7898 for (i = 0; i < num_entry_edges; i++) 7899 { 7900 e = make_edge (entry_pred[i], bb, entry_flag[i]); 7901 e->probability = entry_prob[i]; 7902 } 7903 7904 for (i = 0; i < num_exit_edges; i++) 7905 { 7906 e = make_edge (bb, exit_succ[i], exit_flag[i]); 7907 e->probability = exit_prob[i]; 7908 } 7909 7910 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry); 7911 FOR_EACH_VEC_ELT (dom_bbs, i, abb) 7912 set_immediate_dominator (CDI_DOMINATORS, abb, bb); 7913 dom_bbs.release (); 7914 7915 if (exit_bb) 7916 { 7917 free (exit_prob); 7918 free (exit_flag); 7919 free (exit_succ); 7920 } 7921 free (entry_prob); 7922 free (entry_flag); 7923 free (entry_pred); 7924 bbs.release (); 7925 7926 return bb; 7927 } 7928 7929 /* Dump default def DEF to file FILE using FLAGS and indentation 7930 SPC. */ 7931 7932 static void 7933 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags) 7934 { 7935 for (int i = 0; i < spc; ++i) 7936 fprintf (file, " "); 7937 dump_ssaname_info_to_file (file, def, spc); 7938 7939 print_generic_expr (file, TREE_TYPE (def), flags); 7940 fprintf (file, " "); 7941 print_generic_expr (file, def, flags); 7942 fprintf (file, " = "); 7943 print_generic_expr (file, SSA_NAME_VAR (def), flags); 7944 fprintf (file, ";\n"); 7945 } 7946 7947 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */ 7948 7949 static void 7950 print_no_sanitize_attr_value (FILE *file, tree value) 7951 { 7952 unsigned int flags = tree_to_uhwi (value); 7953 bool first = true; 7954 for (int i = 0; sanitizer_opts[i].name != NULL; ++i) 7955 { 7956 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag) 7957 { 7958 if (!first) 7959 fprintf (file, " | "); 7960 fprintf (file, "%s", sanitizer_opts[i].name); 7961 first = false; 7962 } 7963 } 7964 } 7965 7966 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h) 7967 */ 7968 7969 void 7970 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags) 7971 { 7972 tree arg, var, old_current_fndecl = current_function_decl; 7973 struct function *dsf; 7974 bool ignore_topmost_bind = false, any_var = false; 7975 basic_block bb; 7976 tree chain; 7977 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL 7978 && decl_is_tm_clone (fndecl)); 7979 struct function *fun = DECL_STRUCT_FUNCTION (fndecl); 7980 7981 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE) 7982 { 7983 fprintf (file, "__attribute__(("); 7984 7985 bool first = true; 7986 tree chain; 7987 for (chain = DECL_ATTRIBUTES (fndecl); chain; 7988 first = false, chain = TREE_CHAIN (chain)) 7989 { 7990 if (!first) 7991 fprintf (file, ", "); 7992 7993 tree name = get_attribute_name (chain); 7994 print_generic_expr (file, name, dump_flags); 7995 if (TREE_VALUE (chain) != NULL_TREE) 7996 { 7997 fprintf (file, " ("); 7998 7999 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize")) 8000 print_no_sanitize_attr_value (file, TREE_VALUE (chain)); 8001 else 8002 print_generic_expr (file, TREE_VALUE (chain), dump_flags); 8003 fprintf (file, ")"); 8004 } 8005 } 8006 8007 fprintf (file, "))\n"); 8008 } 8009 8010 current_function_decl = fndecl; 8011 if (flags & TDF_GIMPLE) 8012 { 8013 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)), 8014 dump_flags | TDF_SLIM); 8015 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun)); 8016 } 8017 else 8018 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : ""); 8019 8020 arg = DECL_ARGUMENTS (fndecl); 8021 while (arg) 8022 { 8023 print_generic_expr (file, TREE_TYPE (arg), dump_flags); 8024 fprintf (file, " "); 8025 print_generic_expr (file, arg, dump_flags); 8026 if (DECL_CHAIN (arg)) 8027 fprintf (file, ", "); 8028 arg = DECL_CHAIN (arg); 8029 } 8030 fprintf (file, ")\n"); 8031 8032 dsf = DECL_STRUCT_FUNCTION (fndecl); 8033 if (dsf && (flags & TDF_EH)) 8034 dump_eh_tree (file, dsf); 8035 8036 if (flags & TDF_RAW && !gimple_has_body_p (fndecl)) 8037 { 8038 dump_node (fndecl, TDF_SLIM | flags, file); 8039 current_function_decl = old_current_fndecl; 8040 return; 8041 } 8042 8043 /* When GIMPLE is lowered, the variables are no longer available in 8044 BIND_EXPRs, so display them separately. */ 8045 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf)) 8046 { 8047 unsigned ix; 8048 ignore_topmost_bind = true; 8049 8050 fprintf (file, "{\n"); 8051 if (gimple_in_ssa_p (fun) 8052 && (flags & TDF_ALIAS)) 8053 { 8054 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL; 8055 arg = DECL_CHAIN (arg)) 8056 { 8057 tree def = ssa_default_def (fun, arg); 8058 if (def) 8059 dump_default_def (file, def, 2, flags); 8060 } 8061 8062 tree res = DECL_RESULT (fun->decl); 8063 if (res != NULL_TREE 8064 && DECL_BY_REFERENCE (res)) 8065 { 8066 tree def = ssa_default_def (fun, res); 8067 if (def) 8068 dump_default_def (file, def, 2, flags); 8069 } 8070 8071 tree static_chain = fun->static_chain_decl; 8072 if (static_chain != NULL_TREE) 8073 { 8074 tree def = ssa_default_def (fun, static_chain); 8075 if (def) 8076 dump_default_def (file, def, 2, flags); 8077 } 8078 } 8079 8080 if (!vec_safe_is_empty (fun->local_decls)) 8081 FOR_EACH_LOCAL_DECL (fun, ix, var) 8082 { 8083 print_generic_decl (file, var, flags); 8084 fprintf (file, "\n"); 8085 8086 any_var = true; 8087 } 8088 8089 tree name; 8090 8091 if (gimple_in_ssa_p (cfun)) 8092 FOR_EACH_SSA_NAME (ix, name, cfun) 8093 { 8094 if (!SSA_NAME_VAR (name)) 8095 { 8096 fprintf (file, " "); 8097 print_generic_expr (file, TREE_TYPE (name), flags); 8098 fprintf (file, " "); 8099 print_generic_expr (file, name, flags); 8100 fprintf (file, ";\n"); 8101 8102 any_var = true; 8103 } 8104 } 8105 } 8106 8107 if (fun && fun->decl == fndecl 8108 && fun->cfg 8109 && basic_block_info_for_fn (fun)) 8110 { 8111 /* If the CFG has been built, emit a CFG-based dump. */ 8112 if (!ignore_topmost_bind) 8113 fprintf (file, "{\n"); 8114 8115 if (any_var && n_basic_blocks_for_fn (fun)) 8116 fprintf (file, "\n"); 8117 8118 FOR_EACH_BB_FN (bb, fun) 8119 dump_bb (file, bb, 2, flags); 8120 8121 fprintf (file, "}\n"); 8122 } 8123 else if (fun->curr_properties & PROP_gimple_any) 8124 { 8125 /* The function is now in GIMPLE form but the CFG has not been 8126 built yet. Emit the single sequence of GIMPLE statements 8127 that make up its body. */ 8128 gimple_seq body = gimple_body (fndecl); 8129 8130 if (gimple_seq_first_stmt (body) 8131 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body) 8132 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND) 8133 print_gimple_seq (file, body, 0, flags); 8134 else 8135 { 8136 if (!ignore_topmost_bind) 8137 fprintf (file, "{\n"); 8138 8139 if (any_var) 8140 fprintf (file, "\n"); 8141 8142 print_gimple_seq (file, body, 2, flags); 8143 fprintf (file, "}\n"); 8144 } 8145 } 8146 else 8147 { 8148 int indent; 8149 8150 /* Make a tree based dump. */ 8151 chain = DECL_SAVED_TREE (fndecl); 8152 if (chain && TREE_CODE (chain) == BIND_EXPR) 8153 { 8154 if (ignore_topmost_bind) 8155 { 8156 chain = BIND_EXPR_BODY (chain); 8157 indent = 2; 8158 } 8159 else 8160 indent = 0; 8161 } 8162 else 8163 { 8164 if (!ignore_topmost_bind) 8165 { 8166 fprintf (file, "{\n"); 8167 /* No topmost bind, pretend it's ignored for later. */ 8168 ignore_topmost_bind = true; 8169 } 8170 indent = 2; 8171 } 8172 8173 if (any_var) 8174 fprintf (file, "\n"); 8175 8176 print_generic_stmt_indented (file, chain, flags, indent); 8177 if (ignore_topmost_bind) 8178 fprintf (file, "}\n"); 8179 } 8180 8181 if (flags & TDF_ENUMERATE_LOCALS) 8182 dump_enumerated_decls (file, flags); 8183 fprintf (file, "\n\n"); 8184 8185 current_function_decl = old_current_fndecl; 8186 } 8187 8188 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */ 8189 8190 DEBUG_FUNCTION void 8191 debug_function (tree fn, dump_flags_t flags) 8192 { 8193 dump_function_to_file (fn, stderr, flags); 8194 } 8195 8196 8197 /* Print on FILE the indexes for the predecessors of basic_block BB. */ 8198 8199 static void 8200 print_pred_bbs (FILE *file, basic_block bb) 8201 { 8202 edge e; 8203 edge_iterator ei; 8204 8205 FOR_EACH_EDGE (e, ei, bb->preds) 8206 fprintf (file, "bb_%d ", e->src->index); 8207 } 8208 8209 8210 /* Print on FILE the indexes for the successors of basic_block BB. */ 8211 8212 static void 8213 print_succ_bbs (FILE *file, basic_block bb) 8214 { 8215 edge e; 8216 edge_iterator ei; 8217 8218 FOR_EACH_EDGE (e, ei, bb->succs) 8219 fprintf (file, "bb_%d ", e->dest->index); 8220 } 8221 8222 /* Print to FILE the basic block BB following the VERBOSITY level. */ 8223 8224 void 8225 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity) 8226 { 8227 char *s_indent = (char *) alloca ((size_t) indent + 1); 8228 memset ((void *) s_indent, ' ', (size_t) indent); 8229 s_indent[indent] = '\0'; 8230 8231 /* Print basic_block's header. */ 8232 if (verbosity >= 2) 8233 { 8234 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index); 8235 print_pred_bbs (file, bb); 8236 fprintf (file, "}, succs = {"); 8237 print_succ_bbs (file, bb); 8238 fprintf (file, "})\n"); 8239 } 8240 8241 /* Print basic_block's body. */ 8242 if (verbosity >= 3) 8243 { 8244 fprintf (file, "%s {\n", s_indent); 8245 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS); 8246 fprintf (file, "%s }\n", s_indent); 8247 } 8248 } 8249 8250 static void print_loop_and_siblings (FILE *, struct loop *, int, int); 8251 8252 /* Pretty print LOOP on FILE, indented INDENT spaces. Following 8253 VERBOSITY level this outputs the contents of the loop, or just its 8254 structure. */ 8255 8256 static void 8257 print_loop (FILE *file, struct loop *loop, int indent, int verbosity) 8258 { 8259 char *s_indent; 8260 basic_block bb; 8261 8262 if (loop == NULL) 8263 return; 8264 8265 s_indent = (char *) alloca ((size_t) indent + 1); 8266 memset ((void *) s_indent, ' ', (size_t) indent); 8267 s_indent[indent] = '\0'; 8268 8269 /* Print loop's header. */ 8270 fprintf (file, "%sloop_%d (", s_indent, loop->num); 8271 if (loop->header) 8272 fprintf (file, "header = %d", loop->header->index); 8273 else 8274 { 8275 fprintf (file, "deleted)\n"); 8276 return; 8277 } 8278 if (loop->latch) 8279 fprintf (file, ", latch = %d", loop->latch->index); 8280 else 8281 fprintf (file, ", multiple latches"); 8282 fprintf (file, ", niter = "); 8283 print_generic_expr (file, loop->nb_iterations); 8284 8285 if (loop->any_upper_bound) 8286 { 8287 fprintf (file, ", upper_bound = "); 8288 print_decu (loop->nb_iterations_upper_bound, file); 8289 } 8290 if (loop->any_likely_upper_bound) 8291 { 8292 fprintf (file, ", likely_upper_bound = "); 8293 print_decu (loop->nb_iterations_likely_upper_bound, file); 8294 } 8295 8296 if (loop->any_estimate) 8297 { 8298 fprintf (file, ", estimate = "); 8299 print_decu (loop->nb_iterations_estimate, file); 8300 } 8301 if (loop->unroll) 8302 fprintf (file, ", unroll = %d", loop->unroll); 8303 fprintf (file, ")\n"); 8304 8305 /* Print loop's body. */ 8306 if (verbosity >= 1) 8307 { 8308 fprintf (file, "%s{\n", s_indent); 8309 FOR_EACH_BB_FN (bb, cfun) 8310 if (bb->loop_father == loop) 8311 print_loops_bb (file, bb, indent, verbosity); 8312 8313 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity); 8314 fprintf (file, "%s}\n", s_indent); 8315 } 8316 } 8317 8318 /* Print the LOOP and its sibling loops on FILE, indented INDENT 8319 spaces. Following VERBOSITY level this outputs the contents of the 8320 loop, or just its structure. */ 8321 8322 static void 8323 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, 8324 int verbosity) 8325 { 8326 if (loop == NULL) 8327 return; 8328 8329 print_loop (file, loop, indent, verbosity); 8330 print_loop_and_siblings (file, loop->next, indent, verbosity); 8331 } 8332 8333 /* Follow a CFG edge from the entry point of the program, and on entry 8334 of a loop, pretty print the loop structure on FILE. */ 8335 8336 void 8337 print_loops (FILE *file, int verbosity) 8338 { 8339 basic_block bb; 8340 8341 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); 8342 fprintf (file, "\nLoops in function: %s\n", current_function_name ()); 8343 if (bb && bb->loop_father) 8344 print_loop_and_siblings (file, bb->loop_father, 0, verbosity); 8345 } 8346 8347 /* Dump a loop. */ 8348 8349 DEBUG_FUNCTION void 8350 debug (struct loop &ref) 8351 { 8352 print_loop (stderr, &ref, 0, /*verbosity*/0); 8353 } 8354 8355 DEBUG_FUNCTION void 8356 debug (struct loop *ptr) 8357 { 8358 if (ptr) 8359 debug (*ptr); 8360 else 8361 fprintf (stderr, "<nil>\n"); 8362 } 8363 8364 /* Dump a loop verbosely. */ 8365 8366 DEBUG_FUNCTION void 8367 debug_verbose (struct loop &ref) 8368 { 8369 print_loop (stderr, &ref, 0, /*verbosity*/3); 8370 } 8371 8372 DEBUG_FUNCTION void 8373 debug_verbose (struct loop *ptr) 8374 { 8375 if (ptr) 8376 debug (*ptr); 8377 else 8378 fprintf (stderr, "<nil>\n"); 8379 } 8380 8381 8382 /* Debugging loops structure at tree level, at some VERBOSITY level. */ 8383 8384 DEBUG_FUNCTION void 8385 debug_loops (int verbosity) 8386 { 8387 print_loops (stderr, verbosity); 8388 } 8389 8390 /* Print on stderr the code of LOOP, at some VERBOSITY level. */ 8391 8392 DEBUG_FUNCTION void 8393 debug_loop (struct loop *loop, int verbosity) 8394 { 8395 print_loop (stderr, loop, 0, verbosity); 8396 } 8397 8398 /* Print on stderr the code of loop number NUM, at some VERBOSITY 8399 level. */ 8400 8401 DEBUG_FUNCTION void 8402 debug_loop_num (unsigned num, int verbosity) 8403 { 8404 debug_loop (get_loop (cfun, num), verbosity); 8405 } 8406 8407 /* Return true if BB ends with a call, possibly followed by some 8408 instructions that must stay with the call. Return false, 8409 otherwise. */ 8410 8411 static bool 8412 gimple_block_ends_with_call_p (basic_block bb) 8413 { 8414 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 8415 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi)); 8416 } 8417 8418 8419 /* Return true if BB ends with a conditional branch. Return false, 8420 otherwise. */ 8421 8422 static bool 8423 gimple_block_ends_with_condjump_p (const_basic_block bb) 8424 { 8425 gimple *stmt = last_stmt (CONST_CAST_BB (bb)); 8426 return (stmt && gimple_code (stmt) == GIMPLE_COND); 8427 } 8428 8429 8430 /* Return true if statement T may terminate execution of BB in ways not 8431 explicitly represtented in the CFG. */ 8432 8433 bool 8434 stmt_can_terminate_bb_p (gimple *t) 8435 { 8436 tree fndecl = NULL_TREE; 8437 int call_flags = 0; 8438 8439 /* Eh exception not handled internally terminates execution of the whole 8440 function. */ 8441 if (stmt_can_throw_external (t)) 8442 return true; 8443 8444 /* NORETURN and LONGJMP calls already have an edge to exit. 8445 CONST and PURE calls do not need one. 8446 We don't currently check for CONST and PURE here, although 8447 it would be a good idea, because those attributes are 8448 figured out from the RTL in mark_constant_function, and 8449 the counter incrementation code from -fprofile-arcs 8450 leads to different results from -fbranch-probabilities. */ 8451 if (is_gimple_call (t)) 8452 { 8453 fndecl = gimple_call_fndecl (t); 8454 call_flags = gimple_call_flags (t); 8455 } 8456 8457 if (is_gimple_call (t) 8458 && fndecl 8459 && DECL_BUILT_IN (fndecl) 8460 && (call_flags & ECF_NOTHROW) 8461 && !(call_flags & ECF_RETURNS_TWICE) 8462 /* fork() doesn't really return twice, but the effect of 8463 wrapping it in __gcov_fork() which calls __gcov_flush() 8464 and clears the counters before forking has the same 8465 effect as returning twice. Force a fake edge. */ 8466 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 8467 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK)) 8468 return false; 8469 8470 if (is_gimple_call (t)) 8471 { 8472 edge_iterator ei; 8473 edge e; 8474 basic_block bb; 8475 8476 if (call_flags & (ECF_PURE | ECF_CONST) 8477 && !(call_flags & ECF_LOOPING_CONST_OR_PURE)) 8478 return false; 8479 8480 /* Function call may do longjmp, terminate program or do other things. 8481 Special case noreturn that have non-abnormal edges out as in this case 8482 the fact is sufficiently represented by lack of edges out of T. */ 8483 if (!(call_flags & ECF_NORETURN)) 8484 return true; 8485 8486 bb = gimple_bb (t); 8487 FOR_EACH_EDGE (e, ei, bb->succs) 8488 if ((e->flags & EDGE_FAKE) == 0) 8489 return true; 8490 } 8491 8492 if (gasm *asm_stmt = dyn_cast <gasm *> (t)) 8493 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt)) 8494 return true; 8495 8496 return false; 8497 } 8498 8499 8500 /* Add fake edges to the function exit for any non constant and non 8501 noreturn calls (or noreturn calls with EH/abnormal edges), 8502 volatile inline assembly in the bitmap of blocks specified by BLOCKS 8503 or to the whole CFG if BLOCKS is zero. Return the number of blocks 8504 that were split. 8505 8506 The goal is to expose cases in which entering a basic block does 8507 not imply that all subsequent instructions must be executed. */ 8508 8509 static int 8510 gimple_flow_call_edges_add (sbitmap blocks) 8511 { 8512 int i; 8513 int blocks_split = 0; 8514 int last_bb = last_basic_block_for_fn (cfun); 8515 bool check_last_block = false; 8516 8517 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 8518 return 0; 8519 8520 if (! blocks) 8521 check_last_block = true; 8522 else 8523 check_last_block = bitmap_bit_p (blocks, 8524 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index); 8525 8526 /* In the last basic block, before epilogue generation, there will be 8527 a fallthru edge to EXIT. Special care is required if the last insn 8528 of the last basic block is a call because make_edge folds duplicate 8529 edges, which would result in the fallthru edge also being marked 8530 fake, which would result in the fallthru edge being removed by 8531 remove_fake_edges, which would result in an invalid CFG. 8532 8533 Moreover, we can't elide the outgoing fake edge, since the block 8534 profiler needs to take this into account in order to solve the minimal 8535 spanning tree in the case that the call doesn't return. 8536 8537 Handle this by adding a dummy instruction in a new last basic block. */ 8538 if (check_last_block) 8539 { 8540 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; 8541 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 8542 gimple *t = NULL; 8543 8544 if (!gsi_end_p (gsi)) 8545 t = gsi_stmt (gsi); 8546 8547 if (t && stmt_can_terminate_bb_p (t)) 8548 { 8549 edge e; 8550 8551 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); 8552 if (e) 8553 { 8554 gsi_insert_on_edge (e, gimple_build_nop ()); 8555 gsi_commit_edge_inserts (); 8556 } 8557 } 8558 } 8559 8560 /* Now add fake edges to the function exit for any non constant 8561 calls since there is no way that we can determine if they will 8562 return or not... */ 8563 for (i = 0; i < last_bb; i++) 8564 { 8565 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8566 gimple_stmt_iterator gsi; 8567 gimple *stmt, *last_stmt; 8568 8569 if (!bb) 8570 continue; 8571 8572 if (blocks && !bitmap_bit_p (blocks, i)) 8573 continue; 8574 8575 gsi = gsi_last_nondebug_bb (bb); 8576 if (!gsi_end_p (gsi)) 8577 { 8578 last_stmt = gsi_stmt (gsi); 8579 do 8580 { 8581 stmt = gsi_stmt (gsi); 8582 if (stmt_can_terminate_bb_p (stmt)) 8583 { 8584 edge e; 8585 8586 /* The handling above of the final block before the 8587 epilogue should be enough to verify that there is 8588 no edge to the exit block in CFG already. 8589 Calling make_edge in such case would cause us to 8590 mark that edge as fake and remove it later. */ 8591 if (flag_checking && stmt == last_stmt) 8592 { 8593 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); 8594 gcc_assert (e == NULL); 8595 } 8596 8597 /* Note that the following may create a new basic block 8598 and renumber the existing basic blocks. */ 8599 if (stmt != last_stmt) 8600 { 8601 e = split_block (bb, stmt); 8602 if (e) 8603 blocks_split++; 8604 } 8605 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 8606 e->probability = profile_probability::guessed_never (); 8607 } 8608 gsi_prev (&gsi); 8609 } 8610 while (!gsi_end_p (gsi)); 8611 } 8612 } 8613 8614 if (blocks_split) 8615 checking_verify_flow_info (); 8616 8617 return blocks_split; 8618 } 8619 8620 /* Removes edge E and all the blocks dominated by it, and updates dominance 8621 information. The IL in E->src needs to be updated separately. 8622 If dominance info is not available, only the edge E is removed.*/ 8623 8624 void 8625 remove_edge_and_dominated_blocks (edge e) 8626 { 8627 vec<basic_block> bbs_to_remove = vNULL; 8628 vec<basic_block> bbs_to_fix_dom = vNULL; 8629 edge f; 8630 edge_iterator ei; 8631 bool none_removed = false; 8632 unsigned i; 8633 basic_block bb, dbb; 8634 bitmap_iterator bi; 8635 8636 /* If we are removing a path inside a non-root loop that may change 8637 loop ownership of blocks or remove loops. Mark loops for fixup. */ 8638 if (current_loops 8639 && loop_outer (e->src->loop_father) != NULL 8640 && e->src->loop_father == e->dest->loop_father) 8641 loops_state_set (LOOPS_NEED_FIXUP); 8642 8643 if (!dom_info_available_p (CDI_DOMINATORS)) 8644 { 8645 remove_edge (e); 8646 return; 8647 } 8648 8649 /* No updating is needed for edges to exit. */ 8650 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 8651 { 8652 if (cfgcleanup_altered_bbs) 8653 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); 8654 remove_edge (e); 8655 return; 8656 } 8657 8658 /* First, we find the basic blocks to remove. If E->dest has a predecessor 8659 that is not dominated by E->dest, then this set is empty. Otherwise, 8660 all the basic blocks dominated by E->dest are removed. 8661 8662 Also, to DF_IDOM we store the immediate dominators of the blocks in 8663 the dominance frontier of E (i.e., of the successors of the 8664 removed blocks, if there are any, and of E->dest otherwise). */ 8665 FOR_EACH_EDGE (f, ei, e->dest->preds) 8666 { 8667 if (f == e) 8668 continue; 8669 8670 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest)) 8671 { 8672 none_removed = true; 8673 break; 8674 } 8675 } 8676 8677 auto_bitmap df, df_idom; 8678 if (none_removed) 8679 bitmap_set_bit (df_idom, 8680 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index); 8681 else 8682 { 8683 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest); 8684 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) 8685 { 8686 FOR_EACH_EDGE (f, ei, bb->succs) 8687 { 8688 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8689 bitmap_set_bit (df, f->dest->index); 8690 } 8691 } 8692 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) 8693 bitmap_clear_bit (df, bb->index); 8694 8695 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi) 8696 { 8697 bb = BASIC_BLOCK_FOR_FN (cfun, i); 8698 bitmap_set_bit (df_idom, 8699 get_immediate_dominator (CDI_DOMINATORS, bb)->index); 8700 } 8701 } 8702 8703 if (cfgcleanup_altered_bbs) 8704 { 8705 /* Record the set of the altered basic blocks. */ 8706 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); 8707 bitmap_ior_into (cfgcleanup_altered_bbs, df); 8708 } 8709 8710 /* Remove E and the cancelled blocks. */ 8711 if (none_removed) 8712 remove_edge (e); 8713 else 8714 { 8715 /* Walk backwards so as to get a chance to substitute all 8716 released DEFs into debug stmts. See 8717 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more 8718 details. */ 8719 for (i = bbs_to_remove.length (); i-- > 0; ) 8720 delete_basic_block (bbs_to_remove[i]); 8721 } 8722 8723 /* Update the dominance information. The immediate dominator may change only 8724 for blocks whose immediate dominator belongs to DF_IDOM: 8725 8726 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the 8727 removal. Let Z the arbitrary block such that idom(Z) = Y and 8728 Z dominates X after the removal. Before removal, there exists a path P 8729 from Y to X that avoids Z. Let F be the last edge on P that is 8730 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y 8731 dominates W, and because of P, Z does not dominate W), and W belongs to 8732 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */ 8733 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi) 8734 { 8735 bb = BASIC_BLOCK_FOR_FN (cfun, i); 8736 for (dbb = first_dom_son (CDI_DOMINATORS, bb); 8737 dbb; 8738 dbb = next_dom_son (CDI_DOMINATORS, dbb)) 8739 bbs_to_fix_dom.safe_push (dbb); 8740 } 8741 8742 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); 8743 8744 bbs_to_remove.release (); 8745 bbs_to_fix_dom.release (); 8746 } 8747 8748 /* Purge dead EH edges from basic block BB. */ 8749 8750 bool 8751 gimple_purge_dead_eh_edges (basic_block bb) 8752 { 8753 bool changed = false; 8754 edge e; 8755 edge_iterator ei; 8756 gimple *stmt = last_stmt (bb); 8757 8758 if (stmt && stmt_can_throw_internal (stmt)) 8759 return false; 8760 8761 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) 8762 { 8763 if (e->flags & EDGE_EH) 8764 { 8765 remove_edge_and_dominated_blocks (e); 8766 changed = true; 8767 } 8768 else 8769 ei_next (&ei); 8770 } 8771 8772 return changed; 8773 } 8774 8775 /* Purge dead EH edges from basic block listed in BLOCKS. */ 8776 8777 bool 8778 gimple_purge_all_dead_eh_edges (const_bitmap blocks) 8779 { 8780 bool changed = false; 8781 unsigned i; 8782 bitmap_iterator bi; 8783 8784 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 8785 { 8786 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8787 8788 /* Earlier gimple_purge_dead_eh_edges could have removed 8789 this basic block already. */ 8790 gcc_assert (bb || changed); 8791 if (bb != NULL) 8792 changed |= gimple_purge_dead_eh_edges (bb); 8793 } 8794 8795 return changed; 8796 } 8797 8798 /* Purge dead abnormal call edges from basic block BB. */ 8799 8800 bool 8801 gimple_purge_dead_abnormal_call_edges (basic_block bb) 8802 { 8803 bool changed = false; 8804 edge e; 8805 edge_iterator ei; 8806 gimple *stmt = last_stmt (bb); 8807 8808 if (!cfun->has_nonlocal_label 8809 && !cfun->calls_setjmp) 8810 return false; 8811 8812 if (stmt && stmt_can_make_abnormal_goto (stmt)) 8813 return false; 8814 8815 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) 8816 { 8817 if (e->flags & EDGE_ABNORMAL) 8818 { 8819 if (e->flags & EDGE_FALLTHRU) 8820 e->flags &= ~EDGE_ABNORMAL; 8821 else 8822 remove_edge_and_dominated_blocks (e); 8823 changed = true; 8824 } 8825 else 8826 ei_next (&ei); 8827 } 8828 8829 return changed; 8830 } 8831 8832 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */ 8833 8834 bool 8835 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks) 8836 { 8837 bool changed = false; 8838 unsigned i; 8839 bitmap_iterator bi; 8840 8841 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 8842 { 8843 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8844 8845 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed 8846 this basic block already. */ 8847 gcc_assert (bb || changed); 8848 if (bb != NULL) 8849 changed |= gimple_purge_dead_abnormal_call_edges (bb); 8850 } 8851 8852 return changed; 8853 } 8854 8855 /* This function is called whenever a new edge is created or 8856 redirected. */ 8857 8858 static void 8859 gimple_execute_on_growing_pred (edge e) 8860 { 8861 basic_block bb = e->dest; 8862 8863 if (!gimple_seq_empty_p (phi_nodes (bb))) 8864 reserve_phi_args_for_new_edge (bb); 8865 } 8866 8867 /* This function is called immediately before edge E is removed from 8868 the edge vector E->dest->preds. */ 8869 8870 static void 8871 gimple_execute_on_shrinking_pred (edge e) 8872 { 8873 if (!gimple_seq_empty_p (phi_nodes (e->dest))) 8874 remove_phi_args (e); 8875 } 8876 8877 /*--------------------------------------------------------------------------- 8878 Helper functions for Loop versioning 8879 ---------------------------------------------------------------------------*/ 8880 8881 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy 8882 of 'first'. Both of them are dominated by 'new_head' basic block. When 8883 'new_head' was created by 'second's incoming edge it received phi arguments 8884 on the edge by split_edge(). Later, additional edge 'e' was created to 8885 connect 'new_head' and 'first'. Now this routine adds phi args on this 8886 additional edge 'e' that new_head to second edge received as part of edge 8887 splitting. */ 8888 8889 static void 8890 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second, 8891 basic_block new_head, edge e) 8892 { 8893 gphi *phi1, *phi2; 8894 gphi_iterator psi1, psi2; 8895 tree def; 8896 edge e2 = find_edge (new_head, second); 8897 8898 /* Because NEW_HEAD has been created by splitting SECOND's incoming 8899 edge, we should always have an edge from NEW_HEAD to SECOND. */ 8900 gcc_assert (e2 != NULL); 8901 8902 /* Browse all 'second' basic block phi nodes and add phi args to 8903 edge 'e' for 'first' head. PHI args are always in correct order. */ 8904 8905 for (psi2 = gsi_start_phis (second), 8906 psi1 = gsi_start_phis (first); 8907 !gsi_end_p (psi2) && !gsi_end_p (psi1); 8908 gsi_next (&psi2), gsi_next (&psi1)) 8909 { 8910 phi1 = psi1.phi (); 8911 phi2 = psi2.phi (); 8912 def = PHI_ARG_DEF (phi2, e2->dest_idx); 8913 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2)); 8914 } 8915 } 8916 8917 8918 /* Adds a if else statement to COND_BB with condition COND_EXPR. 8919 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is 8920 the destination of the ELSE part. */ 8921 8922 static void 8923 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED, 8924 basic_block second_head ATTRIBUTE_UNUSED, 8925 basic_block cond_bb, void *cond_e) 8926 { 8927 gimple_stmt_iterator gsi; 8928 gimple *new_cond_expr; 8929 tree cond_expr = (tree) cond_e; 8930 edge e0; 8931 8932 /* Build new conditional expr */ 8933 new_cond_expr = gimple_build_cond_from_tree (cond_expr, 8934 NULL_TREE, NULL_TREE); 8935 8936 /* Add new cond in cond_bb. */ 8937 gsi = gsi_last_bb (cond_bb); 8938 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT); 8939 8940 /* Adjust edges appropriately to connect new head with first head 8941 as well as second head. */ 8942 e0 = single_succ_edge (cond_bb); 8943 e0->flags &= ~EDGE_FALLTHRU; 8944 e0->flags |= EDGE_FALSE_VALUE; 8945 } 8946 8947 8948 /* Do book-keeping of basic block BB for the profile consistency checker. 8949 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1 8950 then do post-pass accounting. Store the counting in RECORD. */ 8951 static void 8952 gimple_account_profile_record (basic_block bb, int after_pass, 8953 struct profile_record *record) 8954 { 8955 gimple_stmt_iterator i; 8956 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) 8957 { 8958 record->size[after_pass] 8959 += estimate_num_insns (gsi_stmt (i), &eni_size_weights); 8960 if (bb->count.initialized_p ()) 8961 record->time[after_pass] 8962 += estimate_num_insns (gsi_stmt (i), 8963 &eni_time_weights) * bb->count.to_gcov_type (); 8964 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED) 8965 record->time[after_pass] 8966 += estimate_num_insns (gsi_stmt (i), 8967 &eni_time_weights) * bb->count.to_frequency (cfun); 8968 } 8969 } 8970 8971 struct cfg_hooks gimple_cfg_hooks = { 8972 "gimple", 8973 gimple_verify_flow_info, 8974 gimple_dump_bb, /* dump_bb */ 8975 gimple_dump_bb_for_graph, /* dump_bb_for_graph */ 8976 create_bb, /* create_basic_block */ 8977 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */ 8978 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */ 8979 gimple_can_remove_branch_p, /* can_remove_branch_p */ 8980 remove_bb, /* delete_basic_block */ 8981 gimple_split_block, /* split_block */ 8982 gimple_move_block_after, /* move_block_after */ 8983 gimple_can_merge_blocks_p, /* can_merge_blocks_p */ 8984 gimple_merge_blocks, /* merge_blocks */ 8985 gimple_predict_edge, /* predict_edge */ 8986 gimple_predicted_by_p, /* predicted_by_p */ 8987 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */ 8988 gimple_duplicate_bb, /* duplicate_block */ 8989 gimple_split_edge, /* split_edge */ 8990 gimple_make_forwarder_block, /* make_forward_block */ 8991 NULL, /* tidy_fallthru_edge */ 8992 NULL, /* force_nonfallthru */ 8993 gimple_block_ends_with_call_p,/* block_ends_with_call_p */ 8994 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */ 8995 gimple_flow_call_edges_add, /* flow_call_edges_add */ 8996 gimple_execute_on_growing_pred, /* execute_on_growing_pred */ 8997 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */ 8998 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */ 8999 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ 9000 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/ 9001 extract_true_false_edges_from_block, /* extract_cond_bb_edges */ 9002 flush_pending_stmts, /* flush_pending_stmts */ 9003 gimple_empty_block_p, /* block_empty_p */ 9004 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */ 9005 gimple_account_profile_record, 9006 }; 9007 9008 9009 /* Split all critical edges. */ 9010 9011 unsigned int 9012 split_critical_edges (void) 9013 { 9014 basic_block bb; 9015 edge e; 9016 edge_iterator ei; 9017 9018 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get 9019 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR 9020 mappings around the calls to split_edge. */ 9021 start_recording_case_labels (); 9022 FOR_ALL_BB_FN (bb, cfun) 9023 { 9024 FOR_EACH_EDGE (e, ei, bb->succs) 9025 { 9026 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL)) 9027 split_edge (e); 9028 /* PRE inserts statements to edges and expects that 9029 since split_critical_edges was done beforehand, committing edge 9030 insertions will not split more edges. In addition to critical 9031 edges we must split edges that have multiple successors and 9032 end by control flow statements, such as RESX. 9033 Go ahead and split them too. This matches the logic in 9034 gimple_find_edge_insert_loc. */ 9035 else if ((!single_pred_p (e->dest) 9036 || !gimple_seq_empty_p (phi_nodes (e->dest)) 9037 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 9038 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) 9039 && !(e->flags & EDGE_ABNORMAL)) 9040 { 9041 gimple_stmt_iterator gsi; 9042 9043 gsi = gsi_last_bb (e->src); 9044 if (!gsi_end_p (gsi) 9045 && stmt_ends_bb_p (gsi_stmt (gsi)) 9046 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN 9047 && !gimple_call_builtin_p (gsi_stmt (gsi), 9048 BUILT_IN_RETURN))) 9049 split_edge (e); 9050 } 9051 } 9052 } 9053 end_recording_case_labels (); 9054 return 0; 9055 } 9056 9057 namespace { 9058 9059 const pass_data pass_data_split_crit_edges = 9060 { 9061 GIMPLE_PASS, /* type */ 9062 "crited", /* name */ 9063 OPTGROUP_NONE, /* optinfo_flags */ 9064 TV_TREE_SPLIT_EDGES, /* tv_id */ 9065 PROP_cfg, /* properties_required */ 9066 PROP_no_crit_edges, /* properties_provided */ 9067 0, /* properties_destroyed */ 9068 0, /* todo_flags_start */ 9069 0, /* todo_flags_finish */ 9070 }; 9071 9072 class pass_split_crit_edges : public gimple_opt_pass 9073 { 9074 public: 9075 pass_split_crit_edges (gcc::context *ctxt) 9076 : gimple_opt_pass (pass_data_split_crit_edges, ctxt) 9077 {} 9078 9079 /* opt_pass methods: */ 9080 virtual unsigned int execute (function *) { return split_critical_edges (); } 9081 9082 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); } 9083 }; // class pass_split_crit_edges 9084 9085 } // anon namespace 9086 9087 gimple_opt_pass * 9088 make_pass_split_crit_edges (gcc::context *ctxt) 9089 { 9090 return new pass_split_crit_edges (ctxt); 9091 } 9092 9093 9094 /* Insert COND expression which is GIMPLE_COND after STMT 9095 in basic block BB with appropriate basic block split 9096 and creation of a new conditionally executed basic block. 9097 Update profile so the new bb is visited with probability PROB. 9098 Return created basic block. */ 9099 basic_block 9100 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond, 9101 profile_probability prob) 9102 { 9103 edge fall = split_block (bb, stmt); 9104 gimple_stmt_iterator iter = gsi_last_bb (bb); 9105 basic_block new_bb; 9106 9107 /* Insert cond statement. */ 9108 gcc_assert (gimple_code (cond) == GIMPLE_COND); 9109 if (gsi_end_p (iter)) 9110 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING); 9111 else 9112 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING); 9113 9114 /* Create conditionally executed block. */ 9115 new_bb = create_empty_bb (bb); 9116 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE); 9117 e->probability = prob; 9118 new_bb->count = e->count (); 9119 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU); 9120 9121 /* Fix edge for split bb. */ 9122 fall->flags = EDGE_FALSE_VALUE; 9123 fall->probability -= e->probability; 9124 9125 /* Update dominance info. */ 9126 if (dom_info_available_p (CDI_DOMINATORS)) 9127 { 9128 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb); 9129 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb); 9130 } 9131 9132 /* Update loop info. */ 9133 if (current_loops) 9134 add_bb_to_loop (new_bb, bb->loop_father); 9135 9136 return new_bb; 9137 } 9138 9139 /* Build a ternary operation and gimplify it. Emit code before GSI. 9140 Return the gimple_val holding the result. */ 9141 9142 tree 9143 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code, 9144 tree type, tree a, tree b, tree c) 9145 { 9146 tree ret; 9147 location_t loc = gimple_location (gsi_stmt (*gsi)); 9148 9149 ret = fold_build3_loc (loc, code, type, a, b, c); 9150 STRIP_NOPS (ret); 9151 9152 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 9153 GSI_SAME_STMT); 9154 } 9155 9156 /* Build a binary operation and gimplify it. Emit code before GSI. 9157 Return the gimple_val holding the result. */ 9158 9159 tree 9160 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code, 9161 tree type, tree a, tree b) 9162 { 9163 tree ret; 9164 9165 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b); 9166 STRIP_NOPS (ret); 9167 9168 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 9169 GSI_SAME_STMT); 9170 } 9171 9172 /* Build a unary operation and gimplify it. Emit code before GSI. 9173 Return the gimple_val holding the result. */ 9174 9175 tree 9176 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, 9177 tree a) 9178 { 9179 tree ret; 9180 9181 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a); 9182 STRIP_NOPS (ret); 9183 9184 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 9185 GSI_SAME_STMT); 9186 } 9187 9188 9189 9190 /* Given a basic block B which ends with a conditional and has 9191 precisely two successors, determine which of the edges is taken if 9192 the conditional is true and which is taken if the conditional is 9193 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */ 9194 9195 void 9196 extract_true_false_edges_from_block (basic_block b, 9197 edge *true_edge, 9198 edge *false_edge) 9199 { 9200 edge e = EDGE_SUCC (b, 0); 9201 9202 if (e->flags & EDGE_TRUE_VALUE) 9203 { 9204 *true_edge = e; 9205 *false_edge = EDGE_SUCC (b, 1); 9206 } 9207 else 9208 { 9209 *false_edge = e; 9210 *true_edge = EDGE_SUCC (b, 1); 9211 } 9212 } 9213 9214 9215 /* From a controlling predicate in the immediate dominator DOM of 9216 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the 9217 predicate evaluates to true and false and store them to 9218 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if 9219 they are non-NULL. Returns true if the edges can be determined, 9220 else return false. */ 9221 9222 bool 9223 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock, 9224 edge *true_controlled_edge, 9225 edge *false_controlled_edge) 9226 { 9227 basic_block bb = phiblock; 9228 edge true_edge, false_edge, tem; 9229 edge e0 = NULL, e1 = NULL; 9230 9231 /* We have to verify that one edge into the PHI node is dominated 9232 by the true edge of the predicate block and the other edge 9233 dominated by the false edge. This ensures that the PHI argument 9234 we are going to take is completely determined by the path we 9235 take from the predicate block. 9236 We can only use BB dominance checks below if the destination of 9237 the true/false edges are dominated by their edge, thus only 9238 have a single predecessor. */ 9239 extract_true_false_edges_from_block (dom, &true_edge, &false_edge); 9240 tem = EDGE_PRED (bb, 0); 9241 if (tem == true_edge 9242 || (single_pred_p (true_edge->dest) 9243 && (tem->src == true_edge->dest 9244 || dominated_by_p (CDI_DOMINATORS, 9245 tem->src, true_edge->dest)))) 9246 e0 = tem; 9247 else if (tem == false_edge 9248 || (single_pred_p (false_edge->dest) 9249 && (tem->src == false_edge->dest 9250 || dominated_by_p (CDI_DOMINATORS, 9251 tem->src, false_edge->dest)))) 9252 e1 = tem; 9253 else 9254 return false; 9255 tem = EDGE_PRED (bb, 1); 9256 if (tem == true_edge 9257 || (single_pred_p (true_edge->dest) 9258 && (tem->src == true_edge->dest 9259 || dominated_by_p (CDI_DOMINATORS, 9260 tem->src, true_edge->dest)))) 9261 e0 = tem; 9262 else if (tem == false_edge 9263 || (single_pred_p (false_edge->dest) 9264 && (tem->src == false_edge->dest 9265 || dominated_by_p (CDI_DOMINATORS, 9266 tem->src, false_edge->dest)))) 9267 e1 = tem; 9268 else 9269 return false; 9270 if (!e0 || !e1) 9271 return false; 9272 9273 if (true_controlled_edge) 9274 *true_controlled_edge = e0; 9275 if (false_controlled_edge) 9276 *false_controlled_edge = e1; 9277 9278 return true; 9279 } 9280 9281 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the 9282 range [low, high]. Place associated stmts before *GSI. */ 9283 9284 void 9285 generate_range_test (basic_block bb, tree index, tree low, tree high, 9286 tree *lhs, tree *rhs) 9287 { 9288 tree type = TREE_TYPE (index); 9289 tree utype = unsigned_type_for (type); 9290 9291 low = fold_convert (type, low); 9292 high = fold_convert (type, high); 9293 9294 tree tmp = make_ssa_name (type); 9295 gassign *sub1 9296 = gimple_build_assign (tmp, MINUS_EXPR, index, low); 9297 9298 *lhs = make_ssa_name (utype); 9299 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp); 9300 9301 *rhs = fold_build2 (MINUS_EXPR, utype, high, low); 9302 gimple_stmt_iterator gsi = gsi_last_bb (bb); 9303 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT); 9304 gsi_insert_before (&gsi, a, GSI_SAME_STMT); 9305 } 9306 9307 /* Emit return warnings. */ 9308 9309 namespace { 9310 9311 const pass_data pass_data_warn_function_return = 9312 { 9313 GIMPLE_PASS, /* type */ 9314 "*warn_function_return", /* name */ 9315 OPTGROUP_NONE, /* optinfo_flags */ 9316 TV_NONE, /* tv_id */ 9317 PROP_cfg, /* properties_required */ 9318 0, /* properties_provided */ 9319 0, /* properties_destroyed */ 9320 0, /* todo_flags_start */ 9321 0, /* todo_flags_finish */ 9322 }; 9323 9324 class pass_warn_function_return : public gimple_opt_pass 9325 { 9326 public: 9327 pass_warn_function_return (gcc::context *ctxt) 9328 : gimple_opt_pass (pass_data_warn_function_return, ctxt) 9329 {} 9330 9331 /* opt_pass methods: */ 9332 virtual unsigned int execute (function *); 9333 9334 }; // class pass_warn_function_return 9335 9336 unsigned int 9337 pass_warn_function_return::execute (function *fun) 9338 { 9339 source_location location; 9340 gimple *last; 9341 edge e; 9342 edge_iterator ei; 9343 9344 if (!targetm.warn_func_return (fun->decl)) 9345 return 0; 9346 9347 /* If we have a path to EXIT, then we do return. */ 9348 if (TREE_THIS_VOLATILE (fun->decl) 9349 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0) 9350 { 9351 location = UNKNOWN_LOCATION; 9352 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds); 9353 (e = ei_safe_edge (ei)); ) 9354 { 9355 last = last_stmt (e->src); 9356 if ((gimple_code (last) == GIMPLE_RETURN 9357 || gimple_call_builtin_p (last, BUILT_IN_RETURN)) 9358 && location == UNKNOWN_LOCATION 9359 && ((location = LOCATION_LOCUS (gimple_location (last))) 9360 != UNKNOWN_LOCATION) 9361 && !optimize) 9362 break; 9363 /* When optimizing, replace return stmts in noreturn functions 9364 with __builtin_unreachable () call. */ 9365 if (optimize && gimple_code (last) == GIMPLE_RETURN) 9366 { 9367 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); 9368 gimple *new_stmt = gimple_build_call (fndecl, 0); 9369 gimple_set_location (new_stmt, gimple_location (last)); 9370 gimple_stmt_iterator gsi = gsi_for_stmt (last); 9371 gsi_replace (&gsi, new_stmt, true); 9372 remove_edge (e); 9373 } 9374 else 9375 ei_next (&ei); 9376 } 9377 if (location == UNKNOWN_LOCATION) 9378 location = cfun->function_end_locus; 9379 warning_at (location, 0, "%<noreturn%> function does return"); 9380 } 9381 9382 /* If we see "return;" in some basic block, then we do reach the end 9383 without returning a value. */ 9384 else if (warn_return_type > 0 9385 && !TREE_NO_WARNING (fun->decl) 9386 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl)))) 9387 { 9388 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds) 9389 { 9390 gimple *last = last_stmt (e->src); 9391 greturn *return_stmt = dyn_cast <greturn *> (last); 9392 if (return_stmt 9393 && gimple_return_retval (return_stmt) == NULL 9394 && !gimple_no_warning_p (last)) 9395 { 9396 location = gimple_location (last); 9397 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION) 9398 location = fun->function_end_locus; 9399 warning_at (location, OPT_Wreturn_type, 9400 "control reaches end of non-void function"); 9401 TREE_NO_WARNING (fun->decl) = 1; 9402 break; 9403 } 9404 } 9405 /* The C++ FE turns fallthrough from the end of non-void function 9406 into __builtin_unreachable () call with BUILTINS_LOCATION. 9407 Recognize those too. */ 9408 basic_block bb; 9409 if (!TREE_NO_WARNING (fun->decl)) 9410 FOR_EACH_BB_FN (bb, fun) 9411 if (EDGE_COUNT (bb->succs) == 0) 9412 { 9413 gimple *last = last_stmt (bb); 9414 const enum built_in_function ubsan_missing_ret 9415 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN; 9416 if (last 9417 && ((LOCATION_LOCUS (gimple_location (last)) 9418 == BUILTINS_LOCATION 9419 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE)) 9420 || gimple_call_builtin_p (last, ubsan_missing_ret))) 9421 { 9422 gimple_stmt_iterator gsi = gsi_for_stmt (last); 9423 gsi_prev_nondebug (&gsi); 9424 gimple *prev = gsi_stmt (gsi); 9425 if (prev == NULL) 9426 location = UNKNOWN_LOCATION; 9427 else 9428 location = gimple_location (prev); 9429 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION) 9430 location = fun->function_end_locus; 9431 warning_at (location, OPT_Wreturn_type, 9432 "control reaches end of non-void function"); 9433 TREE_NO_WARNING (fun->decl) = 1; 9434 break; 9435 } 9436 } 9437 } 9438 return 0; 9439 } 9440 9441 } // anon namespace 9442 9443 gimple_opt_pass * 9444 make_pass_warn_function_return (gcc::context *ctxt) 9445 { 9446 return new pass_warn_function_return (ctxt); 9447 } 9448 9449 /* Walk a gimplified function and warn for functions whose return value is 9450 ignored and attribute((warn_unused_result)) is set. This is done before 9451 inlining, so we don't have to worry about that. */ 9452 9453 static void 9454 do_warn_unused_result (gimple_seq seq) 9455 { 9456 tree fdecl, ftype; 9457 gimple_stmt_iterator i; 9458 9459 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) 9460 { 9461 gimple *g = gsi_stmt (i); 9462 9463 switch (gimple_code (g)) 9464 { 9465 case GIMPLE_BIND: 9466 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g))); 9467 break; 9468 case GIMPLE_TRY: 9469 do_warn_unused_result (gimple_try_eval (g)); 9470 do_warn_unused_result (gimple_try_cleanup (g)); 9471 break; 9472 case GIMPLE_CATCH: 9473 do_warn_unused_result (gimple_catch_handler ( 9474 as_a <gcatch *> (g))); 9475 break; 9476 case GIMPLE_EH_FILTER: 9477 do_warn_unused_result (gimple_eh_filter_failure (g)); 9478 break; 9479 9480 case GIMPLE_CALL: 9481 if (gimple_call_lhs (g)) 9482 break; 9483 if (gimple_call_internal_p (g)) 9484 break; 9485 9486 /* This is a naked call, as opposed to a GIMPLE_CALL with an 9487 LHS. All calls whose value is ignored should be 9488 represented like this. Look for the attribute. */ 9489 fdecl = gimple_call_fndecl (g); 9490 ftype = gimple_call_fntype (g); 9491 9492 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype))) 9493 { 9494 location_t loc = gimple_location (g); 9495 9496 if (fdecl) 9497 warning_at (loc, OPT_Wunused_result, 9498 "ignoring return value of %qD, " 9499 "declared with attribute warn_unused_result", 9500 fdecl); 9501 else 9502 warning_at (loc, OPT_Wunused_result, 9503 "ignoring return value of function " 9504 "declared with attribute warn_unused_result"); 9505 } 9506 break; 9507 9508 default: 9509 /* Not a container, not a call, or a call whose value is used. */ 9510 break; 9511 } 9512 } 9513 } 9514 9515 namespace { 9516 9517 const pass_data pass_data_warn_unused_result = 9518 { 9519 GIMPLE_PASS, /* type */ 9520 "*warn_unused_result", /* name */ 9521 OPTGROUP_NONE, /* optinfo_flags */ 9522 TV_NONE, /* tv_id */ 9523 PROP_gimple_any, /* properties_required */ 9524 0, /* properties_provided */ 9525 0, /* properties_destroyed */ 9526 0, /* todo_flags_start */ 9527 0, /* todo_flags_finish */ 9528 }; 9529 9530 class pass_warn_unused_result : public gimple_opt_pass 9531 { 9532 public: 9533 pass_warn_unused_result (gcc::context *ctxt) 9534 : gimple_opt_pass (pass_data_warn_unused_result, ctxt) 9535 {} 9536 9537 /* opt_pass methods: */ 9538 virtual bool gate (function *) { return flag_warn_unused_result; } 9539 virtual unsigned int execute (function *) 9540 { 9541 do_warn_unused_result (gimple_body (current_function_decl)); 9542 return 0; 9543 } 9544 9545 }; // class pass_warn_unused_result 9546 9547 } // anon namespace 9548 9549 gimple_opt_pass * 9550 make_pass_warn_unused_result (gcc::context *ctxt) 9551 { 9552 return new pass_warn_unused_result (ctxt); 9553 } 9554 9555 /* IPA passes, compilation of earlier functions or inlining 9556 might have changed some properties, such as marked functions nothrow, 9557 pure, const or noreturn. 9558 Remove redundant edges and basic blocks, and create new ones if necessary. 9559 9560 This pass can't be executed as stand alone pass from pass manager, because 9561 in between inlining and this fixup the verify_flow_info would fail. */ 9562 9563 unsigned int 9564 execute_fixup_cfg (void) 9565 { 9566 basic_block bb; 9567 gimple_stmt_iterator gsi; 9568 int todo = 0; 9569 cgraph_node *node = cgraph_node::get (current_function_decl); 9570 profile_count num = node->count; 9571 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count; 9572 bool scale = num.initialized_p () && !(num == den); 9573 9574 if (scale) 9575 { 9576 profile_count::adjust_for_ipa_scaling (&num, &den); 9577 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count; 9578 EXIT_BLOCK_PTR_FOR_FN (cfun)->count 9579 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den); 9580 } 9581 9582 FOR_EACH_BB_FN (bb, cfun) 9583 { 9584 if (scale) 9585 bb->count = bb->count.apply_scale (num, den); 9586 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) 9587 { 9588 gimple *stmt = gsi_stmt (gsi); 9589 tree decl = is_gimple_call (stmt) 9590 ? gimple_call_fndecl (stmt) 9591 : NULL; 9592 if (decl) 9593 { 9594 int flags = gimple_call_flags (stmt); 9595 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE)) 9596 { 9597 if (gimple_purge_dead_abnormal_call_edges (bb)) 9598 todo |= TODO_cleanup_cfg; 9599 9600 if (gimple_in_ssa_p (cfun)) 9601 { 9602 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9603 update_stmt (stmt); 9604 } 9605 } 9606 9607 if (flags & ECF_NORETURN 9608 && fixup_noreturn_call (stmt)) 9609 todo |= TODO_cleanup_cfg; 9610 } 9611 9612 /* Remove stores to variables we marked write-only. 9613 Keep access when store has side effect, i.e. in case when source 9614 is volatile. */ 9615 if (gimple_store_p (stmt) 9616 && !gimple_has_side_effects (stmt)) 9617 { 9618 tree lhs = get_base_address (gimple_get_lhs (stmt)); 9619 9620 if (VAR_P (lhs) 9621 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs)) 9622 && varpool_node::get (lhs)->writeonly) 9623 { 9624 unlink_stmt_vdef (stmt); 9625 gsi_remove (&gsi, true); 9626 release_defs (stmt); 9627 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9628 continue; 9629 } 9630 } 9631 /* For calls we can simply remove LHS when it is known 9632 to be write-only. */ 9633 if (is_gimple_call (stmt) 9634 && gimple_get_lhs (stmt)) 9635 { 9636 tree lhs = get_base_address (gimple_get_lhs (stmt)); 9637 9638 if (VAR_P (lhs) 9639 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs)) 9640 && varpool_node::get (lhs)->writeonly) 9641 { 9642 gimple_call_set_lhs (stmt, NULL); 9643 update_stmt (stmt); 9644 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9645 } 9646 } 9647 9648 if (maybe_clean_eh_stmt (stmt) 9649 && gimple_purge_dead_eh_edges (bb)) 9650 todo |= TODO_cleanup_cfg; 9651 gsi_next (&gsi); 9652 } 9653 9654 /* If we have a basic block with no successors that does not 9655 end with a control statement or a noreturn call end it with 9656 a call to __builtin_unreachable. This situation can occur 9657 when inlining a noreturn call that does in fact return. */ 9658 if (EDGE_COUNT (bb->succs) == 0) 9659 { 9660 gimple *stmt = last_stmt (bb); 9661 if (!stmt 9662 || (!is_ctrl_stmt (stmt) 9663 && (!is_gimple_call (stmt) 9664 || !gimple_call_noreturn_p (stmt)))) 9665 { 9666 if (stmt && is_gimple_call (stmt)) 9667 gimple_call_set_ctrl_altering (stmt, false); 9668 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); 9669 stmt = gimple_build_call (fndecl, 0); 9670 gimple_stmt_iterator gsi = gsi_last_bb (bb); 9671 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 9672 if (!cfun->after_inlining) 9673 { 9674 gcall *call_stmt = dyn_cast <gcall *> (stmt); 9675 node->create_edge (cgraph_node::get_create (fndecl), 9676 call_stmt, bb->count); 9677 } 9678 } 9679 } 9680 } 9681 if (scale) 9682 compute_function_frequency (); 9683 9684 if (current_loops 9685 && (todo & TODO_cleanup_cfg)) 9686 loops_state_set (LOOPS_NEED_FIXUP); 9687 9688 return todo; 9689 } 9690 9691 namespace { 9692 9693 const pass_data pass_data_fixup_cfg = 9694 { 9695 GIMPLE_PASS, /* type */ 9696 "fixup_cfg", /* name */ 9697 OPTGROUP_NONE, /* optinfo_flags */ 9698 TV_NONE, /* tv_id */ 9699 PROP_cfg, /* properties_required */ 9700 0, /* properties_provided */ 9701 0, /* properties_destroyed */ 9702 0, /* todo_flags_start */ 9703 0, /* todo_flags_finish */ 9704 }; 9705 9706 class pass_fixup_cfg : public gimple_opt_pass 9707 { 9708 public: 9709 pass_fixup_cfg (gcc::context *ctxt) 9710 : gimple_opt_pass (pass_data_fixup_cfg, ctxt) 9711 {} 9712 9713 /* opt_pass methods: */ 9714 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); } 9715 virtual unsigned int execute (function *) { return execute_fixup_cfg (); } 9716 9717 }; // class pass_fixup_cfg 9718 9719 } // anon namespace 9720 9721 gimple_opt_pass * 9722 make_pass_fixup_cfg (gcc::context *ctxt) 9723 { 9724 return new pass_fixup_cfg (ctxt); 9725 } 9726 9727 /* Garbage collection support for edge_def. */ 9728 9729 extern void gt_ggc_mx (tree&); 9730 extern void gt_ggc_mx (gimple *&); 9731 extern void gt_ggc_mx (rtx&); 9732 extern void gt_ggc_mx (basic_block&); 9733 9734 static void 9735 gt_ggc_mx (rtx_insn *& x) 9736 { 9737 if (x) 9738 gt_ggc_mx_rtx_def ((void *) x); 9739 } 9740 9741 void 9742 gt_ggc_mx (edge_def *e) 9743 { 9744 tree block = LOCATION_BLOCK (e->goto_locus); 9745 gt_ggc_mx (e->src); 9746 gt_ggc_mx (e->dest); 9747 if (current_ir_type () == IR_GIMPLE) 9748 gt_ggc_mx (e->insns.g); 9749 else 9750 gt_ggc_mx (e->insns.r); 9751 gt_ggc_mx (block); 9752 } 9753 9754 /* PCH support for edge_def. */ 9755 9756 extern void gt_pch_nx (tree&); 9757 extern void gt_pch_nx (gimple *&); 9758 extern void gt_pch_nx (rtx&); 9759 extern void gt_pch_nx (basic_block&); 9760 9761 static void 9762 gt_pch_nx (rtx_insn *& x) 9763 { 9764 if (x) 9765 gt_pch_nx_rtx_def ((void *) x); 9766 } 9767 9768 void 9769 gt_pch_nx (edge_def *e) 9770 { 9771 tree block = LOCATION_BLOCK (e->goto_locus); 9772 gt_pch_nx (e->src); 9773 gt_pch_nx (e->dest); 9774 if (current_ir_type () == IR_GIMPLE) 9775 gt_pch_nx (e->insns.g); 9776 else 9777 gt_pch_nx (e->insns.r); 9778 gt_pch_nx (block); 9779 } 9780 9781 void 9782 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie) 9783 { 9784 tree block = LOCATION_BLOCK (e->goto_locus); 9785 op (&(e->src), cookie); 9786 op (&(e->dest), cookie); 9787 if (current_ir_type () == IR_GIMPLE) 9788 op (&(e->insns.g), cookie); 9789 else 9790 op (&(e->insns.r), cookie); 9791 op (&(block), cookie); 9792 } 9793 9794 #if CHECKING_P 9795 9796 namespace selftest { 9797 9798 /* Helper function for CFG selftests: create a dummy function decl 9799 and push it as cfun. */ 9800 9801 static tree 9802 push_fndecl (const char *name) 9803 { 9804 tree fn_type = build_function_type_array (integer_type_node, 0, NULL); 9805 /* FIXME: this uses input_location: */ 9806 tree fndecl = build_fn_decl (name, fn_type); 9807 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL, 9808 NULL_TREE, integer_type_node); 9809 DECL_RESULT (fndecl) = retval; 9810 push_struct_function (fndecl); 9811 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9812 ASSERT_TRUE (fun != NULL); 9813 init_empty_tree_cfg_for_function (fun); 9814 ASSERT_EQ (2, n_basic_blocks_for_fn (fun)); 9815 ASSERT_EQ (0, n_edges_for_fn (fun)); 9816 return fndecl; 9817 } 9818 9819 /* These tests directly create CFGs. 9820 Compare with the static fns within tree-cfg.c: 9821 - build_gimple_cfg 9822 - make_blocks: calls create_basic_block (seq, bb); 9823 - make_edges. */ 9824 9825 /* Verify a simple cfg of the form: 9826 ENTRY -> A -> B -> C -> EXIT. */ 9827 9828 static void 9829 test_linear_chain () 9830 { 9831 gimple_register_cfg_hooks (); 9832 9833 tree fndecl = push_fndecl ("cfg_test_linear_chain"); 9834 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9835 9836 /* Create some empty blocks. */ 9837 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); 9838 basic_block bb_b = create_empty_bb (bb_a); 9839 basic_block bb_c = create_empty_bb (bb_b); 9840 9841 ASSERT_EQ (5, n_basic_blocks_for_fn (fun)); 9842 ASSERT_EQ (0, n_edges_for_fn (fun)); 9843 9844 /* Create some edges: a simple linear chain of BBs. */ 9845 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); 9846 make_edge (bb_a, bb_b, 0); 9847 make_edge (bb_b, bb_c, 0); 9848 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0); 9849 9850 /* Verify the edges. */ 9851 ASSERT_EQ (4, n_edges_for_fn (fun)); 9852 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds); 9853 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ()); 9854 ASSERT_EQ (1, bb_a->preds->length ()); 9855 ASSERT_EQ (1, bb_a->succs->length ()); 9856 ASSERT_EQ (1, bb_b->preds->length ()); 9857 ASSERT_EQ (1, bb_b->succs->length ()); 9858 ASSERT_EQ (1, bb_c->preds->length ()); 9859 ASSERT_EQ (1, bb_c->succs->length ()); 9860 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ()); 9861 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs); 9862 9863 /* Verify the dominance information 9864 Each BB in our simple chain should be dominated by the one before 9865 it. */ 9866 calculate_dominance_info (CDI_DOMINATORS); 9867 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); 9868 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c)); 9869 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); 9870 ASSERT_EQ (1, dom_by_b.length ()); 9871 ASSERT_EQ (bb_c, dom_by_b[0]); 9872 free_dominance_info (CDI_DOMINATORS); 9873 dom_by_b.release (); 9874 9875 /* Similarly for post-dominance: each BB in our chain is post-dominated 9876 by the one after it. */ 9877 calculate_dominance_info (CDI_POST_DOMINATORS); 9878 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); 9879 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); 9880 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); 9881 ASSERT_EQ (1, postdom_by_b.length ()); 9882 ASSERT_EQ (bb_a, postdom_by_b[0]); 9883 free_dominance_info (CDI_POST_DOMINATORS); 9884 postdom_by_b.release (); 9885 9886 pop_cfun (); 9887 } 9888 9889 /* Verify a simple CFG of the form: 9890 ENTRY 9891 | 9892 A 9893 / \ 9894 /t \f 9895 B C 9896 \ / 9897 \ / 9898 D 9899 | 9900 EXIT. */ 9901 9902 static void 9903 test_diamond () 9904 { 9905 gimple_register_cfg_hooks (); 9906 9907 tree fndecl = push_fndecl ("cfg_test_diamond"); 9908 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9909 9910 /* Create some empty blocks. */ 9911 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); 9912 basic_block bb_b = create_empty_bb (bb_a); 9913 basic_block bb_c = create_empty_bb (bb_a); 9914 basic_block bb_d = create_empty_bb (bb_b); 9915 9916 ASSERT_EQ (6, n_basic_blocks_for_fn (fun)); 9917 ASSERT_EQ (0, n_edges_for_fn (fun)); 9918 9919 /* Create the edges. */ 9920 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); 9921 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE); 9922 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE); 9923 make_edge (bb_b, bb_d, 0); 9924 make_edge (bb_c, bb_d, 0); 9925 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0); 9926 9927 /* Verify the edges. */ 9928 ASSERT_EQ (6, n_edges_for_fn (fun)); 9929 ASSERT_EQ (1, bb_a->preds->length ()); 9930 ASSERT_EQ (2, bb_a->succs->length ()); 9931 ASSERT_EQ (1, bb_b->preds->length ()); 9932 ASSERT_EQ (1, bb_b->succs->length ()); 9933 ASSERT_EQ (1, bb_c->preds->length ()); 9934 ASSERT_EQ (1, bb_c->succs->length ()); 9935 ASSERT_EQ (2, bb_d->preds->length ()); 9936 ASSERT_EQ (1, bb_d->succs->length ()); 9937 9938 /* Verify the dominance information. */ 9939 calculate_dominance_info (CDI_DOMINATORS); 9940 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); 9941 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c)); 9942 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d)); 9943 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a); 9944 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */ 9945 dom_by_a.release (); 9946 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); 9947 ASSERT_EQ (0, dom_by_b.length ()); 9948 dom_by_b.release (); 9949 free_dominance_info (CDI_DOMINATORS); 9950 9951 /* Similarly for post-dominance. */ 9952 calculate_dominance_info (CDI_POST_DOMINATORS); 9953 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); 9954 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); 9955 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c)); 9956 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d); 9957 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */ 9958 postdom_by_d.release (); 9959 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); 9960 ASSERT_EQ (0, postdom_by_b.length ()); 9961 postdom_by_b.release (); 9962 free_dominance_info (CDI_POST_DOMINATORS); 9963 9964 pop_cfun (); 9965 } 9966 9967 /* Verify that we can handle a CFG containing a "complete" aka 9968 fully-connected subgraph (where A B C D below all have edges 9969 pointing to each other node, also to themselves). 9970 e.g.: 9971 ENTRY EXIT 9972 | ^ 9973 | / 9974 | / 9975 | / 9976 V/ 9977 A<--->B 9978 ^^ ^^ 9979 | \ / | 9980 | X | 9981 | / \ | 9982 VV VV 9983 C<--->D 9984 */ 9985 9986 static void 9987 test_fully_connected () 9988 { 9989 gimple_register_cfg_hooks (); 9990 9991 tree fndecl = push_fndecl ("cfg_fully_connected"); 9992 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9993 9994 const int n = 4; 9995 9996 /* Create some empty blocks. */ 9997 auto_vec <basic_block> subgraph_nodes; 9998 for (int i = 0; i < n; i++) 9999 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun))); 10000 10001 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun)); 10002 ASSERT_EQ (0, n_edges_for_fn (fun)); 10003 10004 /* Create the edges. */ 10005 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU); 10006 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0); 10007 for (int i = 0; i < n; i++) 10008 for (int j = 0; j < n; j++) 10009 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0); 10010 10011 /* Verify the edges. */ 10012 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun)); 10013 /* The first one is linked to ENTRY/EXIT as well as itself and 10014 everything else. */ 10015 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ()); 10016 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ()); 10017 /* The other ones in the subgraph are linked to everything in 10018 the subgraph (including themselves). */ 10019 for (int i = 1; i < n; i++) 10020 { 10021 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ()); 10022 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ()); 10023 } 10024 10025 /* Verify the dominance information. */ 10026 calculate_dominance_info (CDI_DOMINATORS); 10027 /* The initial block in the subgraph should be dominated by ENTRY. */ 10028 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun), 10029 get_immediate_dominator (CDI_DOMINATORS, 10030 subgraph_nodes[0])); 10031 /* Every other block in the subgraph should be dominated by the 10032 initial block. */ 10033 for (int i = 1; i < n; i++) 10034 ASSERT_EQ (subgraph_nodes[0], 10035 get_immediate_dominator (CDI_DOMINATORS, 10036 subgraph_nodes[i])); 10037 free_dominance_info (CDI_DOMINATORS); 10038 10039 /* Similarly for post-dominance. */ 10040 calculate_dominance_info (CDI_POST_DOMINATORS); 10041 /* The initial block in the subgraph should be postdominated by EXIT. */ 10042 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun), 10043 get_immediate_dominator (CDI_POST_DOMINATORS, 10044 subgraph_nodes[0])); 10045 /* Every other block in the subgraph should be postdominated by the 10046 initial block, since that leads to EXIT. */ 10047 for (int i = 1; i < n; i++) 10048 ASSERT_EQ (subgraph_nodes[0], 10049 get_immediate_dominator (CDI_POST_DOMINATORS, 10050 subgraph_nodes[i])); 10051 free_dominance_info (CDI_POST_DOMINATORS); 10052 10053 pop_cfun (); 10054 } 10055 10056 /* Run all of the selftests within this file. */ 10057 10058 void 10059 tree_cfg_c_tests () 10060 { 10061 test_linear_chain (); 10062 test_diamond (); 10063 test_fully_connected (); 10064 } 10065 10066 } // namespace selftest 10067 10068 /* TODO: test the dominator/postdominator logic with various graphs/nodes: 10069 - loop 10070 - nested loops 10071 - switch statement (a block with many out-edges) 10072 - something that jumps to itself 10073 - etc */ 10074 10075 #endif /* CHECKING_P */ 10076