1 /* Fold a constant sub-tree into a single node for C-compiler 2 Copyright (C) 1987-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /*@@ This file should be rewritten to use an arbitrary precision 21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst". 22 @@ Perhaps the routines could also be used for bc/dc, and made a lib. 23 @@ The routines that translate from the ap rep should 24 @@ warn if precision et. al. is lost. 25 @@ This would also make life easier when this technology is used 26 @@ for cross-compilers. */ 27 28 /* The entry points in this file are fold, size_int_wide and size_binop. 29 30 fold takes a tree as argument and returns a simplified tree. 31 32 size_binop takes a tree code for an arithmetic operation 33 and two operands that are trees, and produces a tree for the 34 result, assuming the type comes from `sizetype'. 35 36 size_int takes an integer value, and creates a tree constant 37 with type from `sizetype'. 38 39 Note: Since the folders get called on non-gimple code as well as 40 gimple code, we need to handle GIMPLE tuples as well as their 41 corresponding tree equivalents. */ 42 43 #include "config.h" 44 #include "system.h" 45 #include "coretypes.h" 46 #include "backend.h" 47 #include "target.h" 48 #include "rtl.h" 49 #include "tree.h" 50 #include "gimple.h" 51 #include "predict.h" 52 #include "memmodel.h" 53 #include "tm_p.h" 54 #include "tree-ssa-operands.h" 55 #include "optabs-query.h" 56 #include "cgraph.h" 57 #include "diagnostic-core.h" 58 #include "flags.h" 59 #include "alias.h" 60 #include "fold-const.h" 61 #include "fold-const-call.h" 62 #include "stor-layout.h" 63 #include "calls.h" 64 #include "tree-iterator.h" 65 #include "expr.h" 66 #include "intl.h" 67 #include "langhooks.h" 68 #include "tree-eh.h" 69 #include "gimplify.h" 70 #include "tree-dfa.h" 71 #include "builtins.h" 72 #include "generic-match.h" 73 #include "gimple-fold.h" 74 #include "params.h" 75 #include "tree-into-ssa.h" 76 #include "md5.h" 77 #include "case-cfn-macros.h" 78 #include "stringpool.h" 79 #include "tree-vrp.h" 80 #include "tree-ssanames.h" 81 #include "selftest.h" 82 #include "stringpool.h" 83 #include "attribs.h" 84 #include "tree-vector-builder.h" 85 #include "vec-perm-indices.h" 86 87 /* Nonzero if we are folding constants inside an initializer; zero 88 otherwise. */ 89 int folding_initializer = 0; 90 91 /* The following constants represent a bit based encoding of GCC's 92 comparison operators. This encoding simplifies transformations 93 on relational comparison operators, such as AND and OR. */ 94 enum comparison_code { 95 COMPCODE_FALSE = 0, 96 COMPCODE_LT = 1, 97 COMPCODE_EQ = 2, 98 COMPCODE_LE = 3, 99 COMPCODE_GT = 4, 100 COMPCODE_LTGT = 5, 101 COMPCODE_GE = 6, 102 COMPCODE_ORD = 7, 103 COMPCODE_UNORD = 8, 104 COMPCODE_UNLT = 9, 105 COMPCODE_UNEQ = 10, 106 COMPCODE_UNLE = 11, 107 COMPCODE_UNGT = 12, 108 COMPCODE_NE = 13, 109 COMPCODE_UNGE = 14, 110 COMPCODE_TRUE = 15 111 }; 112 113 static bool negate_expr_p (tree); 114 static tree negate_expr (tree); 115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree); 116 static enum comparison_code comparison_to_compcode (enum tree_code); 117 static enum tree_code compcode_to_comparison (enum comparison_code); 118 static int twoval_comparison_p (tree, tree *, tree *); 119 static tree eval_subst (location_t, tree, tree, tree, tree, tree); 120 static tree optimize_bit_field_compare (location_t, enum tree_code, 121 tree, tree, tree); 122 static int simple_operand_p (const_tree); 123 static bool simple_operand_p_2 (tree); 124 static tree range_binop (enum tree_code, tree, tree, int, tree, int); 125 static tree range_predecessor (tree); 126 static tree range_successor (tree); 127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree); 128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree); 129 static tree unextend (tree, int, int, tree); 130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *); 131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *); 132 static tree fold_binary_op_with_conditional_arg (location_t, 133 enum tree_code, tree, 134 tree, tree, 135 tree, tree, int); 136 static tree fold_negate_const (tree, tree); 137 static tree fold_not_const (const_tree, tree); 138 static tree fold_relational_const (enum tree_code, tree, tree, tree); 139 static tree fold_convert_const (enum tree_code, tree, tree); 140 static tree fold_view_convert_expr (tree, tree); 141 static tree fold_negate_expr (location_t, tree); 142 143 144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION. 145 Otherwise, return LOC. */ 146 147 static location_t 148 expr_location_or (tree t, location_t loc) 149 { 150 location_t tloc = EXPR_LOCATION (t); 151 return tloc == UNKNOWN_LOCATION ? loc : tloc; 152 } 153 154 /* Similar to protected_set_expr_location, but never modify x in place, 155 if location can and needs to be set, unshare it. */ 156 157 static inline tree 158 protected_set_expr_location_unshare (tree x, location_t loc) 159 { 160 if (CAN_HAVE_LOCATION_P (x) 161 && EXPR_LOCATION (x) != loc 162 && !(TREE_CODE (x) == SAVE_EXPR 163 || TREE_CODE (x) == TARGET_EXPR 164 || TREE_CODE (x) == BIND_EXPR)) 165 { 166 x = copy_node (x); 167 SET_EXPR_LOCATION (x, loc); 168 } 169 return x; 170 } 171 172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact 173 division and returns the quotient. Otherwise returns 174 NULL_TREE. */ 175 176 tree 177 div_if_zero_remainder (const_tree arg1, const_tree arg2) 178 { 179 widest_int quo; 180 181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2), 182 SIGNED, &quo)) 183 return wide_int_to_tree (TREE_TYPE (arg1), quo); 184 185 return NULL_TREE; 186 } 187 188 /* This is nonzero if we should defer warnings about undefined 189 overflow. This facility exists because these warnings are a 190 special case. The code to estimate loop iterations does not want 191 to issue any warnings, since it works with expressions which do not 192 occur in user code. Various bits of cleanup code call fold(), but 193 only use the result if it has certain characteristics (e.g., is a 194 constant); that code only wants to issue a warning if the result is 195 used. */ 196 197 static int fold_deferring_overflow_warnings; 198 199 /* If a warning about undefined overflow is deferred, this is the 200 warning. Note that this may cause us to turn two warnings into 201 one, but that is fine since it is sufficient to only give one 202 warning per expression. */ 203 204 static const char* fold_deferred_overflow_warning; 205 206 /* If a warning about undefined overflow is deferred, this is the 207 level at which the warning should be emitted. */ 208 209 static enum warn_strict_overflow_code fold_deferred_overflow_code; 210 211 /* Start deferring overflow warnings. We could use a stack here to 212 permit nested calls, but at present it is not necessary. */ 213 214 void 215 fold_defer_overflow_warnings (void) 216 { 217 ++fold_deferring_overflow_warnings; 218 } 219 220 /* Stop deferring overflow warnings. If there is a pending warning, 221 and ISSUE is true, then issue the warning if appropriate. STMT is 222 the statement with which the warning should be associated (used for 223 location information); STMT may be NULL. CODE is the level of the 224 warning--a warn_strict_overflow_code value. This function will use 225 the smaller of CODE and the deferred code when deciding whether to 226 issue the warning. CODE may be zero to mean to always use the 227 deferred code. */ 228 229 void 230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code) 231 { 232 const char *warnmsg; 233 location_t locus; 234 235 gcc_assert (fold_deferring_overflow_warnings > 0); 236 --fold_deferring_overflow_warnings; 237 if (fold_deferring_overflow_warnings > 0) 238 { 239 if (fold_deferred_overflow_warning != NULL 240 && code != 0 241 && code < (int) fold_deferred_overflow_code) 242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code; 243 return; 244 } 245 246 warnmsg = fold_deferred_overflow_warning; 247 fold_deferred_overflow_warning = NULL; 248 249 if (!issue || warnmsg == NULL) 250 return; 251 252 if (gimple_no_warning_p (stmt)) 253 return; 254 255 /* Use the smallest code level when deciding to issue the 256 warning. */ 257 if (code == 0 || code > (int) fold_deferred_overflow_code) 258 code = fold_deferred_overflow_code; 259 260 if (!issue_strict_overflow_warning (code)) 261 return; 262 263 if (stmt == NULL) 264 locus = input_location; 265 else 266 locus = gimple_location (stmt); 267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg); 268 } 269 270 /* Stop deferring overflow warnings, ignoring any deferred 271 warnings. */ 272 273 void 274 fold_undefer_and_ignore_overflow_warnings (void) 275 { 276 fold_undefer_overflow_warnings (false, NULL, 0); 277 } 278 279 /* Whether we are deferring overflow warnings. */ 280 281 bool 282 fold_deferring_overflow_warnings_p (void) 283 { 284 return fold_deferring_overflow_warnings > 0; 285 } 286 287 /* This is called when we fold something based on the fact that signed 288 overflow is undefined. */ 289 290 void 291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc) 292 { 293 if (fold_deferring_overflow_warnings > 0) 294 { 295 if (fold_deferred_overflow_warning == NULL 296 || wc < fold_deferred_overflow_code) 297 { 298 fold_deferred_overflow_warning = gmsgid; 299 fold_deferred_overflow_code = wc; 300 } 301 } 302 else if (issue_strict_overflow_warning (wc)) 303 warning (OPT_Wstrict_overflow, gmsgid); 304 } 305 306 /* Return true if the built-in mathematical function specified by CODE 307 is odd, i.e. -f(x) == f(-x). */ 308 309 bool 310 negate_mathfn_p (combined_fn fn) 311 { 312 switch (fn) 313 { 314 CASE_CFN_ASIN: 315 CASE_CFN_ASINH: 316 CASE_CFN_ATAN: 317 CASE_CFN_ATANH: 318 CASE_CFN_CASIN: 319 CASE_CFN_CASINH: 320 CASE_CFN_CATAN: 321 CASE_CFN_CATANH: 322 CASE_CFN_CBRT: 323 CASE_CFN_CPROJ: 324 CASE_CFN_CSIN: 325 CASE_CFN_CSINH: 326 CASE_CFN_CTAN: 327 CASE_CFN_CTANH: 328 CASE_CFN_ERF: 329 CASE_CFN_LLROUND: 330 CASE_CFN_LROUND: 331 CASE_CFN_ROUND: 332 CASE_CFN_SIN: 333 CASE_CFN_SINH: 334 CASE_CFN_TAN: 335 CASE_CFN_TANH: 336 CASE_CFN_TRUNC: 337 return true; 338 339 CASE_CFN_LLRINT: 340 CASE_CFN_LRINT: 341 CASE_CFN_NEARBYINT: 342 CASE_CFN_RINT: 343 return !flag_rounding_math; 344 345 default: 346 break; 347 } 348 return false; 349 } 350 351 /* Check whether we may negate an integer constant T without causing 352 overflow. */ 353 354 bool 355 may_negate_without_overflow_p (const_tree t) 356 { 357 tree type; 358 359 gcc_assert (TREE_CODE (t) == INTEGER_CST); 360 361 type = TREE_TYPE (t); 362 if (TYPE_UNSIGNED (type)) 363 return false; 364 365 return !wi::only_sign_bit_p (wi::to_wide (t)); 366 } 367 368 /* Determine whether an expression T can be cheaply negated using 369 the function negate_expr without introducing undefined overflow. */ 370 371 static bool 372 negate_expr_p (tree t) 373 { 374 tree type; 375 376 if (t == 0) 377 return false; 378 379 type = TREE_TYPE (t); 380 381 STRIP_SIGN_NOPS (t); 382 switch (TREE_CODE (t)) 383 { 384 case INTEGER_CST: 385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) 386 return true; 387 388 /* Check that -CST will not overflow type. */ 389 return may_negate_without_overflow_p (t); 390 case BIT_NOT_EXPR: 391 return (INTEGRAL_TYPE_P (type) 392 && TYPE_OVERFLOW_WRAPS (type)); 393 394 case FIXED_CST: 395 return true; 396 397 case NEGATE_EXPR: 398 return !TYPE_OVERFLOW_SANITIZED (type); 399 400 case REAL_CST: 401 /* We want to canonicalize to positive real constants. Pretend 402 that only negative ones can be easily negated. */ 403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 404 405 case COMPLEX_CST: 406 return negate_expr_p (TREE_REALPART (t)) 407 && negate_expr_p (TREE_IMAGPART (t)); 408 409 case VECTOR_CST: 410 { 411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type)) 412 return true; 413 414 /* Steps don't prevent negation. */ 415 unsigned int count = vector_cst_encoded_nelts (t); 416 for (unsigned int i = 0; i < count; ++i) 417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i))) 418 return false; 419 420 return true; 421 } 422 423 case COMPLEX_EXPR: 424 return negate_expr_p (TREE_OPERAND (t, 0)) 425 && negate_expr_p (TREE_OPERAND (t, 1)); 426 427 case CONJ_EXPR: 428 return negate_expr_p (TREE_OPERAND (t, 0)); 429 430 case PLUS_EXPR: 431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 432 || HONOR_SIGNED_ZEROS (element_mode (type)) 433 || (ANY_INTEGRAL_TYPE_P (type) 434 && ! TYPE_OVERFLOW_WRAPS (type))) 435 return false; 436 /* -(A + B) -> (-B) - A. */ 437 if (negate_expr_p (TREE_OPERAND (t, 1))) 438 return true; 439 /* -(A + B) -> (-A) - B. */ 440 return negate_expr_p (TREE_OPERAND (t, 0)); 441 442 case MINUS_EXPR: 443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */ 444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 445 && !HONOR_SIGNED_ZEROS (element_mode (type)) 446 && (! ANY_INTEGRAL_TYPE_P (type) 447 || TYPE_OVERFLOW_WRAPS (type)); 448 449 case MULT_EXPR: 450 if (TYPE_UNSIGNED (type)) 451 break; 452 /* INT_MIN/n * n doesn't overflow while negating one operand it does 453 if n is a (negative) power of two. */ 454 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 457 && (wi::popcount 458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1) 459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 460 && (wi::popcount 461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1))) 462 break; 463 464 /* Fall through. */ 465 466 case RDIV_EXPR: 467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t)))) 468 return negate_expr_p (TREE_OPERAND (t, 1)) 469 || negate_expr_p (TREE_OPERAND (t, 0)); 470 break; 471 472 case TRUNC_DIV_EXPR: 473 case ROUND_DIV_EXPR: 474 case EXACT_DIV_EXPR: 475 if (TYPE_UNSIGNED (type)) 476 break; 477 /* In general we can't negate A in A / B, because if A is INT_MIN and 478 B is not 1 we change the sign of the result. */ 479 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 480 && negate_expr_p (TREE_OPERAND (t, 0))) 481 return true; 482 /* In general we can't negate B in A / B, because if A is INT_MIN and 483 B is 1, we may turn this into INT_MIN / -1 which is undefined 484 and actually traps on some architectures. */ 485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) 486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 487 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 488 && ! integer_onep (TREE_OPERAND (t, 1)))) 489 return negate_expr_p (TREE_OPERAND (t, 1)); 490 break; 491 492 case NOP_EXPR: 493 /* Negate -((double)float) as (double)(-float). */ 494 if (TREE_CODE (type) == REAL_TYPE) 495 { 496 tree tem = strip_float_extensions (t); 497 if (tem != t) 498 return negate_expr_p (tem); 499 } 500 break; 501 502 case CALL_EXPR: 503 /* Negate -f(x) as f(-x). */ 504 if (negate_mathfn_p (get_call_combined_fn (t))) 505 return negate_expr_p (CALL_EXPR_ARG (t, 0)); 506 break; 507 508 case RSHIFT_EXPR: 509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 510 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 511 { 512 tree op1 = TREE_OPERAND (t, 1); 513 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 514 return true; 515 } 516 break; 517 518 default: 519 break; 520 } 521 return false; 522 } 523 524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no 525 simplification is possible. 526 If negate_expr_p would return true for T, NULL_TREE will never be 527 returned. */ 528 529 static tree 530 fold_negate_expr_1 (location_t loc, tree t) 531 { 532 tree type = TREE_TYPE (t); 533 tree tem; 534 535 switch (TREE_CODE (t)) 536 { 537 /* Convert - (~A) to A + 1. */ 538 case BIT_NOT_EXPR: 539 if (INTEGRAL_TYPE_P (type)) 540 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0), 541 build_one_cst (type)); 542 break; 543 544 case INTEGER_CST: 545 tem = fold_negate_const (t, type); 546 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t) 547 || (ANY_INTEGRAL_TYPE_P (type) 548 && !TYPE_OVERFLOW_TRAPS (type) 549 && TYPE_OVERFLOW_WRAPS (type)) 550 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0) 551 return tem; 552 break; 553 554 case POLY_INT_CST: 555 case REAL_CST: 556 case FIXED_CST: 557 tem = fold_negate_const (t, type); 558 return tem; 559 560 case COMPLEX_CST: 561 { 562 tree rpart = fold_negate_expr (loc, TREE_REALPART (t)); 563 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t)); 564 if (rpart && ipart) 565 return build_complex (type, rpart, ipart); 566 } 567 break; 568 569 case VECTOR_CST: 570 { 571 tree_vector_builder elts; 572 elts.new_unary_operation (type, t, true); 573 unsigned int count = elts.encoded_nelts (); 574 for (unsigned int i = 0; i < count; ++i) 575 { 576 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i)); 577 if (elt == NULL_TREE) 578 return NULL_TREE; 579 elts.quick_push (elt); 580 } 581 582 return elts.build (); 583 } 584 585 case COMPLEX_EXPR: 586 if (negate_expr_p (t)) 587 return fold_build2_loc (loc, COMPLEX_EXPR, type, 588 fold_negate_expr (loc, TREE_OPERAND (t, 0)), 589 fold_negate_expr (loc, TREE_OPERAND (t, 1))); 590 break; 591 592 case CONJ_EXPR: 593 if (negate_expr_p (t)) 594 return fold_build1_loc (loc, CONJ_EXPR, type, 595 fold_negate_expr (loc, TREE_OPERAND (t, 0))); 596 break; 597 598 case NEGATE_EXPR: 599 if (!TYPE_OVERFLOW_SANITIZED (type)) 600 return TREE_OPERAND (t, 0); 601 break; 602 603 case PLUS_EXPR: 604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 605 && !HONOR_SIGNED_ZEROS (element_mode (type))) 606 { 607 /* -(A + B) -> (-B) - A. */ 608 if (negate_expr_p (TREE_OPERAND (t, 1))) 609 { 610 tem = negate_expr (TREE_OPERAND (t, 1)); 611 return fold_build2_loc (loc, MINUS_EXPR, type, 612 tem, TREE_OPERAND (t, 0)); 613 } 614 615 /* -(A + B) -> (-A) - B. */ 616 if (negate_expr_p (TREE_OPERAND (t, 0))) 617 { 618 tem = negate_expr (TREE_OPERAND (t, 0)); 619 return fold_build2_loc (loc, MINUS_EXPR, type, 620 tem, TREE_OPERAND (t, 1)); 621 } 622 } 623 break; 624 625 case MINUS_EXPR: 626 /* - (A - B) -> B - A */ 627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 628 && !HONOR_SIGNED_ZEROS (element_mode (type))) 629 return fold_build2_loc (loc, MINUS_EXPR, type, 630 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0)); 631 break; 632 633 case MULT_EXPR: 634 if (TYPE_UNSIGNED (type)) 635 break; 636 637 /* Fall through. */ 638 639 case RDIV_EXPR: 640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))) 641 { 642 tem = TREE_OPERAND (t, 1); 643 if (negate_expr_p (tem)) 644 return fold_build2_loc (loc, TREE_CODE (t), type, 645 TREE_OPERAND (t, 0), negate_expr (tem)); 646 tem = TREE_OPERAND (t, 0); 647 if (negate_expr_p (tem)) 648 return fold_build2_loc (loc, TREE_CODE (t), type, 649 negate_expr (tem), TREE_OPERAND (t, 1)); 650 } 651 break; 652 653 case TRUNC_DIV_EXPR: 654 case ROUND_DIV_EXPR: 655 case EXACT_DIV_EXPR: 656 if (TYPE_UNSIGNED (type)) 657 break; 658 /* In general we can't negate A in A / B, because if A is INT_MIN and 659 B is not 1 we change the sign of the result. */ 660 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 661 && negate_expr_p (TREE_OPERAND (t, 0))) 662 return fold_build2_loc (loc, TREE_CODE (t), type, 663 negate_expr (TREE_OPERAND (t, 0)), 664 TREE_OPERAND (t, 1)); 665 /* In general we can't negate B in A / B, because if A is INT_MIN and 666 B is 1, we may turn this into INT_MIN / -1 which is undefined 667 and actually traps on some architectures. */ 668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) 669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 670 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 671 && ! integer_onep (TREE_OPERAND (t, 1)))) 672 && negate_expr_p (TREE_OPERAND (t, 1))) 673 return fold_build2_loc (loc, TREE_CODE (t), type, 674 TREE_OPERAND (t, 0), 675 negate_expr (TREE_OPERAND (t, 1))); 676 break; 677 678 case NOP_EXPR: 679 /* Convert -((double)float) into (double)(-float). */ 680 if (TREE_CODE (type) == REAL_TYPE) 681 { 682 tem = strip_float_extensions (t); 683 if (tem != t && negate_expr_p (tem)) 684 return fold_convert_loc (loc, type, negate_expr (tem)); 685 } 686 break; 687 688 case CALL_EXPR: 689 /* Negate -f(x) as f(-x). */ 690 if (negate_mathfn_p (get_call_combined_fn (t)) 691 && negate_expr_p (CALL_EXPR_ARG (t, 0))) 692 { 693 tree fndecl, arg; 694 695 fndecl = get_callee_fndecl (t); 696 arg = negate_expr (CALL_EXPR_ARG (t, 0)); 697 return build_call_expr_loc (loc, fndecl, 1, arg); 698 } 699 break; 700 701 case RSHIFT_EXPR: 702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 703 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 704 { 705 tree op1 = TREE_OPERAND (t, 1); 706 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 707 { 708 tree ntype = TYPE_UNSIGNED (type) 709 ? signed_type_for (type) 710 : unsigned_type_for (type); 711 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0)); 712 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1); 713 return fold_convert_loc (loc, type, temp); 714 } 715 } 716 break; 717 718 default: 719 break; 720 } 721 722 return NULL_TREE; 723 } 724 725 /* A wrapper for fold_negate_expr_1. */ 726 727 static tree 728 fold_negate_expr (location_t loc, tree t) 729 { 730 tree type = TREE_TYPE (t); 731 STRIP_SIGN_NOPS (t); 732 tree tem = fold_negate_expr_1 (loc, t); 733 if (tem == NULL_TREE) 734 return NULL_TREE; 735 return fold_convert_loc (loc, type, tem); 736 } 737 738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be 739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case 740 return NULL_TREE. */ 741 742 static tree 743 negate_expr (tree t) 744 { 745 tree type, tem; 746 location_t loc; 747 748 if (t == NULL_TREE) 749 return NULL_TREE; 750 751 loc = EXPR_LOCATION (t); 752 type = TREE_TYPE (t); 753 STRIP_SIGN_NOPS (t); 754 755 tem = fold_negate_expr (loc, t); 756 if (!tem) 757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t); 758 return fold_convert_loc (loc, type, tem); 759 } 760 761 /* Split a tree IN into a constant, literal and variable parts that could be 762 combined with CODE to make IN. "constant" means an expression with 763 TREE_CONSTANT but that isn't an actual constant. CODE must be a 764 commutative arithmetic operation. Store the constant part into *CONP, 765 the literal in *LITP and return the variable part. If a part isn't 766 present, set it to null. If the tree does not decompose in this way, 767 return the entire tree as the variable part and the other parts as null. 768 769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that 770 case, we negate an operand that was subtracted. Except if it is a 771 literal for which we use *MINUS_LITP instead. 772 773 If NEGATE_P is true, we are negating all of IN, again except a literal 774 for which we use *MINUS_LITP instead. If a variable part is of pointer 775 type, it is negated after converting to TYPE. This prevents us from 776 generating illegal MINUS pointer expression. LOC is the location of 777 the converted variable part. 778 779 If IN is itself a literal or constant, return it as appropriate. 780 781 Note that we do not guarantee that any of the three values will be the 782 same type as IN, but they will have the same signedness and mode. */ 783 784 static tree 785 split_tree (tree in, tree type, enum tree_code code, 786 tree *minus_varp, tree *conp, tree *minus_conp, 787 tree *litp, tree *minus_litp, int negate_p) 788 { 789 tree var = 0; 790 *minus_varp = 0; 791 *conp = 0; 792 *minus_conp = 0; 793 *litp = 0; 794 *minus_litp = 0; 795 796 /* Strip any conversions that don't change the machine mode or signedness. */ 797 STRIP_SIGN_NOPS (in); 798 799 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST 800 || TREE_CODE (in) == FIXED_CST) 801 *litp = in; 802 else if (TREE_CODE (in) == code 803 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math) 804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in)) 805 /* We can associate addition and subtraction together (even 806 though the C standard doesn't say so) for integers because 807 the value is not affected. For reals, the value might be 808 affected, so we can't. */ 809 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR) 810 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR) 811 || (code == MINUS_EXPR 812 && (TREE_CODE (in) == PLUS_EXPR 813 || TREE_CODE (in) == POINTER_PLUS_EXPR))))) 814 { 815 tree op0 = TREE_OPERAND (in, 0); 816 tree op1 = TREE_OPERAND (in, 1); 817 int neg1_p = TREE_CODE (in) == MINUS_EXPR; 818 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0; 819 820 /* First see if either of the operands is a literal, then a constant. */ 821 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST 822 || TREE_CODE (op0) == FIXED_CST) 823 *litp = op0, op0 = 0; 824 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST 825 || TREE_CODE (op1) == FIXED_CST) 826 *litp = op1, neg_litp_p = neg1_p, op1 = 0; 827 828 if (op0 != 0 && TREE_CONSTANT (op0)) 829 *conp = op0, op0 = 0; 830 else if (op1 != 0 && TREE_CONSTANT (op1)) 831 *conp = op1, neg_conp_p = neg1_p, op1 = 0; 832 833 /* If we haven't dealt with either operand, this is not a case we can 834 decompose. Otherwise, VAR is either of the ones remaining, if any. */ 835 if (op0 != 0 && op1 != 0) 836 var = in; 837 else if (op0 != 0) 838 var = op0; 839 else 840 var = op1, neg_var_p = neg1_p; 841 842 /* Now do any needed negations. */ 843 if (neg_litp_p) 844 *minus_litp = *litp, *litp = 0; 845 if (neg_conp_p && *conp) 846 *minus_conp = *conp, *conp = 0; 847 if (neg_var_p && var) 848 *minus_varp = var, var = 0; 849 } 850 else if (TREE_CONSTANT (in)) 851 *conp = in; 852 else if (TREE_CODE (in) == BIT_NOT_EXPR 853 && code == PLUS_EXPR) 854 { 855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this 856 when IN is constant. */ 857 *litp = build_minus_one_cst (type); 858 *minus_varp = TREE_OPERAND (in, 0); 859 } 860 else 861 var = in; 862 863 if (negate_p) 864 { 865 if (*litp) 866 *minus_litp = *litp, *litp = 0; 867 else if (*minus_litp) 868 *litp = *minus_litp, *minus_litp = 0; 869 if (*conp) 870 *minus_conp = *conp, *conp = 0; 871 else if (*minus_conp) 872 *conp = *minus_conp, *minus_conp = 0; 873 if (var) 874 *minus_varp = var, var = 0; 875 else if (*minus_varp) 876 var = *minus_varp, *minus_varp = 0; 877 } 878 879 if (*litp 880 && TREE_OVERFLOW_P (*litp)) 881 *litp = drop_tree_overflow (*litp); 882 if (*minus_litp 883 && TREE_OVERFLOW_P (*minus_litp)) 884 *minus_litp = drop_tree_overflow (*minus_litp); 885 886 return var; 887 } 888 889 /* Re-associate trees split by the above function. T1 and T2 are 890 either expressions to associate or null. Return the new 891 expression, if any. LOC is the location of the new expression. If 892 we build an operation, do it in TYPE and with CODE. */ 893 894 static tree 895 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type) 896 { 897 if (t1 == 0) 898 { 899 gcc_assert (t2 == 0 || code != MINUS_EXPR); 900 return t2; 901 } 902 else if (t2 == 0) 903 return t1; 904 905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't 906 try to fold this since we will have infinite recursion. But do 907 deal with any NEGATE_EXPRs. */ 908 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code 909 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR 910 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR) 911 { 912 if (code == PLUS_EXPR) 913 { 914 if (TREE_CODE (t1) == NEGATE_EXPR) 915 return build2_loc (loc, MINUS_EXPR, type, 916 fold_convert_loc (loc, type, t2), 917 fold_convert_loc (loc, type, 918 TREE_OPERAND (t1, 0))); 919 else if (TREE_CODE (t2) == NEGATE_EXPR) 920 return build2_loc (loc, MINUS_EXPR, type, 921 fold_convert_loc (loc, type, t1), 922 fold_convert_loc (loc, type, 923 TREE_OPERAND (t2, 0))); 924 else if (integer_zerop (t2)) 925 return fold_convert_loc (loc, type, t1); 926 } 927 else if (code == MINUS_EXPR) 928 { 929 if (integer_zerop (t2)) 930 return fold_convert_loc (loc, type, t1); 931 } 932 933 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 934 fold_convert_loc (loc, type, t2)); 935 } 936 937 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 938 fold_convert_loc (loc, type, t2)); 939 } 940 941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable 942 for use in int_const_binop, size_binop and size_diffop. */ 943 944 static bool 945 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2) 946 { 947 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1)) 948 return false; 949 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2)) 950 return false; 951 952 switch (code) 953 { 954 case LSHIFT_EXPR: 955 case RSHIFT_EXPR: 956 case LROTATE_EXPR: 957 case RROTATE_EXPR: 958 return true; 959 960 default: 961 break; 962 } 963 964 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2) 965 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2) 966 && TYPE_MODE (type1) == TYPE_MODE (type2); 967 } 968 969 /* Subroutine of int_const_binop_1 that handles two INTEGER_CSTs. */ 970 971 static tree 972 int_const_binop_2 (enum tree_code code, const_tree parg1, const_tree parg2, 973 int overflowable) 974 { 975 wide_int res; 976 tree t; 977 tree type = TREE_TYPE (parg1); 978 signop sign = TYPE_SIGN (type); 979 bool overflow = false; 980 981 wi::tree_to_wide_ref arg1 = wi::to_wide (parg1); 982 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type)); 983 984 switch (code) 985 { 986 case BIT_IOR_EXPR: 987 res = wi::bit_or (arg1, arg2); 988 break; 989 990 case BIT_XOR_EXPR: 991 res = wi::bit_xor (arg1, arg2); 992 break; 993 994 case BIT_AND_EXPR: 995 res = wi::bit_and (arg1, arg2); 996 break; 997 998 case RSHIFT_EXPR: 999 case LSHIFT_EXPR: 1000 if (wi::neg_p (arg2)) 1001 { 1002 arg2 = -arg2; 1003 if (code == RSHIFT_EXPR) 1004 code = LSHIFT_EXPR; 1005 else 1006 code = RSHIFT_EXPR; 1007 } 1008 1009 if (code == RSHIFT_EXPR) 1010 /* It's unclear from the C standard whether shifts can overflow. 1011 The following code ignores overflow; perhaps a C standard 1012 interpretation ruling is needed. */ 1013 res = wi::rshift (arg1, arg2, sign); 1014 else 1015 res = wi::lshift (arg1, arg2); 1016 break; 1017 1018 case RROTATE_EXPR: 1019 case LROTATE_EXPR: 1020 if (wi::neg_p (arg2)) 1021 { 1022 arg2 = -arg2; 1023 if (code == RROTATE_EXPR) 1024 code = LROTATE_EXPR; 1025 else 1026 code = RROTATE_EXPR; 1027 } 1028 1029 if (code == RROTATE_EXPR) 1030 res = wi::rrotate (arg1, arg2); 1031 else 1032 res = wi::lrotate (arg1, arg2); 1033 break; 1034 1035 case PLUS_EXPR: 1036 res = wi::add (arg1, arg2, sign, &overflow); 1037 break; 1038 1039 case MINUS_EXPR: 1040 res = wi::sub (arg1, arg2, sign, &overflow); 1041 break; 1042 1043 case MULT_EXPR: 1044 res = wi::mul (arg1, arg2, sign, &overflow); 1045 break; 1046 1047 case MULT_HIGHPART_EXPR: 1048 res = wi::mul_high (arg1, arg2, sign); 1049 break; 1050 1051 case TRUNC_DIV_EXPR: 1052 case EXACT_DIV_EXPR: 1053 if (arg2 == 0) 1054 return NULL_TREE; 1055 res = wi::div_trunc (arg1, arg2, sign, &overflow); 1056 break; 1057 1058 case FLOOR_DIV_EXPR: 1059 if (arg2 == 0) 1060 return NULL_TREE; 1061 res = wi::div_floor (arg1, arg2, sign, &overflow); 1062 break; 1063 1064 case CEIL_DIV_EXPR: 1065 if (arg2 == 0) 1066 return NULL_TREE; 1067 res = wi::div_ceil (arg1, arg2, sign, &overflow); 1068 break; 1069 1070 case ROUND_DIV_EXPR: 1071 if (arg2 == 0) 1072 return NULL_TREE; 1073 res = wi::div_round (arg1, arg2, sign, &overflow); 1074 break; 1075 1076 case TRUNC_MOD_EXPR: 1077 if (arg2 == 0) 1078 return NULL_TREE; 1079 res = wi::mod_trunc (arg1, arg2, sign, &overflow); 1080 break; 1081 1082 case FLOOR_MOD_EXPR: 1083 if (arg2 == 0) 1084 return NULL_TREE; 1085 res = wi::mod_floor (arg1, arg2, sign, &overflow); 1086 break; 1087 1088 case CEIL_MOD_EXPR: 1089 if (arg2 == 0) 1090 return NULL_TREE; 1091 res = wi::mod_ceil (arg1, arg2, sign, &overflow); 1092 break; 1093 1094 case ROUND_MOD_EXPR: 1095 if (arg2 == 0) 1096 return NULL_TREE; 1097 res = wi::mod_round (arg1, arg2, sign, &overflow); 1098 break; 1099 1100 case MIN_EXPR: 1101 res = wi::min (arg1, arg2, sign); 1102 break; 1103 1104 case MAX_EXPR: 1105 res = wi::max (arg1, arg2, sign); 1106 break; 1107 1108 default: 1109 return NULL_TREE; 1110 } 1111 1112 t = force_fit_type (type, res, overflowable, 1113 (((sign == SIGNED || overflowable == -1) 1114 && overflow) 1115 | TREE_OVERFLOW (parg1) | TREE_OVERFLOW (parg2))); 1116 1117 return t; 1118 } 1119 1120 /* Combine two integer constants PARG1 and PARG2 under operation CODE 1121 to produce a new constant. Return NULL_TREE if we don't know how 1122 to evaluate CODE at compile-time. */ 1123 1124 static tree 1125 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2, 1126 int overflowable) 1127 { 1128 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1129 return int_const_binop_2 (code, arg1, arg2, overflowable); 1130 1131 gcc_assert (NUM_POLY_INT_COEFFS != 1); 1132 1133 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1134 { 1135 poly_wide_int res; 1136 bool overflow; 1137 tree type = TREE_TYPE (arg1); 1138 signop sign = TYPE_SIGN (type); 1139 switch (code) 1140 { 1141 case PLUS_EXPR: 1142 res = wi::add (wi::to_poly_wide (arg1), 1143 wi::to_poly_wide (arg2), sign, &overflow); 1144 break; 1145 1146 case MINUS_EXPR: 1147 res = wi::sub (wi::to_poly_wide (arg1), 1148 wi::to_poly_wide (arg2), sign, &overflow); 1149 break; 1150 1151 case MULT_EXPR: 1152 if (TREE_CODE (arg2) == INTEGER_CST) 1153 res = wi::mul (wi::to_poly_wide (arg1), 1154 wi::to_wide (arg2), sign, &overflow); 1155 else if (TREE_CODE (arg1) == INTEGER_CST) 1156 res = wi::mul (wi::to_poly_wide (arg2), 1157 wi::to_wide (arg1), sign, &overflow); 1158 else 1159 return NULL_TREE; 1160 break; 1161 1162 case LSHIFT_EXPR: 1163 if (TREE_CODE (arg2) == INTEGER_CST) 1164 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2); 1165 else 1166 return NULL_TREE; 1167 break; 1168 1169 case BIT_IOR_EXPR: 1170 if (TREE_CODE (arg2) != INTEGER_CST 1171 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2), 1172 &res)) 1173 return NULL_TREE; 1174 break; 1175 1176 default: 1177 return NULL_TREE; 1178 } 1179 return force_fit_type (type, res, overflowable, 1180 (((sign == SIGNED || overflowable == -1) 1181 && overflow) 1182 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))); 1183 } 1184 1185 return NULL_TREE; 1186 } 1187 1188 tree 1189 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2) 1190 { 1191 return int_const_binop_1 (code, arg1, arg2, 1); 1192 } 1193 1194 /* Return true if binary operation OP distributes over addition in operand 1195 OPNO, with the other operand being held constant. OPNO counts from 1. */ 1196 1197 static bool 1198 distributes_over_addition_p (tree_code op, int opno) 1199 { 1200 switch (op) 1201 { 1202 case PLUS_EXPR: 1203 case MINUS_EXPR: 1204 case MULT_EXPR: 1205 return true; 1206 1207 case LSHIFT_EXPR: 1208 return opno == 1; 1209 1210 default: 1211 return false; 1212 } 1213 } 1214 1215 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new 1216 constant. We assume ARG1 and ARG2 have the same data type, or at least 1217 are the same kind of constant and the same machine mode. Return zero if 1218 combining the constants is not allowed in the current operating mode. */ 1219 1220 static tree 1221 const_binop (enum tree_code code, tree arg1, tree arg2) 1222 { 1223 /* Sanity check for the recursive cases. */ 1224 if (!arg1 || !arg2) 1225 return NULL_TREE; 1226 1227 STRIP_NOPS (arg1); 1228 STRIP_NOPS (arg2); 1229 1230 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1231 { 1232 if (code == POINTER_PLUS_EXPR) 1233 return int_const_binop (PLUS_EXPR, 1234 arg1, fold_convert (TREE_TYPE (arg1), arg2)); 1235 1236 return int_const_binop (code, arg1, arg2); 1237 } 1238 1239 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST) 1240 { 1241 machine_mode mode; 1242 REAL_VALUE_TYPE d1; 1243 REAL_VALUE_TYPE d2; 1244 REAL_VALUE_TYPE value; 1245 REAL_VALUE_TYPE result; 1246 bool inexact; 1247 tree t, type; 1248 1249 /* The following codes are handled by real_arithmetic. */ 1250 switch (code) 1251 { 1252 case PLUS_EXPR: 1253 case MINUS_EXPR: 1254 case MULT_EXPR: 1255 case RDIV_EXPR: 1256 case MIN_EXPR: 1257 case MAX_EXPR: 1258 break; 1259 1260 default: 1261 return NULL_TREE; 1262 } 1263 1264 d1 = TREE_REAL_CST (arg1); 1265 d2 = TREE_REAL_CST (arg2); 1266 1267 type = TREE_TYPE (arg1); 1268 mode = TYPE_MODE (type); 1269 1270 /* Don't perform operation if we honor signaling NaNs and 1271 either operand is a signaling NaN. */ 1272 if (HONOR_SNANS (mode) 1273 && (REAL_VALUE_ISSIGNALING_NAN (d1) 1274 || REAL_VALUE_ISSIGNALING_NAN (d2))) 1275 return NULL_TREE; 1276 1277 /* Don't perform operation if it would raise a division 1278 by zero exception. */ 1279 if (code == RDIV_EXPR 1280 && real_equal (&d2, &dconst0) 1281 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode))) 1282 return NULL_TREE; 1283 1284 /* If either operand is a NaN, just return it. Otherwise, set up 1285 for floating-point trap; we return an overflow. */ 1286 if (REAL_VALUE_ISNAN (d1)) 1287 { 1288 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1289 is off. */ 1290 d1.signalling = 0; 1291 t = build_real (type, d1); 1292 return t; 1293 } 1294 else if (REAL_VALUE_ISNAN (d2)) 1295 { 1296 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1297 is off. */ 1298 d2.signalling = 0; 1299 t = build_real (type, d2); 1300 return t; 1301 } 1302 1303 inexact = real_arithmetic (&value, code, &d1, &d2); 1304 real_convert (&result, mode, &value); 1305 1306 /* Don't constant fold this floating point operation if 1307 the result has overflowed and flag_trapping_math. */ 1308 if (flag_trapping_math 1309 && MODE_HAS_INFINITIES (mode) 1310 && REAL_VALUE_ISINF (result) 1311 && !REAL_VALUE_ISINF (d1) 1312 && !REAL_VALUE_ISINF (d2)) 1313 return NULL_TREE; 1314 1315 /* Don't constant fold this floating point operation if the 1316 result may dependent upon the run-time rounding mode and 1317 flag_rounding_math is set, or if GCC's software emulation 1318 is unable to accurately represent the result. */ 1319 if ((flag_rounding_math 1320 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations)) 1321 && (inexact || !real_identical (&result, &value))) 1322 return NULL_TREE; 1323 1324 t = build_real (type, result); 1325 1326 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2); 1327 return t; 1328 } 1329 1330 if (TREE_CODE (arg1) == FIXED_CST) 1331 { 1332 FIXED_VALUE_TYPE f1; 1333 FIXED_VALUE_TYPE f2; 1334 FIXED_VALUE_TYPE result; 1335 tree t, type; 1336 int sat_p; 1337 bool overflow_p; 1338 1339 /* The following codes are handled by fixed_arithmetic. */ 1340 switch (code) 1341 { 1342 case PLUS_EXPR: 1343 case MINUS_EXPR: 1344 case MULT_EXPR: 1345 case TRUNC_DIV_EXPR: 1346 if (TREE_CODE (arg2) != FIXED_CST) 1347 return NULL_TREE; 1348 f2 = TREE_FIXED_CST (arg2); 1349 break; 1350 1351 case LSHIFT_EXPR: 1352 case RSHIFT_EXPR: 1353 { 1354 if (TREE_CODE (arg2) != INTEGER_CST) 1355 return NULL_TREE; 1356 wi::tree_to_wide_ref w2 = wi::to_wide (arg2); 1357 f2.data.high = w2.elt (1); 1358 f2.data.low = w2.ulow (); 1359 f2.mode = SImode; 1360 } 1361 break; 1362 1363 default: 1364 return NULL_TREE; 1365 } 1366 1367 f1 = TREE_FIXED_CST (arg1); 1368 type = TREE_TYPE (arg1); 1369 sat_p = TYPE_SATURATING (type); 1370 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p); 1371 t = build_fixed (type, result); 1372 /* Propagate overflow flags. */ 1373 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)) 1374 TREE_OVERFLOW (t) = 1; 1375 return t; 1376 } 1377 1378 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST) 1379 { 1380 tree type = TREE_TYPE (arg1); 1381 tree r1 = TREE_REALPART (arg1); 1382 tree i1 = TREE_IMAGPART (arg1); 1383 tree r2 = TREE_REALPART (arg2); 1384 tree i2 = TREE_IMAGPART (arg2); 1385 tree real, imag; 1386 1387 switch (code) 1388 { 1389 case PLUS_EXPR: 1390 case MINUS_EXPR: 1391 real = const_binop (code, r1, r2); 1392 imag = const_binop (code, i1, i2); 1393 break; 1394 1395 case MULT_EXPR: 1396 if (COMPLEX_FLOAT_TYPE_P (type)) 1397 return do_mpc_arg2 (arg1, arg2, type, 1398 /* do_nonfinite= */ folding_initializer, 1399 mpc_mul); 1400 1401 real = const_binop (MINUS_EXPR, 1402 const_binop (MULT_EXPR, r1, r2), 1403 const_binop (MULT_EXPR, i1, i2)); 1404 imag = const_binop (PLUS_EXPR, 1405 const_binop (MULT_EXPR, r1, i2), 1406 const_binop (MULT_EXPR, i1, r2)); 1407 break; 1408 1409 case RDIV_EXPR: 1410 if (COMPLEX_FLOAT_TYPE_P (type)) 1411 return do_mpc_arg2 (arg1, arg2, type, 1412 /* do_nonfinite= */ folding_initializer, 1413 mpc_div); 1414 /* Fallthru. */ 1415 case TRUNC_DIV_EXPR: 1416 case CEIL_DIV_EXPR: 1417 case FLOOR_DIV_EXPR: 1418 case ROUND_DIV_EXPR: 1419 if (flag_complex_method == 0) 1420 { 1421 /* Keep this algorithm in sync with 1422 tree-complex.c:expand_complex_div_straight(). 1423 1424 Expand complex division to scalars, straightforward algorithm. 1425 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1426 t = br*br + bi*bi 1427 */ 1428 tree magsquared 1429 = const_binop (PLUS_EXPR, 1430 const_binop (MULT_EXPR, r2, r2), 1431 const_binop (MULT_EXPR, i2, i2)); 1432 tree t1 1433 = const_binop (PLUS_EXPR, 1434 const_binop (MULT_EXPR, r1, r2), 1435 const_binop (MULT_EXPR, i1, i2)); 1436 tree t2 1437 = const_binop (MINUS_EXPR, 1438 const_binop (MULT_EXPR, i1, r2), 1439 const_binop (MULT_EXPR, r1, i2)); 1440 1441 real = const_binop (code, t1, magsquared); 1442 imag = const_binop (code, t2, magsquared); 1443 } 1444 else 1445 { 1446 /* Keep this algorithm in sync with 1447 tree-complex.c:expand_complex_div_wide(). 1448 1449 Expand complex division to scalars, modified algorithm to minimize 1450 overflow with wide input ranges. */ 1451 tree compare = fold_build2 (LT_EXPR, boolean_type_node, 1452 fold_abs_const (r2, TREE_TYPE (type)), 1453 fold_abs_const (i2, TREE_TYPE (type))); 1454 1455 if (integer_nonzerop (compare)) 1456 { 1457 /* In the TRUE branch, we compute 1458 ratio = br/bi; 1459 div = (br * ratio) + bi; 1460 tr = (ar * ratio) + ai; 1461 ti = (ai * ratio) - ar; 1462 tr = tr / div; 1463 ti = ti / div; */ 1464 tree ratio = const_binop (code, r2, i2); 1465 tree div = const_binop (PLUS_EXPR, i2, 1466 const_binop (MULT_EXPR, r2, ratio)); 1467 real = const_binop (MULT_EXPR, r1, ratio); 1468 real = const_binop (PLUS_EXPR, real, i1); 1469 real = const_binop (code, real, div); 1470 1471 imag = const_binop (MULT_EXPR, i1, ratio); 1472 imag = const_binop (MINUS_EXPR, imag, r1); 1473 imag = const_binop (code, imag, div); 1474 } 1475 else 1476 { 1477 /* In the FALSE branch, we compute 1478 ratio = d/c; 1479 divisor = (d * ratio) + c; 1480 tr = (b * ratio) + a; 1481 ti = b - (a * ratio); 1482 tr = tr / div; 1483 ti = ti / div; */ 1484 tree ratio = const_binop (code, i2, r2); 1485 tree div = const_binop (PLUS_EXPR, r2, 1486 const_binop (MULT_EXPR, i2, ratio)); 1487 1488 real = const_binop (MULT_EXPR, i1, ratio); 1489 real = const_binop (PLUS_EXPR, real, r1); 1490 real = const_binop (code, real, div); 1491 1492 imag = const_binop (MULT_EXPR, r1, ratio); 1493 imag = const_binop (MINUS_EXPR, i1, imag); 1494 imag = const_binop (code, imag, div); 1495 } 1496 } 1497 break; 1498 1499 default: 1500 return NULL_TREE; 1501 } 1502 1503 if (real && imag) 1504 return build_complex (type, real, imag); 1505 } 1506 1507 if (TREE_CODE (arg1) == VECTOR_CST 1508 && TREE_CODE (arg2) == VECTOR_CST 1509 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), 1510 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)))) 1511 { 1512 tree type = TREE_TYPE (arg1); 1513 bool step_ok_p; 1514 if (VECTOR_CST_STEPPED_P (arg1) 1515 && VECTOR_CST_STEPPED_P (arg2)) 1516 /* We can operate directly on the encoding if: 1517 1518 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1 1519 implies 1520 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1) 1521 1522 Addition and subtraction are the supported operators 1523 for which this is true. */ 1524 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR); 1525 else if (VECTOR_CST_STEPPED_P (arg1)) 1526 /* We can operate directly on stepped encodings if: 1527 1528 a3 - a2 == a2 - a1 1529 implies: 1530 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c) 1531 1532 which is true if (x -> x op c) distributes over addition. */ 1533 step_ok_p = distributes_over_addition_p (code, 1); 1534 else 1535 /* Similarly in reverse. */ 1536 step_ok_p = distributes_over_addition_p (code, 2); 1537 tree_vector_builder elts; 1538 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p)) 1539 return NULL_TREE; 1540 unsigned int count = elts.encoded_nelts (); 1541 for (unsigned int i = 0; i < count; ++i) 1542 { 1543 tree elem1 = VECTOR_CST_ELT (arg1, i); 1544 tree elem2 = VECTOR_CST_ELT (arg2, i); 1545 1546 tree elt = const_binop (code, elem1, elem2); 1547 1548 /* It is possible that const_binop cannot handle the given 1549 code and return NULL_TREE */ 1550 if (elt == NULL_TREE) 1551 return NULL_TREE; 1552 elts.quick_push (elt); 1553 } 1554 1555 return elts.build (); 1556 } 1557 1558 /* Shifts allow a scalar offset for a vector. */ 1559 if (TREE_CODE (arg1) == VECTOR_CST 1560 && TREE_CODE (arg2) == INTEGER_CST) 1561 { 1562 tree type = TREE_TYPE (arg1); 1563 bool step_ok_p = distributes_over_addition_p (code, 1); 1564 tree_vector_builder elts; 1565 if (!elts.new_unary_operation (type, arg1, step_ok_p)) 1566 return NULL_TREE; 1567 unsigned int count = elts.encoded_nelts (); 1568 for (unsigned int i = 0; i < count; ++i) 1569 { 1570 tree elem1 = VECTOR_CST_ELT (arg1, i); 1571 1572 tree elt = const_binop (code, elem1, arg2); 1573 1574 /* It is possible that const_binop cannot handle the given 1575 code and return NULL_TREE. */ 1576 if (elt == NULL_TREE) 1577 return NULL_TREE; 1578 elts.quick_push (elt); 1579 } 1580 1581 return elts.build (); 1582 } 1583 return NULL_TREE; 1584 } 1585 1586 /* Overload that adds a TYPE parameter to be able to dispatch 1587 to fold_relational_const. */ 1588 1589 tree 1590 const_binop (enum tree_code code, tree type, tree arg1, tree arg2) 1591 { 1592 if (TREE_CODE_CLASS (code) == tcc_comparison) 1593 return fold_relational_const (code, type, arg1, arg2); 1594 1595 /* ??? Until we make the const_binop worker take the type of the 1596 result as argument put those cases that need it here. */ 1597 switch (code) 1598 { 1599 case VEC_SERIES_EXPR: 1600 if (CONSTANT_CLASS_P (arg1) 1601 && CONSTANT_CLASS_P (arg2)) 1602 return build_vec_series (type, arg1, arg2); 1603 return NULL_TREE; 1604 1605 case COMPLEX_EXPR: 1606 if ((TREE_CODE (arg1) == REAL_CST 1607 && TREE_CODE (arg2) == REAL_CST) 1608 || (TREE_CODE (arg1) == INTEGER_CST 1609 && TREE_CODE (arg2) == INTEGER_CST)) 1610 return build_complex (type, arg1, arg2); 1611 return NULL_TREE; 1612 1613 case POINTER_DIFF_EXPR: 1614 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1615 { 1616 offset_int res = wi::sub (wi::to_offset (arg1), 1617 wi::to_offset (arg2)); 1618 return force_fit_type (type, res, 1, 1619 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)); 1620 } 1621 return NULL_TREE; 1622 1623 case VEC_PACK_TRUNC_EXPR: 1624 case VEC_PACK_FIX_TRUNC_EXPR: 1625 { 1626 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i; 1627 1628 if (TREE_CODE (arg1) != VECTOR_CST 1629 || TREE_CODE (arg2) != VECTOR_CST) 1630 return NULL_TREE; 1631 1632 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1633 return NULL_TREE; 1634 1635 out_nelts = in_nelts * 2; 1636 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1637 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1638 1639 tree_vector_builder elts (type, out_nelts, 1); 1640 for (i = 0; i < out_nelts; i++) 1641 { 1642 tree elt = (i < in_nelts 1643 ? VECTOR_CST_ELT (arg1, i) 1644 : VECTOR_CST_ELT (arg2, i - in_nelts)); 1645 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR 1646 ? NOP_EXPR : FIX_TRUNC_EXPR, 1647 TREE_TYPE (type), elt); 1648 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1649 return NULL_TREE; 1650 elts.quick_push (elt); 1651 } 1652 1653 return elts.build (); 1654 } 1655 1656 case VEC_WIDEN_MULT_LO_EXPR: 1657 case VEC_WIDEN_MULT_HI_EXPR: 1658 case VEC_WIDEN_MULT_EVEN_EXPR: 1659 case VEC_WIDEN_MULT_ODD_EXPR: 1660 { 1661 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale; 1662 1663 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST) 1664 return NULL_TREE; 1665 1666 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1667 return NULL_TREE; 1668 out_nelts = in_nelts / 2; 1669 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1670 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1671 1672 if (code == VEC_WIDEN_MULT_LO_EXPR) 1673 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0; 1674 else if (code == VEC_WIDEN_MULT_HI_EXPR) 1675 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts; 1676 else if (code == VEC_WIDEN_MULT_EVEN_EXPR) 1677 scale = 1, ofs = 0; 1678 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */ 1679 scale = 1, ofs = 1; 1680 1681 tree_vector_builder elts (type, out_nelts, 1); 1682 for (out = 0; out < out_nelts; out++) 1683 { 1684 unsigned int in = (out << scale) + ofs; 1685 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1686 VECTOR_CST_ELT (arg1, in)); 1687 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1688 VECTOR_CST_ELT (arg2, in)); 1689 1690 if (t1 == NULL_TREE || t2 == NULL_TREE) 1691 return NULL_TREE; 1692 tree elt = const_binop (MULT_EXPR, t1, t2); 1693 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1694 return NULL_TREE; 1695 elts.quick_push (elt); 1696 } 1697 1698 return elts.build (); 1699 } 1700 1701 default:; 1702 } 1703 1704 if (TREE_CODE_CLASS (code) != tcc_binary) 1705 return NULL_TREE; 1706 1707 /* Make sure type and arg0 have the same saturating flag. */ 1708 gcc_checking_assert (TYPE_SATURATING (type) 1709 == TYPE_SATURATING (TREE_TYPE (arg1))); 1710 1711 return const_binop (code, arg1, arg2); 1712 } 1713 1714 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant. 1715 Return zero if computing the constants is not possible. */ 1716 1717 tree 1718 const_unop (enum tree_code code, tree type, tree arg0) 1719 { 1720 /* Don't perform the operation, other than NEGATE and ABS, if 1721 flag_signaling_nans is on and the operand is a signaling NaN. */ 1722 if (TREE_CODE (arg0) == REAL_CST 1723 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))) 1724 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)) 1725 && code != NEGATE_EXPR 1726 && code != ABS_EXPR) 1727 return NULL_TREE; 1728 1729 switch (code) 1730 { 1731 CASE_CONVERT: 1732 case FLOAT_EXPR: 1733 case FIX_TRUNC_EXPR: 1734 case FIXED_CONVERT_EXPR: 1735 return fold_convert_const (code, type, arg0); 1736 1737 case ADDR_SPACE_CONVERT_EXPR: 1738 /* If the source address is 0, and the source address space 1739 cannot have a valid object at 0, fold to dest type null. */ 1740 if (integer_zerop (arg0) 1741 && !(targetm.addr_space.zero_address_valid 1742 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))))) 1743 return fold_convert_const (code, type, arg0); 1744 break; 1745 1746 case VIEW_CONVERT_EXPR: 1747 return fold_view_convert_expr (type, arg0); 1748 1749 case NEGATE_EXPR: 1750 { 1751 /* Can't call fold_negate_const directly here as that doesn't 1752 handle all cases and we might not be able to negate some 1753 constants. */ 1754 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0); 1755 if (tem && CONSTANT_CLASS_P (tem)) 1756 return tem; 1757 break; 1758 } 1759 1760 case ABS_EXPR: 1761 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST) 1762 return fold_abs_const (arg0, type); 1763 break; 1764 1765 case CONJ_EXPR: 1766 if (TREE_CODE (arg0) == COMPLEX_CST) 1767 { 1768 tree ipart = fold_negate_const (TREE_IMAGPART (arg0), 1769 TREE_TYPE (type)); 1770 return build_complex (type, TREE_REALPART (arg0), ipart); 1771 } 1772 break; 1773 1774 case BIT_NOT_EXPR: 1775 if (TREE_CODE (arg0) == INTEGER_CST) 1776 return fold_not_const (arg0, type); 1777 else if (POLY_INT_CST_P (arg0)) 1778 return wide_int_to_tree (type, -poly_int_cst_value (arg0)); 1779 /* Perform BIT_NOT_EXPR on each element individually. */ 1780 else if (TREE_CODE (arg0) == VECTOR_CST) 1781 { 1782 tree elem; 1783 1784 /* This can cope with stepped encodings because ~x == -1 - x. */ 1785 tree_vector_builder elements; 1786 elements.new_unary_operation (type, arg0, true); 1787 unsigned int i, count = elements.encoded_nelts (); 1788 for (i = 0; i < count; ++i) 1789 { 1790 elem = VECTOR_CST_ELT (arg0, i); 1791 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem); 1792 if (elem == NULL_TREE) 1793 break; 1794 elements.quick_push (elem); 1795 } 1796 if (i == count) 1797 return elements.build (); 1798 } 1799 break; 1800 1801 case TRUTH_NOT_EXPR: 1802 if (TREE_CODE (arg0) == INTEGER_CST) 1803 return constant_boolean_node (integer_zerop (arg0), type); 1804 break; 1805 1806 case REALPART_EXPR: 1807 if (TREE_CODE (arg0) == COMPLEX_CST) 1808 return fold_convert (type, TREE_REALPART (arg0)); 1809 break; 1810 1811 case IMAGPART_EXPR: 1812 if (TREE_CODE (arg0) == COMPLEX_CST) 1813 return fold_convert (type, TREE_IMAGPART (arg0)); 1814 break; 1815 1816 case VEC_UNPACK_LO_EXPR: 1817 case VEC_UNPACK_HI_EXPR: 1818 case VEC_UNPACK_FLOAT_LO_EXPR: 1819 case VEC_UNPACK_FLOAT_HI_EXPR: 1820 { 1821 unsigned HOST_WIDE_INT out_nelts, in_nelts, i; 1822 enum tree_code subcode; 1823 1824 if (TREE_CODE (arg0) != VECTOR_CST) 1825 return NULL_TREE; 1826 1827 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts)) 1828 return NULL_TREE; 1829 out_nelts = in_nelts / 2; 1830 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1831 1832 unsigned int offset = 0; 1833 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR 1834 || code == VEC_UNPACK_FLOAT_LO_EXPR)) 1835 offset = out_nelts; 1836 1837 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR) 1838 subcode = NOP_EXPR; 1839 else 1840 subcode = FLOAT_EXPR; 1841 1842 tree_vector_builder elts (type, out_nelts, 1); 1843 for (i = 0; i < out_nelts; i++) 1844 { 1845 tree elt = fold_convert_const (subcode, TREE_TYPE (type), 1846 VECTOR_CST_ELT (arg0, i + offset)); 1847 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1848 return NULL_TREE; 1849 elts.quick_push (elt); 1850 } 1851 1852 return elts.build (); 1853 } 1854 1855 case VEC_DUPLICATE_EXPR: 1856 if (CONSTANT_CLASS_P (arg0)) 1857 return build_vector_from_val (type, arg0); 1858 return NULL_TREE; 1859 1860 default: 1861 break; 1862 } 1863 1864 return NULL_TREE; 1865 } 1866 1867 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND 1868 indicates which particular sizetype to create. */ 1869 1870 tree 1871 size_int_kind (poly_int64 number, enum size_type_kind kind) 1872 { 1873 return build_int_cst (sizetype_tab[(int) kind], number); 1874 } 1875 1876 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE 1877 is a tree code. The type of the result is taken from the operands. 1878 Both must be equivalent integer types, ala int_binop_types_match_p. 1879 If the operands are constant, so is the result. */ 1880 1881 tree 1882 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1) 1883 { 1884 tree type = TREE_TYPE (arg0); 1885 1886 if (arg0 == error_mark_node || arg1 == error_mark_node) 1887 return error_mark_node; 1888 1889 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0), 1890 TREE_TYPE (arg1))); 1891 1892 /* Handle the special case of two poly_int constants faster. */ 1893 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1)) 1894 { 1895 /* And some specific cases even faster than that. */ 1896 if (code == PLUS_EXPR) 1897 { 1898 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0)) 1899 return arg1; 1900 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1901 return arg0; 1902 } 1903 else if (code == MINUS_EXPR) 1904 { 1905 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1906 return arg0; 1907 } 1908 else if (code == MULT_EXPR) 1909 { 1910 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0)) 1911 return arg1; 1912 } 1913 1914 /* Handle general case of two integer constants. For sizetype 1915 constant calculations we always want to know about overflow, 1916 even in the unsigned case. */ 1917 tree res = int_const_binop_1 (code, arg0, arg1, -1); 1918 if (res != NULL_TREE) 1919 return res; 1920 } 1921 1922 return fold_build2_loc (loc, code, type, arg0, arg1); 1923 } 1924 1925 /* Given two values, either both of sizetype or both of bitsizetype, 1926 compute the difference between the two values. Return the value 1927 in signed type corresponding to the type of the operands. */ 1928 1929 tree 1930 size_diffop_loc (location_t loc, tree arg0, tree arg1) 1931 { 1932 tree type = TREE_TYPE (arg0); 1933 tree ctype; 1934 1935 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0), 1936 TREE_TYPE (arg1))); 1937 1938 /* If the type is already signed, just do the simple thing. */ 1939 if (!TYPE_UNSIGNED (type)) 1940 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1); 1941 1942 if (type == sizetype) 1943 ctype = ssizetype; 1944 else if (type == bitsizetype) 1945 ctype = sbitsizetype; 1946 else 1947 ctype = signed_type_for (type); 1948 1949 /* If either operand is not a constant, do the conversions to the signed 1950 type and subtract. The hardware will do the right thing with any 1951 overflow in the subtraction. */ 1952 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST) 1953 return size_binop_loc (loc, MINUS_EXPR, 1954 fold_convert_loc (loc, ctype, arg0), 1955 fold_convert_loc (loc, ctype, arg1)); 1956 1957 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE. 1958 Otherwise, subtract the other way, convert to CTYPE (we know that can't 1959 overflow) and negate (which can't either). Special-case a result 1960 of zero while we're here. */ 1961 if (tree_int_cst_equal (arg0, arg1)) 1962 return build_int_cst (ctype, 0); 1963 else if (tree_int_cst_lt (arg1, arg0)) 1964 return fold_convert_loc (loc, ctype, 1965 size_binop_loc (loc, MINUS_EXPR, arg0, arg1)); 1966 else 1967 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0), 1968 fold_convert_loc (loc, ctype, 1969 size_binop_loc (loc, 1970 MINUS_EXPR, 1971 arg1, arg0))); 1972 } 1973 1974 /* A subroutine of fold_convert_const handling conversions of an 1975 INTEGER_CST to another integer type. */ 1976 1977 static tree 1978 fold_convert_const_int_from_int (tree type, const_tree arg1) 1979 { 1980 /* Given an integer constant, make new constant with new type, 1981 appropriately sign-extended or truncated. Use widest_int 1982 so that any extension is done according ARG1's type. */ 1983 return force_fit_type (type, wi::to_widest (arg1), 1984 !POINTER_TYPE_P (TREE_TYPE (arg1)), 1985 TREE_OVERFLOW (arg1)); 1986 } 1987 1988 /* A subroutine of fold_convert_const handling conversions a REAL_CST 1989 to an integer type. */ 1990 1991 static tree 1992 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1) 1993 { 1994 bool overflow = false; 1995 tree t; 1996 1997 /* The following code implements the floating point to integer 1998 conversion rules required by the Java Language Specification, 1999 that IEEE NaNs are mapped to zero and values that overflow 2000 the target precision saturate, i.e. values greater than 2001 INT_MAX are mapped to INT_MAX, and values less than INT_MIN 2002 are mapped to INT_MIN. These semantics are allowed by the 2003 C and C++ standards that simply state that the behavior of 2004 FP-to-integer conversion is unspecified upon overflow. */ 2005 2006 wide_int val; 2007 REAL_VALUE_TYPE r; 2008 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1); 2009 2010 switch (code) 2011 { 2012 case FIX_TRUNC_EXPR: 2013 real_trunc (&r, VOIDmode, &x); 2014 break; 2015 2016 default: 2017 gcc_unreachable (); 2018 } 2019 2020 /* If R is NaN, return zero and show we have an overflow. */ 2021 if (REAL_VALUE_ISNAN (r)) 2022 { 2023 overflow = true; 2024 val = wi::zero (TYPE_PRECISION (type)); 2025 } 2026 2027 /* See if R is less than the lower bound or greater than the 2028 upper bound. */ 2029 2030 if (! overflow) 2031 { 2032 tree lt = TYPE_MIN_VALUE (type); 2033 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt); 2034 if (real_less (&r, &l)) 2035 { 2036 overflow = true; 2037 val = wi::to_wide (lt); 2038 } 2039 } 2040 2041 if (! overflow) 2042 { 2043 tree ut = TYPE_MAX_VALUE (type); 2044 if (ut) 2045 { 2046 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut); 2047 if (real_less (&u, &r)) 2048 { 2049 overflow = true; 2050 val = wi::to_wide (ut); 2051 } 2052 } 2053 } 2054 2055 if (! overflow) 2056 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type)); 2057 2058 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1)); 2059 return t; 2060 } 2061 2062 /* A subroutine of fold_convert_const handling conversions of a 2063 FIXED_CST to an integer type. */ 2064 2065 static tree 2066 fold_convert_const_int_from_fixed (tree type, const_tree arg1) 2067 { 2068 tree t; 2069 double_int temp, temp_trunc; 2070 scalar_mode mode; 2071 2072 /* Right shift FIXED_CST to temp by fbit. */ 2073 temp = TREE_FIXED_CST (arg1).data; 2074 mode = TREE_FIXED_CST (arg1).mode; 2075 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT) 2076 { 2077 temp = temp.rshift (GET_MODE_FBIT (mode), 2078 HOST_BITS_PER_DOUBLE_INT, 2079 SIGNED_FIXED_POINT_MODE_P (mode)); 2080 2081 /* Left shift temp to temp_trunc by fbit. */ 2082 temp_trunc = temp.lshift (GET_MODE_FBIT (mode), 2083 HOST_BITS_PER_DOUBLE_INT, 2084 SIGNED_FIXED_POINT_MODE_P (mode)); 2085 } 2086 else 2087 { 2088 temp = double_int_zero; 2089 temp_trunc = double_int_zero; 2090 } 2091 2092 /* If FIXED_CST is negative, we need to round the value toward 0. 2093 By checking if the fractional bits are not zero to add 1 to temp. */ 2094 if (SIGNED_FIXED_POINT_MODE_P (mode) 2095 && temp_trunc.is_negative () 2096 && TREE_FIXED_CST (arg1).data != temp_trunc) 2097 temp += double_int_one; 2098 2099 /* Given a fixed-point constant, make new constant with new type, 2100 appropriately sign-extended or truncated. */ 2101 t = force_fit_type (type, temp, -1, 2102 (temp.is_negative () 2103 && (TYPE_UNSIGNED (type) 2104 < TYPE_UNSIGNED (TREE_TYPE (arg1)))) 2105 | TREE_OVERFLOW (arg1)); 2106 2107 return t; 2108 } 2109 2110 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2111 to another floating point type. */ 2112 2113 static tree 2114 fold_convert_const_real_from_real (tree type, const_tree arg1) 2115 { 2116 REAL_VALUE_TYPE value; 2117 tree t; 2118 2119 /* Don't perform the operation if flag_signaling_nans is on 2120 and the operand is a signaling NaN. */ 2121 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))) 2122 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))) 2123 return NULL_TREE; 2124 2125 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1)); 2126 t = build_real (type, value); 2127 2128 /* If converting an infinity or NAN to a representation that doesn't 2129 have one, set the overflow bit so that we can produce some kind of 2130 error message at the appropriate point if necessary. It's not the 2131 most user-friendly message, but it's better than nothing. */ 2132 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1)) 2133 && !MODE_HAS_INFINITIES (TYPE_MODE (type))) 2134 TREE_OVERFLOW (t) = 1; 2135 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)) 2136 && !MODE_HAS_NANS (TYPE_MODE (type))) 2137 TREE_OVERFLOW (t) = 1; 2138 /* Regular overflow, conversion produced an infinity in a mode that 2139 can't represent them. */ 2140 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) 2141 && REAL_VALUE_ISINF (value) 2142 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1))) 2143 TREE_OVERFLOW (t) = 1; 2144 else 2145 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2146 return t; 2147 } 2148 2149 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2150 to a floating point type. */ 2151 2152 static tree 2153 fold_convert_const_real_from_fixed (tree type, const_tree arg1) 2154 { 2155 REAL_VALUE_TYPE value; 2156 tree t; 2157 2158 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type), 2159 &TREE_FIXED_CST (arg1)); 2160 t = build_real (type, value); 2161 2162 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2163 return t; 2164 } 2165 2166 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2167 to another fixed-point type. */ 2168 2169 static tree 2170 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1) 2171 { 2172 FIXED_VALUE_TYPE value; 2173 tree t; 2174 bool overflow_p; 2175 2176 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type), 2177 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type)); 2178 t = build_fixed (type, value); 2179 2180 /* Propagate overflow flags. */ 2181 if (overflow_p | TREE_OVERFLOW (arg1)) 2182 TREE_OVERFLOW (t) = 1; 2183 return t; 2184 } 2185 2186 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST 2187 to a fixed-point type. */ 2188 2189 static tree 2190 fold_convert_const_fixed_from_int (tree type, const_tree arg1) 2191 { 2192 FIXED_VALUE_TYPE value; 2193 tree t; 2194 bool overflow_p; 2195 double_int di; 2196 2197 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2); 2198 2199 di.low = TREE_INT_CST_ELT (arg1, 0); 2200 if (TREE_INT_CST_NUNITS (arg1) == 1) 2201 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0; 2202 else 2203 di.high = TREE_INT_CST_ELT (arg1, 1); 2204 2205 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di, 2206 TYPE_UNSIGNED (TREE_TYPE (arg1)), 2207 TYPE_SATURATING (type)); 2208 t = build_fixed (type, value); 2209 2210 /* Propagate overflow flags. */ 2211 if (overflow_p | TREE_OVERFLOW (arg1)) 2212 TREE_OVERFLOW (t) = 1; 2213 return t; 2214 } 2215 2216 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2217 to a fixed-point type. */ 2218 2219 static tree 2220 fold_convert_const_fixed_from_real (tree type, const_tree arg1) 2221 { 2222 FIXED_VALUE_TYPE value; 2223 tree t; 2224 bool overflow_p; 2225 2226 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type), 2227 &TREE_REAL_CST (arg1), 2228 TYPE_SATURATING (type)); 2229 t = build_fixed (type, value); 2230 2231 /* Propagate overflow flags. */ 2232 if (overflow_p | TREE_OVERFLOW (arg1)) 2233 TREE_OVERFLOW (t) = 1; 2234 return t; 2235 } 2236 2237 /* Attempt to fold type conversion operation CODE of expression ARG1 to 2238 type TYPE. If no simplification can be done return NULL_TREE. */ 2239 2240 static tree 2241 fold_convert_const (enum tree_code code, tree type, tree arg1) 2242 { 2243 tree arg_type = TREE_TYPE (arg1); 2244 if (arg_type == type) 2245 return arg1; 2246 2247 /* We can't widen types, since the runtime value could overflow the 2248 original type before being extended to the new type. */ 2249 if (POLY_INT_CST_P (arg1) 2250 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 2251 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type)) 2252 return build_poly_int_cst (type, 2253 poly_wide_int::from (poly_int_cst_value (arg1), 2254 TYPE_PRECISION (type), 2255 TYPE_SIGN (arg_type))); 2256 2257 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type) 2258 || TREE_CODE (type) == OFFSET_TYPE) 2259 { 2260 if (TREE_CODE (arg1) == INTEGER_CST) 2261 return fold_convert_const_int_from_int (type, arg1); 2262 else if (TREE_CODE (arg1) == REAL_CST) 2263 return fold_convert_const_int_from_real (code, type, arg1); 2264 else if (TREE_CODE (arg1) == FIXED_CST) 2265 return fold_convert_const_int_from_fixed (type, arg1); 2266 } 2267 else if (TREE_CODE (type) == REAL_TYPE) 2268 { 2269 if (TREE_CODE (arg1) == INTEGER_CST) 2270 return build_real_from_int_cst (type, arg1); 2271 else if (TREE_CODE (arg1) == REAL_CST) 2272 return fold_convert_const_real_from_real (type, arg1); 2273 else if (TREE_CODE (arg1) == FIXED_CST) 2274 return fold_convert_const_real_from_fixed (type, arg1); 2275 } 2276 else if (TREE_CODE (type) == FIXED_POINT_TYPE) 2277 { 2278 if (TREE_CODE (arg1) == FIXED_CST) 2279 return fold_convert_const_fixed_from_fixed (type, arg1); 2280 else if (TREE_CODE (arg1) == INTEGER_CST) 2281 return fold_convert_const_fixed_from_int (type, arg1); 2282 else if (TREE_CODE (arg1) == REAL_CST) 2283 return fold_convert_const_fixed_from_real (type, arg1); 2284 } 2285 else if (TREE_CODE (type) == VECTOR_TYPE) 2286 { 2287 if (TREE_CODE (arg1) == VECTOR_CST 2288 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1))) 2289 { 2290 tree elttype = TREE_TYPE (type); 2291 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1)); 2292 /* We can't handle steps directly when extending, since the 2293 values need to wrap at the original precision first. */ 2294 bool step_ok_p 2295 = (INTEGRAL_TYPE_P (elttype) 2296 && INTEGRAL_TYPE_P (arg1_elttype) 2297 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype)); 2298 tree_vector_builder v; 2299 if (!v.new_unary_operation (type, arg1, step_ok_p)) 2300 return NULL_TREE; 2301 unsigned int len = v.encoded_nelts (); 2302 for (unsigned int i = 0; i < len; ++i) 2303 { 2304 tree elt = VECTOR_CST_ELT (arg1, i); 2305 tree cvt = fold_convert_const (code, elttype, elt); 2306 if (cvt == NULL_TREE) 2307 return NULL_TREE; 2308 v.quick_push (cvt); 2309 } 2310 return v.build (); 2311 } 2312 } 2313 return NULL_TREE; 2314 } 2315 2316 /* Construct a vector of zero elements of vector type TYPE. */ 2317 2318 static tree 2319 build_zero_vector (tree type) 2320 { 2321 tree t; 2322 2323 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node); 2324 return build_vector_from_val (type, t); 2325 } 2326 2327 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */ 2328 2329 bool 2330 fold_convertible_p (const_tree type, const_tree arg) 2331 { 2332 tree orig = TREE_TYPE (arg); 2333 2334 if (type == orig) 2335 return true; 2336 2337 if (TREE_CODE (arg) == ERROR_MARK 2338 || TREE_CODE (type) == ERROR_MARK 2339 || TREE_CODE (orig) == ERROR_MARK) 2340 return false; 2341 2342 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2343 return true; 2344 2345 switch (TREE_CODE (type)) 2346 { 2347 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2348 case POINTER_TYPE: case REFERENCE_TYPE: 2349 case OFFSET_TYPE: 2350 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2351 || TREE_CODE (orig) == OFFSET_TYPE); 2352 2353 case REAL_TYPE: 2354 case FIXED_POINT_TYPE: 2355 case VECTOR_TYPE: 2356 case VOID_TYPE: 2357 return TREE_CODE (type) == TREE_CODE (orig); 2358 2359 default: 2360 return false; 2361 } 2362 } 2363 2364 /* Convert expression ARG to type TYPE. Used by the middle-end for 2365 simple conversions in preference to calling the front-end's convert. */ 2366 2367 tree 2368 fold_convert_loc (location_t loc, tree type, tree arg) 2369 { 2370 tree orig = TREE_TYPE (arg); 2371 tree tem; 2372 2373 if (type == orig) 2374 return arg; 2375 2376 if (TREE_CODE (arg) == ERROR_MARK 2377 || TREE_CODE (type) == ERROR_MARK 2378 || TREE_CODE (orig) == ERROR_MARK) 2379 return error_mark_node; 2380 2381 switch (TREE_CODE (type)) 2382 { 2383 case POINTER_TYPE: 2384 case REFERENCE_TYPE: 2385 /* Handle conversions between pointers to different address spaces. */ 2386 if (POINTER_TYPE_P (orig) 2387 && (TYPE_ADDR_SPACE (TREE_TYPE (type)) 2388 != TYPE_ADDR_SPACE (TREE_TYPE (orig)))) 2389 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg); 2390 /* fall through */ 2391 2392 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2393 case OFFSET_TYPE: 2394 if (TREE_CODE (arg) == INTEGER_CST) 2395 { 2396 tem = fold_convert_const (NOP_EXPR, type, arg); 2397 if (tem != NULL_TREE) 2398 return tem; 2399 } 2400 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2401 || TREE_CODE (orig) == OFFSET_TYPE) 2402 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2403 if (TREE_CODE (orig) == COMPLEX_TYPE) 2404 return fold_convert_loc (loc, type, 2405 fold_build1_loc (loc, REALPART_EXPR, 2406 TREE_TYPE (orig), arg)); 2407 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE 2408 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2409 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2410 2411 case REAL_TYPE: 2412 if (TREE_CODE (arg) == INTEGER_CST) 2413 { 2414 tem = fold_convert_const (FLOAT_EXPR, type, arg); 2415 if (tem != NULL_TREE) 2416 return tem; 2417 } 2418 else if (TREE_CODE (arg) == REAL_CST) 2419 { 2420 tem = fold_convert_const (NOP_EXPR, type, arg); 2421 if (tem != NULL_TREE) 2422 return tem; 2423 } 2424 else if (TREE_CODE (arg) == FIXED_CST) 2425 { 2426 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2427 if (tem != NULL_TREE) 2428 return tem; 2429 } 2430 2431 switch (TREE_CODE (orig)) 2432 { 2433 case INTEGER_TYPE: 2434 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2435 case POINTER_TYPE: case REFERENCE_TYPE: 2436 return fold_build1_loc (loc, FLOAT_EXPR, type, arg); 2437 2438 case REAL_TYPE: 2439 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2440 2441 case FIXED_POINT_TYPE: 2442 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2443 2444 case COMPLEX_TYPE: 2445 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2446 return fold_convert_loc (loc, type, tem); 2447 2448 default: 2449 gcc_unreachable (); 2450 } 2451 2452 case FIXED_POINT_TYPE: 2453 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST 2454 || TREE_CODE (arg) == REAL_CST) 2455 { 2456 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2457 if (tem != NULL_TREE) 2458 goto fold_convert_exit; 2459 } 2460 2461 switch (TREE_CODE (orig)) 2462 { 2463 case FIXED_POINT_TYPE: 2464 case INTEGER_TYPE: 2465 case ENUMERAL_TYPE: 2466 case BOOLEAN_TYPE: 2467 case REAL_TYPE: 2468 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2469 2470 case COMPLEX_TYPE: 2471 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2472 return fold_convert_loc (loc, type, tem); 2473 2474 default: 2475 gcc_unreachable (); 2476 } 2477 2478 case COMPLEX_TYPE: 2479 switch (TREE_CODE (orig)) 2480 { 2481 case INTEGER_TYPE: 2482 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2483 case POINTER_TYPE: case REFERENCE_TYPE: 2484 case REAL_TYPE: 2485 case FIXED_POINT_TYPE: 2486 return fold_build2_loc (loc, COMPLEX_EXPR, type, 2487 fold_convert_loc (loc, TREE_TYPE (type), arg), 2488 fold_convert_loc (loc, TREE_TYPE (type), 2489 integer_zero_node)); 2490 case COMPLEX_TYPE: 2491 { 2492 tree rpart, ipart; 2493 2494 if (TREE_CODE (arg) == COMPLEX_EXPR) 2495 { 2496 rpart = fold_convert_loc (loc, TREE_TYPE (type), 2497 TREE_OPERAND (arg, 0)); 2498 ipart = fold_convert_loc (loc, TREE_TYPE (type), 2499 TREE_OPERAND (arg, 1)); 2500 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2501 } 2502 2503 arg = save_expr (arg); 2504 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2505 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg); 2506 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart); 2507 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart); 2508 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2509 } 2510 2511 default: 2512 gcc_unreachable (); 2513 } 2514 2515 case VECTOR_TYPE: 2516 if (integer_zerop (arg)) 2517 return build_zero_vector (type); 2518 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2519 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2520 || TREE_CODE (orig) == VECTOR_TYPE); 2521 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2522 2523 case VOID_TYPE: 2524 tem = fold_ignored_result (arg); 2525 return fold_build1_loc (loc, NOP_EXPR, type, tem); 2526 2527 default: 2528 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2529 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2530 gcc_unreachable (); 2531 } 2532 fold_convert_exit: 2533 protected_set_expr_location_unshare (tem, loc); 2534 return tem; 2535 } 2536 2537 /* Return false if expr can be assumed not to be an lvalue, true 2538 otherwise. */ 2539 2540 static bool 2541 maybe_lvalue_p (const_tree x) 2542 { 2543 /* We only need to wrap lvalue tree codes. */ 2544 switch (TREE_CODE (x)) 2545 { 2546 case VAR_DECL: 2547 case PARM_DECL: 2548 case RESULT_DECL: 2549 case LABEL_DECL: 2550 case FUNCTION_DECL: 2551 case SSA_NAME: 2552 2553 case COMPONENT_REF: 2554 case MEM_REF: 2555 case INDIRECT_REF: 2556 case ARRAY_REF: 2557 case ARRAY_RANGE_REF: 2558 case BIT_FIELD_REF: 2559 case OBJ_TYPE_REF: 2560 2561 case REALPART_EXPR: 2562 case IMAGPART_EXPR: 2563 case PREINCREMENT_EXPR: 2564 case PREDECREMENT_EXPR: 2565 case SAVE_EXPR: 2566 case TRY_CATCH_EXPR: 2567 case WITH_CLEANUP_EXPR: 2568 case COMPOUND_EXPR: 2569 case MODIFY_EXPR: 2570 case TARGET_EXPR: 2571 case COND_EXPR: 2572 case BIND_EXPR: 2573 break; 2574 2575 default: 2576 /* Assume the worst for front-end tree codes. */ 2577 if ((int)TREE_CODE (x) >= NUM_TREE_CODES) 2578 break; 2579 return false; 2580 } 2581 2582 return true; 2583 } 2584 2585 /* Return an expr equal to X but certainly not valid as an lvalue. */ 2586 2587 tree 2588 non_lvalue_loc (location_t loc, tree x) 2589 { 2590 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to 2591 us. */ 2592 if (in_gimple_form) 2593 return x; 2594 2595 if (! maybe_lvalue_p (x)) 2596 return x; 2597 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x); 2598 } 2599 2600 /* When pedantic, return an expr equal to X but certainly not valid as a 2601 pedantic lvalue. Otherwise, return X. */ 2602 2603 static tree 2604 pedantic_non_lvalue_loc (location_t loc, tree x) 2605 { 2606 return protected_set_expr_location_unshare (x, loc); 2607 } 2608 2609 /* Given a tree comparison code, return the code that is the logical inverse. 2610 It is generally not safe to do this for floating-point comparisons, except 2611 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return 2612 ERROR_MARK in this case. */ 2613 2614 enum tree_code 2615 invert_tree_comparison (enum tree_code code, bool honor_nans) 2616 { 2617 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR 2618 && code != ORDERED_EXPR && code != UNORDERED_EXPR) 2619 return ERROR_MARK; 2620 2621 switch (code) 2622 { 2623 case EQ_EXPR: 2624 return NE_EXPR; 2625 case NE_EXPR: 2626 return EQ_EXPR; 2627 case GT_EXPR: 2628 return honor_nans ? UNLE_EXPR : LE_EXPR; 2629 case GE_EXPR: 2630 return honor_nans ? UNLT_EXPR : LT_EXPR; 2631 case LT_EXPR: 2632 return honor_nans ? UNGE_EXPR : GE_EXPR; 2633 case LE_EXPR: 2634 return honor_nans ? UNGT_EXPR : GT_EXPR; 2635 case LTGT_EXPR: 2636 return UNEQ_EXPR; 2637 case UNEQ_EXPR: 2638 return LTGT_EXPR; 2639 case UNGT_EXPR: 2640 return LE_EXPR; 2641 case UNGE_EXPR: 2642 return LT_EXPR; 2643 case UNLT_EXPR: 2644 return GE_EXPR; 2645 case UNLE_EXPR: 2646 return GT_EXPR; 2647 case ORDERED_EXPR: 2648 return UNORDERED_EXPR; 2649 case UNORDERED_EXPR: 2650 return ORDERED_EXPR; 2651 default: 2652 gcc_unreachable (); 2653 } 2654 } 2655 2656 /* Similar, but return the comparison that results if the operands are 2657 swapped. This is safe for floating-point. */ 2658 2659 enum tree_code 2660 swap_tree_comparison (enum tree_code code) 2661 { 2662 switch (code) 2663 { 2664 case EQ_EXPR: 2665 case NE_EXPR: 2666 case ORDERED_EXPR: 2667 case UNORDERED_EXPR: 2668 case LTGT_EXPR: 2669 case UNEQ_EXPR: 2670 return code; 2671 case GT_EXPR: 2672 return LT_EXPR; 2673 case GE_EXPR: 2674 return LE_EXPR; 2675 case LT_EXPR: 2676 return GT_EXPR; 2677 case LE_EXPR: 2678 return GE_EXPR; 2679 case UNGT_EXPR: 2680 return UNLT_EXPR; 2681 case UNGE_EXPR: 2682 return UNLE_EXPR; 2683 case UNLT_EXPR: 2684 return UNGT_EXPR; 2685 case UNLE_EXPR: 2686 return UNGE_EXPR; 2687 default: 2688 gcc_unreachable (); 2689 } 2690 } 2691 2692 2693 /* Convert a comparison tree code from an enum tree_code representation 2694 into a compcode bit-based encoding. This function is the inverse of 2695 compcode_to_comparison. */ 2696 2697 static enum comparison_code 2698 comparison_to_compcode (enum tree_code code) 2699 { 2700 switch (code) 2701 { 2702 case LT_EXPR: 2703 return COMPCODE_LT; 2704 case EQ_EXPR: 2705 return COMPCODE_EQ; 2706 case LE_EXPR: 2707 return COMPCODE_LE; 2708 case GT_EXPR: 2709 return COMPCODE_GT; 2710 case NE_EXPR: 2711 return COMPCODE_NE; 2712 case GE_EXPR: 2713 return COMPCODE_GE; 2714 case ORDERED_EXPR: 2715 return COMPCODE_ORD; 2716 case UNORDERED_EXPR: 2717 return COMPCODE_UNORD; 2718 case UNLT_EXPR: 2719 return COMPCODE_UNLT; 2720 case UNEQ_EXPR: 2721 return COMPCODE_UNEQ; 2722 case UNLE_EXPR: 2723 return COMPCODE_UNLE; 2724 case UNGT_EXPR: 2725 return COMPCODE_UNGT; 2726 case LTGT_EXPR: 2727 return COMPCODE_LTGT; 2728 case UNGE_EXPR: 2729 return COMPCODE_UNGE; 2730 default: 2731 gcc_unreachable (); 2732 } 2733 } 2734 2735 /* Convert a compcode bit-based encoding of a comparison operator back 2736 to GCC's enum tree_code representation. This function is the 2737 inverse of comparison_to_compcode. */ 2738 2739 static enum tree_code 2740 compcode_to_comparison (enum comparison_code code) 2741 { 2742 switch (code) 2743 { 2744 case COMPCODE_LT: 2745 return LT_EXPR; 2746 case COMPCODE_EQ: 2747 return EQ_EXPR; 2748 case COMPCODE_LE: 2749 return LE_EXPR; 2750 case COMPCODE_GT: 2751 return GT_EXPR; 2752 case COMPCODE_NE: 2753 return NE_EXPR; 2754 case COMPCODE_GE: 2755 return GE_EXPR; 2756 case COMPCODE_ORD: 2757 return ORDERED_EXPR; 2758 case COMPCODE_UNORD: 2759 return UNORDERED_EXPR; 2760 case COMPCODE_UNLT: 2761 return UNLT_EXPR; 2762 case COMPCODE_UNEQ: 2763 return UNEQ_EXPR; 2764 case COMPCODE_UNLE: 2765 return UNLE_EXPR; 2766 case COMPCODE_UNGT: 2767 return UNGT_EXPR; 2768 case COMPCODE_LTGT: 2769 return LTGT_EXPR; 2770 case COMPCODE_UNGE: 2771 return UNGE_EXPR; 2772 default: 2773 gcc_unreachable (); 2774 } 2775 } 2776 2777 /* Return a tree for the comparison which is the combination of 2778 doing the AND or OR (depending on CODE) of the two operations LCODE 2779 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account 2780 the possibility of trapping if the mode has NaNs, and return NULL_TREE 2781 if this makes the transformation invalid. */ 2782 2783 tree 2784 combine_comparisons (location_t loc, 2785 enum tree_code code, enum tree_code lcode, 2786 enum tree_code rcode, tree truth_type, 2787 tree ll_arg, tree lr_arg) 2788 { 2789 bool honor_nans = HONOR_NANS (ll_arg); 2790 enum comparison_code lcompcode = comparison_to_compcode (lcode); 2791 enum comparison_code rcompcode = comparison_to_compcode (rcode); 2792 int compcode; 2793 2794 switch (code) 2795 { 2796 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR: 2797 compcode = lcompcode & rcompcode; 2798 break; 2799 2800 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR: 2801 compcode = lcompcode | rcompcode; 2802 break; 2803 2804 default: 2805 return NULL_TREE; 2806 } 2807 2808 if (!honor_nans) 2809 { 2810 /* Eliminate unordered comparisons, as well as LTGT and ORD 2811 which are not used unless the mode has NaNs. */ 2812 compcode &= ~COMPCODE_UNORD; 2813 if (compcode == COMPCODE_LTGT) 2814 compcode = COMPCODE_NE; 2815 else if (compcode == COMPCODE_ORD) 2816 compcode = COMPCODE_TRUE; 2817 } 2818 else if (flag_trapping_math) 2819 { 2820 /* Check that the original operation and the optimized ones will trap 2821 under the same condition. */ 2822 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0 2823 && (lcompcode != COMPCODE_EQ) 2824 && (lcompcode != COMPCODE_ORD); 2825 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0 2826 && (rcompcode != COMPCODE_EQ) 2827 && (rcompcode != COMPCODE_ORD); 2828 bool trap = (compcode & COMPCODE_UNORD) == 0 2829 && (compcode != COMPCODE_EQ) 2830 && (compcode != COMPCODE_ORD); 2831 2832 /* In a short-circuited boolean expression the LHS might be 2833 such that the RHS, if evaluated, will never trap. For 2834 example, in ORD (x, y) && (x < y), we evaluate the RHS only 2835 if neither x nor y is NaN. (This is a mixed blessing: for 2836 example, the expression above will never trap, hence 2837 optimizing it to x < y would be invalid). */ 2838 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD)) 2839 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD))) 2840 rtrap = false; 2841 2842 /* If the comparison was short-circuited, and only the RHS 2843 trapped, we may now generate a spurious trap. */ 2844 if (rtrap && !ltrap 2845 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 2846 return NULL_TREE; 2847 2848 /* If we changed the conditions that cause a trap, we lose. */ 2849 if ((ltrap || rtrap) != trap) 2850 return NULL_TREE; 2851 } 2852 2853 if (compcode == COMPCODE_TRUE) 2854 return constant_boolean_node (true, truth_type); 2855 else if (compcode == COMPCODE_FALSE) 2856 return constant_boolean_node (false, truth_type); 2857 else 2858 { 2859 enum tree_code tcode; 2860 2861 tcode = compcode_to_comparison ((enum comparison_code) compcode); 2862 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg); 2863 } 2864 } 2865 2866 /* Return nonzero if two operands (typically of the same tree node) 2867 are necessarily equal. FLAGS modifies behavior as follows: 2868 2869 If OEP_ONLY_CONST is set, only return nonzero for constants. 2870 This function tests whether the operands are indistinguishable; 2871 it does not test whether they are equal using C's == operation. 2872 The distinction is important for IEEE floating point, because 2873 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and 2874 (2) two NaNs may be indistinguishable, but NaN!=NaN. 2875 2876 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself 2877 even though it may hold multiple values during a function. 2878 This is because a GCC tree node guarantees that nothing else is 2879 executed between the evaluation of its "operands" (which may often 2880 be evaluated in arbitrary order). Hence if the operands themselves 2881 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the 2882 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST 2883 unset means assuming isochronic (or instantaneous) tree equivalence. 2884 Unless comparing arbitrary expression trees, such as from different 2885 statements, this flag can usually be left unset. 2886 2887 If OEP_PURE_SAME is set, then pure functions with identical arguments 2888 are considered the same. It is used when the caller has other ways 2889 to ensure that global memory is unchanged in between. 2890 2891 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects, 2892 not values of expressions. 2893 2894 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects 2895 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs. 2896 2897 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on 2898 any operand with side effect. This is unnecesarily conservative in the 2899 case we know that arg0 and arg1 are in disjoint code paths (such as in 2900 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing 2901 addresses with TREE_CONSTANT flag set so we know that &var == &var 2902 even if var is volatile. */ 2903 2904 int 2905 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags) 2906 { 2907 /* When checking, verify at the outermost operand_equal_p call that 2908 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same 2909 hash value. */ 2910 if (flag_checking && !(flags & OEP_NO_HASH_CHECK)) 2911 { 2912 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK)) 2913 { 2914 if (arg0 != arg1) 2915 { 2916 inchash::hash hstate0 (0), hstate1 (0); 2917 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK); 2918 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK); 2919 hashval_t h0 = hstate0.end (); 2920 hashval_t h1 = hstate1.end (); 2921 gcc_assert (h0 == h1); 2922 } 2923 return 1; 2924 } 2925 else 2926 return 0; 2927 } 2928 2929 /* If either is ERROR_MARK, they aren't equal. */ 2930 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK 2931 || TREE_TYPE (arg0) == error_mark_node 2932 || TREE_TYPE (arg1) == error_mark_node) 2933 return 0; 2934 2935 /* Similar, if either does not have a type (like a released SSA name), 2936 they aren't equal. */ 2937 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1)) 2938 return 0; 2939 2940 /* We cannot consider pointers to different address space equal. */ 2941 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 2942 && POINTER_TYPE_P (TREE_TYPE (arg1)) 2943 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))) 2944 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1))))) 2945 return 0; 2946 2947 /* Check equality of integer constants before bailing out due to 2948 precision differences. */ 2949 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST) 2950 { 2951 /* Address of INTEGER_CST is not defined; check that we did not forget 2952 to drop the OEP_ADDRESS_OF flags. */ 2953 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 2954 return tree_int_cst_equal (arg0, arg1); 2955 } 2956 2957 if (!(flags & OEP_ADDRESS_OF)) 2958 { 2959 /* If both types don't have the same signedness, then we can't consider 2960 them equal. We must check this before the STRIP_NOPS calls 2961 because they may change the signedness of the arguments. As pointers 2962 strictly don't have a signedness, require either two pointers or 2963 two non-pointers as well. */ 2964 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)) 2965 || POINTER_TYPE_P (TREE_TYPE (arg0)) 2966 != POINTER_TYPE_P (TREE_TYPE (arg1))) 2967 return 0; 2968 2969 /* If both types don't have the same precision, then it is not safe 2970 to strip NOPs. */ 2971 if (element_precision (TREE_TYPE (arg0)) 2972 != element_precision (TREE_TYPE (arg1))) 2973 return 0; 2974 2975 STRIP_NOPS (arg0); 2976 STRIP_NOPS (arg1); 2977 } 2978 #if 0 2979 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the 2980 sanity check once the issue is solved. */ 2981 else 2982 /* Addresses of conversions and SSA_NAMEs (and many other things) 2983 are not defined. Check that we did not forget to drop the 2984 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */ 2985 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1) 2986 && TREE_CODE (arg0) != SSA_NAME); 2987 #endif 2988 2989 /* In case both args are comparisons but with different comparison 2990 code, try to swap the comparison operands of one arg to produce 2991 a match and compare that variant. */ 2992 if (TREE_CODE (arg0) != TREE_CODE (arg1) 2993 && COMPARISON_CLASS_P (arg0) 2994 && COMPARISON_CLASS_P (arg1)) 2995 { 2996 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1)); 2997 2998 if (TREE_CODE (arg0) == swap_code) 2999 return operand_equal_p (TREE_OPERAND (arg0, 0), 3000 TREE_OPERAND (arg1, 1), flags) 3001 && operand_equal_p (TREE_OPERAND (arg0, 1), 3002 TREE_OPERAND (arg1, 0), flags); 3003 } 3004 3005 if (TREE_CODE (arg0) != TREE_CODE (arg1)) 3006 { 3007 /* NOP_EXPR and CONVERT_EXPR are considered equal. */ 3008 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)) 3009 ; 3010 else if (flags & OEP_ADDRESS_OF) 3011 { 3012 /* If we are interested in comparing addresses ignore 3013 MEM_REF wrappings of the base that can appear just for 3014 TBAA reasons. */ 3015 if (TREE_CODE (arg0) == MEM_REF 3016 && DECL_P (arg1) 3017 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR 3018 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1 3019 && integer_zerop (TREE_OPERAND (arg0, 1))) 3020 return 1; 3021 else if (TREE_CODE (arg1) == MEM_REF 3022 && DECL_P (arg0) 3023 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR 3024 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0 3025 && integer_zerop (TREE_OPERAND (arg1, 1))) 3026 return 1; 3027 return 0; 3028 } 3029 else 3030 return 0; 3031 } 3032 3033 /* When not checking adddresses, this is needed for conversions and for 3034 COMPONENT_REF. Might as well play it safe and always test this. */ 3035 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK 3036 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK 3037 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)) 3038 && !(flags & OEP_ADDRESS_OF))) 3039 return 0; 3040 3041 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal. 3042 We don't care about side effects in that case because the SAVE_EXPR 3043 takes care of that for us. In all other cases, two expressions are 3044 equal if they have no side effects. If we have two identical 3045 expressions with side effects that should be treated the same due 3046 to the only side effects being identical SAVE_EXPR's, that will 3047 be detected in the recursive calls below. 3048 If we are taking an invariant address of two identical objects 3049 they are necessarily equal as well. */ 3050 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST) 3051 && (TREE_CODE (arg0) == SAVE_EXPR 3052 || (flags & OEP_MATCH_SIDE_EFFECTS) 3053 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1)))) 3054 return 1; 3055 3056 /* Next handle constant cases, those for which we can return 1 even 3057 if ONLY_CONST is set. */ 3058 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)) 3059 switch (TREE_CODE (arg0)) 3060 { 3061 case INTEGER_CST: 3062 return tree_int_cst_equal (arg0, arg1); 3063 3064 case FIXED_CST: 3065 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0), 3066 TREE_FIXED_CST (arg1)); 3067 3068 case REAL_CST: 3069 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1))) 3070 return 1; 3071 3072 3073 if (!HONOR_SIGNED_ZEROS (arg0)) 3074 { 3075 /* If we do not distinguish between signed and unsigned zero, 3076 consider them equal. */ 3077 if (real_zerop (arg0) && real_zerop (arg1)) 3078 return 1; 3079 } 3080 return 0; 3081 3082 case VECTOR_CST: 3083 { 3084 if (VECTOR_CST_LOG2_NPATTERNS (arg0) 3085 != VECTOR_CST_LOG2_NPATTERNS (arg1)) 3086 return 0; 3087 3088 if (VECTOR_CST_NELTS_PER_PATTERN (arg0) 3089 != VECTOR_CST_NELTS_PER_PATTERN (arg1)) 3090 return 0; 3091 3092 unsigned int count = vector_cst_encoded_nelts (arg0); 3093 for (unsigned int i = 0; i < count; ++i) 3094 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i), 3095 VECTOR_CST_ENCODED_ELT (arg1, i), flags)) 3096 return 0; 3097 return 1; 3098 } 3099 3100 case COMPLEX_CST: 3101 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1), 3102 flags) 3103 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1), 3104 flags)); 3105 3106 case STRING_CST: 3107 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1) 3108 && ! memcmp (TREE_STRING_POINTER (arg0), 3109 TREE_STRING_POINTER (arg1), 3110 TREE_STRING_LENGTH (arg0))); 3111 3112 case ADDR_EXPR: 3113 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3114 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 3115 flags | OEP_ADDRESS_OF 3116 | OEP_MATCH_SIDE_EFFECTS); 3117 case CONSTRUCTOR: 3118 /* In GIMPLE empty constructors are allowed in initializers of 3119 aggregates. */ 3120 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1); 3121 default: 3122 break; 3123 } 3124 3125 if (flags & OEP_ONLY_CONST) 3126 return 0; 3127 3128 /* Define macros to test an operand from arg0 and arg1 for equality and a 3129 variant that allows null and views null as being different from any 3130 non-null value. In the latter case, if either is null, the both 3131 must be; otherwise, do the normal comparison. */ 3132 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \ 3133 TREE_OPERAND (arg1, N), flags) 3134 3135 #define OP_SAME_WITH_NULL(N) \ 3136 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \ 3137 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N)) 3138 3139 switch (TREE_CODE_CLASS (TREE_CODE (arg0))) 3140 { 3141 case tcc_unary: 3142 /* Two conversions are equal only if signedness and modes match. */ 3143 switch (TREE_CODE (arg0)) 3144 { 3145 CASE_CONVERT: 3146 case FIX_TRUNC_EXPR: 3147 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) 3148 != TYPE_UNSIGNED (TREE_TYPE (arg1))) 3149 return 0; 3150 break; 3151 default: 3152 break; 3153 } 3154 3155 return OP_SAME (0); 3156 3157 3158 case tcc_comparison: 3159 case tcc_binary: 3160 if (OP_SAME (0) && OP_SAME (1)) 3161 return 1; 3162 3163 /* For commutative ops, allow the other order. */ 3164 return (commutative_tree_code (TREE_CODE (arg0)) 3165 && operand_equal_p (TREE_OPERAND (arg0, 0), 3166 TREE_OPERAND (arg1, 1), flags) 3167 && operand_equal_p (TREE_OPERAND (arg0, 1), 3168 TREE_OPERAND (arg1, 0), flags)); 3169 3170 case tcc_reference: 3171 /* If either of the pointer (or reference) expressions we are 3172 dereferencing contain a side effect, these cannot be equal, 3173 but their addresses can be. */ 3174 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0 3175 && (TREE_SIDE_EFFECTS (arg0) 3176 || TREE_SIDE_EFFECTS (arg1))) 3177 return 0; 3178 3179 switch (TREE_CODE (arg0)) 3180 { 3181 case INDIRECT_REF: 3182 if (!(flags & OEP_ADDRESS_OF) 3183 && (TYPE_ALIGN (TREE_TYPE (arg0)) 3184 != TYPE_ALIGN (TREE_TYPE (arg1)))) 3185 return 0; 3186 flags &= ~OEP_ADDRESS_OF; 3187 return OP_SAME (0); 3188 3189 case IMAGPART_EXPR: 3190 /* Require the same offset. */ 3191 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3192 TYPE_SIZE (TREE_TYPE (arg1)), 3193 flags & ~OEP_ADDRESS_OF)) 3194 return 0; 3195 3196 /* Fallthru. */ 3197 case REALPART_EXPR: 3198 case VIEW_CONVERT_EXPR: 3199 return OP_SAME (0); 3200 3201 case TARGET_MEM_REF: 3202 case MEM_REF: 3203 if (!(flags & OEP_ADDRESS_OF)) 3204 { 3205 /* Require equal access sizes */ 3206 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1)) 3207 && (!TYPE_SIZE (TREE_TYPE (arg0)) 3208 || !TYPE_SIZE (TREE_TYPE (arg1)) 3209 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3210 TYPE_SIZE (TREE_TYPE (arg1)), 3211 flags))) 3212 return 0; 3213 /* Verify that access happens in similar types. */ 3214 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) 3215 return 0; 3216 /* Verify that accesses are TBAA compatible. */ 3217 if (!alias_ptr_types_compatible_p 3218 (TREE_TYPE (TREE_OPERAND (arg0, 1)), 3219 TREE_TYPE (TREE_OPERAND (arg1, 1))) 3220 || (MR_DEPENDENCE_CLIQUE (arg0) 3221 != MR_DEPENDENCE_CLIQUE (arg1)) 3222 || (MR_DEPENDENCE_BASE (arg0) 3223 != MR_DEPENDENCE_BASE (arg1))) 3224 return 0; 3225 /* Verify that alignment is compatible. */ 3226 if (TYPE_ALIGN (TREE_TYPE (arg0)) 3227 != TYPE_ALIGN (TREE_TYPE (arg1))) 3228 return 0; 3229 } 3230 flags &= ~OEP_ADDRESS_OF; 3231 return (OP_SAME (0) && OP_SAME (1) 3232 /* TARGET_MEM_REF require equal extra operands. */ 3233 && (TREE_CODE (arg0) != TARGET_MEM_REF 3234 || (OP_SAME_WITH_NULL (2) 3235 && OP_SAME_WITH_NULL (3) 3236 && OP_SAME_WITH_NULL (4)))); 3237 3238 case ARRAY_REF: 3239 case ARRAY_RANGE_REF: 3240 if (!OP_SAME (0)) 3241 return 0; 3242 flags &= ~OEP_ADDRESS_OF; 3243 /* Compare the array index by value if it is constant first as we 3244 may have different types but same value here. */ 3245 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1), 3246 TREE_OPERAND (arg1, 1)) 3247 || OP_SAME (1)) 3248 && OP_SAME_WITH_NULL (2) 3249 && OP_SAME_WITH_NULL (3) 3250 /* Compare low bound and element size as with OEP_ADDRESS_OF 3251 we have to account for the offset of the ref. */ 3252 && (TREE_TYPE (TREE_OPERAND (arg0, 0)) 3253 == TREE_TYPE (TREE_OPERAND (arg1, 0)) 3254 || (operand_equal_p (array_ref_low_bound 3255 (CONST_CAST_TREE (arg0)), 3256 array_ref_low_bound 3257 (CONST_CAST_TREE (arg1)), flags) 3258 && operand_equal_p (array_ref_element_size 3259 (CONST_CAST_TREE (arg0)), 3260 array_ref_element_size 3261 (CONST_CAST_TREE (arg1)), 3262 flags)))); 3263 3264 case COMPONENT_REF: 3265 /* Handle operand 2 the same as for ARRAY_REF. Operand 0 3266 may be NULL when we're called to compare MEM_EXPRs. */ 3267 if (!OP_SAME_WITH_NULL (0) 3268 || !OP_SAME (1)) 3269 return 0; 3270 flags &= ~OEP_ADDRESS_OF; 3271 return OP_SAME_WITH_NULL (2); 3272 3273 case BIT_FIELD_REF: 3274 if (!OP_SAME (0)) 3275 return 0; 3276 flags &= ~OEP_ADDRESS_OF; 3277 return OP_SAME (1) && OP_SAME (2); 3278 3279 default: 3280 return 0; 3281 } 3282 3283 case tcc_expression: 3284 switch (TREE_CODE (arg0)) 3285 { 3286 case ADDR_EXPR: 3287 /* Be sure we pass right ADDRESS_OF flag. */ 3288 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3289 return operand_equal_p (TREE_OPERAND (arg0, 0), 3290 TREE_OPERAND (arg1, 0), 3291 flags | OEP_ADDRESS_OF); 3292 3293 case TRUTH_NOT_EXPR: 3294 return OP_SAME (0); 3295 3296 case TRUTH_ANDIF_EXPR: 3297 case TRUTH_ORIF_EXPR: 3298 return OP_SAME (0) && OP_SAME (1); 3299 3300 case FMA_EXPR: 3301 case WIDEN_MULT_PLUS_EXPR: 3302 case WIDEN_MULT_MINUS_EXPR: 3303 if (!OP_SAME (2)) 3304 return 0; 3305 /* The multiplcation operands are commutative. */ 3306 /* FALLTHRU */ 3307 3308 case TRUTH_AND_EXPR: 3309 case TRUTH_OR_EXPR: 3310 case TRUTH_XOR_EXPR: 3311 if (OP_SAME (0) && OP_SAME (1)) 3312 return 1; 3313 3314 /* Otherwise take into account this is a commutative operation. */ 3315 return (operand_equal_p (TREE_OPERAND (arg0, 0), 3316 TREE_OPERAND (arg1, 1), flags) 3317 && operand_equal_p (TREE_OPERAND (arg0, 1), 3318 TREE_OPERAND (arg1, 0), flags)); 3319 3320 case COND_EXPR: 3321 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2)) 3322 return 0; 3323 flags &= ~OEP_ADDRESS_OF; 3324 return OP_SAME (0); 3325 3326 case BIT_INSERT_EXPR: 3327 /* BIT_INSERT_EXPR has an implict operand as the type precision 3328 of op1. Need to check to make sure they are the same. */ 3329 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 3330 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 3331 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1))) 3332 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1)))) 3333 return false; 3334 /* FALLTHRU */ 3335 3336 case VEC_COND_EXPR: 3337 case DOT_PROD_EXPR: 3338 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2); 3339 3340 case MODIFY_EXPR: 3341 case INIT_EXPR: 3342 case COMPOUND_EXPR: 3343 case PREDECREMENT_EXPR: 3344 case PREINCREMENT_EXPR: 3345 case POSTDECREMENT_EXPR: 3346 case POSTINCREMENT_EXPR: 3347 if (flags & OEP_LEXICOGRAPHIC) 3348 return OP_SAME (0) && OP_SAME (1); 3349 return 0; 3350 3351 case CLEANUP_POINT_EXPR: 3352 case EXPR_STMT: 3353 if (flags & OEP_LEXICOGRAPHIC) 3354 return OP_SAME (0); 3355 return 0; 3356 3357 default: 3358 return 0; 3359 } 3360 3361 case tcc_vl_exp: 3362 switch (TREE_CODE (arg0)) 3363 { 3364 case CALL_EXPR: 3365 if ((CALL_EXPR_FN (arg0) == NULL_TREE) 3366 != (CALL_EXPR_FN (arg1) == NULL_TREE)) 3367 /* If not both CALL_EXPRs are either internal or normal function 3368 functions, then they are not equal. */ 3369 return 0; 3370 else if (CALL_EXPR_FN (arg0) == NULL_TREE) 3371 { 3372 /* If the CALL_EXPRs call different internal functions, then they 3373 are not equal. */ 3374 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1)) 3375 return 0; 3376 } 3377 else 3378 { 3379 /* If the CALL_EXPRs call different functions, then they are not 3380 equal. */ 3381 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1), 3382 flags)) 3383 return 0; 3384 } 3385 3386 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */ 3387 { 3388 unsigned int cef = call_expr_flags (arg0); 3389 if (flags & OEP_PURE_SAME) 3390 cef &= ECF_CONST | ECF_PURE; 3391 else 3392 cef &= ECF_CONST; 3393 if (!cef && !(flags & OEP_LEXICOGRAPHIC)) 3394 return 0; 3395 } 3396 3397 /* Now see if all the arguments are the same. */ 3398 { 3399 const_call_expr_arg_iterator iter0, iter1; 3400 const_tree a0, a1; 3401 for (a0 = first_const_call_expr_arg (arg0, &iter0), 3402 a1 = first_const_call_expr_arg (arg1, &iter1); 3403 a0 && a1; 3404 a0 = next_const_call_expr_arg (&iter0), 3405 a1 = next_const_call_expr_arg (&iter1)) 3406 if (! operand_equal_p (a0, a1, flags)) 3407 return 0; 3408 3409 /* If we get here and both argument lists are exhausted 3410 then the CALL_EXPRs are equal. */ 3411 return ! (a0 || a1); 3412 } 3413 default: 3414 return 0; 3415 } 3416 3417 case tcc_declaration: 3418 /* Consider __builtin_sqrt equal to sqrt. */ 3419 return (TREE_CODE (arg0) == FUNCTION_DECL 3420 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1) 3421 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1) 3422 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1)); 3423 3424 case tcc_exceptional: 3425 if (TREE_CODE (arg0) == CONSTRUCTOR) 3426 { 3427 /* In GIMPLE constructors are used only to build vectors from 3428 elements. Individual elements in the constructor must be 3429 indexed in increasing order and form an initial sequence. 3430 3431 We make no effort to compare constructors in generic. 3432 (see sem_variable::equals in ipa-icf which can do so for 3433 constants). */ 3434 if (!VECTOR_TYPE_P (TREE_TYPE (arg0)) 3435 || !VECTOR_TYPE_P (TREE_TYPE (arg1))) 3436 return 0; 3437 3438 /* Be sure that vectors constructed have the same representation. 3439 We only tested element precision and modes to match. 3440 Vectors may be BLKmode and thus also check that the number of 3441 parts match. */ 3442 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), 3443 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))) 3444 return 0; 3445 3446 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0); 3447 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1); 3448 unsigned int len = vec_safe_length (v0); 3449 3450 if (len != vec_safe_length (v1)) 3451 return 0; 3452 3453 for (unsigned int i = 0; i < len; i++) 3454 { 3455 constructor_elt *c0 = &(*v0)[i]; 3456 constructor_elt *c1 = &(*v1)[i]; 3457 3458 if (!operand_equal_p (c0->value, c1->value, flags) 3459 /* In GIMPLE the indexes can be either NULL or matching i. 3460 Double check this so we won't get false 3461 positives for GENERIC. */ 3462 || (c0->index 3463 && (TREE_CODE (c0->index) != INTEGER_CST 3464 || !compare_tree_int (c0->index, i))) 3465 || (c1->index 3466 && (TREE_CODE (c1->index) != INTEGER_CST 3467 || !compare_tree_int (c1->index, i)))) 3468 return 0; 3469 } 3470 return 1; 3471 } 3472 else if (TREE_CODE (arg0) == STATEMENT_LIST 3473 && (flags & OEP_LEXICOGRAPHIC)) 3474 { 3475 /* Compare the STATEMENT_LISTs. */ 3476 tree_stmt_iterator tsi1, tsi2; 3477 tree body1 = CONST_CAST_TREE (arg0); 3478 tree body2 = CONST_CAST_TREE (arg1); 3479 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ; 3480 tsi_next (&tsi1), tsi_next (&tsi2)) 3481 { 3482 /* The lists don't have the same number of statements. */ 3483 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2)) 3484 return 0; 3485 if (tsi_end_p (tsi1) && tsi_end_p (tsi2)) 3486 return 1; 3487 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2), 3488 flags & (OEP_LEXICOGRAPHIC 3489 | OEP_NO_HASH_CHECK))) 3490 return 0; 3491 } 3492 } 3493 return 0; 3494 3495 case tcc_statement: 3496 switch (TREE_CODE (arg0)) 3497 { 3498 case RETURN_EXPR: 3499 if (flags & OEP_LEXICOGRAPHIC) 3500 return OP_SAME_WITH_NULL (0); 3501 return 0; 3502 case DEBUG_BEGIN_STMT: 3503 if (flags & OEP_LEXICOGRAPHIC) 3504 return 1; 3505 return 0; 3506 default: 3507 return 0; 3508 } 3509 3510 default: 3511 return 0; 3512 } 3513 3514 #undef OP_SAME 3515 #undef OP_SAME_WITH_NULL 3516 } 3517 3518 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1 3519 with a different signedness or a narrower precision. */ 3520 3521 static bool 3522 operand_equal_for_comparison_p (tree arg0, tree arg1) 3523 { 3524 if (operand_equal_p (arg0, arg1, 0)) 3525 return true; 3526 3527 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 3528 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1))) 3529 return false; 3530 3531 /* Discard any conversions that don't change the modes of ARG0 and ARG1 3532 and see if the inner values are the same. This removes any 3533 signedness comparison, which doesn't matter here. */ 3534 tree op0 = arg0; 3535 tree op1 = arg1; 3536 STRIP_NOPS (op0); 3537 STRIP_NOPS (op1); 3538 if (operand_equal_p (op0, op1, 0)) 3539 return true; 3540 3541 /* Discard a single widening conversion from ARG1 and see if the inner 3542 value is the same as ARG0. */ 3543 if (CONVERT_EXPR_P (arg1) 3544 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3545 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3546 < TYPE_PRECISION (TREE_TYPE (arg1)) 3547 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 3548 return true; 3549 3550 return false; 3551 } 3552 3553 /* See if ARG is an expression that is either a comparison or is performing 3554 arithmetic on comparisons. The comparisons must only be comparing 3555 two different values, which will be stored in *CVAL1 and *CVAL2; if 3556 they are nonzero it means that some operands have already been found. 3557 No variables may be used anywhere else in the expression except in the 3558 comparisons. 3559 3560 If this is true, return 1. Otherwise, return zero. */ 3561 3562 static int 3563 twoval_comparison_p (tree arg, tree *cval1, tree *cval2) 3564 { 3565 enum tree_code code = TREE_CODE (arg); 3566 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3567 3568 /* We can handle some of the tcc_expression cases here. */ 3569 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3570 tclass = tcc_unary; 3571 else if (tclass == tcc_expression 3572 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR 3573 || code == COMPOUND_EXPR)) 3574 tclass = tcc_binary; 3575 3576 switch (tclass) 3577 { 3578 case tcc_unary: 3579 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2); 3580 3581 case tcc_binary: 3582 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3583 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)); 3584 3585 case tcc_constant: 3586 return 1; 3587 3588 case tcc_expression: 3589 if (code == COND_EXPR) 3590 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3591 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2) 3592 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2)); 3593 return 0; 3594 3595 case tcc_comparison: 3596 /* First see if we can handle the first operand, then the second. For 3597 the second operand, we know *CVAL1 can't be zero. It must be that 3598 one side of the comparison is each of the values; test for the 3599 case where this isn't true by failing if the two operands 3600 are the same. */ 3601 3602 if (operand_equal_p (TREE_OPERAND (arg, 0), 3603 TREE_OPERAND (arg, 1), 0)) 3604 return 0; 3605 3606 if (*cval1 == 0) 3607 *cval1 = TREE_OPERAND (arg, 0); 3608 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0)) 3609 ; 3610 else if (*cval2 == 0) 3611 *cval2 = TREE_OPERAND (arg, 0); 3612 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0)) 3613 ; 3614 else 3615 return 0; 3616 3617 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0)) 3618 ; 3619 else if (*cval2 == 0) 3620 *cval2 = TREE_OPERAND (arg, 1); 3621 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0)) 3622 ; 3623 else 3624 return 0; 3625 3626 return 1; 3627 3628 default: 3629 return 0; 3630 } 3631 } 3632 3633 /* ARG is a tree that is known to contain just arithmetic operations and 3634 comparisons. Evaluate the operations in the tree substituting NEW0 for 3635 any occurrence of OLD0 as an operand of a comparison and likewise for 3636 NEW1 and OLD1. */ 3637 3638 static tree 3639 eval_subst (location_t loc, tree arg, tree old0, tree new0, 3640 tree old1, tree new1) 3641 { 3642 tree type = TREE_TYPE (arg); 3643 enum tree_code code = TREE_CODE (arg); 3644 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3645 3646 /* We can handle some of the tcc_expression cases here. */ 3647 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3648 tclass = tcc_unary; 3649 else if (tclass == tcc_expression 3650 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 3651 tclass = tcc_binary; 3652 3653 switch (tclass) 3654 { 3655 case tcc_unary: 3656 return fold_build1_loc (loc, code, type, 3657 eval_subst (loc, TREE_OPERAND (arg, 0), 3658 old0, new0, old1, new1)); 3659 3660 case tcc_binary: 3661 return fold_build2_loc (loc, code, type, 3662 eval_subst (loc, TREE_OPERAND (arg, 0), 3663 old0, new0, old1, new1), 3664 eval_subst (loc, TREE_OPERAND (arg, 1), 3665 old0, new0, old1, new1)); 3666 3667 case tcc_expression: 3668 switch (code) 3669 { 3670 case SAVE_EXPR: 3671 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0, 3672 old1, new1); 3673 3674 case COMPOUND_EXPR: 3675 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0, 3676 old1, new1); 3677 3678 case COND_EXPR: 3679 return fold_build3_loc (loc, code, type, 3680 eval_subst (loc, TREE_OPERAND (arg, 0), 3681 old0, new0, old1, new1), 3682 eval_subst (loc, TREE_OPERAND (arg, 1), 3683 old0, new0, old1, new1), 3684 eval_subst (loc, TREE_OPERAND (arg, 2), 3685 old0, new0, old1, new1)); 3686 default: 3687 break; 3688 } 3689 /* Fall through - ??? */ 3690 3691 case tcc_comparison: 3692 { 3693 tree arg0 = TREE_OPERAND (arg, 0); 3694 tree arg1 = TREE_OPERAND (arg, 1); 3695 3696 /* We need to check both for exact equality and tree equality. The 3697 former will be true if the operand has a side-effect. In that 3698 case, we know the operand occurred exactly once. */ 3699 3700 if (arg0 == old0 || operand_equal_p (arg0, old0, 0)) 3701 arg0 = new0; 3702 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0)) 3703 arg0 = new1; 3704 3705 if (arg1 == old0 || operand_equal_p (arg1, old0, 0)) 3706 arg1 = new0; 3707 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0)) 3708 arg1 = new1; 3709 3710 return fold_build2_loc (loc, code, type, arg0, arg1); 3711 } 3712 3713 default: 3714 return arg; 3715 } 3716 } 3717 3718 /* Return a tree for the case when the result of an expression is RESULT 3719 converted to TYPE and OMITTED was previously an operand of the expression 3720 but is now not needed (e.g., we folded OMITTED * 0). 3721 3722 If OMITTED has side effects, we must evaluate it. Otherwise, just do 3723 the conversion of RESULT to TYPE. */ 3724 3725 tree 3726 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted) 3727 { 3728 tree t = fold_convert_loc (loc, type, result); 3729 3730 /* If the resulting operand is an empty statement, just return the omitted 3731 statement casted to void. */ 3732 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted)) 3733 return build1_loc (loc, NOP_EXPR, void_type_node, 3734 fold_ignored_result (omitted)); 3735 3736 if (TREE_SIDE_EFFECTS (omitted)) 3737 return build2_loc (loc, COMPOUND_EXPR, type, 3738 fold_ignored_result (omitted), t); 3739 3740 return non_lvalue_loc (loc, t); 3741 } 3742 3743 /* Return a tree for the case when the result of an expression is RESULT 3744 converted to TYPE and OMITTED1 and OMITTED2 were previously operands 3745 of the expression but are now not needed. 3746 3747 If OMITTED1 or OMITTED2 has side effects, they must be evaluated. 3748 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is 3749 evaluated before OMITTED2. Otherwise, if neither has side effects, 3750 just do the conversion of RESULT to TYPE. */ 3751 3752 tree 3753 omit_two_operands_loc (location_t loc, tree type, tree result, 3754 tree omitted1, tree omitted2) 3755 { 3756 tree t = fold_convert_loc (loc, type, result); 3757 3758 if (TREE_SIDE_EFFECTS (omitted2)) 3759 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t); 3760 if (TREE_SIDE_EFFECTS (omitted1)) 3761 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t); 3762 3763 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t; 3764 } 3765 3766 3767 /* Return a simplified tree node for the truth-negation of ARG. This 3768 never alters ARG itself. We assume that ARG is an operation that 3769 returns a truth value (0 or 1). 3770 3771 FIXME: one would think we would fold the result, but it causes 3772 problems with the dominator optimizer. */ 3773 3774 static tree 3775 fold_truth_not_expr (location_t loc, tree arg) 3776 { 3777 tree type = TREE_TYPE (arg); 3778 enum tree_code code = TREE_CODE (arg); 3779 location_t loc1, loc2; 3780 3781 /* If this is a comparison, we can simply invert it, except for 3782 floating-point non-equality comparisons, in which case we just 3783 enclose a TRUTH_NOT_EXPR around what we have. */ 3784 3785 if (TREE_CODE_CLASS (code) == tcc_comparison) 3786 { 3787 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0)); 3788 if (FLOAT_TYPE_P (op_type) 3789 && flag_trapping_math 3790 && code != ORDERED_EXPR && code != UNORDERED_EXPR 3791 && code != NE_EXPR && code != EQ_EXPR) 3792 return NULL_TREE; 3793 3794 code = invert_tree_comparison (code, HONOR_NANS (op_type)); 3795 if (code == ERROR_MARK) 3796 return NULL_TREE; 3797 3798 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0), 3799 TREE_OPERAND (arg, 1)); 3800 if (TREE_NO_WARNING (arg)) 3801 TREE_NO_WARNING (ret) = 1; 3802 return ret; 3803 } 3804 3805 switch (code) 3806 { 3807 case INTEGER_CST: 3808 return constant_boolean_node (integer_zerop (arg), type); 3809 3810 case TRUTH_AND_EXPR: 3811 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3812 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3813 return build2_loc (loc, TRUTH_OR_EXPR, type, 3814 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3815 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3816 3817 case TRUTH_OR_EXPR: 3818 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3819 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3820 return build2_loc (loc, TRUTH_AND_EXPR, type, 3821 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3822 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3823 3824 case TRUTH_XOR_EXPR: 3825 /* Here we can invert either operand. We invert the first operand 3826 unless the second operand is a TRUTH_NOT_EXPR in which case our 3827 result is the XOR of the first operand with the inside of the 3828 negation of the second operand. */ 3829 3830 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR) 3831 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0), 3832 TREE_OPERAND (TREE_OPERAND (arg, 1), 0)); 3833 else 3834 return build2_loc (loc, TRUTH_XOR_EXPR, type, 3835 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)), 3836 TREE_OPERAND (arg, 1)); 3837 3838 case TRUTH_ANDIF_EXPR: 3839 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3840 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3841 return build2_loc (loc, TRUTH_ORIF_EXPR, type, 3842 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3843 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3844 3845 case TRUTH_ORIF_EXPR: 3846 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3847 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3848 return build2_loc (loc, TRUTH_ANDIF_EXPR, type, 3849 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3850 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3851 3852 case TRUTH_NOT_EXPR: 3853 return TREE_OPERAND (arg, 0); 3854 3855 case COND_EXPR: 3856 { 3857 tree arg1 = TREE_OPERAND (arg, 1); 3858 tree arg2 = TREE_OPERAND (arg, 2); 3859 3860 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3861 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc); 3862 3863 /* A COND_EXPR may have a throw as one operand, which 3864 then has void type. Just leave void operands 3865 as they are. */ 3866 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0), 3867 VOID_TYPE_P (TREE_TYPE (arg1)) 3868 ? arg1 : invert_truthvalue_loc (loc1, arg1), 3869 VOID_TYPE_P (TREE_TYPE (arg2)) 3870 ? arg2 : invert_truthvalue_loc (loc2, arg2)); 3871 } 3872 3873 case COMPOUND_EXPR: 3874 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3875 return build2_loc (loc, COMPOUND_EXPR, type, 3876 TREE_OPERAND (arg, 0), 3877 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1))); 3878 3879 case NON_LVALUE_EXPR: 3880 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3881 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)); 3882 3883 CASE_CONVERT: 3884 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE) 3885 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3886 3887 /* fall through */ 3888 3889 case FLOAT_EXPR: 3890 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3891 return build1_loc (loc, TREE_CODE (arg), type, 3892 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3893 3894 case BIT_AND_EXPR: 3895 if (!integer_onep (TREE_OPERAND (arg, 1))) 3896 return NULL_TREE; 3897 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0)); 3898 3899 case SAVE_EXPR: 3900 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3901 3902 case CLEANUP_POINT_EXPR: 3903 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3904 return build1_loc (loc, CLEANUP_POINT_EXPR, type, 3905 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3906 3907 default: 3908 return NULL_TREE; 3909 } 3910 } 3911 3912 /* Fold the truth-negation of ARG. This never alters ARG itself. We 3913 assume that ARG is an operation that returns a truth value (0 or 1 3914 for scalars, 0 or -1 for vectors). Return the folded expression if 3915 folding is successful. Otherwise, return NULL_TREE. */ 3916 3917 static tree 3918 fold_invert_truthvalue (location_t loc, tree arg) 3919 { 3920 tree type = TREE_TYPE (arg); 3921 return fold_unary_loc (loc, VECTOR_TYPE_P (type) 3922 ? BIT_NOT_EXPR 3923 : TRUTH_NOT_EXPR, 3924 type, arg); 3925 } 3926 3927 /* Return a simplified tree node for the truth-negation of ARG. This 3928 never alters ARG itself. We assume that ARG is an operation that 3929 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */ 3930 3931 tree 3932 invert_truthvalue_loc (location_t loc, tree arg) 3933 { 3934 if (TREE_CODE (arg) == ERROR_MARK) 3935 return arg; 3936 3937 tree type = TREE_TYPE (arg); 3938 return fold_build1_loc (loc, VECTOR_TYPE_P (type) 3939 ? BIT_NOT_EXPR 3940 : TRUTH_NOT_EXPR, 3941 type, arg); 3942 } 3943 3944 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER 3945 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero 3946 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER 3947 is the original memory reference used to preserve the alias set of 3948 the access. */ 3949 3950 static tree 3951 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type, 3952 HOST_WIDE_INT bitsize, poly_int64 bitpos, 3953 int unsignedp, int reversep) 3954 { 3955 tree result, bftype; 3956 3957 /* Attempt not to lose the access path if possible. */ 3958 if (TREE_CODE (orig_inner) == COMPONENT_REF) 3959 { 3960 tree ninner = TREE_OPERAND (orig_inner, 0); 3961 machine_mode nmode; 3962 poly_int64 nbitsize, nbitpos; 3963 tree noffset; 3964 int nunsignedp, nreversep, nvolatilep = 0; 3965 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos, 3966 &noffset, &nmode, &nunsignedp, 3967 &nreversep, &nvolatilep); 3968 if (base == inner 3969 && noffset == NULL_TREE 3970 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize) 3971 && !reversep 3972 && !nreversep 3973 && !nvolatilep) 3974 { 3975 inner = ninner; 3976 bitpos -= nbitpos; 3977 } 3978 } 3979 3980 alias_set_type iset = get_alias_set (orig_inner); 3981 if (iset == 0 && get_alias_set (inner) != iset) 3982 inner = fold_build2 (MEM_REF, TREE_TYPE (inner), 3983 build_fold_addr_expr (inner), 3984 build_int_cst (ptr_type_node, 0)); 3985 3986 if (known_eq (bitpos, 0) && !reversep) 3987 { 3988 tree size = TYPE_SIZE (TREE_TYPE (inner)); 3989 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner)) 3990 || POINTER_TYPE_P (TREE_TYPE (inner))) 3991 && tree_fits_shwi_p (size) 3992 && tree_to_shwi (size) == bitsize) 3993 return fold_convert_loc (loc, type, inner); 3994 } 3995 3996 bftype = type; 3997 if (TYPE_PRECISION (bftype) != bitsize 3998 || TYPE_UNSIGNED (bftype) == !unsignedp) 3999 bftype = build_nonstandard_integer_type (bitsize, 0); 4000 4001 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner, 4002 bitsize_int (bitsize), bitsize_int (bitpos)); 4003 REF_REVERSE_STORAGE_ORDER (result) = reversep; 4004 4005 if (bftype != type) 4006 result = fold_convert_loc (loc, type, result); 4007 4008 return result; 4009 } 4010 4011 /* Optimize a bit-field compare. 4012 4013 There are two cases: First is a compare against a constant and the 4014 second is a comparison of two items where the fields are at the same 4015 bit position relative to the start of a chunk (byte, halfword, word) 4016 large enough to contain it. In these cases we can avoid the shift 4017 implicit in bitfield extractions. 4018 4019 For constants, we emit a compare of the shifted constant with the 4020 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being 4021 compared. For two fields at the same position, we do the ANDs with the 4022 similar mask and compare the result of the ANDs. 4023 4024 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR. 4025 COMPARE_TYPE is the type of the comparison, and LHS and RHS 4026 are the left and right operands of the comparison, respectively. 4027 4028 If the optimization described above can be done, we return the resulting 4029 tree. Otherwise we return zero. */ 4030 4031 static tree 4032 optimize_bit_field_compare (location_t loc, enum tree_code code, 4033 tree compare_type, tree lhs, tree rhs) 4034 { 4035 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize; 4036 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize; 4037 tree type = TREE_TYPE (lhs); 4038 tree unsigned_type; 4039 int const_p = TREE_CODE (rhs) == INTEGER_CST; 4040 machine_mode lmode, rmode; 4041 scalar_int_mode nmode; 4042 int lunsignedp, runsignedp; 4043 int lreversep, rreversep; 4044 int lvolatilep = 0, rvolatilep = 0; 4045 tree linner, rinner = NULL_TREE; 4046 tree mask; 4047 tree offset; 4048 4049 /* Get all the information about the extractions being done. If the bit size 4050 is the same as the size of the underlying object, we aren't doing an 4051 extraction at all and so can do nothing. We also don't want to 4052 do anything if the inner expression is a PLACEHOLDER_EXPR since we 4053 then will no longer be able to replace it. */ 4054 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode, 4055 &lunsignedp, &lreversep, &lvolatilep); 4056 if (linner == lhs 4057 || !known_size_p (plbitsize) 4058 || !plbitsize.is_constant (&lbitsize) 4059 || !plbitpos.is_constant (&lbitpos) 4060 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode)) 4061 || offset != 0 4062 || TREE_CODE (linner) == PLACEHOLDER_EXPR 4063 || lvolatilep) 4064 return 0; 4065 4066 if (const_p) 4067 rreversep = lreversep; 4068 else 4069 { 4070 /* If this is not a constant, we can only do something if bit positions, 4071 sizes, signedness and storage order are the same. */ 4072 rinner 4073 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode, 4074 &runsignedp, &rreversep, &rvolatilep); 4075 4076 if (rinner == rhs 4077 || maybe_ne (lbitpos, rbitpos) 4078 || maybe_ne (lbitsize, rbitsize) 4079 || lunsignedp != runsignedp 4080 || lreversep != rreversep 4081 || offset != 0 4082 || TREE_CODE (rinner) == PLACEHOLDER_EXPR 4083 || rvolatilep) 4084 return 0; 4085 } 4086 4087 /* Honor the C++ memory model and mimic what RTL expansion does. */ 4088 poly_uint64 bitstart = 0; 4089 poly_uint64 bitend = 0; 4090 if (TREE_CODE (lhs) == COMPONENT_REF) 4091 { 4092 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset); 4093 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE) 4094 return 0; 4095 } 4096 4097 /* See if we can find a mode to refer to this field. We should be able to, 4098 but fail if we can't. */ 4099 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend, 4100 const_p ? TYPE_ALIGN (TREE_TYPE (linner)) 4101 : MIN (TYPE_ALIGN (TREE_TYPE (linner)), 4102 TYPE_ALIGN (TREE_TYPE (rinner))), 4103 BITS_PER_WORD, false, &nmode)) 4104 return 0; 4105 4106 /* Set signed and unsigned types of the precision of this mode for the 4107 shifts below. */ 4108 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1); 4109 4110 /* Compute the bit position and size for the new reference and our offset 4111 within it. If the new reference is the same size as the original, we 4112 won't optimize anything, so return zero. */ 4113 nbitsize = GET_MODE_BITSIZE (nmode); 4114 nbitpos = lbitpos & ~ (nbitsize - 1); 4115 lbitpos -= nbitpos; 4116 if (nbitsize == lbitsize) 4117 return 0; 4118 4119 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 4120 lbitpos = nbitsize - lbitsize - lbitpos; 4121 4122 /* Make the mask to be used against the extracted field. */ 4123 mask = build_int_cst_type (unsigned_type, -1); 4124 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize)); 4125 mask = const_binop (RSHIFT_EXPR, mask, 4126 size_int (nbitsize - lbitsize - lbitpos)); 4127 4128 if (! const_p) 4129 { 4130 if (nbitpos < 0) 4131 return 0; 4132 4133 /* If not comparing with constant, just rework the comparison 4134 and return. */ 4135 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4136 nbitsize, nbitpos, 1, lreversep); 4137 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask); 4138 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type, 4139 nbitsize, nbitpos, 1, rreversep); 4140 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask); 4141 return fold_build2_loc (loc, code, compare_type, t1, t2); 4142 } 4143 4144 /* Otherwise, we are handling the constant case. See if the constant is too 4145 big for the field. Warn and return a tree for 0 (false) if so. We do 4146 this not only for its own sake, but to avoid having to test for this 4147 error case below. If we didn't, we might generate wrong code. 4148 4149 For unsigned fields, the constant shifted right by the field length should 4150 be all zero. For signed fields, the high-order bits should agree with 4151 the sign bit. */ 4152 4153 if (lunsignedp) 4154 { 4155 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0) 4156 { 4157 warning (0, "comparison is always %d due to width of bit-field", 4158 code == NE_EXPR); 4159 return constant_boolean_node (code == NE_EXPR, compare_type); 4160 } 4161 } 4162 else 4163 { 4164 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1); 4165 if (tem != 0 && tem != -1) 4166 { 4167 warning (0, "comparison is always %d due to width of bit-field", 4168 code == NE_EXPR); 4169 return constant_boolean_node (code == NE_EXPR, compare_type); 4170 } 4171 } 4172 4173 if (nbitpos < 0) 4174 return 0; 4175 4176 /* Single-bit compares should always be against zero. */ 4177 if (lbitsize == 1 && ! integer_zerop (rhs)) 4178 { 4179 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR; 4180 rhs = build_int_cst (type, 0); 4181 } 4182 4183 /* Make a new bitfield reference, shift the constant over the 4184 appropriate number of bits and mask it with the computed mask 4185 (in case this was a signed field). If we changed it, make a new one. */ 4186 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4187 nbitsize, nbitpos, 1, lreversep); 4188 4189 rhs = const_binop (BIT_AND_EXPR, 4190 const_binop (LSHIFT_EXPR, 4191 fold_convert_loc (loc, unsigned_type, rhs), 4192 size_int (lbitpos)), 4193 mask); 4194 4195 lhs = build2_loc (loc, code, compare_type, 4196 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs); 4197 return lhs; 4198 } 4199 4200 /* Subroutine for fold_truth_andor_1: decode a field reference. 4201 4202 If EXP is a comparison reference, we return the innermost reference. 4203 4204 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is 4205 set to the starting bit number. 4206 4207 If the innermost field can be completely contained in a mode-sized 4208 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode. 4209 4210 *PVOLATILEP is set to 1 if the any expression encountered is volatile; 4211 otherwise it is not changed. 4212 4213 *PUNSIGNEDP is set to the signedness of the field. 4214 4215 *PREVERSEP is set to the storage order of the field. 4216 4217 *PMASK is set to the mask used. This is either contained in a 4218 BIT_AND_EXPR or derived from the width of the field. 4219 4220 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any. 4221 4222 Return 0 if this is not a component reference or is one that we can't 4223 do anything with. */ 4224 4225 static tree 4226 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize, 4227 HOST_WIDE_INT *pbitpos, machine_mode *pmode, 4228 int *punsignedp, int *preversep, int *pvolatilep, 4229 tree *pmask, tree *pand_mask) 4230 { 4231 tree exp = *exp_; 4232 tree outer_type = 0; 4233 tree and_mask = 0; 4234 tree mask, inner, offset; 4235 tree unsigned_type; 4236 unsigned int precision; 4237 4238 /* All the optimizations using this function assume integer fields. 4239 There are problems with FP fields since the type_for_size call 4240 below can fail for, e.g., XFmode. */ 4241 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp))) 4242 return 0; 4243 4244 /* We are interested in the bare arrangement of bits, so strip everything 4245 that doesn't affect the machine mode. However, record the type of the 4246 outermost expression if it may matter below. */ 4247 if (CONVERT_EXPR_P (exp) 4248 || TREE_CODE (exp) == NON_LVALUE_EXPR) 4249 outer_type = TREE_TYPE (exp); 4250 STRIP_NOPS (exp); 4251 4252 if (TREE_CODE (exp) == BIT_AND_EXPR) 4253 { 4254 and_mask = TREE_OPERAND (exp, 1); 4255 exp = TREE_OPERAND (exp, 0); 4256 STRIP_NOPS (exp); STRIP_NOPS (and_mask); 4257 if (TREE_CODE (and_mask) != INTEGER_CST) 4258 return 0; 4259 } 4260 4261 poly_int64 poly_bitsize, poly_bitpos; 4262 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset, 4263 pmode, punsignedp, preversep, pvolatilep); 4264 if ((inner == exp && and_mask == 0) 4265 || !poly_bitsize.is_constant (pbitsize) 4266 || !poly_bitpos.is_constant (pbitpos) 4267 || *pbitsize < 0 4268 || offset != 0 4269 || TREE_CODE (inner) == PLACEHOLDER_EXPR 4270 /* Reject out-of-bound accesses (PR79731). */ 4271 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner)) 4272 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)), 4273 *pbitpos + *pbitsize) < 0)) 4274 return 0; 4275 4276 *exp_ = exp; 4277 4278 /* If the number of bits in the reference is the same as the bitsize of 4279 the outer type, then the outer type gives the signedness. Otherwise 4280 (in case of a small bitfield) the signedness is unchanged. */ 4281 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type)) 4282 *punsignedp = TYPE_UNSIGNED (outer_type); 4283 4284 /* Compute the mask to access the bitfield. */ 4285 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1); 4286 precision = TYPE_PRECISION (unsigned_type); 4287 4288 mask = build_int_cst_type (unsigned_type, -1); 4289 4290 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4291 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4292 4293 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */ 4294 if (and_mask != 0) 4295 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, 4296 fold_convert_loc (loc, unsigned_type, and_mask), mask); 4297 4298 *pmask = mask; 4299 *pand_mask = and_mask; 4300 return inner; 4301 } 4302 4303 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order 4304 bit positions and MASK is SIGNED. */ 4305 4306 static int 4307 all_ones_mask_p (const_tree mask, unsigned int size) 4308 { 4309 tree type = TREE_TYPE (mask); 4310 unsigned int precision = TYPE_PRECISION (type); 4311 4312 /* If this function returns true when the type of the mask is 4313 UNSIGNED, then there will be errors. In particular see 4314 gcc.c-torture/execute/990326-1.c. There does not appear to be 4315 any documentation paper trail as to why this is so. But the pre 4316 wide-int worked with that restriction and it has been preserved 4317 here. */ 4318 if (size > precision || TYPE_SIGN (type) == UNSIGNED) 4319 return false; 4320 4321 return wi::mask (size, false, precision) == wi::to_wide (mask); 4322 } 4323 4324 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that 4325 represents the sign bit of EXP's type. If EXP represents a sign 4326 or zero extension, also test VAL against the unextended type. 4327 The return value is the (sub)expression whose sign bit is VAL, 4328 or NULL_TREE otherwise. */ 4329 4330 tree 4331 sign_bit_p (tree exp, const_tree val) 4332 { 4333 int width; 4334 tree t; 4335 4336 /* Tree EXP must have an integral type. */ 4337 t = TREE_TYPE (exp); 4338 if (! INTEGRAL_TYPE_P (t)) 4339 return NULL_TREE; 4340 4341 /* Tree VAL must be an integer constant. */ 4342 if (TREE_CODE (val) != INTEGER_CST 4343 || TREE_OVERFLOW (val)) 4344 return NULL_TREE; 4345 4346 width = TYPE_PRECISION (t); 4347 if (wi::only_sign_bit_p (wi::to_wide (val), width)) 4348 return exp; 4349 4350 /* Handle extension from a narrower type. */ 4351 if (TREE_CODE (exp) == NOP_EXPR 4352 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width) 4353 return sign_bit_p (TREE_OPERAND (exp, 0), val); 4354 4355 return NULL_TREE; 4356 } 4357 4358 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough 4359 to be evaluated unconditionally. */ 4360 4361 static int 4362 simple_operand_p (const_tree exp) 4363 { 4364 /* Strip any conversions that don't change the machine mode. */ 4365 STRIP_NOPS (exp); 4366 4367 return (CONSTANT_CLASS_P (exp) 4368 || TREE_CODE (exp) == SSA_NAME 4369 || (DECL_P (exp) 4370 && ! TREE_ADDRESSABLE (exp) 4371 && ! TREE_THIS_VOLATILE (exp) 4372 && ! DECL_NONLOCAL (exp) 4373 /* Don't regard global variables as simple. They may be 4374 allocated in ways unknown to the compiler (shared memory, 4375 #pragma weak, etc). */ 4376 && ! TREE_PUBLIC (exp) 4377 && ! DECL_EXTERNAL (exp) 4378 /* Weakrefs are not safe to be read, since they can be NULL. 4379 They are !TREE_PUBLIC && !DECL_EXTERNAL but still 4380 have DECL_WEAK flag set. */ 4381 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp)) 4382 /* Loading a static variable is unduly expensive, but global 4383 registers aren't expensive. */ 4384 && (! TREE_STATIC (exp) || DECL_REGISTER (exp)))); 4385 } 4386 4387 /* Subroutine for fold_truth_andor: determine if an operand is simple enough 4388 to be evaluated unconditionally. 4389 I addition to simple_operand_p, we assume that comparisons, conversions, 4390 and logic-not operations are simple, if their operands are simple, too. */ 4391 4392 static bool 4393 simple_operand_p_2 (tree exp) 4394 { 4395 enum tree_code code; 4396 4397 if (TREE_SIDE_EFFECTS (exp) 4398 || tree_could_trap_p (exp)) 4399 return false; 4400 4401 while (CONVERT_EXPR_P (exp)) 4402 exp = TREE_OPERAND (exp, 0); 4403 4404 code = TREE_CODE (exp); 4405 4406 if (TREE_CODE_CLASS (code) == tcc_comparison) 4407 return (simple_operand_p (TREE_OPERAND (exp, 0)) 4408 && simple_operand_p (TREE_OPERAND (exp, 1))); 4409 4410 if (code == TRUTH_NOT_EXPR) 4411 return simple_operand_p_2 (TREE_OPERAND (exp, 0)); 4412 4413 return simple_operand_p (exp); 4414 } 4415 4416 4417 /* The following functions are subroutines to fold_range_test and allow it to 4418 try to change a logical combination of comparisons into a range test. 4419 4420 For example, both 4421 X == 2 || X == 3 || X == 4 || X == 5 4422 and 4423 X >= 2 && X <= 5 4424 are converted to 4425 (unsigned) (X - 2) <= 3 4426 4427 We describe each set of comparisons as being either inside or outside 4428 a range, using a variable named like IN_P, and then describe the 4429 range with a lower and upper bound. If one of the bounds is omitted, 4430 it represents either the highest or lowest value of the type. 4431 4432 In the comments below, we represent a range by two numbers in brackets 4433 preceded by a "+" to designate being inside that range, or a "-" to 4434 designate being outside that range, so the condition can be inverted by 4435 flipping the prefix. An omitted bound is represented by a "-". For 4436 example, "- [-, 10]" means being outside the range starting at the lowest 4437 possible value and ending at 10, in other words, being greater than 10. 4438 The range "+ [-, -]" is always true and hence the range "- [-, -]" is 4439 always false. 4440 4441 We set up things so that the missing bounds are handled in a consistent 4442 manner so neither a missing bound nor "true" and "false" need to be 4443 handled using a special case. */ 4444 4445 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case 4446 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P 4447 and UPPER1_P are nonzero if the respective argument is an upper bound 4448 and zero for a lower. TYPE, if nonzero, is the type of the result; it 4449 must be specified for a comparison. ARG1 will be converted to ARG0's 4450 type if both are specified. */ 4451 4452 static tree 4453 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p, 4454 tree arg1, int upper1_p) 4455 { 4456 tree tem; 4457 int result; 4458 int sgn0, sgn1; 4459 4460 /* If neither arg represents infinity, do the normal operation. 4461 Else, if not a comparison, return infinity. Else handle the special 4462 comparison rules. Note that most of the cases below won't occur, but 4463 are handled for consistency. */ 4464 4465 if (arg0 != 0 && arg1 != 0) 4466 { 4467 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0), 4468 arg0, fold_convert (TREE_TYPE (arg0), arg1)); 4469 STRIP_NOPS (tem); 4470 return TREE_CODE (tem) == INTEGER_CST ? tem : 0; 4471 } 4472 4473 if (TREE_CODE_CLASS (code) != tcc_comparison) 4474 return 0; 4475 4476 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0 4477 for neither. In real maths, we cannot assume open ended ranges are 4478 the same. But, this is computer arithmetic, where numbers are finite. 4479 We can therefore make the transformation of any unbounded range with 4480 the value Z, Z being greater than any representable number. This permits 4481 us to treat unbounded ranges as equal. */ 4482 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1); 4483 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1); 4484 switch (code) 4485 { 4486 case EQ_EXPR: 4487 result = sgn0 == sgn1; 4488 break; 4489 case NE_EXPR: 4490 result = sgn0 != sgn1; 4491 break; 4492 case LT_EXPR: 4493 result = sgn0 < sgn1; 4494 break; 4495 case LE_EXPR: 4496 result = sgn0 <= sgn1; 4497 break; 4498 case GT_EXPR: 4499 result = sgn0 > sgn1; 4500 break; 4501 case GE_EXPR: 4502 result = sgn0 >= sgn1; 4503 break; 4504 default: 4505 gcc_unreachable (); 4506 } 4507 4508 return constant_boolean_node (result, type); 4509 } 4510 4511 /* Helper routine for make_range. Perform one step for it, return 4512 new expression if the loop should continue or NULL_TREE if it should 4513 stop. */ 4514 4515 tree 4516 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1, 4517 tree exp_type, tree *p_low, tree *p_high, int *p_in_p, 4518 bool *strict_overflow_p) 4519 { 4520 tree arg0_type = TREE_TYPE (arg0); 4521 tree n_low, n_high, low = *p_low, high = *p_high; 4522 int in_p = *p_in_p, n_in_p; 4523 4524 switch (code) 4525 { 4526 case TRUTH_NOT_EXPR: 4527 /* We can only do something if the range is testing for zero. */ 4528 if (low == NULL_TREE || high == NULL_TREE 4529 || ! integer_zerop (low) || ! integer_zerop (high)) 4530 return NULL_TREE; 4531 *p_in_p = ! in_p; 4532 return arg0; 4533 4534 case EQ_EXPR: case NE_EXPR: 4535 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR: 4536 /* We can only do something if the range is testing for zero 4537 and if the second operand is an integer constant. Note that 4538 saying something is "in" the range we make is done by 4539 complementing IN_P since it will set in the initial case of 4540 being not equal to zero; "out" is leaving it alone. */ 4541 if (low == NULL_TREE || high == NULL_TREE 4542 || ! integer_zerop (low) || ! integer_zerop (high) 4543 || TREE_CODE (arg1) != INTEGER_CST) 4544 return NULL_TREE; 4545 4546 switch (code) 4547 { 4548 case NE_EXPR: /* - [c, c] */ 4549 low = high = arg1; 4550 break; 4551 case EQ_EXPR: /* + [c, c] */ 4552 in_p = ! in_p, low = high = arg1; 4553 break; 4554 case GT_EXPR: /* - [-, c] */ 4555 low = 0, high = arg1; 4556 break; 4557 case GE_EXPR: /* + [c, -] */ 4558 in_p = ! in_p, low = arg1, high = 0; 4559 break; 4560 case LT_EXPR: /* - [c, -] */ 4561 low = arg1, high = 0; 4562 break; 4563 case LE_EXPR: /* + [-, c] */ 4564 in_p = ! in_p, low = 0, high = arg1; 4565 break; 4566 default: 4567 gcc_unreachable (); 4568 } 4569 4570 /* If this is an unsigned comparison, we also know that EXP is 4571 greater than or equal to zero. We base the range tests we make 4572 on that fact, so we record it here so we can parse existing 4573 range tests. We test arg0_type since often the return type 4574 of, e.g. EQ_EXPR, is boolean. */ 4575 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0)) 4576 { 4577 if (! merge_ranges (&n_in_p, &n_low, &n_high, 4578 in_p, low, high, 1, 4579 build_int_cst (arg0_type, 0), 4580 NULL_TREE)) 4581 return NULL_TREE; 4582 4583 in_p = n_in_p, low = n_low, high = n_high; 4584 4585 /* If the high bound is missing, but we have a nonzero low 4586 bound, reverse the range so it goes from zero to the low bound 4587 minus 1. */ 4588 if (high == 0 && low && ! integer_zerop (low)) 4589 { 4590 in_p = ! in_p; 4591 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0, 4592 build_int_cst (TREE_TYPE (low), 1), 0); 4593 low = build_int_cst (arg0_type, 0); 4594 } 4595 } 4596 4597 *p_low = low; 4598 *p_high = high; 4599 *p_in_p = in_p; 4600 return arg0; 4601 4602 case NEGATE_EXPR: 4603 /* If flag_wrapv and ARG0_TYPE is signed, make sure 4604 low and high are non-NULL, then normalize will DTRT. */ 4605 if (!TYPE_UNSIGNED (arg0_type) 4606 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4607 { 4608 if (low == NULL_TREE) 4609 low = TYPE_MIN_VALUE (arg0_type); 4610 if (high == NULL_TREE) 4611 high = TYPE_MAX_VALUE (arg0_type); 4612 } 4613 4614 /* (-x) IN [a,b] -> x in [-b, -a] */ 4615 n_low = range_binop (MINUS_EXPR, exp_type, 4616 build_int_cst (exp_type, 0), 4617 0, high, 1); 4618 n_high = range_binop (MINUS_EXPR, exp_type, 4619 build_int_cst (exp_type, 0), 4620 0, low, 0); 4621 if (n_high != 0 && TREE_OVERFLOW (n_high)) 4622 return NULL_TREE; 4623 goto normalize; 4624 4625 case BIT_NOT_EXPR: 4626 /* ~ X -> -X - 1 */ 4627 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0), 4628 build_int_cst (exp_type, 1)); 4629 4630 case PLUS_EXPR: 4631 case MINUS_EXPR: 4632 if (TREE_CODE (arg1) != INTEGER_CST) 4633 return NULL_TREE; 4634 4635 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot 4636 move a constant to the other side. */ 4637 if (!TYPE_UNSIGNED (arg0_type) 4638 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4639 return NULL_TREE; 4640 4641 /* If EXP is signed, any overflow in the computation is undefined, 4642 so we don't worry about it so long as our computations on 4643 the bounds don't overflow. For unsigned, overflow is defined 4644 and this is exactly the right thing. */ 4645 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4646 arg0_type, low, 0, arg1, 0); 4647 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4648 arg0_type, high, 1, arg1, 0); 4649 if ((n_low != 0 && TREE_OVERFLOW (n_low)) 4650 || (n_high != 0 && TREE_OVERFLOW (n_high))) 4651 return NULL_TREE; 4652 4653 if (TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4654 *strict_overflow_p = true; 4655 4656 normalize: 4657 /* Check for an unsigned range which has wrapped around the maximum 4658 value thus making n_high < n_low, and normalize it. */ 4659 if (n_low && n_high && tree_int_cst_lt (n_high, n_low)) 4660 { 4661 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0, 4662 build_int_cst (TREE_TYPE (n_high), 1), 0); 4663 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0, 4664 build_int_cst (TREE_TYPE (n_low), 1), 0); 4665 4666 /* If the range is of the form +/- [ x+1, x ], we won't 4667 be able to normalize it. But then, it represents the 4668 whole range or the empty set, so make it 4669 +/- [ -, - ]. */ 4670 if (tree_int_cst_equal (n_low, low) 4671 && tree_int_cst_equal (n_high, high)) 4672 low = high = 0; 4673 else 4674 in_p = ! in_p; 4675 } 4676 else 4677 low = n_low, high = n_high; 4678 4679 *p_low = low; 4680 *p_high = high; 4681 *p_in_p = in_p; 4682 return arg0; 4683 4684 CASE_CONVERT: 4685 case NON_LVALUE_EXPR: 4686 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type)) 4687 return NULL_TREE; 4688 4689 if (! INTEGRAL_TYPE_P (arg0_type) 4690 || (low != 0 && ! int_fits_type_p (low, arg0_type)) 4691 || (high != 0 && ! int_fits_type_p (high, arg0_type))) 4692 return NULL_TREE; 4693 4694 n_low = low, n_high = high; 4695 4696 if (n_low != 0) 4697 n_low = fold_convert_loc (loc, arg0_type, n_low); 4698 4699 if (n_high != 0) 4700 n_high = fold_convert_loc (loc, arg0_type, n_high); 4701 4702 /* If we're converting arg0 from an unsigned type, to exp, 4703 a signed type, we will be doing the comparison as unsigned. 4704 The tests above have already verified that LOW and HIGH 4705 are both positive. 4706 4707 So we have to ensure that we will handle large unsigned 4708 values the same way that the current signed bounds treat 4709 negative values. */ 4710 4711 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type)) 4712 { 4713 tree high_positive; 4714 tree equiv_type; 4715 /* For fixed-point modes, we need to pass the saturating flag 4716 as the 2nd parameter. */ 4717 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type))) 4718 equiv_type 4719 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 4720 TYPE_SATURATING (arg0_type)); 4721 else 4722 equiv_type 4723 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1); 4724 4725 /* A range without an upper bound is, naturally, unbounded. 4726 Since convert would have cropped a very large value, use 4727 the max value for the destination type. */ 4728 high_positive 4729 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type) 4730 : TYPE_MAX_VALUE (arg0_type); 4731 4732 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type)) 4733 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type, 4734 fold_convert_loc (loc, arg0_type, 4735 high_positive), 4736 build_int_cst (arg0_type, 1)); 4737 4738 /* If the low bound is specified, "and" the range with the 4739 range for which the original unsigned value will be 4740 positive. */ 4741 if (low != 0) 4742 { 4743 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high, 4744 1, fold_convert_loc (loc, arg0_type, 4745 integer_zero_node), 4746 high_positive)) 4747 return NULL_TREE; 4748 4749 in_p = (n_in_p == in_p); 4750 } 4751 else 4752 { 4753 /* Otherwise, "or" the range with the range of the input 4754 that will be interpreted as negative. */ 4755 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high, 4756 1, fold_convert_loc (loc, arg0_type, 4757 integer_zero_node), 4758 high_positive)) 4759 return NULL_TREE; 4760 4761 in_p = (in_p != n_in_p); 4762 } 4763 } 4764 4765 *p_low = n_low; 4766 *p_high = n_high; 4767 *p_in_p = in_p; 4768 return arg0; 4769 4770 default: 4771 return NULL_TREE; 4772 } 4773 } 4774 4775 /* Given EXP, a logical expression, set the range it is testing into 4776 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression 4777 actually being tested. *PLOW and *PHIGH will be made of the same 4778 type as the returned expression. If EXP is not a comparison, we 4779 will most likely not be returning a useful value and range. Set 4780 *STRICT_OVERFLOW_P to true if the return value is only valid 4781 because signed overflow is undefined; otherwise, do not change 4782 *STRICT_OVERFLOW_P. */ 4783 4784 tree 4785 make_range (tree exp, int *pin_p, tree *plow, tree *phigh, 4786 bool *strict_overflow_p) 4787 { 4788 enum tree_code code; 4789 tree arg0, arg1 = NULL_TREE; 4790 tree exp_type, nexp; 4791 int in_p; 4792 tree low, high; 4793 location_t loc = EXPR_LOCATION (exp); 4794 4795 /* Start with simply saying "EXP != 0" and then look at the code of EXP 4796 and see if we can refine the range. Some of the cases below may not 4797 happen, but it doesn't seem worth worrying about this. We "continue" 4798 the outer loop when we've changed something; otherwise we "break" 4799 the switch, which will "break" the while. */ 4800 4801 in_p = 0; 4802 low = high = build_int_cst (TREE_TYPE (exp), 0); 4803 4804 while (1) 4805 { 4806 code = TREE_CODE (exp); 4807 exp_type = TREE_TYPE (exp); 4808 arg0 = NULL_TREE; 4809 4810 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) 4811 { 4812 if (TREE_OPERAND_LENGTH (exp) > 0) 4813 arg0 = TREE_OPERAND (exp, 0); 4814 if (TREE_CODE_CLASS (code) == tcc_binary 4815 || TREE_CODE_CLASS (code) == tcc_comparison 4816 || (TREE_CODE_CLASS (code) == tcc_expression 4817 && TREE_OPERAND_LENGTH (exp) > 1)) 4818 arg1 = TREE_OPERAND (exp, 1); 4819 } 4820 if (arg0 == NULL_TREE) 4821 break; 4822 4823 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low, 4824 &high, &in_p, strict_overflow_p); 4825 if (nexp == NULL_TREE) 4826 break; 4827 exp = nexp; 4828 } 4829 4830 /* If EXP is a constant, we can evaluate whether this is true or false. */ 4831 if (TREE_CODE (exp) == INTEGER_CST) 4832 { 4833 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node, 4834 exp, 0, low, 0)) 4835 && integer_onep (range_binop (LE_EXPR, integer_type_node, 4836 exp, 1, high, 1))); 4837 low = high = 0; 4838 exp = 0; 4839 } 4840 4841 *pin_p = in_p, *plow = low, *phigh = high; 4842 return exp; 4843 } 4844 4845 /* Returns TRUE if [LOW, HIGH] range check can be optimized to 4846 a bitwise check i.e. when 4847 LOW == 0xXX...X00...0 4848 HIGH == 0xXX...X11...1 4849 Return corresponding mask in MASK and stem in VALUE. */ 4850 4851 static bool 4852 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask, 4853 tree *value) 4854 { 4855 if (TREE_CODE (low) != INTEGER_CST 4856 || TREE_CODE (high) != INTEGER_CST) 4857 return false; 4858 4859 unsigned prec = TYPE_PRECISION (type); 4860 wide_int lo = wi::to_wide (low, prec); 4861 wide_int hi = wi::to_wide (high, prec); 4862 4863 wide_int end_mask = lo ^ hi; 4864 if ((end_mask & (end_mask + 1)) != 0 4865 || (lo & end_mask) != 0) 4866 return false; 4867 4868 wide_int stem_mask = ~end_mask; 4869 wide_int stem = lo & stem_mask; 4870 if (stem != (hi & stem_mask)) 4871 return false; 4872 4873 *mask = wide_int_to_tree (type, stem_mask); 4874 *value = wide_int_to_tree (type, stem); 4875 4876 return true; 4877 } 4878 4879 /* Helper routine for build_range_check and match.pd. Return the type to 4880 perform the check or NULL if it shouldn't be optimized. */ 4881 4882 tree 4883 range_check_type (tree etype) 4884 { 4885 /* First make sure that arithmetics in this type is valid, then make sure 4886 that it wraps around. */ 4887 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE) 4888 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 4889 TYPE_UNSIGNED (etype)); 4890 4891 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype)) 4892 { 4893 tree utype, minv, maxv; 4894 4895 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN 4896 for the type in question, as we rely on this here. */ 4897 utype = unsigned_type_for (etype); 4898 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype)); 4899 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1, 4900 build_int_cst (TREE_TYPE (maxv), 1), 1); 4901 minv = fold_convert (utype, TYPE_MIN_VALUE (etype)); 4902 4903 if (integer_zerop (range_binop (NE_EXPR, integer_type_node, 4904 minv, 1, maxv, 1))) 4905 etype = utype; 4906 else 4907 return NULL_TREE; 4908 } 4909 return etype; 4910 } 4911 4912 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result 4913 type, TYPE, return an expression to test if EXP is in (or out of, depending 4914 on IN_P) the range. Return 0 if the test couldn't be created. */ 4915 4916 tree 4917 build_range_check (location_t loc, tree type, tree exp, int in_p, 4918 tree low, tree high) 4919 { 4920 tree etype = TREE_TYPE (exp), mask, value; 4921 4922 /* Disable this optimization for function pointer expressions 4923 on targets that require function pointer canonicalization. */ 4924 if (targetm.have_canonicalize_funcptr_for_compare () 4925 && POINTER_TYPE_P (etype) 4926 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype))) 4927 return NULL_TREE; 4928 4929 if (! in_p) 4930 { 4931 value = build_range_check (loc, type, exp, 1, low, high); 4932 if (value != 0) 4933 return invert_truthvalue_loc (loc, value); 4934 4935 return 0; 4936 } 4937 4938 if (low == 0 && high == 0) 4939 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp); 4940 4941 if (low == 0) 4942 return fold_build2_loc (loc, LE_EXPR, type, exp, 4943 fold_convert_loc (loc, etype, high)); 4944 4945 if (high == 0) 4946 return fold_build2_loc (loc, GE_EXPR, type, exp, 4947 fold_convert_loc (loc, etype, low)); 4948 4949 if (operand_equal_p (low, high, 0)) 4950 return fold_build2_loc (loc, EQ_EXPR, type, exp, 4951 fold_convert_loc (loc, etype, low)); 4952 4953 if (TREE_CODE (exp) == BIT_AND_EXPR 4954 && maskable_range_p (low, high, etype, &mask, &value)) 4955 return fold_build2_loc (loc, EQ_EXPR, type, 4956 fold_build2_loc (loc, BIT_AND_EXPR, etype, 4957 exp, mask), 4958 value); 4959 4960 if (integer_zerop (low)) 4961 { 4962 if (! TYPE_UNSIGNED (etype)) 4963 { 4964 etype = unsigned_type_for (etype); 4965 high = fold_convert_loc (loc, etype, high); 4966 exp = fold_convert_loc (loc, etype, exp); 4967 } 4968 return build_range_check (loc, type, exp, 1, 0, high); 4969 } 4970 4971 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */ 4972 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST) 4973 { 4974 int prec = TYPE_PRECISION (etype); 4975 4976 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high)) 4977 { 4978 if (TYPE_UNSIGNED (etype)) 4979 { 4980 tree signed_etype = signed_type_for (etype); 4981 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype)) 4982 etype 4983 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0); 4984 else 4985 etype = signed_etype; 4986 exp = fold_convert_loc (loc, etype, exp); 4987 } 4988 return fold_build2_loc (loc, GT_EXPR, type, exp, 4989 build_int_cst (etype, 0)); 4990 } 4991 } 4992 4993 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low). 4994 This requires wrap-around arithmetics for the type of the expression. */ 4995 etype = range_check_type (etype); 4996 if (etype == NULL_TREE) 4997 return NULL_TREE; 4998 4999 if (POINTER_TYPE_P (etype)) 5000 etype = unsigned_type_for (etype); 5001 5002 high = fold_convert_loc (loc, etype, high); 5003 low = fold_convert_loc (loc, etype, low); 5004 exp = fold_convert_loc (loc, etype, exp); 5005 5006 value = const_binop (MINUS_EXPR, high, low); 5007 5008 if (value != 0 && !TREE_OVERFLOW (value)) 5009 return build_range_check (loc, type, 5010 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low), 5011 1, build_int_cst (etype, 0), value); 5012 5013 return 0; 5014 } 5015 5016 /* Return the predecessor of VAL in its type, handling the infinite case. */ 5017 5018 static tree 5019 range_predecessor (tree val) 5020 { 5021 tree type = TREE_TYPE (val); 5022 5023 if (INTEGRAL_TYPE_P (type) 5024 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0)) 5025 return 0; 5026 else 5027 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, 5028 build_int_cst (TREE_TYPE (val), 1), 0); 5029 } 5030 5031 /* Return the successor of VAL in its type, handling the infinite case. */ 5032 5033 static tree 5034 range_successor (tree val) 5035 { 5036 tree type = TREE_TYPE (val); 5037 5038 if (INTEGRAL_TYPE_P (type) 5039 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0)) 5040 return 0; 5041 else 5042 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, 5043 build_int_cst (TREE_TYPE (val), 1), 0); 5044 } 5045 5046 /* Given two ranges, see if we can merge them into one. Return 1 if we 5047 can, 0 if we can't. Set the output range into the specified parameters. */ 5048 5049 bool 5050 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0, 5051 tree high0, int in1_p, tree low1, tree high1) 5052 { 5053 int no_overlap; 5054 int subset; 5055 int temp; 5056 tree tem; 5057 int in_p; 5058 tree low, high; 5059 int lowequal = ((low0 == 0 && low1 == 0) 5060 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5061 low0, 0, low1, 0))); 5062 int highequal = ((high0 == 0 && high1 == 0) 5063 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5064 high0, 1, high1, 1))); 5065 5066 /* Make range 0 be the range that starts first, or ends last if they 5067 start at the same value. Swap them if it isn't. */ 5068 if (integer_onep (range_binop (GT_EXPR, integer_type_node, 5069 low0, 0, low1, 0)) 5070 || (lowequal 5071 && integer_onep (range_binop (GT_EXPR, integer_type_node, 5072 high1, 1, high0, 1)))) 5073 { 5074 temp = in0_p, in0_p = in1_p, in1_p = temp; 5075 tem = low0, low0 = low1, low1 = tem; 5076 tem = high0, high0 = high1, high1 = tem; 5077 } 5078 5079 /* Now flag two cases, whether the ranges are disjoint or whether the 5080 second range is totally subsumed in the first. Note that the tests 5081 below are simplified by the ones above. */ 5082 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node, 5083 high0, 1, low1, 0)); 5084 subset = integer_onep (range_binop (LE_EXPR, integer_type_node, 5085 high1, 1, high0, 1)); 5086 5087 /* We now have four cases, depending on whether we are including or 5088 excluding the two ranges. */ 5089 if (in0_p && in1_p) 5090 { 5091 /* If they don't overlap, the result is false. If the second range 5092 is a subset it is the result. Otherwise, the range is from the start 5093 of the second to the end of the first. */ 5094 if (no_overlap) 5095 in_p = 0, low = high = 0; 5096 else if (subset) 5097 in_p = 1, low = low1, high = high1; 5098 else 5099 in_p = 1, low = low1, high = high0; 5100 } 5101 5102 else if (in0_p && ! in1_p) 5103 { 5104 /* If they don't overlap, the result is the first range. If they are 5105 equal, the result is false. If the second range is a subset of the 5106 first, and the ranges begin at the same place, we go from just after 5107 the end of the second range to the end of the first. If the second 5108 range is not a subset of the first, or if it is a subset and both 5109 ranges end at the same place, the range starts at the start of the 5110 first range and ends just before the second range. 5111 Otherwise, we can't describe this as a single range. */ 5112 if (no_overlap) 5113 in_p = 1, low = low0, high = high0; 5114 else if (lowequal && highequal) 5115 in_p = 0, low = high = 0; 5116 else if (subset && lowequal) 5117 { 5118 low = range_successor (high1); 5119 high = high0; 5120 in_p = 1; 5121 if (low == 0) 5122 { 5123 /* We are in the weird situation where high0 > high1 but 5124 high1 has no successor. Punt. */ 5125 return 0; 5126 } 5127 } 5128 else if (! subset || highequal) 5129 { 5130 low = low0; 5131 high = range_predecessor (low1); 5132 in_p = 1; 5133 if (high == 0) 5134 { 5135 /* low0 < low1 but low1 has no predecessor. Punt. */ 5136 return 0; 5137 } 5138 } 5139 else 5140 return 0; 5141 } 5142 5143 else if (! in0_p && in1_p) 5144 { 5145 /* If they don't overlap, the result is the second range. If the second 5146 is a subset of the first, the result is false. Otherwise, 5147 the range starts just after the first range and ends at the 5148 end of the second. */ 5149 if (no_overlap) 5150 in_p = 1, low = low1, high = high1; 5151 else if (subset || highequal) 5152 in_p = 0, low = high = 0; 5153 else 5154 { 5155 low = range_successor (high0); 5156 high = high1; 5157 in_p = 1; 5158 if (low == 0) 5159 { 5160 /* high1 > high0 but high0 has no successor. Punt. */ 5161 return 0; 5162 } 5163 } 5164 } 5165 5166 else 5167 { 5168 /* The case where we are excluding both ranges. Here the complex case 5169 is if they don't overlap. In that case, the only time we have a 5170 range is if they are adjacent. If the second is a subset of the 5171 first, the result is the first. Otherwise, the range to exclude 5172 starts at the beginning of the first range and ends at the end of the 5173 second. */ 5174 if (no_overlap) 5175 { 5176 if (integer_onep (range_binop (EQ_EXPR, integer_type_node, 5177 range_successor (high0), 5178 1, low1, 0))) 5179 in_p = 0, low = low0, high = high1; 5180 else 5181 { 5182 /* Canonicalize - [min, x] into - [-, x]. */ 5183 if (low0 && TREE_CODE (low0) == INTEGER_CST) 5184 switch (TREE_CODE (TREE_TYPE (low0))) 5185 { 5186 case ENUMERAL_TYPE: 5187 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)), 5188 GET_MODE_BITSIZE 5189 (TYPE_MODE (TREE_TYPE (low0))))) 5190 break; 5191 /* FALLTHROUGH */ 5192 case INTEGER_TYPE: 5193 if (tree_int_cst_equal (low0, 5194 TYPE_MIN_VALUE (TREE_TYPE (low0)))) 5195 low0 = 0; 5196 break; 5197 case POINTER_TYPE: 5198 if (TYPE_UNSIGNED (TREE_TYPE (low0)) 5199 && integer_zerop (low0)) 5200 low0 = 0; 5201 break; 5202 default: 5203 break; 5204 } 5205 5206 /* Canonicalize - [x, max] into - [x, -]. */ 5207 if (high1 && TREE_CODE (high1) == INTEGER_CST) 5208 switch (TREE_CODE (TREE_TYPE (high1))) 5209 { 5210 case ENUMERAL_TYPE: 5211 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)), 5212 GET_MODE_BITSIZE 5213 (TYPE_MODE (TREE_TYPE (high1))))) 5214 break; 5215 /* FALLTHROUGH */ 5216 case INTEGER_TYPE: 5217 if (tree_int_cst_equal (high1, 5218 TYPE_MAX_VALUE (TREE_TYPE (high1)))) 5219 high1 = 0; 5220 break; 5221 case POINTER_TYPE: 5222 if (TYPE_UNSIGNED (TREE_TYPE (high1)) 5223 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE, 5224 high1, 1, 5225 build_int_cst (TREE_TYPE (high1), 1), 5226 1))) 5227 high1 = 0; 5228 break; 5229 default: 5230 break; 5231 } 5232 5233 /* The ranges might be also adjacent between the maximum and 5234 minimum values of the given type. For 5235 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y 5236 return + [x + 1, y - 1]. */ 5237 if (low0 == 0 && high1 == 0) 5238 { 5239 low = range_successor (high0); 5240 high = range_predecessor (low1); 5241 if (low == 0 || high == 0) 5242 return 0; 5243 5244 in_p = 1; 5245 } 5246 else 5247 return 0; 5248 } 5249 } 5250 else if (subset) 5251 in_p = 0, low = low0, high = high0; 5252 else 5253 in_p = 0, low = low0, high = high1; 5254 } 5255 5256 *pin_p = in_p, *plow = low, *phigh = high; 5257 return 1; 5258 } 5259 5260 5261 /* Subroutine of fold, looking inside expressions of the form 5262 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands 5263 of the COND_EXPR. This function is being used also to optimize 5264 A op B ? C : A, by reversing the comparison first. 5265 5266 Return a folded expression whose code is not a COND_EXPR 5267 anymore, or NULL_TREE if no folding opportunity is found. */ 5268 5269 static tree 5270 fold_cond_expr_with_comparison (location_t loc, tree type, 5271 tree arg0, tree arg1, tree arg2) 5272 { 5273 enum tree_code comp_code = TREE_CODE (arg0); 5274 tree arg00 = TREE_OPERAND (arg0, 0); 5275 tree arg01 = TREE_OPERAND (arg0, 1); 5276 tree arg1_type = TREE_TYPE (arg1); 5277 tree tem; 5278 5279 STRIP_NOPS (arg1); 5280 STRIP_NOPS (arg2); 5281 5282 /* If we have A op 0 ? A : -A, consider applying the following 5283 transformations: 5284 5285 A == 0? A : -A same as -A 5286 A != 0? A : -A same as A 5287 A >= 0? A : -A same as abs (A) 5288 A > 0? A : -A same as abs (A) 5289 A <= 0? A : -A same as -abs (A) 5290 A < 0? A : -A same as -abs (A) 5291 5292 None of these transformations work for modes with signed 5293 zeros. If A is +/-0, the first two transformations will 5294 change the sign of the result (from +0 to -0, or vice 5295 versa). The last four will fix the sign of the result, 5296 even though the original expressions could be positive or 5297 negative, depending on the sign of A. 5298 5299 Note that all these transformations are correct if A is 5300 NaN, since the two alternatives (A and -A) are also NaNs. */ 5301 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5302 && (FLOAT_TYPE_P (TREE_TYPE (arg01)) 5303 ? real_zerop (arg01) 5304 : integer_zerop (arg01)) 5305 && ((TREE_CODE (arg2) == NEGATE_EXPR 5306 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0)) 5307 /* In the case that A is of the form X-Y, '-A' (arg2) may 5308 have already been folded to Y-X, check for that. */ 5309 || (TREE_CODE (arg1) == MINUS_EXPR 5310 && TREE_CODE (arg2) == MINUS_EXPR 5311 && operand_equal_p (TREE_OPERAND (arg1, 0), 5312 TREE_OPERAND (arg2, 1), 0) 5313 && operand_equal_p (TREE_OPERAND (arg1, 1), 5314 TREE_OPERAND (arg2, 0), 0)))) 5315 switch (comp_code) 5316 { 5317 case EQ_EXPR: 5318 case UNEQ_EXPR: 5319 tem = fold_convert_loc (loc, arg1_type, arg1); 5320 return fold_convert_loc (loc, type, negate_expr (tem)); 5321 case NE_EXPR: 5322 case LTGT_EXPR: 5323 return fold_convert_loc (loc, type, arg1); 5324 case UNGE_EXPR: 5325 case UNGT_EXPR: 5326 if (flag_trapping_math) 5327 break; 5328 /* Fall through. */ 5329 case GE_EXPR: 5330 case GT_EXPR: 5331 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5332 break; 5333 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5334 return fold_convert_loc (loc, type, tem); 5335 case UNLE_EXPR: 5336 case UNLT_EXPR: 5337 if (flag_trapping_math) 5338 break; 5339 /* FALLTHRU */ 5340 case LE_EXPR: 5341 case LT_EXPR: 5342 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5343 break; 5344 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5345 return negate_expr (fold_convert_loc (loc, type, tem)); 5346 default: 5347 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5348 break; 5349 } 5350 5351 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise 5352 A == 0 ? A : 0 is always 0 unless A is -0. Note that 5353 both transformations are correct when A is NaN: A != 0 5354 is then true, and A == 0 is false. */ 5355 5356 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5357 && integer_zerop (arg01) && integer_zerop (arg2)) 5358 { 5359 if (comp_code == NE_EXPR) 5360 return fold_convert_loc (loc, type, arg1); 5361 else if (comp_code == EQ_EXPR) 5362 return build_zero_cst (type); 5363 } 5364 5365 /* Try some transformations of A op B ? A : B. 5366 5367 A == B? A : B same as B 5368 A != B? A : B same as A 5369 A >= B? A : B same as max (A, B) 5370 A > B? A : B same as max (B, A) 5371 A <= B? A : B same as min (A, B) 5372 A < B? A : B same as min (B, A) 5373 5374 As above, these transformations don't work in the presence 5375 of signed zeros. For example, if A and B are zeros of 5376 opposite sign, the first two transformations will change 5377 the sign of the result. In the last four, the original 5378 expressions give different results for (A=+0, B=-0) and 5379 (A=-0, B=+0), but the transformed expressions do not. 5380 5381 The first two transformations are correct if either A or B 5382 is a NaN. In the first transformation, the condition will 5383 be false, and B will indeed be chosen. In the case of the 5384 second transformation, the condition A != B will be true, 5385 and A will be chosen. 5386 5387 The conversions to max() and min() are not correct if B is 5388 a number and A is not. The conditions in the original 5389 expressions will be false, so all four give B. The min() 5390 and max() versions would give a NaN instead. */ 5391 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5392 && operand_equal_for_comparison_p (arg01, arg2) 5393 /* Avoid these transformations if the COND_EXPR may be used 5394 as an lvalue in the C++ front-end. PR c++/19199. */ 5395 && (in_gimple_form 5396 || VECTOR_TYPE_P (type) 5397 || (! lang_GNU_CXX () 5398 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0) 5399 || ! maybe_lvalue_p (arg1) 5400 || ! maybe_lvalue_p (arg2))) 5401 { 5402 tree comp_op0 = arg00; 5403 tree comp_op1 = arg01; 5404 tree comp_type = TREE_TYPE (comp_op0); 5405 5406 switch (comp_code) 5407 { 5408 case EQ_EXPR: 5409 return fold_convert_loc (loc, type, arg2); 5410 case NE_EXPR: 5411 return fold_convert_loc (loc, type, arg1); 5412 case LE_EXPR: 5413 case LT_EXPR: 5414 case UNLE_EXPR: 5415 case UNLT_EXPR: 5416 /* In C++ a ?: expression can be an lvalue, so put the 5417 operand which will be used if they are equal first 5418 so that we can convert this back to the 5419 corresponding COND_EXPR. */ 5420 if (!HONOR_NANS (arg1)) 5421 { 5422 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5423 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5424 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR) 5425 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1) 5426 : fold_build2_loc (loc, MIN_EXPR, comp_type, 5427 comp_op1, comp_op0); 5428 return fold_convert_loc (loc, type, tem); 5429 } 5430 break; 5431 case GE_EXPR: 5432 case GT_EXPR: 5433 case UNGE_EXPR: 5434 case UNGT_EXPR: 5435 if (!HONOR_NANS (arg1)) 5436 { 5437 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5438 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5439 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR) 5440 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1) 5441 : fold_build2_loc (loc, MAX_EXPR, comp_type, 5442 comp_op1, comp_op0); 5443 return fold_convert_loc (loc, type, tem); 5444 } 5445 break; 5446 case UNEQ_EXPR: 5447 if (!HONOR_NANS (arg1)) 5448 return fold_convert_loc (loc, type, arg2); 5449 break; 5450 case LTGT_EXPR: 5451 if (!HONOR_NANS (arg1)) 5452 return fold_convert_loc (loc, type, arg1); 5453 break; 5454 default: 5455 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5456 break; 5457 } 5458 } 5459 5460 return NULL_TREE; 5461 } 5462 5463 5464 5465 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT 5466 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 5467 (BRANCH_COST (optimize_function_for_speed_p (cfun), \ 5468 false) >= 2) 5469 #endif 5470 5471 /* EXP is some logical combination of boolean tests. See if we can 5472 merge it into some range test. Return the new tree if so. */ 5473 5474 static tree 5475 fold_range_test (location_t loc, enum tree_code code, tree type, 5476 tree op0, tree op1) 5477 { 5478 int or_op = (code == TRUTH_ORIF_EXPR 5479 || code == TRUTH_OR_EXPR); 5480 int in0_p, in1_p, in_p; 5481 tree low0, low1, low, high0, high1, high; 5482 bool strict_overflow_p = false; 5483 tree tem, lhs, rhs; 5484 const char * const warnmsg = G_("assuming signed overflow does not occur " 5485 "when simplifying range test"); 5486 5487 if (!INTEGRAL_TYPE_P (type)) 5488 return 0; 5489 5490 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p); 5491 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p); 5492 5493 /* If this is an OR operation, invert both sides; we will invert 5494 again at the end. */ 5495 if (or_op) 5496 in0_p = ! in0_p, in1_p = ! in1_p; 5497 5498 /* If both expressions are the same, if we can merge the ranges, and we 5499 can build the range test, return it or it inverted. If one of the 5500 ranges is always true or always false, consider it to be the same 5501 expression as the other. */ 5502 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0)) 5503 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0, 5504 in1_p, low1, high1) 5505 && (tem = (build_range_check (loc, type, 5506 lhs != 0 ? lhs 5507 : rhs != 0 ? rhs : integer_zero_node, 5508 in_p, low, high))) != 0) 5509 { 5510 if (strict_overflow_p) 5511 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 5512 return or_op ? invert_truthvalue_loc (loc, tem) : tem; 5513 } 5514 5515 /* On machines where the branch cost is expensive, if this is a 5516 short-circuited branch and the underlying object on both sides 5517 is the same, make a non-short-circuit operation. */ 5518 else if (LOGICAL_OP_NON_SHORT_CIRCUIT 5519 && !flag_sanitize_coverage 5520 && lhs != 0 && rhs != 0 5521 && (code == TRUTH_ANDIF_EXPR 5522 || code == TRUTH_ORIF_EXPR) 5523 && operand_equal_p (lhs, rhs, 0)) 5524 { 5525 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR 5526 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in 5527 which cases we can't do this. */ 5528 if (simple_operand_p (lhs)) 5529 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5530 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5531 type, op0, op1); 5532 5533 else if (!lang_hooks.decls.global_bindings_p () 5534 && !CONTAINS_PLACEHOLDER_P (lhs)) 5535 { 5536 tree common = save_expr (lhs); 5537 5538 if ((lhs = build_range_check (loc, type, common, 5539 or_op ? ! in0_p : in0_p, 5540 low0, high0)) != 0 5541 && (rhs = build_range_check (loc, type, common, 5542 or_op ? ! in1_p : in1_p, 5543 low1, high1)) != 0) 5544 { 5545 if (strict_overflow_p) 5546 fold_overflow_warning (warnmsg, 5547 WARN_STRICT_OVERFLOW_COMPARISON); 5548 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5549 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5550 type, lhs, rhs); 5551 } 5552 } 5553 } 5554 5555 return 0; 5556 } 5557 5558 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P 5559 bit value. Arrange things so the extra bits will be set to zero if and 5560 only if C is signed-extended to its full width. If MASK is nonzero, 5561 it is an INTEGER_CST that should be AND'ed with the extra bits. */ 5562 5563 static tree 5564 unextend (tree c, int p, int unsignedp, tree mask) 5565 { 5566 tree type = TREE_TYPE (c); 5567 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type)); 5568 tree temp; 5569 5570 if (p == modesize || unsignedp) 5571 return c; 5572 5573 /* We work by getting just the sign bit into the low-order bit, then 5574 into the high-order bit, then sign-extend. We then XOR that value 5575 with C. */ 5576 temp = build_int_cst (TREE_TYPE (c), 5577 wi::extract_uhwi (wi::to_wide (c), p - 1, 1)); 5578 5579 /* We must use a signed type in order to get an arithmetic right shift. 5580 However, we must also avoid introducing accidental overflows, so that 5581 a subsequent call to integer_zerop will work. Hence we must 5582 do the type conversion here. At this point, the constant is either 5583 zero or one, and the conversion to a signed type can never overflow. 5584 We could get an overflow if this conversion is done anywhere else. */ 5585 if (TYPE_UNSIGNED (type)) 5586 temp = fold_convert (signed_type_for (type), temp); 5587 5588 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1)); 5589 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1)); 5590 if (mask != 0) 5591 temp = const_binop (BIT_AND_EXPR, temp, 5592 fold_convert (TREE_TYPE (c), mask)); 5593 /* If necessary, convert the type back to match the type of C. */ 5594 if (TYPE_UNSIGNED (type)) 5595 temp = fold_convert (type, temp); 5596 5597 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp)); 5598 } 5599 5600 /* For an expression that has the form 5601 (A && B) || ~B 5602 or 5603 (A || B) && ~B, 5604 we can drop one of the inner expressions and simplify to 5605 A || ~B 5606 or 5607 A && ~B 5608 LOC is the location of the resulting expression. OP is the inner 5609 logical operation; the left-hand side in the examples above, while CMPOP 5610 is the right-hand side. RHS_ONLY is used to prevent us from accidentally 5611 removing a condition that guards another, as in 5612 (A != NULL && A->...) || A == NULL 5613 which we must not transform. If RHS_ONLY is true, only eliminate the 5614 right-most operand of the inner logical operation. */ 5615 5616 static tree 5617 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop, 5618 bool rhs_only) 5619 { 5620 tree type = TREE_TYPE (cmpop); 5621 enum tree_code code = TREE_CODE (cmpop); 5622 enum tree_code truthop_code = TREE_CODE (op); 5623 tree lhs = TREE_OPERAND (op, 0); 5624 tree rhs = TREE_OPERAND (op, 1); 5625 tree orig_lhs = lhs, orig_rhs = rhs; 5626 enum tree_code rhs_code = TREE_CODE (rhs); 5627 enum tree_code lhs_code = TREE_CODE (lhs); 5628 enum tree_code inv_code; 5629 5630 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop)) 5631 return NULL_TREE; 5632 5633 if (TREE_CODE_CLASS (code) != tcc_comparison) 5634 return NULL_TREE; 5635 5636 if (rhs_code == truthop_code) 5637 { 5638 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only); 5639 if (newrhs != NULL_TREE) 5640 { 5641 rhs = newrhs; 5642 rhs_code = TREE_CODE (rhs); 5643 } 5644 } 5645 if (lhs_code == truthop_code && !rhs_only) 5646 { 5647 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false); 5648 if (newlhs != NULL_TREE) 5649 { 5650 lhs = newlhs; 5651 lhs_code = TREE_CODE (lhs); 5652 } 5653 } 5654 5655 inv_code = invert_tree_comparison (code, HONOR_NANS (type)); 5656 if (inv_code == rhs_code 5657 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0) 5658 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5659 return lhs; 5660 if (!rhs_only && inv_code == lhs_code 5661 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0) 5662 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5663 return rhs; 5664 if (rhs != orig_rhs || lhs != orig_lhs) 5665 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop), 5666 lhs, rhs); 5667 return NULL_TREE; 5668 } 5669 5670 /* Find ways of folding logical expressions of LHS and RHS: 5671 Try to merge two comparisons to the same innermost item. 5672 Look for range tests like "ch >= '0' && ch <= '9'". 5673 Look for combinations of simple terms on machines with expensive branches 5674 and evaluate the RHS unconditionally. 5675 5676 For example, if we have p->a == 2 && p->b == 4 and we can make an 5677 object large enough to span both A and B, we can do this with a comparison 5678 against the object ANDed with the a mask. 5679 5680 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking 5681 operations to do this with one comparison. 5682 5683 We check for both normal comparisons and the BIT_AND_EXPRs made this by 5684 function and the one above. 5685 5686 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR, 5687 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR. 5688 5689 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its 5690 two operands. 5691 5692 We return the simplified tree or 0 if no optimization is possible. */ 5693 5694 static tree 5695 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type, 5696 tree lhs, tree rhs) 5697 { 5698 /* If this is the "or" of two comparisons, we can do something if 5699 the comparisons are NE_EXPR. If this is the "and", we can do something 5700 if the comparisons are EQ_EXPR. I.e., 5701 (a->b == 2 && a->c == 4) can become (a->new == NEW). 5702 5703 WANTED_CODE is this operation code. For single bit fields, we can 5704 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong" 5705 comparison for one-bit fields. */ 5706 5707 enum tree_code wanted_code; 5708 enum tree_code lcode, rcode; 5709 tree ll_arg, lr_arg, rl_arg, rr_arg; 5710 tree ll_inner, lr_inner, rl_inner, rr_inner; 5711 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos; 5712 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos; 5713 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos; 5714 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos; 5715 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp; 5716 int ll_reversep, lr_reversep, rl_reversep, rr_reversep; 5717 machine_mode ll_mode, lr_mode, rl_mode, rr_mode; 5718 scalar_int_mode lnmode, rnmode; 5719 tree ll_mask, lr_mask, rl_mask, rr_mask; 5720 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask; 5721 tree l_const, r_const; 5722 tree lntype, rntype, result; 5723 HOST_WIDE_INT first_bit, end_bit; 5724 int volatilep; 5725 5726 /* Start by getting the comparison codes. Fail if anything is volatile. 5727 If one operand is a BIT_AND_EXPR with the constant one, treat it as if 5728 it were surrounded with a NE_EXPR. */ 5729 5730 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs)) 5731 return 0; 5732 5733 lcode = TREE_CODE (lhs); 5734 rcode = TREE_CODE (rhs); 5735 5736 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1))) 5737 { 5738 lhs = build2 (NE_EXPR, truth_type, lhs, 5739 build_int_cst (TREE_TYPE (lhs), 0)); 5740 lcode = NE_EXPR; 5741 } 5742 5743 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1))) 5744 { 5745 rhs = build2 (NE_EXPR, truth_type, rhs, 5746 build_int_cst (TREE_TYPE (rhs), 0)); 5747 rcode = NE_EXPR; 5748 } 5749 5750 if (TREE_CODE_CLASS (lcode) != tcc_comparison 5751 || TREE_CODE_CLASS (rcode) != tcc_comparison) 5752 return 0; 5753 5754 ll_arg = TREE_OPERAND (lhs, 0); 5755 lr_arg = TREE_OPERAND (lhs, 1); 5756 rl_arg = TREE_OPERAND (rhs, 0); 5757 rr_arg = TREE_OPERAND (rhs, 1); 5758 5759 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */ 5760 if (simple_operand_p (ll_arg) 5761 && simple_operand_p (lr_arg)) 5762 { 5763 if (operand_equal_p (ll_arg, rl_arg, 0) 5764 && operand_equal_p (lr_arg, rr_arg, 0)) 5765 { 5766 result = combine_comparisons (loc, code, lcode, rcode, 5767 truth_type, ll_arg, lr_arg); 5768 if (result) 5769 return result; 5770 } 5771 else if (operand_equal_p (ll_arg, rr_arg, 0) 5772 && operand_equal_p (lr_arg, rl_arg, 0)) 5773 { 5774 result = combine_comparisons (loc, code, lcode, 5775 swap_tree_comparison (rcode), 5776 truth_type, ll_arg, lr_arg); 5777 if (result) 5778 return result; 5779 } 5780 } 5781 5782 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR) 5783 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR); 5784 5785 /* If the RHS can be evaluated unconditionally and its operands are 5786 simple, it wins to evaluate the RHS unconditionally on machines 5787 with expensive branches. In this case, this isn't a comparison 5788 that can be merged. */ 5789 5790 if (BRANCH_COST (optimize_function_for_speed_p (cfun), 5791 false) >= 2 5792 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg)) 5793 && simple_operand_p (rl_arg) 5794 && simple_operand_p (rr_arg)) 5795 { 5796 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */ 5797 if (code == TRUTH_OR_EXPR 5798 && lcode == NE_EXPR && integer_zerop (lr_arg) 5799 && rcode == NE_EXPR && integer_zerop (rr_arg) 5800 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5801 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5802 return build2_loc (loc, NE_EXPR, truth_type, 5803 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5804 ll_arg, rl_arg), 5805 build_int_cst (TREE_TYPE (ll_arg), 0)); 5806 5807 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */ 5808 if (code == TRUTH_AND_EXPR 5809 && lcode == EQ_EXPR && integer_zerop (lr_arg) 5810 && rcode == EQ_EXPR && integer_zerop (rr_arg) 5811 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5812 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5813 return build2_loc (loc, EQ_EXPR, truth_type, 5814 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5815 ll_arg, rl_arg), 5816 build_int_cst (TREE_TYPE (ll_arg), 0)); 5817 } 5818 5819 /* See if the comparisons can be merged. Then get all the parameters for 5820 each side. */ 5821 5822 if ((lcode != EQ_EXPR && lcode != NE_EXPR) 5823 || (rcode != EQ_EXPR && rcode != NE_EXPR)) 5824 return 0; 5825 5826 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0; 5827 volatilep = 0; 5828 ll_inner = decode_field_reference (loc, &ll_arg, 5829 &ll_bitsize, &ll_bitpos, &ll_mode, 5830 &ll_unsignedp, &ll_reversep, &volatilep, 5831 &ll_mask, &ll_and_mask); 5832 lr_inner = decode_field_reference (loc, &lr_arg, 5833 &lr_bitsize, &lr_bitpos, &lr_mode, 5834 &lr_unsignedp, &lr_reversep, &volatilep, 5835 &lr_mask, &lr_and_mask); 5836 rl_inner = decode_field_reference (loc, &rl_arg, 5837 &rl_bitsize, &rl_bitpos, &rl_mode, 5838 &rl_unsignedp, &rl_reversep, &volatilep, 5839 &rl_mask, &rl_and_mask); 5840 rr_inner = decode_field_reference (loc, &rr_arg, 5841 &rr_bitsize, &rr_bitpos, &rr_mode, 5842 &rr_unsignedp, &rr_reversep, &volatilep, 5843 &rr_mask, &rr_and_mask); 5844 5845 /* It must be true that the inner operation on the lhs of each 5846 comparison must be the same if we are to be able to do anything. 5847 Then see if we have constants. If not, the same must be true for 5848 the rhs's. */ 5849 if (volatilep 5850 || ll_reversep != rl_reversep 5851 || ll_inner == 0 || rl_inner == 0 5852 || ! operand_equal_p (ll_inner, rl_inner, 0)) 5853 return 0; 5854 5855 if (TREE_CODE (lr_arg) == INTEGER_CST 5856 && TREE_CODE (rr_arg) == INTEGER_CST) 5857 { 5858 l_const = lr_arg, r_const = rr_arg; 5859 lr_reversep = ll_reversep; 5860 } 5861 else if (lr_reversep != rr_reversep 5862 || lr_inner == 0 || rr_inner == 0 5863 || ! operand_equal_p (lr_inner, rr_inner, 0)) 5864 return 0; 5865 else 5866 l_const = r_const = 0; 5867 5868 /* If either comparison code is not correct for our logical operation, 5869 fail. However, we can convert a one-bit comparison against zero into 5870 the opposite comparison against that bit being set in the field. */ 5871 5872 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR); 5873 if (lcode != wanted_code) 5874 { 5875 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask)) 5876 { 5877 /* Make the left operand unsigned, since we are only interested 5878 in the value of one bit. Otherwise we are doing the wrong 5879 thing below. */ 5880 ll_unsignedp = 1; 5881 l_const = ll_mask; 5882 } 5883 else 5884 return 0; 5885 } 5886 5887 /* This is analogous to the code for l_const above. */ 5888 if (rcode != wanted_code) 5889 { 5890 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask)) 5891 { 5892 rl_unsignedp = 1; 5893 r_const = rl_mask; 5894 } 5895 else 5896 return 0; 5897 } 5898 5899 /* See if we can find a mode that contains both fields being compared on 5900 the left. If we can't, fail. Otherwise, update all constants and masks 5901 to be relative to a field of that size. */ 5902 first_bit = MIN (ll_bitpos, rl_bitpos); 5903 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize); 5904 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5905 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD, 5906 volatilep, &lnmode)) 5907 return 0; 5908 5909 lnbitsize = GET_MODE_BITSIZE (lnmode); 5910 lnbitpos = first_bit & ~ (lnbitsize - 1); 5911 lntype = lang_hooks.types.type_for_size (lnbitsize, 1); 5912 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos; 5913 5914 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 5915 { 5916 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize; 5917 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize; 5918 } 5919 5920 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask), 5921 size_int (xll_bitpos)); 5922 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask), 5923 size_int (xrl_bitpos)); 5924 5925 if (l_const) 5926 { 5927 l_const = fold_convert_loc (loc, lntype, l_const); 5928 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask); 5929 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos)); 5930 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const, 5931 fold_build1_loc (loc, BIT_NOT_EXPR, 5932 lntype, ll_mask)))) 5933 { 5934 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5935 5936 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5937 } 5938 } 5939 if (r_const) 5940 { 5941 r_const = fold_convert_loc (loc, lntype, r_const); 5942 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask); 5943 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos)); 5944 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const, 5945 fold_build1_loc (loc, BIT_NOT_EXPR, 5946 lntype, rl_mask)))) 5947 { 5948 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5949 5950 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5951 } 5952 } 5953 5954 /* If the right sides are not constant, do the same for it. Also, 5955 disallow this optimization if a size, signedness or storage order 5956 mismatch occurs between the left and right sides. */ 5957 if (l_const == 0) 5958 { 5959 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize 5960 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp 5961 || ll_reversep != lr_reversep 5962 /* Make sure the two fields on the right 5963 correspond to the left without being swapped. */ 5964 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos) 5965 return 0; 5966 5967 first_bit = MIN (lr_bitpos, rr_bitpos); 5968 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize); 5969 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5970 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD, 5971 volatilep, &rnmode)) 5972 return 0; 5973 5974 rnbitsize = GET_MODE_BITSIZE (rnmode); 5975 rnbitpos = first_bit & ~ (rnbitsize - 1); 5976 rntype = lang_hooks.types.type_for_size (rnbitsize, 1); 5977 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos; 5978 5979 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 5980 { 5981 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize; 5982 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize; 5983 } 5984 5985 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 5986 rntype, lr_mask), 5987 size_int (xlr_bitpos)); 5988 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 5989 rntype, rr_mask), 5990 size_int (xrr_bitpos)); 5991 5992 /* Make a mask that corresponds to both fields being compared. 5993 Do this for both items being compared. If the operands are the 5994 same size and the bits being compared are in the same position 5995 then we can do this by masking both and comparing the masked 5996 results. */ 5997 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 5998 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask); 5999 if (lnbitsize == rnbitsize 6000 && xll_bitpos == xlr_bitpos 6001 && lnbitpos >= 0 6002 && rnbitpos >= 0) 6003 { 6004 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, 6005 lntype, lnbitsize, lnbitpos, 6006 ll_unsignedp || rl_unsignedp, ll_reversep); 6007 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6008 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask); 6009 6010 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, 6011 rntype, rnbitsize, rnbitpos, 6012 lr_unsignedp || rr_unsignedp, lr_reversep); 6013 if (! all_ones_mask_p (lr_mask, rnbitsize)) 6014 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask); 6015 6016 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6017 } 6018 6019 /* There is still another way we can do something: If both pairs of 6020 fields being compared are adjacent, we may be able to make a wider 6021 field containing them both. 6022 6023 Note that we still must mask the lhs/rhs expressions. Furthermore, 6024 the mask must be shifted to account for the shift done by 6025 make_bit_field_ref. */ 6026 if (((ll_bitsize + ll_bitpos == rl_bitpos 6027 && lr_bitsize + lr_bitpos == rr_bitpos) 6028 || (ll_bitpos == rl_bitpos + rl_bitsize 6029 && lr_bitpos == rr_bitpos + rr_bitsize)) 6030 && ll_bitpos >= 0 6031 && rl_bitpos >= 0 6032 && lr_bitpos >= 0 6033 && rr_bitpos >= 0) 6034 { 6035 tree type; 6036 6037 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype, 6038 ll_bitsize + rl_bitsize, 6039 MIN (ll_bitpos, rl_bitpos), 6040 ll_unsignedp, ll_reversep); 6041 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype, 6042 lr_bitsize + rr_bitsize, 6043 MIN (lr_bitpos, rr_bitpos), 6044 lr_unsignedp, lr_reversep); 6045 6046 ll_mask = const_binop (RSHIFT_EXPR, ll_mask, 6047 size_int (MIN (xll_bitpos, xrl_bitpos))); 6048 lr_mask = const_binop (RSHIFT_EXPR, lr_mask, 6049 size_int (MIN (xlr_bitpos, xrr_bitpos))); 6050 6051 /* Convert to the smaller type before masking out unwanted bits. */ 6052 type = lntype; 6053 if (lntype != rntype) 6054 { 6055 if (lnbitsize > rnbitsize) 6056 { 6057 lhs = fold_convert_loc (loc, rntype, lhs); 6058 ll_mask = fold_convert_loc (loc, rntype, ll_mask); 6059 type = rntype; 6060 } 6061 else if (lnbitsize < rnbitsize) 6062 { 6063 rhs = fold_convert_loc (loc, lntype, rhs); 6064 lr_mask = fold_convert_loc (loc, lntype, lr_mask); 6065 type = lntype; 6066 } 6067 } 6068 6069 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize)) 6070 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask); 6071 6072 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize)) 6073 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask); 6074 6075 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6076 } 6077 6078 return 0; 6079 } 6080 6081 /* Handle the case of comparisons with constants. If there is something in 6082 common between the masks, those bits of the constants must be the same. 6083 If not, the condition is always false. Test for this to avoid generating 6084 incorrect code below. */ 6085 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask); 6086 if (! integer_zerop (result) 6087 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const), 6088 const_binop (BIT_AND_EXPR, result, r_const)) != 1) 6089 { 6090 if (wanted_code == NE_EXPR) 6091 { 6092 warning (0, "%<or%> of unmatched not-equal tests is always 1"); 6093 return constant_boolean_node (true, truth_type); 6094 } 6095 else 6096 { 6097 warning (0, "%<and%> of mutually exclusive equal-tests is always 0"); 6098 return constant_boolean_node (false, truth_type); 6099 } 6100 } 6101 6102 if (lnbitpos < 0) 6103 return 0; 6104 6105 /* Construct the expression we will return. First get the component 6106 reference we will make. Unless the mask is all ones the width of 6107 that field, perform the mask operation. Then compare with the 6108 merged constant. */ 6109 result = make_bit_field_ref (loc, ll_inner, ll_arg, 6110 lntype, lnbitsize, lnbitpos, 6111 ll_unsignedp || rl_unsignedp, ll_reversep); 6112 6113 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 6114 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6115 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask); 6116 6117 return build2_loc (loc, wanted_code, truth_type, result, 6118 const_binop (BIT_IOR_EXPR, l_const, r_const)); 6119 } 6120 6121 /* T is an integer expression that is being multiplied, divided, or taken a 6122 modulus (CODE says which and what kind of divide or modulus) by a 6123 constant C. See if we can eliminate that operation by folding it with 6124 other operations already in T. WIDE_TYPE, if non-null, is a type that 6125 should be used for the computation if wider than our type. 6126 6127 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return 6128 (X * 2) + (Y * 4). We must, however, be assured that either the original 6129 expression would not overflow or that overflow is undefined for the type 6130 in the language in question. 6131 6132 If we return a non-null expression, it is an equivalent form of the 6133 original computation, but need not be in the original type. 6134 6135 We set *STRICT_OVERFLOW_P to true if the return values depends on 6136 signed overflow being undefined. Otherwise we do not change 6137 *STRICT_OVERFLOW_P. */ 6138 6139 static tree 6140 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type, 6141 bool *strict_overflow_p) 6142 { 6143 /* To avoid exponential search depth, refuse to allow recursion past 6144 three levels. Beyond that (1) it's highly unlikely that we'll find 6145 something interesting and (2) we've probably processed it before 6146 when we built the inner expression. */ 6147 6148 static int depth; 6149 tree ret; 6150 6151 if (depth > 3) 6152 return NULL; 6153 6154 depth++; 6155 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p); 6156 depth--; 6157 6158 return ret; 6159 } 6160 6161 static tree 6162 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type, 6163 bool *strict_overflow_p) 6164 { 6165 tree type = TREE_TYPE (t); 6166 enum tree_code tcode = TREE_CODE (t); 6167 tree ctype = (wide_type != 0 6168 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type)) 6169 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type))) 6170 ? wide_type : type); 6171 tree t1, t2; 6172 int same_p = tcode == code; 6173 tree op0 = NULL_TREE, op1 = NULL_TREE; 6174 bool sub_strict_overflow_p; 6175 6176 /* Don't deal with constants of zero here; they confuse the code below. */ 6177 if (integer_zerop (c)) 6178 return NULL_TREE; 6179 6180 if (TREE_CODE_CLASS (tcode) == tcc_unary) 6181 op0 = TREE_OPERAND (t, 0); 6182 6183 if (TREE_CODE_CLASS (tcode) == tcc_binary) 6184 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1); 6185 6186 /* Note that we need not handle conditional operations here since fold 6187 already handles those cases. So just do arithmetic here. */ 6188 switch (tcode) 6189 { 6190 case INTEGER_CST: 6191 /* For a constant, we can always simplify if we are a multiply 6192 or (for divide and modulus) if it is a multiple of our constant. */ 6193 if (code == MULT_EXPR 6194 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c), 6195 TYPE_SIGN (type))) 6196 { 6197 tree tem = const_binop (code, fold_convert (ctype, t), 6198 fold_convert (ctype, c)); 6199 /* If the multiplication overflowed, we lost information on it. 6200 See PR68142 and PR69845. */ 6201 if (TREE_OVERFLOW (tem)) 6202 return NULL_TREE; 6203 return tem; 6204 } 6205 break; 6206 6207 CASE_CONVERT: case NON_LVALUE_EXPR: 6208 /* If op0 is an expression ... */ 6209 if ((COMPARISON_CLASS_P (op0) 6210 || UNARY_CLASS_P (op0) 6211 || BINARY_CLASS_P (op0) 6212 || VL_EXP_CLASS_P (op0) 6213 || EXPRESSION_CLASS_P (op0)) 6214 /* ... and has wrapping overflow, and its type is smaller 6215 than ctype, then we cannot pass through as widening. */ 6216 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6217 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))) 6218 && (TYPE_PRECISION (ctype) 6219 > TYPE_PRECISION (TREE_TYPE (op0)))) 6220 /* ... or this is a truncation (t is narrower than op0), 6221 then we cannot pass through this narrowing. */ 6222 || (TYPE_PRECISION (type) 6223 < TYPE_PRECISION (TREE_TYPE (op0))) 6224 /* ... or signedness changes for division or modulus, 6225 then we cannot pass through this conversion. */ 6226 || (code != MULT_EXPR 6227 && (TYPE_UNSIGNED (ctype) 6228 != TYPE_UNSIGNED (TREE_TYPE (op0)))) 6229 /* ... or has undefined overflow while the converted to 6230 type has not, we cannot do the operation in the inner type 6231 as that would introduce undefined overflow. */ 6232 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6233 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))) 6234 && !TYPE_OVERFLOW_UNDEFINED (type)))) 6235 break; 6236 6237 /* Pass the constant down and see if we can make a simplification. If 6238 we can, replace this expression with the inner simplification for 6239 possible later conversion to our or some other type. */ 6240 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0 6241 && TREE_CODE (t2) == INTEGER_CST 6242 && !TREE_OVERFLOW (t2) 6243 && (t1 = extract_muldiv (op0, t2, code, 6244 code == MULT_EXPR ? ctype : NULL_TREE, 6245 strict_overflow_p)) != 0) 6246 return t1; 6247 break; 6248 6249 case ABS_EXPR: 6250 /* If widening the type changes it from signed to unsigned, then we 6251 must avoid building ABS_EXPR itself as unsigned. */ 6252 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type)) 6253 { 6254 tree cstype = (*signed_type_for) (ctype); 6255 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p)) 6256 != 0) 6257 { 6258 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1)); 6259 return fold_convert (ctype, t1); 6260 } 6261 break; 6262 } 6263 /* If the constant is negative, we cannot simplify this. */ 6264 if (tree_int_cst_sgn (c) == -1) 6265 break; 6266 /* FALLTHROUGH */ 6267 case NEGATE_EXPR: 6268 /* For division and modulus, type can't be unsigned, as e.g. 6269 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2. 6270 For signed types, even with wrapping overflow, this is fine. */ 6271 if (code != MULT_EXPR && TYPE_UNSIGNED (type)) 6272 break; 6273 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p)) 6274 != 0) 6275 return fold_build1 (tcode, ctype, fold_convert (ctype, t1)); 6276 break; 6277 6278 case MIN_EXPR: case MAX_EXPR: 6279 /* If widening the type changes the signedness, then we can't perform 6280 this optimization as that changes the result. */ 6281 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type)) 6282 break; 6283 6284 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */ 6285 sub_strict_overflow_p = false; 6286 if ((t1 = extract_muldiv (op0, c, code, wide_type, 6287 &sub_strict_overflow_p)) != 0 6288 && (t2 = extract_muldiv (op1, c, code, wide_type, 6289 &sub_strict_overflow_p)) != 0) 6290 { 6291 if (tree_int_cst_sgn (c) < 0) 6292 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR); 6293 if (sub_strict_overflow_p) 6294 *strict_overflow_p = true; 6295 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6296 fold_convert (ctype, t2)); 6297 } 6298 break; 6299 6300 case LSHIFT_EXPR: case RSHIFT_EXPR: 6301 /* If the second operand is constant, this is a multiplication 6302 or floor division, by a power of two, so we can treat it that 6303 way unless the multiplier or divisor overflows. Signed 6304 left-shift overflow is implementation-defined rather than 6305 undefined in C90, so do not convert signed left shift into 6306 multiplication. */ 6307 if (TREE_CODE (op1) == INTEGER_CST 6308 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0))) 6309 /* const_binop may not detect overflow correctly, 6310 so check for it explicitly here. */ 6311 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 6312 wi::to_wide (op1)) 6313 && (t1 = fold_convert (ctype, 6314 const_binop (LSHIFT_EXPR, size_one_node, 6315 op1))) != 0 6316 && !TREE_OVERFLOW (t1)) 6317 return extract_muldiv (build2 (tcode == LSHIFT_EXPR 6318 ? MULT_EXPR : FLOOR_DIV_EXPR, 6319 ctype, 6320 fold_convert (ctype, op0), 6321 t1), 6322 c, code, wide_type, strict_overflow_p); 6323 break; 6324 6325 case PLUS_EXPR: case MINUS_EXPR: 6326 /* See if we can eliminate the operation on both sides. If we can, we 6327 can return a new PLUS or MINUS. If we can't, the only remaining 6328 cases where we can do anything are if the second operand is a 6329 constant. */ 6330 sub_strict_overflow_p = false; 6331 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p); 6332 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p); 6333 if (t1 != 0 && t2 != 0 6334 && TYPE_OVERFLOW_WRAPS (ctype) 6335 && (code == MULT_EXPR 6336 /* If not multiplication, we can only do this if both operands 6337 are divisible by c. */ 6338 || (multiple_of_p (ctype, op0, c) 6339 && multiple_of_p (ctype, op1, c)))) 6340 { 6341 if (sub_strict_overflow_p) 6342 *strict_overflow_p = true; 6343 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6344 fold_convert (ctype, t2)); 6345 } 6346 6347 /* If this was a subtraction, negate OP1 and set it to be an addition. 6348 This simplifies the logic below. */ 6349 if (tcode == MINUS_EXPR) 6350 { 6351 tcode = PLUS_EXPR, op1 = negate_expr (op1); 6352 /* If OP1 was not easily negatable, the constant may be OP0. */ 6353 if (TREE_CODE (op0) == INTEGER_CST) 6354 { 6355 std::swap (op0, op1); 6356 std::swap (t1, t2); 6357 } 6358 } 6359 6360 if (TREE_CODE (op1) != INTEGER_CST) 6361 break; 6362 6363 /* If either OP1 or C are negative, this optimization is not safe for 6364 some of the division and remainder types while for others we need 6365 to change the code. */ 6366 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0) 6367 { 6368 if (code == CEIL_DIV_EXPR) 6369 code = FLOOR_DIV_EXPR; 6370 else if (code == FLOOR_DIV_EXPR) 6371 code = CEIL_DIV_EXPR; 6372 else if (code != MULT_EXPR 6373 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR) 6374 break; 6375 } 6376 6377 /* If it's a multiply or a division/modulus operation of a multiple 6378 of our constant, do the operation and verify it doesn't overflow. */ 6379 if (code == MULT_EXPR 6380 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6381 TYPE_SIGN (type))) 6382 { 6383 op1 = const_binop (code, fold_convert (ctype, op1), 6384 fold_convert (ctype, c)); 6385 /* We allow the constant to overflow with wrapping semantics. */ 6386 if (op1 == 0 6387 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype))) 6388 break; 6389 } 6390 else 6391 break; 6392 6393 /* If we have an unsigned type, we cannot widen the operation since it 6394 will change the result if the original computation overflowed. */ 6395 if (TYPE_UNSIGNED (ctype) && ctype != type) 6396 break; 6397 6398 /* The last case is if we are a multiply. In that case, we can 6399 apply the distributive law to commute the multiply and addition 6400 if the multiplication of the constants doesn't overflow 6401 and overflow is defined. With undefined overflow 6402 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */ 6403 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype)) 6404 return fold_build2 (tcode, ctype, 6405 fold_build2 (code, ctype, 6406 fold_convert (ctype, op0), 6407 fold_convert (ctype, c)), 6408 op1); 6409 6410 break; 6411 6412 case MULT_EXPR: 6413 /* We have a special case here if we are doing something like 6414 (C * 8) % 4 since we know that's zero. */ 6415 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR 6416 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR) 6417 /* If the multiplication can overflow we cannot optimize this. */ 6418 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)) 6419 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 6420 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6421 TYPE_SIGN (type))) 6422 { 6423 *strict_overflow_p = true; 6424 return omit_one_operand (type, integer_zero_node, op0); 6425 } 6426 6427 /* ... fall through ... */ 6428 6429 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: 6430 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: 6431 /* If we can extract our operation from the LHS, do so and return a 6432 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise, 6433 do something only if the second operand is a constant. */ 6434 if (same_p 6435 && TYPE_OVERFLOW_WRAPS (ctype) 6436 && (t1 = extract_muldiv (op0, c, code, wide_type, 6437 strict_overflow_p)) != 0) 6438 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6439 fold_convert (ctype, op1)); 6440 else if (tcode == MULT_EXPR && code == MULT_EXPR 6441 && TYPE_OVERFLOW_WRAPS (ctype) 6442 && (t1 = extract_muldiv (op1, c, code, wide_type, 6443 strict_overflow_p)) != 0) 6444 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6445 fold_convert (ctype, t1)); 6446 else if (TREE_CODE (op1) != INTEGER_CST) 6447 return 0; 6448 6449 /* If these are the same operation types, we can associate them 6450 assuming no overflow. */ 6451 if (tcode == code) 6452 { 6453 bool overflow_p = false; 6454 bool overflow_mul_p; 6455 signop sign = TYPE_SIGN (ctype); 6456 unsigned prec = TYPE_PRECISION (ctype); 6457 wide_int mul = wi::mul (wi::to_wide (op1, prec), 6458 wi::to_wide (c, prec), 6459 sign, &overflow_mul_p); 6460 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1); 6461 if (overflow_mul_p 6462 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED)) 6463 overflow_p = true; 6464 if (!overflow_p) 6465 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6466 wide_int_to_tree (ctype, mul)); 6467 } 6468 6469 /* If these operations "cancel" each other, we have the main 6470 optimizations of this pass, which occur when either constant is a 6471 multiple of the other, in which case we replace this with either an 6472 operation or CODE or TCODE. 6473 6474 If we have an unsigned type, we cannot do this since it will change 6475 the result if the original computation overflowed. */ 6476 if (TYPE_OVERFLOW_UNDEFINED (ctype) 6477 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR) 6478 || (tcode == MULT_EXPR 6479 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR 6480 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR 6481 && code != MULT_EXPR))) 6482 { 6483 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6484 TYPE_SIGN (type))) 6485 { 6486 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6487 *strict_overflow_p = true; 6488 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6489 fold_convert (ctype, 6490 const_binop (TRUNC_DIV_EXPR, 6491 op1, c))); 6492 } 6493 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1), 6494 TYPE_SIGN (type))) 6495 { 6496 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6497 *strict_overflow_p = true; 6498 return fold_build2 (code, ctype, fold_convert (ctype, op0), 6499 fold_convert (ctype, 6500 const_binop (TRUNC_DIV_EXPR, 6501 c, op1))); 6502 } 6503 } 6504 break; 6505 6506 default: 6507 break; 6508 } 6509 6510 return 0; 6511 } 6512 6513 /* Return a node which has the indicated constant VALUE (either 0 or 6514 1 for scalars or {-1,-1,..} or {0,0,...} for vectors), 6515 and is of the indicated TYPE. */ 6516 6517 tree 6518 constant_boolean_node (bool value, tree type) 6519 { 6520 if (type == integer_type_node) 6521 return value ? integer_one_node : integer_zero_node; 6522 else if (type == boolean_type_node) 6523 return value ? boolean_true_node : boolean_false_node; 6524 else if (TREE_CODE (type) == VECTOR_TYPE) 6525 return build_vector_from_val (type, 6526 build_int_cst (TREE_TYPE (type), 6527 value ? -1 : 0)); 6528 else 6529 return fold_convert (type, value ? integer_one_node : integer_zero_node); 6530 } 6531 6532 6533 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'. 6534 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here 6535 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)' 6536 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the 6537 COND is the first argument to CODE; otherwise (as in the example 6538 given here), it is the second argument. TYPE is the type of the 6539 original expression. Return NULL_TREE if no simplification is 6540 possible. */ 6541 6542 static tree 6543 fold_binary_op_with_conditional_arg (location_t loc, 6544 enum tree_code code, 6545 tree type, tree op0, tree op1, 6546 tree cond, tree arg, int cond_first_p) 6547 { 6548 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1); 6549 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0); 6550 tree test, true_value, false_value; 6551 tree lhs = NULL_TREE; 6552 tree rhs = NULL_TREE; 6553 enum tree_code cond_code = COND_EXPR; 6554 6555 if (TREE_CODE (cond) == COND_EXPR 6556 || TREE_CODE (cond) == VEC_COND_EXPR) 6557 { 6558 test = TREE_OPERAND (cond, 0); 6559 true_value = TREE_OPERAND (cond, 1); 6560 false_value = TREE_OPERAND (cond, 2); 6561 /* If this operand throws an expression, then it does not make 6562 sense to try to perform a logical or arithmetic operation 6563 involving it. */ 6564 if (VOID_TYPE_P (TREE_TYPE (true_value))) 6565 lhs = true_value; 6566 if (VOID_TYPE_P (TREE_TYPE (false_value))) 6567 rhs = false_value; 6568 } 6569 else if (!(TREE_CODE (type) != VECTOR_TYPE 6570 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE)) 6571 { 6572 tree testtype = TREE_TYPE (cond); 6573 test = cond; 6574 true_value = constant_boolean_node (true, testtype); 6575 false_value = constant_boolean_node (false, testtype); 6576 } 6577 else 6578 /* Detect the case of mixing vector and scalar types - bail out. */ 6579 return NULL_TREE; 6580 6581 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE) 6582 cond_code = VEC_COND_EXPR; 6583 6584 /* This transformation is only worthwhile if we don't have to wrap ARG 6585 in a SAVE_EXPR and the operation can be simplified without recursing 6586 on at least one of the branches once its pushed inside the COND_EXPR. */ 6587 if (!TREE_CONSTANT (arg) 6588 && (TREE_SIDE_EFFECTS (arg) 6589 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR 6590 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value))) 6591 return NULL_TREE; 6592 6593 arg = fold_convert_loc (loc, arg_type, arg); 6594 if (lhs == 0) 6595 { 6596 true_value = fold_convert_loc (loc, cond_type, true_value); 6597 if (cond_first_p) 6598 lhs = fold_build2_loc (loc, code, type, true_value, arg); 6599 else 6600 lhs = fold_build2_loc (loc, code, type, arg, true_value); 6601 } 6602 if (rhs == 0) 6603 { 6604 false_value = fold_convert_loc (loc, cond_type, false_value); 6605 if (cond_first_p) 6606 rhs = fold_build2_loc (loc, code, type, false_value, arg); 6607 else 6608 rhs = fold_build2_loc (loc, code, type, arg, false_value); 6609 } 6610 6611 /* Check that we have simplified at least one of the branches. */ 6612 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs)) 6613 return NULL_TREE; 6614 6615 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs); 6616 } 6617 6618 6619 /* Subroutine of fold() that checks for the addition of +/- 0.0. 6620 6621 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type 6622 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X - 6623 ADDEND is the same as X. 6624 6625 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero 6626 and finite. The problematic cases are when X is zero, and its mode 6627 has signed zeros. In the case of rounding towards -infinity, 6628 X - 0 is not the same as X because 0 - 0 is -0. In other rounding 6629 modes, X + 0 is not the same as X because -0 + 0 is 0. */ 6630 6631 bool 6632 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate) 6633 { 6634 if (!real_zerop (addend)) 6635 return false; 6636 6637 /* Don't allow the fold with -fsignaling-nans. */ 6638 if (HONOR_SNANS (element_mode (type))) 6639 return false; 6640 6641 /* Allow the fold if zeros aren't signed, or their sign isn't important. */ 6642 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 6643 return true; 6644 6645 /* In a vector or complex, we would need to check the sign of all zeros. */ 6646 if (TREE_CODE (addend) != REAL_CST) 6647 return false; 6648 6649 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */ 6650 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend))) 6651 negate = !negate; 6652 6653 /* The mode has signed zeros, and we have to honor their sign. 6654 In this situation, there is only one case we can return true for. 6655 X - 0 is the same as X unless rounding towards -infinity is 6656 supported. */ 6657 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)); 6658 } 6659 6660 /* Subroutine of match.pd that optimizes comparisons of a division by 6661 a nonzero integer constant against an integer constant, i.e. 6662 X/C1 op C2. 6663 6664 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, 6665 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */ 6666 6667 enum tree_code 6668 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo, 6669 tree *hi, bool *neg_overflow) 6670 { 6671 tree prod, tmp, type = TREE_TYPE (c1); 6672 signop sign = TYPE_SIGN (type); 6673 bool overflow; 6674 6675 /* We have to do this the hard way to detect unsigned overflow. 6676 prod = int_const_binop (MULT_EXPR, c1, c2); */ 6677 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow); 6678 prod = force_fit_type (type, val, -1, overflow); 6679 *neg_overflow = false; 6680 6681 if (sign == UNSIGNED) 6682 { 6683 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6684 *lo = prod; 6685 6686 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */ 6687 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow); 6688 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod)); 6689 } 6690 else if (tree_int_cst_sgn (c1) >= 0) 6691 { 6692 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6693 switch (tree_int_cst_sgn (c2)) 6694 { 6695 case -1: 6696 *neg_overflow = true; 6697 *lo = int_const_binop (MINUS_EXPR, prod, tmp); 6698 *hi = prod; 6699 break; 6700 6701 case 0: 6702 *lo = fold_negate_const (tmp, type); 6703 *hi = tmp; 6704 break; 6705 6706 case 1: 6707 *hi = int_const_binop (PLUS_EXPR, prod, tmp); 6708 *lo = prod; 6709 break; 6710 6711 default: 6712 gcc_unreachable (); 6713 } 6714 } 6715 else 6716 { 6717 /* A negative divisor reverses the relational operators. */ 6718 code = swap_tree_comparison (code); 6719 6720 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1)); 6721 switch (tree_int_cst_sgn (c2)) 6722 { 6723 case -1: 6724 *hi = int_const_binop (MINUS_EXPR, prod, tmp); 6725 *lo = prod; 6726 break; 6727 6728 case 0: 6729 *hi = fold_negate_const (tmp, type); 6730 *lo = tmp; 6731 break; 6732 6733 case 1: 6734 *neg_overflow = true; 6735 *lo = int_const_binop (PLUS_EXPR, prod, tmp); 6736 *hi = prod; 6737 break; 6738 6739 default: 6740 gcc_unreachable (); 6741 } 6742 } 6743 6744 if (code != EQ_EXPR && code != NE_EXPR) 6745 return code; 6746 6747 if (TREE_OVERFLOW (*lo) 6748 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0)) 6749 *lo = NULL_TREE; 6750 if (TREE_OVERFLOW (*hi) 6751 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0)) 6752 *hi = NULL_TREE; 6753 6754 return code; 6755 } 6756 6757 6758 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6759 equality/inequality test, then return a simplified form of the test 6760 using a sign testing. Otherwise return NULL. TYPE is the desired 6761 result type. */ 6762 6763 static tree 6764 fold_single_bit_test_into_sign_test (location_t loc, 6765 enum tree_code code, tree arg0, tree arg1, 6766 tree result_type) 6767 { 6768 /* If this is testing a single bit, we can optimize the test. */ 6769 if ((code == NE_EXPR || code == EQ_EXPR) 6770 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6771 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6772 { 6773 /* If we have (A & C) != 0 where C is the sign bit of A, convert 6774 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */ 6775 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)); 6776 6777 if (arg00 != NULL_TREE 6778 /* This is only a win if casting to a signed type is cheap, 6779 i.e. when arg00's type is not a partial mode. */ 6780 && type_has_mode_precision_p (TREE_TYPE (arg00))) 6781 { 6782 tree stype = signed_type_for (TREE_TYPE (arg00)); 6783 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 6784 result_type, 6785 fold_convert_loc (loc, stype, arg00), 6786 build_int_cst (stype, 0)); 6787 } 6788 } 6789 6790 return NULL_TREE; 6791 } 6792 6793 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6794 equality/inequality test, then return a simplified form of 6795 the test using shifts and logical operations. Otherwise return 6796 NULL. TYPE is the desired result type. */ 6797 6798 tree 6799 fold_single_bit_test (location_t loc, enum tree_code code, 6800 tree arg0, tree arg1, tree result_type) 6801 { 6802 /* If this is testing a single bit, we can optimize the test. */ 6803 if ((code == NE_EXPR || code == EQ_EXPR) 6804 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6805 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6806 { 6807 tree inner = TREE_OPERAND (arg0, 0); 6808 tree type = TREE_TYPE (arg0); 6809 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1)); 6810 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type); 6811 int ops_unsigned; 6812 tree signed_type, unsigned_type, intermediate_type; 6813 tree tem, one; 6814 6815 /* First, see if we can fold the single bit test into a sign-bit 6816 test. */ 6817 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, 6818 result_type); 6819 if (tem) 6820 return tem; 6821 6822 /* Otherwise we have (A & C) != 0 where C is a single bit, 6823 convert that into ((A >> C2) & 1). Where C2 = log2(C). 6824 Similarly for (A & C) == 0. */ 6825 6826 /* If INNER is a right shift of a constant and it plus BITNUM does 6827 not overflow, adjust BITNUM and INNER. */ 6828 if (TREE_CODE (inner) == RSHIFT_EXPR 6829 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST 6830 && bitnum < TYPE_PRECISION (type) 6831 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)), 6832 TYPE_PRECISION (type) - bitnum)) 6833 { 6834 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1)); 6835 inner = TREE_OPERAND (inner, 0); 6836 } 6837 6838 /* If we are going to be able to omit the AND below, we must do our 6839 operations as unsigned. If we must use the AND, we have a choice. 6840 Normally unsigned is faster, but for some machines signed is. */ 6841 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND 6842 && !flag_syntax_only) ? 0 : 1; 6843 6844 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0); 6845 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1); 6846 intermediate_type = ops_unsigned ? unsigned_type : signed_type; 6847 inner = fold_convert_loc (loc, intermediate_type, inner); 6848 6849 if (bitnum != 0) 6850 inner = build2 (RSHIFT_EXPR, intermediate_type, 6851 inner, size_int (bitnum)); 6852 6853 one = build_int_cst (intermediate_type, 1); 6854 6855 if (code == EQ_EXPR) 6856 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one); 6857 6858 /* Put the AND last so it can combine with more things. */ 6859 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one); 6860 6861 /* Make sure to return the proper type. */ 6862 inner = fold_convert_loc (loc, result_type, inner); 6863 6864 return inner; 6865 } 6866 return NULL_TREE; 6867 } 6868 6869 /* Test whether it is preferable two swap two operands, ARG0 and 6870 ARG1, for example because ARG0 is an integer constant and ARG1 6871 isn't. */ 6872 6873 bool 6874 tree_swap_operands_p (const_tree arg0, const_tree arg1) 6875 { 6876 if (CONSTANT_CLASS_P (arg1)) 6877 return 0; 6878 if (CONSTANT_CLASS_P (arg0)) 6879 return 1; 6880 6881 STRIP_NOPS (arg0); 6882 STRIP_NOPS (arg1); 6883 6884 if (TREE_CONSTANT (arg1)) 6885 return 0; 6886 if (TREE_CONSTANT (arg0)) 6887 return 1; 6888 6889 /* It is preferable to swap two SSA_NAME to ensure a canonical form 6890 for commutative and comparison operators. Ensuring a canonical 6891 form allows the optimizers to find additional redundancies without 6892 having to explicitly check for both orderings. */ 6893 if (TREE_CODE (arg0) == SSA_NAME 6894 && TREE_CODE (arg1) == SSA_NAME 6895 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1)) 6896 return 1; 6897 6898 /* Put SSA_NAMEs last. */ 6899 if (TREE_CODE (arg1) == SSA_NAME) 6900 return 0; 6901 if (TREE_CODE (arg0) == SSA_NAME) 6902 return 1; 6903 6904 /* Put variables last. */ 6905 if (DECL_P (arg1)) 6906 return 0; 6907 if (DECL_P (arg0)) 6908 return 1; 6909 6910 return 0; 6911 } 6912 6913 6914 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y 6915 means A >= Y && A != MAX, but in this case we know that 6916 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */ 6917 6918 static tree 6919 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound) 6920 { 6921 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y; 6922 6923 if (TREE_CODE (bound) == LT_EXPR) 6924 a = TREE_OPERAND (bound, 0); 6925 else if (TREE_CODE (bound) == GT_EXPR) 6926 a = TREE_OPERAND (bound, 1); 6927 else 6928 return NULL_TREE; 6929 6930 typea = TREE_TYPE (a); 6931 if (!INTEGRAL_TYPE_P (typea) 6932 && !POINTER_TYPE_P (typea)) 6933 return NULL_TREE; 6934 6935 if (TREE_CODE (ineq) == LT_EXPR) 6936 { 6937 a1 = TREE_OPERAND (ineq, 1); 6938 y = TREE_OPERAND (ineq, 0); 6939 } 6940 else if (TREE_CODE (ineq) == GT_EXPR) 6941 { 6942 a1 = TREE_OPERAND (ineq, 0); 6943 y = TREE_OPERAND (ineq, 1); 6944 } 6945 else 6946 return NULL_TREE; 6947 6948 if (TREE_TYPE (a1) != typea) 6949 return NULL_TREE; 6950 6951 if (POINTER_TYPE_P (typea)) 6952 { 6953 /* Convert the pointer types into integer before taking the difference. */ 6954 tree ta = fold_convert_loc (loc, ssizetype, a); 6955 tree ta1 = fold_convert_loc (loc, ssizetype, a1); 6956 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta); 6957 } 6958 else 6959 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a); 6960 6961 if (!diff || !integer_onep (diff)) 6962 return NULL_TREE; 6963 6964 return fold_build2_loc (loc, GE_EXPR, type, a, y); 6965 } 6966 6967 /* Fold a sum or difference of at least one multiplication. 6968 Returns the folded tree or NULL if no simplification could be made. */ 6969 6970 static tree 6971 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type, 6972 tree arg0, tree arg1) 6973 { 6974 tree arg00, arg01, arg10, arg11; 6975 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same; 6976 6977 /* (A * C) +- (B * C) -> (A+-B) * C. 6978 (A * C) +- A -> A * (C+-1). 6979 We are most concerned about the case where C is a constant, 6980 but other combinations show up during loop reduction. Since 6981 it is not difficult, try all four possibilities. */ 6982 6983 if (TREE_CODE (arg0) == MULT_EXPR) 6984 { 6985 arg00 = TREE_OPERAND (arg0, 0); 6986 arg01 = TREE_OPERAND (arg0, 1); 6987 } 6988 else if (TREE_CODE (arg0) == INTEGER_CST) 6989 { 6990 arg00 = build_one_cst (type); 6991 arg01 = arg0; 6992 } 6993 else 6994 { 6995 /* We cannot generate constant 1 for fract. */ 6996 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 6997 return NULL_TREE; 6998 arg00 = arg0; 6999 arg01 = build_one_cst (type); 7000 } 7001 if (TREE_CODE (arg1) == MULT_EXPR) 7002 { 7003 arg10 = TREE_OPERAND (arg1, 0); 7004 arg11 = TREE_OPERAND (arg1, 1); 7005 } 7006 else if (TREE_CODE (arg1) == INTEGER_CST) 7007 { 7008 arg10 = build_one_cst (type); 7009 /* As we canonicalize A - 2 to A + -2 get rid of that sign for 7010 the purpose of this canonicalization. */ 7011 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1))) 7012 && negate_expr_p (arg1) 7013 && code == PLUS_EXPR) 7014 { 7015 arg11 = negate_expr (arg1); 7016 code = MINUS_EXPR; 7017 } 7018 else 7019 arg11 = arg1; 7020 } 7021 else 7022 { 7023 /* We cannot generate constant 1 for fract. */ 7024 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 7025 return NULL_TREE; 7026 arg10 = arg1; 7027 arg11 = build_one_cst (type); 7028 } 7029 same = NULL_TREE; 7030 7031 /* Prefer factoring a common non-constant. */ 7032 if (operand_equal_p (arg00, arg10, 0)) 7033 same = arg00, alt0 = arg01, alt1 = arg11; 7034 else if (operand_equal_p (arg01, arg11, 0)) 7035 same = arg01, alt0 = arg00, alt1 = arg10; 7036 else if (operand_equal_p (arg00, arg11, 0)) 7037 same = arg00, alt0 = arg01, alt1 = arg10; 7038 else if (operand_equal_p (arg01, arg10, 0)) 7039 same = arg01, alt0 = arg00, alt1 = arg11; 7040 7041 /* No identical multiplicands; see if we can find a common 7042 power-of-two factor in non-power-of-two multiplies. This 7043 can help in multi-dimensional array access. */ 7044 else if (tree_fits_shwi_p (arg01) 7045 && tree_fits_shwi_p (arg11)) 7046 { 7047 HOST_WIDE_INT int01, int11, tmp; 7048 bool swap = false; 7049 tree maybe_same; 7050 int01 = tree_to_shwi (arg01); 7051 int11 = tree_to_shwi (arg11); 7052 7053 /* Move min of absolute values to int11. */ 7054 if (absu_hwi (int01) < absu_hwi (int11)) 7055 { 7056 tmp = int01, int01 = int11, int11 = tmp; 7057 alt0 = arg00, arg00 = arg10, arg10 = alt0; 7058 maybe_same = arg01; 7059 swap = true; 7060 } 7061 else 7062 maybe_same = arg11; 7063 7064 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0 7065 /* The remainder should not be a constant, otherwise we 7066 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has 7067 increased the number of multiplications necessary. */ 7068 && TREE_CODE (arg10) != INTEGER_CST) 7069 { 7070 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00, 7071 build_int_cst (TREE_TYPE (arg00), 7072 int01 / int11)); 7073 alt1 = arg10; 7074 same = maybe_same; 7075 if (swap) 7076 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same; 7077 } 7078 } 7079 7080 if (!same) 7081 return NULL_TREE; 7082 7083 if (! INTEGRAL_TYPE_P (type) 7084 || TYPE_OVERFLOW_WRAPS (type) 7085 /* We are neither factoring zero nor minus one. */ 7086 || TREE_CODE (same) == INTEGER_CST) 7087 return fold_build2_loc (loc, MULT_EXPR, type, 7088 fold_build2_loc (loc, code, type, 7089 fold_convert_loc (loc, type, alt0), 7090 fold_convert_loc (loc, type, alt1)), 7091 fold_convert_loc (loc, type, same)); 7092 7093 /* Same may be zero and thus the operation 'code' may overflow. Likewise 7094 same may be minus one and thus the multiplication may overflow. Perform 7095 the sum operation in an unsigned type. */ 7096 tree utype = unsigned_type_for (type); 7097 tree tem = fold_build2_loc (loc, code, utype, 7098 fold_convert_loc (loc, utype, alt0), 7099 fold_convert_loc (loc, utype, alt1)); 7100 /* If the sum evaluated to a constant that is not -INF the multiplication 7101 cannot overflow. */ 7102 if (TREE_CODE (tem) == INTEGER_CST 7103 && (wi::to_wide (tem) 7104 != wi::min_value (TYPE_PRECISION (utype), SIGNED))) 7105 return fold_build2_loc (loc, MULT_EXPR, type, 7106 fold_convert (type, tem), same); 7107 7108 /* Do not resort to unsigned multiplication because 7109 we lose the no-overflow property of the expression. */ 7110 return NULL_TREE; 7111 } 7112 7113 /* Subroutine of native_encode_expr. Encode the INTEGER_CST 7114 specified by EXPR into the buffer PTR of length LEN bytes. 7115 Return the number of bytes placed in the buffer, or zero 7116 upon failure. */ 7117 7118 static int 7119 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off) 7120 { 7121 tree type = TREE_TYPE (expr); 7122 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7123 int byte, offset, word, words; 7124 unsigned char value; 7125 7126 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7127 return 0; 7128 if (off == -1) 7129 off = 0; 7130 7131 if (ptr == NULL) 7132 /* Dry run. */ 7133 return MIN (len, total_bytes - off); 7134 7135 words = total_bytes / UNITS_PER_WORD; 7136 7137 for (byte = 0; byte < total_bytes; byte++) 7138 { 7139 int bitpos = byte * BITS_PER_UNIT; 7140 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole 7141 number of bytes. */ 7142 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT); 7143 7144 if (total_bytes > UNITS_PER_WORD) 7145 { 7146 word = byte / UNITS_PER_WORD; 7147 if (WORDS_BIG_ENDIAN) 7148 word = (words - 1) - word; 7149 offset = word * UNITS_PER_WORD; 7150 if (BYTES_BIG_ENDIAN) 7151 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7152 else 7153 offset += byte % UNITS_PER_WORD; 7154 } 7155 else 7156 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte; 7157 if (offset >= off && offset - off < len) 7158 ptr[offset - off] = value; 7159 } 7160 return MIN (len, total_bytes - off); 7161 } 7162 7163 7164 /* Subroutine of native_encode_expr. Encode the FIXED_CST 7165 specified by EXPR into the buffer PTR of length LEN bytes. 7166 Return the number of bytes placed in the buffer, or zero 7167 upon failure. */ 7168 7169 static int 7170 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off) 7171 { 7172 tree type = TREE_TYPE (expr); 7173 scalar_mode mode = SCALAR_TYPE_MODE (type); 7174 int total_bytes = GET_MODE_SIZE (mode); 7175 FIXED_VALUE_TYPE value; 7176 tree i_value, i_type; 7177 7178 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7179 return 0; 7180 7181 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1); 7182 7183 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes) 7184 return 0; 7185 7186 value = TREE_FIXED_CST (expr); 7187 i_value = double_int_to_tree (i_type, value.data); 7188 7189 return native_encode_int (i_value, ptr, len, off); 7190 } 7191 7192 7193 /* Subroutine of native_encode_expr. Encode the REAL_CST 7194 specified by EXPR into the buffer PTR of length LEN bytes. 7195 Return the number of bytes placed in the buffer, or zero 7196 upon failure. */ 7197 7198 static int 7199 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off) 7200 { 7201 tree type = TREE_TYPE (expr); 7202 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type)); 7203 int byte, offset, word, words, bitpos; 7204 unsigned char value; 7205 7206 /* There are always 32 bits in each long, no matter the size of 7207 the hosts long. We handle floating point representations with 7208 up to 192 bits. */ 7209 long tmp[6]; 7210 7211 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7212 return 0; 7213 if (off == -1) 7214 off = 0; 7215 7216 if (ptr == NULL) 7217 /* Dry run. */ 7218 return MIN (len, total_bytes - off); 7219 7220 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7221 7222 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type)); 7223 7224 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7225 bitpos += BITS_PER_UNIT) 7226 { 7227 byte = (bitpos / BITS_PER_UNIT) & 3; 7228 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31)); 7229 7230 if (UNITS_PER_WORD < 4) 7231 { 7232 word = byte / UNITS_PER_WORD; 7233 if (WORDS_BIG_ENDIAN) 7234 word = (words - 1) - word; 7235 offset = word * UNITS_PER_WORD; 7236 if (BYTES_BIG_ENDIAN) 7237 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7238 else 7239 offset += byte % UNITS_PER_WORD; 7240 } 7241 else 7242 { 7243 offset = byte; 7244 if (BYTES_BIG_ENDIAN) 7245 { 7246 /* Reverse bytes within each long, or within the entire float 7247 if it's smaller than a long (for HFmode). */ 7248 offset = MIN (3, total_bytes - 1) - offset; 7249 gcc_assert (offset >= 0); 7250 } 7251 } 7252 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3); 7253 if (offset >= off 7254 && offset - off < len) 7255 ptr[offset - off] = value; 7256 } 7257 return MIN (len, total_bytes - off); 7258 } 7259 7260 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST 7261 specified by EXPR into the buffer PTR of length LEN bytes. 7262 Return the number of bytes placed in the buffer, or zero 7263 upon failure. */ 7264 7265 static int 7266 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off) 7267 { 7268 int rsize, isize; 7269 tree part; 7270 7271 part = TREE_REALPART (expr); 7272 rsize = native_encode_expr (part, ptr, len, off); 7273 if (off == -1 && rsize == 0) 7274 return 0; 7275 part = TREE_IMAGPART (expr); 7276 if (off != -1) 7277 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part)))); 7278 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL, 7279 len - rsize, off); 7280 if (off == -1 && isize != rsize) 7281 return 0; 7282 return rsize + isize; 7283 } 7284 7285 7286 /* Subroutine of native_encode_expr. Encode the VECTOR_CST 7287 specified by EXPR into the buffer PTR of length LEN bytes. 7288 Return the number of bytes placed in the buffer, or zero 7289 upon failure. */ 7290 7291 static int 7292 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off) 7293 { 7294 unsigned HOST_WIDE_INT i, count; 7295 int size, offset; 7296 tree itype, elem; 7297 7298 offset = 0; 7299 if (!VECTOR_CST_NELTS (expr).is_constant (&count)) 7300 return 0; 7301 itype = TREE_TYPE (TREE_TYPE (expr)); 7302 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype)); 7303 for (i = 0; i < count; i++) 7304 { 7305 if (off >= size) 7306 { 7307 off -= size; 7308 continue; 7309 } 7310 elem = VECTOR_CST_ELT (expr, i); 7311 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL, 7312 len - offset, off); 7313 if ((off == -1 && res != size) || res == 0) 7314 return 0; 7315 offset += res; 7316 if (offset >= len) 7317 return (off == -1 && i < count - 1) ? 0 : offset; 7318 if (off != -1) 7319 off = 0; 7320 } 7321 return offset; 7322 } 7323 7324 7325 /* Subroutine of native_encode_expr. Encode the STRING_CST 7326 specified by EXPR into the buffer PTR of length LEN bytes. 7327 Return the number of bytes placed in the buffer, or zero 7328 upon failure. */ 7329 7330 static int 7331 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off) 7332 { 7333 tree type = TREE_TYPE (expr); 7334 7335 /* Wide-char strings are encoded in target byte-order so native 7336 encoding them is trivial. */ 7337 if (BITS_PER_UNIT != CHAR_BIT 7338 || TREE_CODE (type) != ARRAY_TYPE 7339 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE 7340 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type))) 7341 return 0; 7342 7343 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); 7344 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7345 return 0; 7346 if (off == -1) 7347 off = 0; 7348 if (ptr == NULL) 7349 /* Dry run. */; 7350 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len)) 7351 { 7352 int written = 0; 7353 if (off < TREE_STRING_LENGTH (expr)) 7354 { 7355 written = MIN (len, TREE_STRING_LENGTH (expr) - off); 7356 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written); 7357 } 7358 memset (ptr + written, 0, 7359 MIN (total_bytes - written, len - written)); 7360 } 7361 else 7362 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len)); 7363 return MIN (total_bytes - off, len); 7364 } 7365 7366 7367 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, 7368 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the 7369 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store 7370 anything, just do a dry run. If OFF is not -1 then start 7371 the encoding at byte offset OFF and encode at most LEN bytes. 7372 Return the number of bytes placed in the buffer, or zero upon failure. */ 7373 7374 int 7375 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off) 7376 { 7377 /* We don't support starting at negative offset and -1 is special. */ 7378 if (off < -1) 7379 return 0; 7380 7381 switch (TREE_CODE (expr)) 7382 { 7383 case INTEGER_CST: 7384 return native_encode_int (expr, ptr, len, off); 7385 7386 case REAL_CST: 7387 return native_encode_real (expr, ptr, len, off); 7388 7389 case FIXED_CST: 7390 return native_encode_fixed (expr, ptr, len, off); 7391 7392 case COMPLEX_CST: 7393 return native_encode_complex (expr, ptr, len, off); 7394 7395 case VECTOR_CST: 7396 return native_encode_vector (expr, ptr, len, off); 7397 7398 case STRING_CST: 7399 return native_encode_string (expr, ptr, len, off); 7400 7401 default: 7402 return 0; 7403 } 7404 } 7405 7406 7407 /* Subroutine of native_interpret_expr. Interpret the contents of 7408 the buffer PTR of length LEN as an INTEGER_CST of type TYPE. 7409 If the buffer cannot be interpreted, return NULL_TREE. */ 7410 7411 static tree 7412 native_interpret_int (tree type, const unsigned char *ptr, int len) 7413 { 7414 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7415 7416 if (total_bytes > len 7417 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7418 return NULL_TREE; 7419 7420 wide_int result = wi::from_buffer (ptr, total_bytes); 7421 7422 return wide_int_to_tree (type, result); 7423 } 7424 7425 7426 /* Subroutine of native_interpret_expr. Interpret the contents of 7427 the buffer PTR of length LEN as a FIXED_CST of type TYPE. 7428 If the buffer cannot be interpreted, return NULL_TREE. */ 7429 7430 static tree 7431 native_interpret_fixed (tree type, const unsigned char *ptr, int len) 7432 { 7433 scalar_mode mode = SCALAR_TYPE_MODE (type); 7434 int total_bytes = GET_MODE_SIZE (mode); 7435 double_int result; 7436 FIXED_VALUE_TYPE fixed_value; 7437 7438 if (total_bytes > len 7439 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7440 return NULL_TREE; 7441 7442 result = double_int::from_buffer (ptr, total_bytes); 7443 fixed_value = fixed_from_double_int (result, mode); 7444 7445 return build_fixed (type, fixed_value); 7446 } 7447 7448 7449 /* Subroutine of native_interpret_expr. Interpret the contents of 7450 the buffer PTR of length LEN as a REAL_CST of type TYPE. 7451 If the buffer cannot be interpreted, return NULL_TREE. */ 7452 7453 static tree 7454 native_interpret_real (tree type, const unsigned char *ptr, int len) 7455 { 7456 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type); 7457 int total_bytes = GET_MODE_SIZE (mode); 7458 unsigned char value; 7459 /* There are always 32 bits in each long, no matter the size of 7460 the hosts long. We handle floating point representations with 7461 up to 192 bits. */ 7462 REAL_VALUE_TYPE r; 7463 long tmp[6]; 7464 7465 if (total_bytes > len || total_bytes > 24) 7466 return NULL_TREE; 7467 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7468 7469 memset (tmp, 0, sizeof (tmp)); 7470 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7471 bitpos += BITS_PER_UNIT) 7472 { 7473 /* Both OFFSET and BYTE index within a long; 7474 bitpos indexes the whole float. */ 7475 int offset, byte = (bitpos / BITS_PER_UNIT) & 3; 7476 if (UNITS_PER_WORD < 4) 7477 { 7478 int word = byte / UNITS_PER_WORD; 7479 if (WORDS_BIG_ENDIAN) 7480 word = (words - 1) - word; 7481 offset = word * UNITS_PER_WORD; 7482 if (BYTES_BIG_ENDIAN) 7483 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7484 else 7485 offset += byte % UNITS_PER_WORD; 7486 } 7487 else 7488 { 7489 offset = byte; 7490 if (BYTES_BIG_ENDIAN) 7491 { 7492 /* Reverse bytes within each long, or within the entire float 7493 if it's smaller than a long (for HFmode). */ 7494 offset = MIN (3, total_bytes - 1) - offset; 7495 gcc_assert (offset >= 0); 7496 } 7497 } 7498 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)]; 7499 7500 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31); 7501 } 7502 7503 real_from_target (&r, tmp, mode); 7504 return build_real (type, r); 7505 } 7506 7507 7508 /* Subroutine of native_interpret_expr. Interpret the contents of 7509 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE. 7510 If the buffer cannot be interpreted, return NULL_TREE. */ 7511 7512 static tree 7513 native_interpret_complex (tree type, const unsigned char *ptr, int len) 7514 { 7515 tree etype, rpart, ipart; 7516 int size; 7517 7518 etype = TREE_TYPE (type); 7519 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7520 if (size * 2 > len) 7521 return NULL_TREE; 7522 rpart = native_interpret_expr (etype, ptr, size); 7523 if (!rpart) 7524 return NULL_TREE; 7525 ipart = native_interpret_expr (etype, ptr+size, size); 7526 if (!ipart) 7527 return NULL_TREE; 7528 return build_complex (type, rpart, ipart); 7529 } 7530 7531 7532 /* Subroutine of native_interpret_expr. Interpret the contents of 7533 the buffer PTR of length LEN as a VECTOR_CST of type TYPE. 7534 If the buffer cannot be interpreted, return NULL_TREE. */ 7535 7536 static tree 7537 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len) 7538 { 7539 tree etype, elem; 7540 unsigned int i, size; 7541 unsigned HOST_WIDE_INT count; 7542 7543 etype = TREE_TYPE (type); 7544 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7545 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count) 7546 || size * count > len) 7547 return NULL_TREE; 7548 7549 tree_vector_builder elements (type, count, 1); 7550 for (i = 0; i < count; ++i) 7551 { 7552 elem = native_interpret_expr (etype, ptr+(i*size), size); 7553 if (!elem) 7554 return NULL_TREE; 7555 elements.quick_push (elem); 7556 } 7557 return elements.build (); 7558 } 7559 7560 7561 /* Subroutine of fold_view_convert_expr. Interpret the contents of 7562 the buffer PTR of length LEN as a constant of type TYPE. For 7563 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P 7564 we return a REAL_CST, etc... If the buffer cannot be interpreted, 7565 return NULL_TREE. */ 7566 7567 tree 7568 native_interpret_expr (tree type, const unsigned char *ptr, int len) 7569 { 7570 switch (TREE_CODE (type)) 7571 { 7572 case INTEGER_TYPE: 7573 case ENUMERAL_TYPE: 7574 case BOOLEAN_TYPE: 7575 case POINTER_TYPE: 7576 case REFERENCE_TYPE: 7577 return native_interpret_int (type, ptr, len); 7578 7579 case REAL_TYPE: 7580 return native_interpret_real (type, ptr, len); 7581 7582 case FIXED_POINT_TYPE: 7583 return native_interpret_fixed (type, ptr, len); 7584 7585 case COMPLEX_TYPE: 7586 return native_interpret_complex (type, ptr, len); 7587 7588 case VECTOR_TYPE: 7589 return native_interpret_vector (type, ptr, len); 7590 7591 default: 7592 return NULL_TREE; 7593 } 7594 } 7595 7596 /* Returns true if we can interpret the contents of a native encoding 7597 as TYPE. */ 7598 7599 static bool 7600 can_native_interpret_type_p (tree type) 7601 { 7602 switch (TREE_CODE (type)) 7603 { 7604 case INTEGER_TYPE: 7605 case ENUMERAL_TYPE: 7606 case BOOLEAN_TYPE: 7607 case POINTER_TYPE: 7608 case REFERENCE_TYPE: 7609 case FIXED_POINT_TYPE: 7610 case REAL_TYPE: 7611 case COMPLEX_TYPE: 7612 case VECTOR_TYPE: 7613 return true; 7614 default: 7615 return false; 7616 } 7617 } 7618 7619 7620 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type 7621 TYPE at compile-time. If we're unable to perform the conversion 7622 return NULL_TREE. */ 7623 7624 static tree 7625 fold_view_convert_expr (tree type, tree expr) 7626 { 7627 /* We support up to 512-bit values (for V8DFmode). */ 7628 unsigned char buffer[64]; 7629 int len; 7630 7631 /* Check that the host and target are sane. */ 7632 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8) 7633 return NULL_TREE; 7634 7635 len = native_encode_expr (expr, buffer, sizeof (buffer)); 7636 if (len == 0) 7637 return NULL_TREE; 7638 7639 return native_interpret_expr (type, buffer, len); 7640 } 7641 7642 /* Build an expression for the address of T. Folds away INDIRECT_REF 7643 to avoid confusing the gimplify process. */ 7644 7645 tree 7646 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype) 7647 { 7648 /* The size of the object is not relevant when talking about its address. */ 7649 if (TREE_CODE (t) == WITH_SIZE_EXPR) 7650 t = TREE_OPERAND (t, 0); 7651 7652 if (TREE_CODE (t) == INDIRECT_REF) 7653 { 7654 t = TREE_OPERAND (t, 0); 7655 7656 if (TREE_TYPE (t) != ptrtype) 7657 t = build1_loc (loc, NOP_EXPR, ptrtype, t); 7658 } 7659 else if (TREE_CODE (t) == MEM_REF 7660 && integer_zerop (TREE_OPERAND (t, 1))) 7661 return TREE_OPERAND (t, 0); 7662 else if (TREE_CODE (t) == MEM_REF 7663 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST) 7664 return fold_binary (POINTER_PLUS_EXPR, ptrtype, 7665 TREE_OPERAND (t, 0), 7666 convert_to_ptrofftype (TREE_OPERAND (t, 1))); 7667 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR) 7668 { 7669 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0)); 7670 7671 if (TREE_TYPE (t) != ptrtype) 7672 t = fold_convert_loc (loc, ptrtype, t); 7673 } 7674 else 7675 t = build1_loc (loc, ADDR_EXPR, ptrtype, t); 7676 7677 return t; 7678 } 7679 7680 /* Build an expression for the address of T. */ 7681 7682 tree 7683 build_fold_addr_expr_loc (location_t loc, tree t) 7684 { 7685 tree ptrtype = build_pointer_type (TREE_TYPE (t)); 7686 7687 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype); 7688 } 7689 7690 /* Fold a unary expression of code CODE and type TYPE with operand 7691 OP0. Return the folded expression if folding is successful. 7692 Otherwise, return NULL_TREE. */ 7693 7694 tree 7695 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0) 7696 { 7697 tree tem; 7698 tree arg0; 7699 enum tree_code_class kind = TREE_CODE_CLASS (code); 7700 7701 gcc_assert (IS_EXPR_CODE_CLASS (kind) 7702 && TREE_CODE_LENGTH (code) == 1); 7703 7704 arg0 = op0; 7705 if (arg0) 7706 { 7707 if (CONVERT_EXPR_CODE_P (code) 7708 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR) 7709 { 7710 /* Don't use STRIP_NOPS, because signedness of argument type 7711 matters. */ 7712 STRIP_SIGN_NOPS (arg0); 7713 } 7714 else 7715 { 7716 /* Strip any conversions that don't change the mode. This 7717 is safe for every expression, except for a comparison 7718 expression because its signedness is derived from its 7719 operands. 7720 7721 Note that this is done as an internal manipulation within 7722 the constant folder, in order to find the simplest 7723 representation of the arguments so that their form can be 7724 studied. In any cases, the appropriate type conversions 7725 should be put back in the tree that will get out of the 7726 constant folder. */ 7727 STRIP_NOPS (arg0); 7728 } 7729 7730 if (CONSTANT_CLASS_P (arg0)) 7731 { 7732 tree tem = const_unop (code, type, arg0); 7733 if (tem) 7734 { 7735 if (TREE_TYPE (tem) != type) 7736 tem = fold_convert_loc (loc, type, tem); 7737 return tem; 7738 } 7739 } 7740 } 7741 7742 tem = generic_simplify (loc, code, type, op0); 7743 if (tem) 7744 return tem; 7745 7746 if (TREE_CODE_CLASS (code) == tcc_unary) 7747 { 7748 if (TREE_CODE (arg0) == COMPOUND_EXPR) 7749 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 7750 fold_build1_loc (loc, code, type, 7751 fold_convert_loc (loc, TREE_TYPE (op0), 7752 TREE_OPERAND (arg0, 1)))); 7753 else if (TREE_CODE (arg0) == COND_EXPR) 7754 { 7755 tree arg01 = TREE_OPERAND (arg0, 1); 7756 tree arg02 = TREE_OPERAND (arg0, 2); 7757 if (! VOID_TYPE_P (TREE_TYPE (arg01))) 7758 arg01 = fold_build1_loc (loc, code, type, 7759 fold_convert_loc (loc, 7760 TREE_TYPE (op0), arg01)); 7761 if (! VOID_TYPE_P (TREE_TYPE (arg02))) 7762 arg02 = fold_build1_loc (loc, code, type, 7763 fold_convert_loc (loc, 7764 TREE_TYPE (op0), arg02)); 7765 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0), 7766 arg01, arg02); 7767 7768 /* If this was a conversion, and all we did was to move into 7769 inside the COND_EXPR, bring it back out. But leave it if 7770 it is a conversion from integer to integer and the 7771 result precision is no wider than a word since such a 7772 conversion is cheap and may be optimized away by combine, 7773 while it couldn't if it were outside the COND_EXPR. Then return 7774 so we don't get into an infinite recursion loop taking the 7775 conversion out and then back in. */ 7776 7777 if ((CONVERT_EXPR_CODE_P (code) 7778 || code == NON_LVALUE_EXPR) 7779 && TREE_CODE (tem) == COND_EXPR 7780 && TREE_CODE (TREE_OPERAND (tem, 1)) == code 7781 && TREE_CODE (TREE_OPERAND (tem, 2)) == code 7782 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1)) 7783 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2)) 7784 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)) 7785 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0))) 7786 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7787 && (INTEGRAL_TYPE_P 7788 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)))) 7789 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD) 7790 || flag_syntax_only)) 7791 tem = build1_loc (loc, code, type, 7792 build3 (COND_EXPR, 7793 TREE_TYPE (TREE_OPERAND 7794 (TREE_OPERAND (tem, 1), 0)), 7795 TREE_OPERAND (tem, 0), 7796 TREE_OPERAND (TREE_OPERAND (tem, 1), 0), 7797 TREE_OPERAND (TREE_OPERAND (tem, 2), 7798 0))); 7799 return tem; 7800 } 7801 } 7802 7803 switch (code) 7804 { 7805 case NON_LVALUE_EXPR: 7806 if (!maybe_lvalue_p (op0)) 7807 return fold_convert_loc (loc, type, op0); 7808 return NULL_TREE; 7809 7810 CASE_CONVERT: 7811 case FLOAT_EXPR: 7812 case FIX_TRUNC_EXPR: 7813 if (COMPARISON_CLASS_P (op0)) 7814 { 7815 /* If we have (type) (a CMP b) and type is an integral type, return 7816 new expression involving the new type. Canonicalize 7817 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for 7818 non-integral type. 7819 Do not fold the result as that would not simplify further, also 7820 folding again results in recursions. */ 7821 if (TREE_CODE (type) == BOOLEAN_TYPE) 7822 return build2_loc (loc, TREE_CODE (op0), type, 7823 TREE_OPERAND (op0, 0), 7824 TREE_OPERAND (op0, 1)); 7825 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type) 7826 && TREE_CODE (type) != VECTOR_TYPE) 7827 return build3_loc (loc, COND_EXPR, type, op0, 7828 constant_boolean_node (true, type), 7829 constant_boolean_node (false, type)); 7830 } 7831 7832 /* Handle (T *)&A.B.C for A being of type T and B and C 7833 living at offset zero. This occurs frequently in 7834 C++ upcasting and then accessing the base. */ 7835 if (TREE_CODE (op0) == ADDR_EXPR 7836 && POINTER_TYPE_P (type) 7837 && handled_component_p (TREE_OPERAND (op0, 0))) 7838 { 7839 poly_int64 bitsize, bitpos; 7840 tree offset; 7841 machine_mode mode; 7842 int unsignedp, reversep, volatilep; 7843 tree base 7844 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos, 7845 &offset, &mode, &unsignedp, &reversep, 7846 &volatilep); 7847 /* If the reference was to a (constant) zero offset, we can use 7848 the address of the base if it has the same base type 7849 as the result type and the pointer type is unqualified. */ 7850 if (!offset 7851 && known_eq (bitpos, 0) 7852 && (TYPE_MAIN_VARIANT (TREE_TYPE (type)) 7853 == TYPE_MAIN_VARIANT (TREE_TYPE (base))) 7854 && TYPE_QUALS (type) == TYPE_UNQUALIFIED) 7855 return fold_convert_loc (loc, type, 7856 build_fold_addr_expr_loc (loc, base)); 7857 } 7858 7859 if (TREE_CODE (op0) == MODIFY_EXPR 7860 && TREE_CONSTANT (TREE_OPERAND (op0, 1)) 7861 /* Detect assigning a bitfield. */ 7862 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF 7863 && DECL_BIT_FIELD 7864 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1)))) 7865 { 7866 /* Don't leave an assignment inside a conversion 7867 unless assigning a bitfield. */ 7868 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1)); 7869 /* First do the assignment, then return converted constant. */ 7870 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem); 7871 TREE_NO_WARNING (tem) = 1; 7872 TREE_USED (tem) = 1; 7873 return tem; 7874 } 7875 7876 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer 7877 constants (if x has signed type, the sign bit cannot be set 7878 in c). This folds extension into the BIT_AND_EXPR. 7879 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they 7880 very likely don't have maximal range for their precision and this 7881 transformation effectively doesn't preserve non-maximal ranges. */ 7882 if (TREE_CODE (type) == INTEGER_TYPE 7883 && TREE_CODE (op0) == BIT_AND_EXPR 7884 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST) 7885 { 7886 tree and_expr = op0; 7887 tree and0 = TREE_OPERAND (and_expr, 0); 7888 tree and1 = TREE_OPERAND (and_expr, 1); 7889 int change = 0; 7890 7891 if (TYPE_UNSIGNED (TREE_TYPE (and_expr)) 7892 || (TYPE_PRECISION (type) 7893 <= TYPE_PRECISION (TREE_TYPE (and_expr)))) 7894 change = 1; 7895 else if (TYPE_PRECISION (TREE_TYPE (and1)) 7896 <= HOST_BITS_PER_WIDE_INT 7897 && tree_fits_uhwi_p (and1)) 7898 { 7899 unsigned HOST_WIDE_INT cst; 7900 7901 cst = tree_to_uhwi (and1); 7902 cst &= HOST_WIDE_INT_M1U 7903 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1); 7904 change = (cst == 0); 7905 if (change 7906 && !flag_syntax_only 7907 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0))) 7908 == ZERO_EXTEND)) 7909 { 7910 tree uns = unsigned_type_for (TREE_TYPE (and0)); 7911 and0 = fold_convert_loc (loc, uns, and0); 7912 and1 = fold_convert_loc (loc, uns, and1); 7913 } 7914 } 7915 if (change) 7916 { 7917 tem = force_fit_type (type, wi::to_widest (and1), 0, 7918 TREE_OVERFLOW (and1)); 7919 return fold_build2_loc (loc, BIT_AND_EXPR, type, 7920 fold_convert_loc (loc, type, and0), tem); 7921 } 7922 } 7923 7924 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new 7925 cast (T1)X will fold away. We assume that this happens when X itself 7926 is a cast. */ 7927 if (POINTER_TYPE_P (type) 7928 && TREE_CODE (arg0) == POINTER_PLUS_EXPR 7929 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0))) 7930 { 7931 tree arg00 = TREE_OPERAND (arg0, 0); 7932 tree arg01 = TREE_OPERAND (arg0, 1); 7933 7934 return fold_build_pointer_plus_loc 7935 (loc, fold_convert_loc (loc, type, arg00), arg01); 7936 } 7937 7938 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types 7939 of the same precision, and X is an integer type not narrower than 7940 types T1 or T2, i.e. the cast (T2)X isn't an extension. */ 7941 if (INTEGRAL_TYPE_P (type) 7942 && TREE_CODE (op0) == BIT_NOT_EXPR 7943 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7944 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0)) 7945 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))) 7946 { 7947 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0); 7948 if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7949 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem))) 7950 return fold_build1_loc (loc, BIT_NOT_EXPR, type, 7951 fold_convert_loc (loc, type, tem)); 7952 } 7953 7954 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the 7955 type of X and Y (integer types only). */ 7956 if (INTEGRAL_TYPE_P (type) 7957 && TREE_CODE (op0) == MULT_EXPR 7958 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7959 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0))) 7960 { 7961 /* Be careful not to introduce new overflows. */ 7962 tree mult_type; 7963 if (TYPE_OVERFLOW_WRAPS (type)) 7964 mult_type = type; 7965 else 7966 mult_type = unsigned_type_for (type); 7967 7968 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0))) 7969 { 7970 tem = fold_build2_loc (loc, MULT_EXPR, mult_type, 7971 fold_convert_loc (loc, mult_type, 7972 TREE_OPERAND (op0, 0)), 7973 fold_convert_loc (loc, mult_type, 7974 TREE_OPERAND (op0, 1))); 7975 return fold_convert_loc (loc, type, tem); 7976 } 7977 } 7978 7979 return NULL_TREE; 7980 7981 case VIEW_CONVERT_EXPR: 7982 if (TREE_CODE (op0) == MEM_REF) 7983 { 7984 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type)) 7985 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0))); 7986 tem = fold_build2_loc (loc, MEM_REF, type, 7987 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); 7988 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0); 7989 return tem; 7990 } 7991 7992 return NULL_TREE; 7993 7994 case NEGATE_EXPR: 7995 tem = fold_negate_expr (loc, arg0); 7996 if (tem) 7997 return fold_convert_loc (loc, type, tem); 7998 return NULL_TREE; 7999 8000 case ABS_EXPR: 8001 /* Convert fabs((double)float) into (double)fabsf(float). */ 8002 if (TREE_CODE (arg0) == NOP_EXPR 8003 && TREE_CODE (type) == REAL_TYPE) 8004 { 8005 tree targ0 = strip_float_extensions (arg0); 8006 if (targ0 != arg0) 8007 return fold_convert_loc (loc, type, 8008 fold_build1_loc (loc, ABS_EXPR, 8009 TREE_TYPE (targ0), 8010 targ0)); 8011 } 8012 return NULL_TREE; 8013 8014 case BIT_NOT_EXPR: 8015 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */ 8016 if (TREE_CODE (arg0) == BIT_XOR_EXPR 8017 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8018 fold_convert_loc (loc, type, 8019 TREE_OPERAND (arg0, 0))))) 8020 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem, 8021 fold_convert_loc (loc, type, 8022 TREE_OPERAND (arg0, 1))); 8023 else if (TREE_CODE (arg0) == BIT_XOR_EXPR 8024 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8025 fold_convert_loc (loc, type, 8026 TREE_OPERAND (arg0, 1))))) 8027 return fold_build2_loc (loc, BIT_XOR_EXPR, type, 8028 fold_convert_loc (loc, type, 8029 TREE_OPERAND (arg0, 0)), tem); 8030 8031 return NULL_TREE; 8032 8033 case TRUTH_NOT_EXPR: 8034 /* Note that the operand of this must be an int 8035 and its values must be 0 or 1. 8036 ("true" is a fixed value perhaps depending on the language, 8037 but we don't handle values other than 1 correctly yet.) */ 8038 tem = fold_truth_not_expr (loc, arg0); 8039 if (!tem) 8040 return NULL_TREE; 8041 return fold_convert_loc (loc, type, tem); 8042 8043 case INDIRECT_REF: 8044 /* Fold *&X to X if X is an lvalue. */ 8045 if (TREE_CODE (op0) == ADDR_EXPR) 8046 { 8047 tree op00 = TREE_OPERAND (op0, 0); 8048 if ((VAR_P (op00) 8049 || TREE_CODE (op00) == PARM_DECL 8050 || TREE_CODE (op00) == RESULT_DECL) 8051 && !TREE_READONLY (op00)) 8052 return op00; 8053 } 8054 return NULL_TREE; 8055 8056 default: 8057 return NULL_TREE; 8058 } /* switch (code) */ 8059 } 8060 8061 8062 /* If the operation was a conversion do _not_ mark a resulting constant 8063 with TREE_OVERFLOW if the original constant was not. These conversions 8064 have implementation defined behavior and retaining the TREE_OVERFLOW 8065 flag here would confuse later passes such as VRP. */ 8066 tree 8067 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code, 8068 tree type, tree op0) 8069 { 8070 tree res = fold_unary_loc (loc, code, type, op0); 8071 if (res 8072 && TREE_CODE (res) == INTEGER_CST 8073 && TREE_CODE (op0) == INTEGER_CST 8074 && CONVERT_EXPR_CODE_P (code)) 8075 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0); 8076 8077 return res; 8078 } 8079 8080 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with 8081 operands OP0 and OP1. LOC is the location of the resulting expression. 8082 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1. 8083 Return the folded expression if folding is successful. Otherwise, 8084 return NULL_TREE. */ 8085 static tree 8086 fold_truth_andor (location_t loc, enum tree_code code, tree type, 8087 tree arg0, tree arg1, tree op0, tree op1) 8088 { 8089 tree tem; 8090 8091 /* We only do these simplifications if we are optimizing. */ 8092 if (!optimize) 8093 return NULL_TREE; 8094 8095 /* Check for things like (A || B) && (A || C). We can convert this 8096 to A || (B && C). Note that either operator can be any of the four 8097 truth and/or operations and the transformation will still be 8098 valid. Also note that we only care about order for the 8099 ANDIF and ORIF operators. If B contains side effects, this 8100 might change the truth-value of A. */ 8101 if (TREE_CODE (arg0) == TREE_CODE (arg1) 8102 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR 8103 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR 8104 || TREE_CODE (arg0) == TRUTH_AND_EXPR 8105 || TREE_CODE (arg0) == TRUTH_OR_EXPR) 8106 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1))) 8107 { 8108 tree a00 = TREE_OPERAND (arg0, 0); 8109 tree a01 = TREE_OPERAND (arg0, 1); 8110 tree a10 = TREE_OPERAND (arg1, 0); 8111 tree a11 = TREE_OPERAND (arg1, 1); 8112 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR 8113 || TREE_CODE (arg0) == TRUTH_AND_EXPR) 8114 && (code == TRUTH_AND_EXPR 8115 || code == TRUTH_OR_EXPR)); 8116 8117 if (operand_equal_p (a00, a10, 0)) 8118 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8119 fold_build2_loc (loc, code, type, a01, a11)); 8120 else if (commutative && operand_equal_p (a00, a11, 0)) 8121 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8122 fold_build2_loc (loc, code, type, a01, a10)); 8123 else if (commutative && operand_equal_p (a01, a10, 0)) 8124 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01, 8125 fold_build2_loc (loc, code, type, a00, a11)); 8126 8127 /* This case if tricky because we must either have commutative 8128 operators or else A10 must not have side-effects. */ 8129 8130 else if ((commutative || ! TREE_SIDE_EFFECTS (a10)) 8131 && operand_equal_p (a01, a11, 0)) 8132 return fold_build2_loc (loc, TREE_CODE (arg0), type, 8133 fold_build2_loc (loc, code, type, a00, a10), 8134 a01); 8135 } 8136 8137 /* See if we can build a range comparison. */ 8138 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0) 8139 return tem; 8140 8141 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR) 8142 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR)) 8143 { 8144 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true); 8145 if (tem) 8146 return fold_build2_loc (loc, code, type, tem, arg1); 8147 } 8148 8149 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR) 8150 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR)) 8151 { 8152 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false); 8153 if (tem) 8154 return fold_build2_loc (loc, code, type, arg0, tem); 8155 } 8156 8157 /* Check for the possibility of merging component references. If our 8158 lhs is another similar operation, try to merge its rhs with our 8159 rhs. Then try to merge our lhs and rhs. */ 8160 if (TREE_CODE (arg0) == code 8161 && (tem = fold_truth_andor_1 (loc, code, type, 8162 TREE_OPERAND (arg0, 1), arg1)) != 0) 8163 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem); 8164 8165 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0) 8166 return tem; 8167 8168 if (LOGICAL_OP_NON_SHORT_CIRCUIT 8169 && !flag_sanitize_coverage 8170 && (code == TRUTH_AND_EXPR 8171 || code == TRUTH_ANDIF_EXPR 8172 || code == TRUTH_OR_EXPR 8173 || code == TRUTH_ORIF_EXPR)) 8174 { 8175 enum tree_code ncode, icode; 8176 8177 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR) 8178 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR; 8179 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR; 8180 8181 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)), 8182 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C)) 8183 We don't want to pack more than two leafs to a non-IF AND/OR 8184 expression. 8185 If tree-code of left-hand operand isn't an AND/OR-IF code and not 8186 equal to IF-CODE, then we don't want to add right-hand operand. 8187 If the inner right-hand side of left-hand operand has 8188 side-effects, or isn't simple, then we can't add to it, 8189 as otherwise we might destroy if-sequence. */ 8190 if (TREE_CODE (arg0) == icode 8191 && simple_operand_p_2 (arg1) 8192 /* Needed for sequence points to handle trappings, and 8193 side-effects. */ 8194 && simple_operand_p_2 (TREE_OPERAND (arg0, 1))) 8195 { 8196 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1), 8197 arg1); 8198 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0), 8199 tem); 8200 } 8201 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C), 8202 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */ 8203 else if (TREE_CODE (arg1) == icode 8204 && simple_operand_p_2 (arg0) 8205 /* Needed for sequence points to handle trappings, and 8206 side-effects. */ 8207 && simple_operand_p_2 (TREE_OPERAND (arg1, 0))) 8208 { 8209 tem = fold_build2_loc (loc, ncode, type, 8210 arg0, TREE_OPERAND (arg1, 0)); 8211 return fold_build2_loc (loc, icode, type, tem, 8212 TREE_OPERAND (arg1, 1)); 8213 } 8214 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B) 8215 into (A OR B). 8216 For sequence point consistancy, we need to check for trapping, 8217 and side-effects. */ 8218 else if (code == icode && simple_operand_p_2 (arg0) 8219 && simple_operand_p_2 (arg1)) 8220 return fold_build2_loc (loc, ncode, type, arg0, arg1); 8221 } 8222 8223 return NULL_TREE; 8224 } 8225 8226 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1 8227 by changing CODE to reduce the magnitude of constants involved in 8228 ARG0 of the comparison. 8229 Returns a canonicalized comparison tree if a simplification was 8230 possible, otherwise returns NULL_TREE. 8231 Set *STRICT_OVERFLOW_P to true if the canonicalization is only 8232 valid if signed overflow is undefined. */ 8233 8234 static tree 8235 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type, 8236 tree arg0, tree arg1, 8237 bool *strict_overflow_p) 8238 { 8239 enum tree_code code0 = TREE_CODE (arg0); 8240 tree t, cst0 = NULL_TREE; 8241 int sgn0; 8242 8243 /* Match A +- CST code arg1. We can change this only if overflow 8244 is undefined. */ 8245 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8246 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))) 8247 /* In principle pointers also have undefined overflow behavior, 8248 but that causes problems elsewhere. */ 8249 && !POINTER_TYPE_P (TREE_TYPE (arg0)) 8250 && (code0 == MINUS_EXPR 8251 || code0 == PLUS_EXPR) 8252 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)) 8253 return NULL_TREE; 8254 8255 /* Identify the constant in arg0 and its sign. */ 8256 cst0 = TREE_OPERAND (arg0, 1); 8257 sgn0 = tree_int_cst_sgn (cst0); 8258 8259 /* Overflowed constants and zero will cause problems. */ 8260 if (integer_zerop (cst0) 8261 || TREE_OVERFLOW (cst0)) 8262 return NULL_TREE; 8263 8264 /* See if we can reduce the magnitude of the constant in 8265 arg0 by changing the comparison code. */ 8266 /* A - CST < arg1 -> A - CST-1 <= arg1. */ 8267 if (code == LT_EXPR 8268 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8269 code = LE_EXPR; 8270 /* A + CST > arg1 -> A + CST-1 >= arg1. */ 8271 else if (code == GT_EXPR 8272 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8273 code = GE_EXPR; 8274 /* A + CST <= arg1 -> A + CST-1 < arg1. */ 8275 else if (code == LE_EXPR 8276 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8277 code = LT_EXPR; 8278 /* A - CST >= arg1 -> A - CST-1 > arg1. */ 8279 else if (code == GE_EXPR 8280 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8281 code = GT_EXPR; 8282 else 8283 return NULL_TREE; 8284 *strict_overflow_p = true; 8285 8286 /* Now build the constant reduced in magnitude. But not if that 8287 would produce one outside of its types range. */ 8288 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0)) 8289 && ((sgn0 == 1 8290 && TYPE_MIN_VALUE (TREE_TYPE (cst0)) 8291 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0)))) 8292 || (sgn0 == -1 8293 && TYPE_MAX_VALUE (TREE_TYPE (cst0)) 8294 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0)))))) 8295 return NULL_TREE; 8296 8297 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR, 8298 cst0, build_int_cst (TREE_TYPE (cst0), 1)); 8299 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t); 8300 t = fold_convert (TREE_TYPE (arg1), t); 8301 8302 return fold_build2_loc (loc, code, type, t, arg1); 8303 } 8304 8305 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined 8306 overflow further. Try to decrease the magnitude of constants involved 8307 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa 8308 and put sole constants at the second argument position. 8309 Returns the canonicalized tree if changed, otherwise NULL_TREE. */ 8310 8311 static tree 8312 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type, 8313 tree arg0, tree arg1) 8314 { 8315 tree t; 8316 bool strict_overflow_p; 8317 const char * const warnmsg = G_("assuming signed overflow does not occur " 8318 "when reducing constant in comparison"); 8319 8320 /* Try canonicalization by simplifying arg0. */ 8321 strict_overflow_p = false; 8322 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1, 8323 &strict_overflow_p); 8324 if (t) 8325 { 8326 if (strict_overflow_p) 8327 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8328 return t; 8329 } 8330 8331 /* Try canonicalization by simplifying arg1 using the swapped 8332 comparison. */ 8333 code = swap_tree_comparison (code); 8334 strict_overflow_p = false; 8335 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0, 8336 &strict_overflow_p); 8337 if (t && strict_overflow_p) 8338 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8339 return t; 8340 } 8341 8342 /* Return whether BASE + OFFSET + BITPOS may wrap around the address 8343 space. This is used to avoid issuing overflow warnings for 8344 expressions like &p->x which can not wrap. */ 8345 8346 static bool 8347 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos) 8348 { 8349 if (!POINTER_TYPE_P (TREE_TYPE (base))) 8350 return true; 8351 8352 if (maybe_lt (bitpos, 0)) 8353 return true; 8354 8355 poly_wide_int wi_offset; 8356 int precision = TYPE_PRECISION (TREE_TYPE (base)); 8357 if (offset == NULL_TREE) 8358 wi_offset = wi::zero (precision); 8359 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset)) 8360 return true; 8361 else 8362 wi_offset = wi::to_poly_wide (offset); 8363 8364 bool overflow; 8365 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos), 8366 precision); 8367 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow); 8368 if (overflow) 8369 return true; 8370 8371 poly_uint64 total_hwi, size; 8372 if (!total.to_uhwi (&total_hwi) 8373 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))), 8374 &size) 8375 || known_eq (size, 0U)) 8376 return true; 8377 8378 if (known_le (total_hwi, size)) 8379 return false; 8380 8381 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an 8382 array. */ 8383 if (TREE_CODE (base) == ADDR_EXPR 8384 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))), 8385 &size) 8386 && maybe_ne (size, 0U) 8387 && known_le (total_hwi, size)) 8388 return false; 8389 8390 return true; 8391 } 8392 8393 /* Return a positive integer when the symbol DECL is known to have 8394 a nonzero address, zero when it's known not to (e.g., it's a weak 8395 symbol), and a negative integer when the symbol is not yet in the 8396 symbol table and so whether or not its address is zero is unknown. 8397 For function local objects always return positive integer. */ 8398 static int 8399 maybe_nonzero_address (tree decl) 8400 { 8401 if (DECL_P (decl) && decl_in_symtab_p (decl)) 8402 if (struct symtab_node *symbol = symtab_node::get_create (decl)) 8403 return symbol->nonzero_address (); 8404 8405 /* Function local objects are never NULL. */ 8406 if (DECL_P (decl) 8407 && (DECL_CONTEXT (decl) 8408 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL 8409 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl)))) 8410 return 1; 8411 8412 return -1; 8413 } 8414 8415 /* Subroutine of fold_binary. This routine performs all of the 8416 transformations that are common to the equality/inequality 8417 operators (EQ_EXPR and NE_EXPR) and the ordering operators 8418 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than 8419 fold_binary should call fold_binary. Fold a comparison with 8420 tree code CODE and type TYPE with operands OP0 and OP1. Return 8421 the folded comparison or NULL_TREE. */ 8422 8423 static tree 8424 fold_comparison (location_t loc, enum tree_code code, tree type, 8425 tree op0, tree op1) 8426 { 8427 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR); 8428 tree arg0, arg1, tem; 8429 8430 arg0 = op0; 8431 arg1 = op1; 8432 8433 STRIP_SIGN_NOPS (arg0); 8434 STRIP_SIGN_NOPS (arg1); 8435 8436 /* For comparisons of pointers we can decompose it to a compile time 8437 comparison of the base objects and the offsets into the object. 8438 This requires at least one operand being an ADDR_EXPR or a 8439 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */ 8440 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 8441 && (TREE_CODE (arg0) == ADDR_EXPR 8442 || TREE_CODE (arg1) == ADDR_EXPR 8443 || TREE_CODE (arg0) == POINTER_PLUS_EXPR 8444 || TREE_CODE (arg1) == POINTER_PLUS_EXPR)) 8445 { 8446 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE; 8447 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0; 8448 machine_mode mode; 8449 int volatilep, reversep, unsignedp; 8450 bool indirect_base0 = false, indirect_base1 = false; 8451 8452 /* Get base and offset for the access. Strip ADDR_EXPR for 8453 get_inner_reference, but put it back by stripping INDIRECT_REF 8454 off the base object if possible. indirect_baseN will be true 8455 if baseN is not an address but refers to the object itself. */ 8456 base0 = arg0; 8457 if (TREE_CODE (arg0) == ADDR_EXPR) 8458 { 8459 base0 8460 = get_inner_reference (TREE_OPERAND (arg0, 0), 8461 &bitsize, &bitpos0, &offset0, &mode, 8462 &unsignedp, &reversep, &volatilep); 8463 if (TREE_CODE (base0) == INDIRECT_REF) 8464 base0 = TREE_OPERAND (base0, 0); 8465 else 8466 indirect_base0 = true; 8467 } 8468 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR) 8469 { 8470 base0 = TREE_OPERAND (arg0, 0); 8471 STRIP_SIGN_NOPS (base0); 8472 if (TREE_CODE (base0) == ADDR_EXPR) 8473 { 8474 base0 8475 = get_inner_reference (TREE_OPERAND (base0, 0), 8476 &bitsize, &bitpos0, &offset0, &mode, 8477 &unsignedp, &reversep, &volatilep); 8478 if (TREE_CODE (base0) == INDIRECT_REF) 8479 base0 = TREE_OPERAND (base0, 0); 8480 else 8481 indirect_base0 = true; 8482 } 8483 if (offset0 == NULL_TREE || integer_zerop (offset0)) 8484 offset0 = TREE_OPERAND (arg0, 1); 8485 else 8486 offset0 = size_binop (PLUS_EXPR, offset0, 8487 TREE_OPERAND (arg0, 1)); 8488 if (poly_int_tree_p (offset0)) 8489 { 8490 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0), 8491 TYPE_PRECISION (sizetype)); 8492 tem <<= LOG2_BITS_PER_UNIT; 8493 tem += bitpos0; 8494 if (tem.to_shwi (&bitpos0)) 8495 offset0 = NULL_TREE; 8496 } 8497 } 8498 8499 base1 = arg1; 8500 if (TREE_CODE (arg1) == ADDR_EXPR) 8501 { 8502 base1 8503 = get_inner_reference (TREE_OPERAND (arg1, 0), 8504 &bitsize, &bitpos1, &offset1, &mode, 8505 &unsignedp, &reversep, &volatilep); 8506 if (TREE_CODE (base1) == INDIRECT_REF) 8507 base1 = TREE_OPERAND (base1, 0); 8508 else 8509 indirect_base1 = true; 8510 } 8511 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR) 8512 { 8513 base1 = TREE_OPERAND (arg1, 0); 8514 STRIP_SIGN_NOPS (base1); 8515 if (TREE_CODE (base1) == ADDR_EXPR) 8516 { 8517 base1 8518 = get_inner_reference (TREE_OPERAND (base1, 0), 8519 &bitsize, &bitpos1, &offset1, &mode, 8520 &unsignedp, &reversep, &volatilep); 8521 if (TREE_CODE (base1) == INDIRECT_REF) 8522 base1 = TREE_OPERAND (base1, 0); 8523 else 8524 indirect_base1 = true; 8525 } 8526 if (offset1 == NULL_TREE || integer_zerop (offset1)) 8527 offset1 = TREE_OPERAND (arg1, 1); 8528 else 8529 offset1 = size_binop (PLUS_EXPR, offset1, 8530 TREE_OPERAND (arg1, 1)); 8531 if (poly_int_tree_p (offset1)) 8532 { 8533 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1), 8534 TYPE_PRECISION (sizetype)); 8535 tem <<= LOG2_BITS_PER_UNIT; 8536 tem += bitpos1; 8537 if (tem.to_shwi (&bitpos1)) 8538 offset1 = NULL_TREE; 8539 } 8540 } 8541 8542 /* If we have equivalent bases we might be able to simplify. */ 8543 if (indirect_base0 == indirect_base1 8544 && operand_equal_p (base0, base1, 8545 indirect_base0 ? OEP_ADDRESS_OF : 0)) 8546 { 8547 /* We can fold this expression to a constant if the non-constant 8548 offset parts are equal. */ 8549 if ((offset0 == offset1 8550 || (offset0 && offset1 8551 && operand_equal_p (offset0, offset1, 0))) 8552 && (equality_code 8553 || (indirect_base0 8554 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8555 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8556 { 8557 if (!equality_code 8558 && maybe_ne (bitpos0, bitpos1) 8559 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8560 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8561 fold_overflow_warning (("assuming pointer wraparound does not " 8562 "occur when comparing P +- C1 with " 8563 "P +- C2"), 8564 WARN_STRICT_OVERFLOW_CONDITIONAL); 8565 8566 switch (code) 8567 { 8568 case EQ_EXPR: 8569 if (known_eq (bitpos0, bitpos1)) 8570 return constant_boolean_node (true, type); 8571 if (known_ne (bitpos0, bitpos1)) 8572 return constant_boolean_node (false, type); 8573 break; 8574 case NE_EXPR: 8575 if (known_ne (bitpos0, bitpos1)) 8576 return constant_boolean_node (true, type); 8577 if (known_eq (bitpos0, bitpos1)) 8578 return constant_boolean_node (false, type); 8579 break; 8580 case LT_EXPR: 8581 if (known_lt (bitpos0, bitpos1)) 8582 return constant_boolean_node (true, type); 8583 if (known_ge (bitpos0, bitpos1)) 8584 return constant_boolean_node (false, type); 8585 break; 8586 case LE_EXPR: 8587 if (known_le (bitpos0, bitpos1)) 8588 return constant_boolean_node (true, type); 8589 if (known_gt (bitpos0, bitpos1)) 8590 return constant_boolean_node (false, type); 8591 break; 8592 case GE_EXPR: 8593 if (known_ge (bitpos0, bitpos1)) 8594 return constant_boolean_node (true, type); 8595 if (known_lt (bitpos0, bitpos1)) 8596 return constant_boolean_node (false, type); 8597 break; 8598 case GT_EXPR: 8599 if (known_gt (bitpos0, bitpos1)) 8600 return constant_boolean_node (true, type); 8601 if (known_le (bitpos0, bitpos1)) 8602 return constant_boolean_node (false, type); 8603 break; 8604 default:; 8605 } 8606 } 8607 /* We can simplify the comparison to a comparison of the variable 8608 offset parts if the constant offset parts are equal. 8609 Be careful to use signed sizetype here because otherwise we 8610 mess with array offsets in the wrong way. This is possible 8611 because pointer arithmetic is restricted to retain within an 8612 object and overflow on pointer differences is undefined as of 8613 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */ 8614 else if (known_eq (bitpos0, bitpos1) 8615 && (equality_code 8616 || (indirect_base0 8617 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8618 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8619 { 8620 /* By converting to signed sizetype we cover middle-end pointer 8621 arithmetic which operates on unsigned pointer types of size 8622 type size and ARRAY_REF offsets which are properly sign or 8623 zero extended from their type in case it is narrower than 8624 sizetype. */ 8625 if (offset0 == NULL_TREE) 8626 offset0 = build_int_cst (ssizetype, 0); 8627 else 8628 offset0 = fold_convert_loc (loc, ssizetype, offset0); 8629 if (offset1 == NULL_TREE) 8630 offset1 = build_int_cst (ssizetype, 0); 8631 else 8632 offset1 = fold_convert_loc (loc, ssizetype, offset1); 8633 8634 if (!equality_code 8635 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8636 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8637 fold_overflow_warning (("assuming pointer wraparound does not " 8638 "occur when comparing P +- C1 with " 8639 "P +- C2"), 8640 WARN_STRICT_OVERFLOW_COMPARISON); 8641 8642 return fold_build2_loc (loc, code, type, offset0, offset1); 8643 } 8644 } 8645 /* For equal offsets we can simplify to a comparison of the 8646 base addresses. */ 8647 else if (known_eq (bitpos0, bitpos1) 8648 && (indirect_base0 8649 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0) 8650 && (indirect_base1 8651 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1) 8652 && ((offset0 == offset1) 8653 || (offset0 && offset1 8654 && operand_equal_p (offset0, offset1, 0)))) 8655 { 8656 if (indirect_base0) 8657 base0 = build_fold_addr_expr_loc (loc, base0); 8658 if (indirect_base1) 8659 base1 = build_fold_addr_expr_loc (loc, base1); 8660 return fold_build2_loc (loc, code, type, base0, base1); 8661 } 8662 /* Comparison between an ordinary (non-weak) symbol and a null 8663 pointer can be eliminated since such symbols must have a non 8664 null address. In C, relational expressions between pointers 8665 to objects and null pointers are undefined. The results 8666 below follow the C++ rules with the additional property that 8667 every object pointer compares greater than a null pointer. 8668 */ 8669 else if (((DECL_P (base0) 8670 && maybe_nonzero_address (base0) > 0 8671 /* Avoid folding references to struct members at offset 0 to 8672 prevent tests like '&ptr->firstmember == 0' from getting 8673 eliminated. When ptr is null, although the -> expression 8674 is strictly speaking invalid, GCC retains it as a matter 8675 of QoI. See PR c/44555. */ 8676 && (offset0 == NULL_TREE && known_ne (bitpos0, 0))) 8677 || CONSTANT_CLASS_P (base0)) 8678 && indirect_base0 8679 /* The caller guarantees that when one of the arguments is 8680 constant (i.e., null in this case) it is second. */ 8681 && integer_zerop (arg1)) 8682 { 8683 switch (code) 8684 { 8685 case EQ_EXPR: 8686 case LE_EXPR: 8687 case LT_EXPR: 8688 return constant_boolean_node (false, type); 8689 case GE_EXPR: 8690 case GT_EXPR: 8691 case NE_EXPR: 8692 return constant_boolean_node (true, type); 8693 default: 8694 gcc_unreachable (); 8695 } 8696 } 8697 } 8698 8699 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to 8700 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if 8701 the resulting offset is smaller in absolute value than the 8702 original one and has the same sign. */ 8703 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8704 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)) 8705 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 8706 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 8707 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))) 8708 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR) 8709 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 8710 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1)))) 8711 { 8712 tree const1 = TREE_OPERAND (arg0, 1); 8713 tree const2 = TREE_OPERAND (arg1, 1); 8714 tree variable1 = TREE_OPERAND (arg0, 0); 8715 tree variable2 = TREE_OPERAND (arg1, 0); 8716 tree cst; 8717 const char * const warnmsg = G_("assuming signed overflow does not " 8718 "occur when combining constants around " 8719 "a comparison"); 8720 8721 /* Put the constant on the side where it doesn't overflow and is 8722 of lower absolute value and of same sign than before. */ 8723 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8724 ? MINUS_EXPR : PLUS_EXPR, 8725 const2, const1); 8726 if (!TREE_OVERFLOW (cst) 8727 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2) 8728 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2)) 8729 { 8730 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8731 return fold_build2_loc (loc, code, type, 8732 variable1, 8733 fold_build2_loc (loc, TREE_CODE (arg1), 8734 TREE_TYPE (arg1), 8735 variable2, cst)); 8736 } 8737 8738 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8739 ? MINUS_EXPR : PLUS_EXPR, 8740 const1, const2); 8741 if (!TREE_OVERFLOW (cst) 8742 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1) 8743 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1)) 8744 { 8745 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8746 return fold_build2_loc (loc, code, type, 8747 fold_build2_loc (loc, TREE_CODE (arg0), 8748 TREE_TYPE (arg0), 8749 variable1, cst), 8750 variable2); 8751 } 8752 } 8753 8754 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1); 8755 if (tem) 8756 return tem; 8757 8758 /* If we are comparing an expression that just has comparisons 8759 of two integer values, arithmetic expressions of those comparisons, 8760 and constants, we can simplify it. There are only three cases 8761 to check: the two values can either be equal, the first can be 8762 greater, or the second can be greater. Fold the expression for 8763 those three values. Since each value must be 0 or 1, we have 8764 eight possibilities, each of which corresponds to the constant 0 8765 or 1 or one of the six possible comparisons. 8766 8767 This handles common cases like (a > b) == 0 but also handles 8768 expressions like ((x > y) - (y > x)) > 0, which supposedly 8769 occur in macroized code. */ 8770 8771 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST) 8772 { 8773 tree cval1 = 0, cval2 = 0; 8774 8775 if (twoval_comparison_p (arg0, &cval1, &cval2) 8776 /* Don't handle degenerate cases here; they should already 8777 have been handled anyway. */ 8778 && cval1 != 0 && cval2 != 0 8779 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2)) 8780 && TREE_TYPE (cval1) == TREE_TYPE (cval2) 8781 && INTEGRAL_TYPE_P (TREE_TYPE (cval1)) 8782 && TYPE_MAX_VALUE (TREE_TYPE (cval1)) 8783 && TYPE_MAX_VALUE (TREE_TYPE (cval2)) 8784 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)), 8785 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0)) 8786 { 8787 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1)); 8788 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1)); 8789 8790 /* We can't just pass T to eval_subst in case cval1 or cval2 8791 was the same as ARG1. */ 8792 8793 tree high_result 8794 = fold_build2_loc (loc, code, type, 8795 eval_subst (loc, arg0, cval1, maxval, 8796 cval2, minval), 8797 arg1); 8798 tree equal_result 8799 = fold_build2_loc (loc, code, type, 8800 eval_subst (loc, arg0, cval1, maxval, 8801 cval2, maxval), 8802 arg1); 8803 tree low_result 8804 = fold_build2_loc (loc, code, type, 8805 eval_subst (loc, arg0, cval1, minval, 8806 cval2, maxval), 8807 arg1); 8808 8809 /* All three of these results should be 0 or 1. Confirm they are. 8810 Then use those values to select the proper code to use. */ 8811 8812 if (TREE_CODE (high_result) == INTEGER_CST 8813 && TREE_CODE (equal_result) == INTEGER_CST 8814 && TREE_CODE (low_result) == INTEGER_CST) 8815 { 8816 /* Make a 3-bit mask with the high-order bit being the 8817 value for `>', the next for '=', and the low for '<'. */ 8818 switch ((integer_onep (high_result) * 4) 8819 + (integer_onep (equal_result) * 2) 8820 + integer_onep (low_result)) 8821 { 8822 case 0: 8823 /* Always false. */ 8824 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 8825 case 1: 8826 code = LT_EXPR; 8827 break; 8828 case 2: 8829 code = EQ_EXPR; 8830 break; 8831 case 3: 8832 code = LE_EXPR; 8833 break; 8834 case 4: 8835 code = GT_EXPR; 8836 break; 8837 case 5: 8838 code = NE_EXPR; 8839 break; 8840 case 6: 8841 code = GE_EXPR; 8842 break; 8843 case 7: 8844 /* Always true. */ 8845 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 8846 } 8847 8848 return fold_build2_loc (loc, code, type, cval1, cval2); 8849 } 8850 } 8851 } 8852 8853 return NULL_TREE; 8854 } 8855 8856 8857 /* Subroutine of fold_binary. Optimize complex multiplications of the 8858 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The 8859 argument EXPR represents the expression "z" of type TYPE. */ 8860 8861 static tree 8862 fold_mult_zconjz (location_t loc, tree type, tree expr) 8863 { 8864 tree itype = TREE_TYPE (type); 8865 tree rpart, ipart, tem; 8866 8867 if (TREE_CODE (expr) == COMPLEX_EXPR) 8868 { 8869 rpart = TREE_OPERAND (expr, 0); 8870 ipart = TREE_OPERAND (expr, 1); 8871 } 8872 else if (TREE_CODE (expr) == COMPLEX_CST) 8873 { 8874 rpart = TREE_REALPART (expr); 8875 ipart = TREE_IMAGPART (expr); 8876 } 8877 else 8878 { 8879 expr = save_expr (expr); 8880 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr); 8881 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr); 8882 } 8883 8884 rpart = save_expr (rpart); 8885 ipart = save_expr (ipart); 8886 tem = fold_build2_loc (loc, PLUS_EXPR, itype, 8887 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart), 8888 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart)); 8889 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem, 8890 build_zero_cst (itype)); 8891 } 8892 8893 8894 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or 8895 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return 8896 true if successful. */ 8897 8898 static bool 8899 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) 8900 { 8901 unsigned HOST_WIDE_INT i, nunits; 8902 8903 if (TREE_CODE (arg) == VECTOR_CST 8904 && VECTOR_CST_NELTS (arg).is_constant (&nunits)) 8905 { 8906 for (i = 0; i < nunits; ++i) 8907 elts[i] = VECTOR_CST_ELT (arg, i); 8908 } 8909 else if (TREE_CODE (arg) == CONSTRUCTOR) 8910 { 8911 constructor_elt *elt; 8912 8913 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt) 8914 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE) 8915 return false; 8916 else 8917 elts[i] = elt->value; 8918 } 8919 else 8920 return false; 8921 for (; i < nelts; i++) 8922 elts[i] 8923 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node); 8924 return true; 8925 } 8926 8927 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL 8928 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful, 8929 NULL_TREE otherwise. */ 8930 8931 static tree 8932 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel) 8933 { 8934 unsigned int i; 8935 unsigned HOST_WIDE_INT nelts; 8936 bool need_ctor = false; 8937 8938 if (!sel.length ().is_constant (&nelts)) 8939 return NULL_TREE; 8940 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts) 8941 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts) 8942 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts)); 8943 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type) 8944 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type)) 8945 return NULL_TREE; 8946 8947 tree *in_elts = XALLOCAVEC (tree, nelts * 2); 8948 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts) 8949 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts)) 8950 return NULL_TREE; 8951 8952 tree_vector_builder out_elts (type, nelts, 1); 8953 for (i = 0; i < nelts; i++) 8954 { 8955 HOST_WIDE_INT index; 8956 if (!sel[i].is_constant (&index)) 8957 return NULL_TREE; 8958 if (!CONSTANT_CLASS_P (in_elts[index])) 8959 need_ctor = true; 8960 out_elts.quick_push (unshare_expr (in_elts[index])); 8961 } 8962 8963 if (need_ctor) 8964 { 8965 vec<constructor_elt, va_gc> *v; 8966 vec_alloc (v, nelts); 8967 for (i = 0; i < nelts; i++) 8968 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]); 8969 return build_constructor (type, v); 8970 } 8971 else 8972 return out_elts.build (); 8973 } 8974 8975 /* Try to fold a pointer difference of type TYPE two address expressions of 8976 array references AREF0 and AREF1 using location LOC. Return a 8977 simplified expression for the difference or NULL_TREE. */ 8978 8979 static tree 8980 fold_addr_of_array_ref_difference (location_t loc, tree type, 8981 tree aref0, tree aref1, 8982 bool use_pointer_diff) 8983 { 8984 tree base0 = TREE_OPERAND (aref0, 0); 8985 tree base1 = TREE_OPERAND (aref1, 0); 8986 tree base_offset = build_int_cst (type, 0); 8987 8988 /* If the bases are array references as well, recurse. If the bases 8989 are pointer indirections compute the difference of the pointers. 8990 If the bases are equal, we are set. */ 8991 if ((TREE_CODE (base0) == ARRAY_REF 8992 && TREE_CODE (base1) == ARRAY_REF 8993 && (base_offset 8994 = fold_addr_of_array_ref_difference (loc, type, base0, base1, 8995 use_pointer_diff))) 8996 || (INDIRECT_REF_P (base0) 8997 && INDIRECT_REF_P (base1) 8998 && (base_offset 8999 = use_pointer_diff 9000 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type, 9001 TREE_OPERAND (base0, 0), 9002 TREE_OPERAND (base1, 0)) 9003 : fold_binary_loc (loc, MINUS_EXPR, type, 9004 fold_convert (type, 9005 TREE_OPERAND (base0, 0)), 9006 fold_convert (type, 9007 TREE_OPERAND (base1, 0))))) 9008 || operand_equal_p (base0, base1, OEP_ADDRESS_OF)) 9009 { 9010 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1)); 9011 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1)); 9012 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0)); 9013 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1); 9014 return fold_build2_loc (loc, PLUS_EXPR, type, 9015 base_offset, 9016 fold_build2_loc (loc, MULT_EXPR, type, 9017 diff, esz)); 9018 } 9019 return NULL_TREE; 9020 } 9021 9022 /* If the real or vector real constant CST of type TYPE has an exact 9023 inverse, return it, else return NULL. */ 9024 9025 tree 9026 exact_inverse (tree type, tree cst) 9027 { 9028 REAL_VALUE_TYPE r; 9029 tree unit_type; 9030 machine_mode mode; 9031 9032 switch (TREE_CODE (cst)) 9033 { 9034 case REAL_CST: 9035 r = TREE_REAL_CST (cst); 9036 9037 if (exact_real_inverse (TYPE_MODE (type), &r)) 9038 return build_real (type, r); 9039 9040 return NULL_TREE; 9041 9042 case VECTOR_CST: 9043 { 9044 unit_type = TREE_TYPE (type); 9045 mode = TYPE_MODE (unit_type); 9046 9047 tree_vector_builder elts; 9048 if (!elts.new_unary_operation (type, cst, false)) 9049 return NULL_TREE; 9050 unsigned int count = elts.encoded_nelts (); 9051 for (unsigned int i = 0; i < count; ++i) 9052 { 9053 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i)); 9054 if (!exact_real_inverse (mode, &r)) 9055 return NULL_TREE; 9056 elts.quick_push (build_real (unit_type, r)); 9057 } 9058 9059 return elts.build (); 9060 } 9061 9062 default: 9063 return NULL_TREE; 9064 } 9065 } 9066 9067 /* Mask out the tz least significant bits of X of type TYPE where 9068 tz is the number of trailing zeroes in Y. */ 9069 static wide_int 9070 mask_with_tz (tree type, const wide_int &x, const wide_int &y) 9071 { 9072 int tz = wi::ctz (y); 9073 if (tz > 0) 9074 return wi::mask (tz, true, TYPE_PRECISION (type)) & x; 9075 return x; 9076 } 9077 9078 /* Return true when T is an address and is known to be nonzero. 9079 For floating point we further ensure that T is not denormal. 9080 Similar logic is present in nonzero_address in rtlanal.h. 9081 9082 If the return value is based on the assumption that signed overflow 9083 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 9084 change *STRICT_OVERFLOW_P. */ 9085 9086 static bool 9087 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p) 9088 { 9089 tree type = TREE_TYPE (t); 9090 enum tree_code code; 9091 9092 /* Doing something useful for floating point would need more work. */ 9093 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) 9094 return false; 9095 9096 code = TREE_CODE (t); 9097 switch (TREE_CODE_CLASS (code)) 9098 { 9099 case tcc_unary: 9100 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9101 strict_overflow_p); 9102 case tcc_binary: 9103 case tcc_comparison: 9104 return tree_binary_nonzero_warnv_p (code, type, 9105 TREE_OPERAND (t, 0), 9106 TREE_OPERAND (t, 1), 9107 strict_overflow_p); 9108 case tcc_constant: 9109 case tcc_declaration: 9110 case tcc_reference: 9111 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9112 9113 default: 9114 break; 9115 } 9116 9117 switch (code) 9118 { 9119 case TRUTH_NOT_EXPR: 9120 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9121 strict_overflow_p); 9122 9123 case TRUTH_AND_EXPR: 9124 case TRUTH_OR_EXPR: 9125 case TRUTH_XOR_EXPR: 9126 return tree_binary_nonzero_warnv_p (code, type, 9127 TREE_OPERAND (t, 0), 9128 TREE_OPERAND (t, 1), 9129 strict_overflow_p); 9130 9131 case COND_EXPR: 9132 case CONSTRUCTOR: 9133 case OBJ_TYPE_REF: 9134 case ASSERT_EXPR: 9135 case ADDR_EXPR: 9136 case WITH_SIZE_EXPR: 9137 case SSA_NAME: 9138 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9139 9140 case COMPOUND_EXPR: 9141 case MODIFY_EXPR: 9142 case BIND_EXPR: 9143 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 9144 strict_overflow_p); 9145 9146 case SAVE_EXPR: 9147 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0), 9148 strict_overflow_p); 9149 9150 case CALL_EXPR: 9151 { 9152 tree fndecl = get_callee_fndecl (t); 9153 if (!fndecl) return false; 9154 if (flag_delete_null_pointer_checks && !flag_check_new 9155 && DECL_IS_OPERATOR_NEW (fndecl) 9156 && !TREE_NOTHROW (fndecl)) 9157 return true; 9158 if (flag_delete_null_pointer_checks 9159 && lookup_attribute ("returns_nonnull", 9160 TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))) 9161 return true; 9162 return alloca_call_p (t); 9163 } 9164 9165 default: 9166 break; 9167 } 9168 return false; 9169 } 9170 9171 /* Return true when T is an address and is known to be nonzero. 9172 Handle warnings about undefined signed overflow. */ 9173 9174 bool 9175 tree_expr_nonzero_p (tree t) 9176 { 9177 bool ret, strict_overflow_p; 9178 9179 strict_overflow_p = false; 9180 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p); 9181 if (strict_overflow_p) 9182 fold_overflow_warning (("assuming signed overflow does not occur when " 9183 "determining that expression is always " 9184 "non-zero"), 9185 WARN_STRICT_OVERFLOW_MISC); 9186 return ret; 9187 } 9188 9189 /* Return true if T is known not to be equal to an integer W. */ 9190 9191 bool 9192 expr_not_equal_to (tree t, const wide_int &w) 9193 { 9194 wide_int min, max, nz; 9195 value_range_type rtype; 9196 switch (TREE_CODE (t)) 9197 { 9198 case INTEGER_CST: 9199 return wi::to_wide (t) != w; 9200 9201 case SSA_NAME: 9202 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 9203 return false; 9204 rtype = get_range_info (t, &min, &max); 9205 if (rtype == VR_RANGE) 9206 { 9207 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t)))) 9208 return true; 9209 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t)))) 9210 return true; 9211 } 9212 else if (rtype == VR_ANTI_RANGE 9213 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t))) 9214 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t)))) 9215 return true; 9216 /* If T has some known zero bits and W has any of those bits set, 9217 then T is known not to be equal to W. */ 9218 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)), 9219 TYPE_PRECISION (TREE_TYPE (t))), 0)) 9220 return true; 9221 return false; 9222 9223 default: 9224 return false; 9225 } 9226 } 9227 9228 /* Fold a binary expression of code CODE and type TYPE with operands 9229 OP0 and OP1. LOC is the location of the resulting expression. 9230 Return the folded expression if folding is successful. Otherwise, 9231 return NULL_TREE. */ 9232 9233 tree 9234 fold_binary_loc (location_t loc, enum tree_code code, tree type, 9235 tree op0, tree op1) 9236 { 9237 enum tree_code_class kind = TREE_CODE_CLASS (code); 9238 tree arg0, arg1, tem; 9239 tree t1 = NULL_TREE; 9240 bool strict_overflow_p; 9241 unsigned int prec; 9242 9243 gcc_assert (IS_EXPR_CODE_CLASS (kind) 9244 && TREE_CODE_LENGTH (code) == 2 9245 && op0 != NULL_TREE 9246 && op1 != NULL_TREE); 9247 9248 arg0 = op0; 9249 arg1 = op1; 9250 9251 /* Strip any conversions that don't change the mode. This is 9252 safe for every expression, except for a comparison expression 9253 because its signedness is derived from its operands. So, in 9254 the latter case, only strip conversions that don't change the 9255 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments 9256 preserved. 9257 9258 Note that this is done as an internal manipulation within the 9259 constant folder, in order to find the simplest representation 9260 of the arguments so that their form can be studied. In any 9261 cases, the appropriate type conversions should be put back in 9262 the tree that will get out of the constant folder. */ 9263 9264 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR) 9265 { 9266 STRIP_SIGN_NOPS (arg0); 9267 STRIP_SIGN_NOPS (arg1); 9268 } 9269 else 9270 { 9271 STRIP_NOPS (arg0); 9272 STRIP_NOPS (arg1); 9273 } 9274 9275 /* Note that TREE_CONSTANT isn't enough: static var addresses are 9276 constant but we can't do arithmetic on them. */ 9277 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1)) 9278 { 9279 tem = const_binop (code, type, arg0, arg1); 9280 if (tem != NULL_TREE) 9281 { 9282 if (TREE_TYPE (tem) != type) 9283 tem = fold_convert_loc (loc, type, tem); 9284 return tem; 9285 } 9286 } 9287 9288 /* If this is a commutative operation, and ARG0 is a constant, move it 9289 to ARG1 to reduce the number of tests below. */ 9290 if (commutative_tree_code (code) 9291 && tree_swap_operands_p (arg0, arg1)) 9292 return fold_build2_loc (loc, code, type, op1, op0); 9293 9294 /* Likewise if this is a comparison, and ARG0 is a constant, move it 9295 to ARG1 to reduce the number of tests below. */ 9296 if (kind == tcc_comparison 9297 && tree_swap_operands_p (arg0, arg1)) 9298 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0); 9299 9300 tem = generic_simplify (loc, code, type, op0, op1); 9301 if (tem) 9302 return tem; 9303 9304 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand. 9305 9306 First check for cases where an arithmetic operation is applied to a 9307 compound, conditional, or comparison operation. Push the arithmetic 9308 operation inside the compound or conditional to see if any folding 9309 can then be done. Convert comparison to conditional for this purpose. 9310 The also optimizes non-constant cases that used to be done in 9311 expand_expr. 9312 9313 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR, 9314 one of the operands is a comparison and the other is a comparison, a 9315 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the 9316 code below would make the expression more complex. Change it to a 9317 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to 9318 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */ 9319 9320 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR 9321 || code == EQ_EXPR || code == NE_EXPR) 9322 && !VECTOR_TYPE_P (TREE_TYPE (arg0)) 9323 && ((truth_value_p (TREE_CODE (arg0)) 9324 && (truth_value_p (TREE_CODE (arg1)) 9325 || (TREE_CODE (arg1) == BIT_AND_EXPR 9326 && integer_onep (TREE_OPERAND (arg1, 1))))) 9327 || (truth_value_p (TREE_CODE (arg1)) 9328 && (truth_value_p (TREE_CODE (arg0)) 9329 || (TREE_CODE (arg0) == BIT_AND_EXPR 9330 && integer_onep (TREE_OPERAND (arg0, 1))))))) 9331 { 9332 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR 9333 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR 9334 : TRUTH_XOR_EXPR, 9335 boolean_type_node, 9336 fold_convert_loc (loc, boolean_type_node, arg0), 9337 fold_convert_loc (loc, boolean_type_node, arg1)); 9338 9339 if (code == EQ_EXPR) 9340 tem = invert_truthvalue_loc (loc, tem); 9341 9342 return fold_convert_loc (loc, type, tem); 9343 } 9344 9345 if (TREE_CODE_CLASS (code) == tcc_binary 9346 || TREE_CODE_CLASS (code) == tcc_comparison) 9347 { 9348 if (TREE_CODE (arg0) == COMPOUND_EXPR) 9349 { 9350 tem = fold_build2_loc (loc, code, type, 9351 fold_convert_loc (loc, TREE_TYPE (op0), 9352 TREE_OPERAND (arg0, 1)), op1); 9353 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 9354 tem); 9355 } 9356 if (TREE_CODE (arg1) == COMPOUND_EXPR) 9357 { 9358 tem = fold_build2_loc (loc, code, type, op0, 9359 fold_convert_loc (loc, TREE_TYPE (op1), 9360 TREE_OPERAND (arg1, 1))); 9361 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0), 9362 tem); 9363 } 9364 9365 if (TREE_CODE (arg0) == COND_EXPR 9366 || TREE_CODE (arg0) == VEC_COND_EXPR 9367 || COMPARISON_CLASS_P (arg0)) 9368 { 9369 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9370 arg0, arg1, 9371 /*cond_first_p=*/1); 9372 if (tem != NULL_TREE) 9373 return tem; 9374 } 9375 9376 if (TREE_CODE (arg1) == COND_EXPR 9377 || TREE_CODE (arg1) == VEC_COND_EXPR 9378 || COMPARISON_CLASS_P (arg1)) 9379 { 9380 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9381 arg1, arg0, 9382 /*cond_first_p=*/0); 9383 if (tem != NULL_TREE) 9384 return tem; 9385 } 9386 } 9387 9388 switch (code) 9389 { 9390 case MEM_REF: 9391 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */ 9392 if (TREE_CODE (arg0) == ADDR_EXPR 9393 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF) 9394 { 9395 tree iref = TREE_OPERAND (arg0, 0); 9396 return fold_build2 (MEM_REF, type, 9397 TREE_OPERAND (iref, 0), 9398 int_const_binop (PLUS_EXPR, arg1, 9399 TREE_OPERAND (iref, 1))); 9400 } 9401 9402 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */ 9403 if (TREE_CODE (arg0) == ADDR_EXPR 9404 && handled_component_p (TREE_OPERAND (arg0, 0))) 9405 { 9406 tree base; 9407 poly_int64 coffset; 9408 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0), 9409 &coffset); 9410 if (!base) 9411 return NULL_TREE; 9412 return fold_build2 (MEM_REF, type, 9413 build_fold_addr_expr (base), 9414 int_const_binop (PLUS_EXPR, arg1, 9415 size_int (coffset))); 9416 } 9417 9418 return NULL_TREE; 9419 9420 case POINTER_PLUS_EXPR: 9421 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */ 9422 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9423 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))) 9424 return fold_convert_loc (loc, type, 9425 fold_build2_loc (loc, PLUS_EXPR, sizetype, 9426 fold_convert_loc (loc, sizetype, 9427 arg1), 9428 fold_convert_loc (loc, sizetype, 9429 arg0))); 9430 9431 return NULL_TREE; 9432 9433 case PLUS_EXPR: 9434 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) 9435 { 9436 /* X + (X / CST) * -CST is X % CST. */ 9437 if (TREE_CODE (arg1) == MULT_EXPR 9438 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR 9439 && operand_equal_p (arg0, 9440 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)) 9441 { 9442 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1); 9443 tree cst1 = TREE_OPERAND (arg1, 1); 9444 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1), 9445 cst1, cst0); 9446 if (sum && integer_zerop (sum)) 9447 return fold_convert_loc (loc, type, 9448 fold_build2_loc (loc, TRUNC_MOD_EXPR, 9449 TREE_TYPE (arg0), arg0, 9450 cst0)); 9451 } 9452 } 9453 9454 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or 9455 one. Make sure the type is not saturating and has the signedness of 9456 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9457 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9458 if ((TREE_CODE (arg0) == MULT_EXPR 9459 || TREE_CODE (arg1) == MULT_EXPR) 9460 && !TYPE_SATURATING (type) 9461 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 9462 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 9463 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 9464 { 9465 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 9466 if (tem) 9467 return tem; 9468 } 9469 9470 if (! FLOAT_TYPE_P (type)) 9471 { 9472 /* Reassociate (plus (plus (mult) (foo)) (mult)) as 9473 (plus (plus (mult) (mult)) (foo)) so that we can 9474 take advantage of the factoring cases below. */ 9475 if (ANY_INTEGRAL_TYPE_P (type) 9476 && TYPE_OVERFLOW_WRAPS (type) 9477 && (((TREE_CODE (arg0) == PLUS_EXPR 9478 || TREE_CODE (arg0) == MINUS_EXPR) 9479 && TREE_CODE (arg1) == MULT_EXPR) 9480 || ((TREE_CODE (arg1) == PLUS_EXPR 9481 || TREE_CODE (arg1) == MINUS_EXPR) 9482 && TREE_CODE (arg0) == MULT_EXPR))) 9483 { 9484 tree parg0, parg1, parg, marg; 9485 enum tree_code pcode; 9486 9487 if (TREE_CODE (arg1) == MULT_EXPR) 9488 parg = arg0, marg = arg1; 9489 else 9490 parg = arg1, marg = arg0; 9491 pcode = TREE_CODE (parg); 9492 parg0 = TREE_OPERAND (parg, 0); 9493 parg1 = TREE_OPERAND (parg, 1); 9494 STRIP_NOPS (parg0); 9495 STRIP_NOPS (parg1); 9496 9497 if (TREE_CODE (parg0) == MULT_EXPR 9498 && TREE_CODE (parg1) != MULT_EXPR) 9499 return fold_build2_loc (loc, pcode, type, 9500 fold_build2_loc (loc, PLUS_EXPR, type, 9501 fold_convert_loc (loc, type, 9502 parg0), 9503 fold_convert_loc (loc, type, 9504 marg)), 9505 fold_convert_loc (loc, type, parg1)); 9506 if (TREE_CODE (parg0) != MULT_EXPR 9507 && TREE_CODE (parg1) == MULT_EXPR) 9508 return 9509 fold_build2_loc (loc, PLUS_EXPR, type, 9510 fold_convert_loc (loc, type, parg0), 9511 fold_build2_loc (loc, pcode, type, 9512 fold_convert_loc (loc, type, marg), 9513 fold_convert_loc (loc, type, 9514 parg1))); 9515 } 9516 } 9517 else 9518 { 9519 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y ) 9520 to __complex__ ( x, y ). This is not the same for SNaNs or 9521 if signed zeros are involved. */ 9522 if (!HONOR_SNANS (element_mode (arg0)) 9523 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9524 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9525 { 9526 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9527 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9528 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9529 bool arg0rz = false, arg0iz = false; 9530 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9531 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9532 { 9533 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9534 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9535 if (arg0rz && arg1i && real_zerop (arg1i)) 9536 { 9537 tree rp = arg1r ? arg1r 9538 : build1 (REALPART_EXPR, rtype, arg1); 9539 tree ip = arg0i ? arg0i 9540 : build1 (IMAGPART_EXPR, rtype, arg0); 9541 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9542 } 9543 else if (arg0iz && arg1r && real_zerop (arg1r)) 9544 { 9545 tree rp = arg0r ? arg0r 9546 : build1 (REALPART_EXPR, rtype, arg0); 9547 tree ip = arg1i ? arg1i 9548 : build1 (IMAGPART_EXPR, rtype, arg1); 9549 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9550 } 9551 } 9552 } 9553 9554 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. 9555 We associate floats only if the user has specified 9556 -fassociative-math. */ 9557 if (flag_associative_math 9558 && TREE_CODE (arg1) == PLUS_EXPR 9559 && TREE_CODE (arg0) != MULT_EXPR) 9560 { 9561 tree tree10 = TREE_OPERAND (arg1, 0); 9562 tree tree11 = TREE_OPERAND (arg1, 1); 9563 if (TREE_CODE (tree11) == MULT_EXPR 9564 && TREE_CODE (tree10) == MULT_EXPR) 9565 { 9566 tree tree0; 9567 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10); 9568 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11); 9569 } 9570 } 9571 /* Convert (b*c + d*e) + a into b*c + (d*e +a). 9572 We associate floats only if the user has specified 9573 -fassociative-math. */ 9574 if (flag_associative_math 9575 && TREE_CODE (arg0) == PLUS_EXPR 9576 && TREE_CODE (arg1) != MULT_EXPR) 9577 { 9578 tree tree00 = TREE_OPERAND (arg0, 0); 9579 tree tree01 = TREE_OPERAND (arg0, 1); 9580 if (TREE_CODE (tree01) == MULT_EXPR 9581 && TREE_CODE (tree00) == MULT_EXPR) 9582 { 9583 tree tree0; 9584 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1); 9585 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0); 9586 } 9587 } 9588 } 9589 9590 bit_rotate: 9591 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A 9592 is a rotate of A by C1 bits. */ 9593 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A 9594 is a rotate of A by B bits. 9595 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1, 9596 though in this case CODE must be | and not + or ^, otherwise 9597 it doesn't return A when B is 0. */ 9598 { 9599 enum tree_code code0, code1; 9600 tree rtype; 9601 code0 = TREE_CODE (arg0); 9602 code1 = TREE_CODE (arg1); 9603 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR) 9604 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR)) 9605 && operand_equal_p (TREE_OPERAND (arg0, 0), 9606 TREE_OPERAND (arg1, 0), 0) 9607 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)), 9608 TYPE_UNSIGNED (rtype)) 9609 /* Only create rotates in complete modes. Other cases are not 9610 expanded properly. */ 9611 && (element_precision (rtype) 9612 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype)))) 9613 { 9614 tree tree01, tree11; 9615 tree orig_tree01, orig_tree11; 9616 enum tree_code code01, code11; 9617 9618 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1); 9619 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1); 9620 STRIP_NOPS (tree01); 9621 STRIP_NOPS (tree11); 9622 code01 = TREE_CODE (tree01); 9623 code11 = TREE_CODE (tree11); 9624 if (code11 != MINUS_EXPR 9625 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR)) 9626 { 9627 std::swap (code0, code1); 9628 std::swap (code01, code11); 9629 std::swap (tree01, tree11); 9630 std::swap (orig_tree01, orig_tree11); 9631 } 9632 if (code01 == INTEGER_CST 9633 && code11 == INTEGER_CST 9634 && (wi::to_widest (tree01) + wi::to_widest (tree11) 9635 == element_precision (rtype))) 9636 { 9637 tem = build2_loc (loc, LROTATE_EXPR, 9638 rtype, TREE_OPERAND (arg0, 0), 9639 code0 == LSHIFT_EXPR 9640 ? orig_tree01 : orig_tree11); 9641 return fold_convert_loc (loc, type, tem); 9642 } 9643 else if (code11 == MINUS_EXPR) 9644 { 9645 tree tree110, tree111; 9646 tree110 = TREE_OPERAND (tree11, 0); 9647 tree111 = TREE_OPERAND (tree11, 1); 9648 STRIP_NOPS (tree110); 9649 STRIP_NOPS (tree111); 9650 if (TREE_CODE (tree110) == INTEGER_CST 9651 && compare_tree_int (tree110, 9652 element_precision (rtype)) == 0 9653 && operand_equal_p (tree01, tree111, 0)) 9654 { 9655 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9656 ? LROTATE_EXPR : RROTATE_EXPR), 9657 rtype, TREE_OPERAND (arg0, 0), 9658 orig_tree01); 9659 return fold_convert_loc (loc, type, tem); 9660 } 9661 } 9662 else if (code == BIT_IOR_EXPR 9663 && code11 == BIT_AND_EXPR 9664 && pow2p_hwi (element_precision (rtype))) 9665 { 9666 tree tree110, tree111; 9667 tree110 = TREE_OPERAND (tree11, 0); 9668 tree111 = TREE_OPERAND (tree11, 1); 9669 STRIP_NOPS (tree110); 9670 STRIP_NOPS (tree111); 9671 if (TREE_CODE (tree110) == NEGATE_EXPR 9672 && TREE_CODE (tree111) == INTEGER_CST 9673 && compare_tree_int (tree111, 9674 element_precision (rtype) - 1) == 0 9675 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0)) 9676 { 9677 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9678 ? LROTATE_EXPR : RROTATE_EXPR), 9679 rtype, TREE_OPERAND (arg0, 0), 9680 orig_tree01); 9681 return fold_convert_loc (loc, type, tem); 9682 } 9683 } 9684 } 9685 } 9686 9687 associate: 9688 /* In most languages, can't associate operations on floats through 9689 parentheses. Rather than remember where the parentheses were, we 9690 don't associate floats at all, unless the user has specified 9691 -fassociative-math. 9692 And, we need to make sure type is not saturating. */ 9693 9694 if ((! FLOAT_TYPE_P (type) || flag_associative_math) 9695 && !TYPE_SATURATING (type)) 9696 { 9697 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0; 9698 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1; 9699 tree atype = type; 9700 bool ok = true; 9701 9702 /* Split both trees into variables, constants, and literals. Then 9703 associate each group together, the constants with literals, 9704 then the result with variables. This increases the chances of 9705 literals being recombined later and of generating relocatable 9706 expressions for the sum of a constant and literal. */ 9707 var0 = split_tree (arg0, type, code, 9708 &minus_var0, &con0, &minus_con0, 9709 &lit0, &minus_lit0, 0); 9710 var1 = split_tree (arg1, type, code, 9711 &minus_var1, &con1, &minus_con1, 9712 &lit1, &minus_lit1, code == MINUS_EXPR); 9713 9714 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */ 9715 if (code == MINUS_EXPR) 9716 code = PLUS_EXPR; 9717 9718 /* With undefined overflow prefer doing association in a type 9719 which wraps on overflow, if that is one of the operand types. */ 9720 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 9721 && !TYPE_OVERFLOW_WRAPS (type)) 9722 { 9723 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9724 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 9725 atype = TREE_TYPE (arg0); 9726 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9727 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) 9728 atype = TREE_TYPE (arg1); 9729 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type)); 9730 } 9731 9732 /* With undefined overflow we can only associate constants with one 9733 variable, and constants whose association doesn't overflow. */ 9734 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype)) 9735 && !TYPE_OVERFLOW_WRAPS (atype)) 9736 { 9737 if ((var0 && var1) || (minus_var0 && minus_var1)) 9738 { 9739 /* ??? If split_tree would handle NEGATE_EXPR we could 9740 simply reject these cases and the allowed cases would 9741 be the var0/minus_var1 ones. */ 9742 tree tmp0 = var0 ? var0 : minus_var0; 9743 tree tmp1 = var1 ? var1 : minus_var1; 9744 bool one_neg = false; 9745 9746 if (TREE_CODE (tmp0) == NEGATE_EXPR) 9747 { 9748 tmp0 = TREE_OPERAND (tmp0, 0); 9749 one_neg = !one_neg; 9750 } 9751 if (CONVERT_EXPR_P (tmp0) 9752 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9753 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9754 <= TYPE_PRECISION (atype))) 9755 tmp0 = TREE_OPERAND (tmp0, 0); 9756 if (TREE_CODE (tmp1) == NEGATE_EXPR) 9757 { 9758 tmp1 = TREE_OPERAND (tmp1, 0); 9759 one_neg = !one_neg; 9760 } 9761 if (CONVERT_EXPR_P (tmp1) 9762 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9763 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9764 <= TYPE_PRECISION (atype))) 9765 tmp1 = TREE_OPERAND (tmp1, 0); 9766 /* The only case we can still associate with two variables 9767 is if they cancel out. */ 9768 if (!one_neg 9769 || !operand_equal_p (tmp0, tmp1, 0)) 9770 ok = false; 9771 } 9772 else if ((var0 && minus_var1 9773 && ! operand_equal_p (var0, minus_var1, 0)) 9774 || (minus_var0 && var1 9775 && ! operand_equal_p (minus_var0, var1, 0))) 9776 ok = false; 9777 } 9778 9779 /* Only do something if we found more than two objects. Otherwise, 9780 nothing has changed and we risk infinite recursion. */ 9781 if (ok 9782 && ((var0 != 0) + (var1 != 0) 9783 + (minus_var0 != 0) + (minus_var1 != 0) 9784 + (con0 != 0) + (con1 != 0) 9785 + (minus_con0 != 0) + (minus_con1 != 0) 9786 + (lit0 != 0) + (lit1 != 0) 9787 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2) 9788 { 9789 var0 = associate_trees (loc, var0, var1, code, atype); 9790 minus_var0 = associate_trees (loc, minus_var0, minus_var1, 9791 code, atype); 9792 con0 = associate_trees (loc, con0, con1, code, atype); 9793 minus_con0 = associate_trees (loc, minus_con0, minus_con1, 9794 code, atype); 9795 lit0 = associate_trees (loc, lit0, lit1, code, atype); 9796 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, 9797 code, atype); 9798 9799 if (minus_var0 && var0) 9800 { 9801 var0 = associate_trees (loc, var0, minus_var0, 9802 MINUS_EXPR, atype); 9803 minus_var0 = 0; 9804 } 9805 if (minus_con0 && con0) 9806 { 9807 con0 = associate_trees (loc, con0, minus_con0, 9808 MINUS_EXPR, atype); 9809 minus_con0 = 0; 9810 } 9811 9812 /* Preserve the MINUS_EXPR if the negative part of the literal is 9813 greater than the positive part. Otherwise, the multiplicative 9814 folding code (i.e extract_muldiv) may be fooled in case 9815 unsigned constants are subtracted, like in the following 9816 example: ((X*2 + 4) - 8U)/2. */ 9817 if (minus_lit0 && lit0) 9818 { 9819 if (TREE_CODE (lit0) == INTEGER_CST 9820 && TREE_CODE (minus_lit0) == INTEGER_CST 9821 && tree_int_cst_lt (lit0, minus_lit0) 9822 /* But avoid ending up with only negated parts. */ 9823 && (var0 || con0)) 9824 { 9825 minus_lit0 = associate_trees (loc, minus_lit0, lit0, 9826 MINUS_EXPR, atype); 9827 lit0 = 0; 9828 } 9829 else 9830 { 9831 lit0 = associate_trees (loc, lit0, minus_lit0, 9832 MINUS_EXPR, atype); 9833 minus_lit0 = 0; 9834 } 9835 } 9836 9837 /* Don't introduce overflows through reassociation. */ 9838 if ((lit0 && TREE_OVERFLOW_P (lit0)) 9839 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))) 9840 return NULL_TREE; 9841 9842 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */ 9843 con0 = associate_trees (loc, con0, lit0, code, atype); 9844 lit0 = 0; 9845 minus_con0 = associate_trees (loc, minus_con0, minus_lit0, 9846 code, atype); 9847 minus_lit0 = 0; 9848 9849 /* Eliminate minus_con0. */ 9850 if (minus_con0) 9851 { 9852 if (con0) 9853 con0 = associate_trees (loc, con0, minus_con0, 9854 MINUS_EXPR, atype); 9855 else if (var0) 9856 var0 = associate_trees (loc, var0, minus_con0, 9857 MINUS_EXPR, atype); 9858 else 9859 gcc_unreachable (); 9860 minus_con0 = 0; 9861 } 9862 9863 /* Eliminate minus_var0. */ 9864 if (minus_var0) 9865 { 9866 if (con0) 9867 con0 = associate_trees (loc, con0, minus_var0, 9868 MINUS_EXPR, atype); 9869 else 9870 gcc_unreachable (); 9871 minus_var0 = 0; 9872 } 9873 9874 return 9875 fold_convert_loc (loc, type, associate_trees (loc, var0, con0, 9876 code, atype)); 9877 } 9878 } 9879 9880 return NULL_TREE; 9881 9882 case POINTER_DIFF_EXPR: 9883 case MINUS_EXPR: 9884 /* Fold &a[i] - &a[j] to i-j. */ 9885 if (TREE_CODE (arg0) == ADDR_EXPR 9886 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF 9887 && TREE_CODE (arg1) == ADDR_EXPR 9888 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF) 9889 { 9890 tree tem = fold_addr_of_array_ref_difference (loc, type, 9891 TREE_OPERAND (arg0, 0), 9892 TREE_OPERAND (arg1, 0), 9893 code 9894 == POINTER_DIFF_EXPR); 9895 if (tem) 9896 return tem; 9897 } 9898 9899 /* Further transformations are not for pointers. */ 9900 if (code == POINTER_DIFF_EXPR) 9901 return NULL_TREE; 9902 9903 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */ 9904 if (TREE_CODE (arg0) == NEGATE_EXPR 9905 && negate_expr_p (op1) 9906 /* If arg0 is e.g. unsigned int and type is int, then this could 9907 introduce UB, because if A is INT_MIN at runtime, the original 9908 expression can be well defined while the latter is not. 9909 See PR83269. */ 9910 && !(ANY_INTEGRAL_TYPE_P (type) 9911 && TYPE_OVERFLOW_UNDEFINED (type) 9912 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9913 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 9914 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1), 9915 fold_convert_loc (loc, type, 9916 TREE_OPERAND (arg0, 0))); 9917 9918 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to 9919 __complex__ ( x, -y ). This is not the same for SNaNs or if 9920 signed zeros are involved. */ 9921 if (!HONOR_SNANS (element_mode (arg0)) 9922 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9923 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9924 { 9925 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9926 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9927 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9928 bool arg0rz = false, arg0iz = false; 9929 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9930 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9931 { 9932 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9933 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9934 if (arg0rz && arg1i && real_zerop (arg1i)) 9935 { 9936 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9937 arg1r ? arg1r 9938 : build1 (REALPART_EXPR, rtype, arg1)); 9939 tree ip = arg0i ? arg0i 9940 : build1 (IMAGPART_EXPR, rtype, arg0); 9941 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9942 } 9943 else if (arg0iz && arg1r && real_zerop (arg1r)) 9944 { 9945 tree rp = arg0r ? arg0r 9946 : build1 (REALPART_EXPR, rtype, arg0); 9947 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9948 arg1i ? arg1i 9949 : build1 (IMAGPART_EXPR, rtype, arg1)); 9950 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9951 } 9952 } 9953 } 9954 9955 /* A - B -> A + (-B) if B is easily negatable. */ 9956 if (negate_expr_p (op1) 9957 && ! TYPE_OVERFLOW_SANITIZED (type) 9958 && ((FLOAT_TYPE_P (type) 9959 /* Avoid this transformation if B is a positive REAL_CST. */ 9960 && (TREE_CODE (op1) != REAL_CST 9961 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1)))) 9962 || INTEGRAL_TYPE_P (type))) 9963 return fold_build2_loc (loc, PLUS_EXPR, type, 9964 fold_convert_loc (loc, type, arg0), 9965 negate_expr (op1)); 9966 9967 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or 9968 one. Make sure the type is not saturating and has the signedness of 9969 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9970 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9971 if ((TREE_CODE (arg0) == MULT_EXPR 9972 || TREE_CODE (arg1) == MULT_EXPR) 9973 && !TYPE_SATURATING (type) 9974 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 9975 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 9976 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 9977 { 9978 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 9979 if (tem) 9980 return tem; 9981 } 9982 9983 goto associate; 9984 9985 case MULT_EXPR: 9986 if (! FLOAT_TYPE_P (type)) 9987 { 9988 /* Transform x * -C into -x * C if x is easily negatable. */ 9989 if (TREE_CODE (op1) == INTEGER_CST 9990 && tree_int_cst_sgn (op1) == -1 9991 && negate_expr_p (op0) 9992 && negate_expr_p (op1) 9993 && (tem = negate_expr (op1)) != op1 9994 && ! TREE_OVERFLOW (tem)) 9995 return fold_build2_loc (loc, MULT_EXPR, type, 9996 fold_convert_loc (loc, type, 9997 negate_expr (op0)), tem); 9998 9999 strict_overflow_p = false; 10000 if (TREE_CODE (arg1) == INTEGER_CST 10001 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10002 &strict_overflow_p)) != 0) 10003 { 10004 if (strict_overflow_p) 10005 fold_overflow_warning (("assuming signed overflow does not " 10006 "occur when simplifying " 10007 "multiplication"), 10008 WARN_STRICT_OVERFLOW_MISC); 10009 return fold_convert_loc (loc, type, tem); 10010 } 10011 10012 /* Optimize z * conj(z) for integer complex numbers. */ 10013 if (TREE_CODE (arg0) == CONJ_EXPR 10014 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10015 return fold_mult_zconjz (loc, type, arg1); 10016 if (TREE_CODE (arg1) == CONJ_EXPR 10017 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10018 return fold_mult_zconjz (loc, type, arg0); 10019 } 10020 else 10021 { 10022 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z). 10023 This is not the same for NaNs or if signed zeros are 10024 involved. */ 10025 if (!HONOR_NANS (arg0) 10026 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 10027 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)) 10028 && TREE_CODE (arg1) == COMPLEX_CST 10029 && real_zerop (TREE_REALPART (arg1))) 10030 { 10031 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 10032 if (real_onep (TREE_IMAGPART (arg1))) 10033 return 10034 fold_build2_loc (loc, COMPLEX_EXPR, type, 10035 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR, 10036 rtype, arg0)), 10037 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0)); 10038 else if (real_minus_onep (TREE_IMAGPART (arg1))) 10039 return 10040 fold_build2_loc (loc, COMPLEX_EXPR, type, 10041 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0), 10042 negate_expr (fold_build1_loc (loc, REALPART_EXPR, 10043 rtype, arg0))); 10044 } 10045 10046 /* Optimize z * conj(z) for floating point complex numbers. 10047 Guarded by flag_unsafe_math_optimizations as non-finite 10048 imaginary components don't produce scalar results. */ 10049 if (flag_unsafe_math_optimizations 10050 && TREE_CODE (arg0) == CONJ_EXPR 10051 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10052 return fold_mult_zconjz (loc, type, arg1); 10053 if (flag_unsafe_math_optimizations 10054 && TREE_CODE (arg1) == CONJ_EXPR 10055 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10056 return fold_mult_zconjz (loc, type, arg0); 10057 } 10058 goto associate; 10059 10060 case BIT_IOR_EXPR: 10061 /* Canonicalize (X & C1) | C2. */ 10062 if (TREE_CODE (arg0) == BIT_AND_EXPR 10063 && TREE_CODE (arg1) == INTEGER_CST 10064 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10065 { 10066 int width = TYPE_PRECISION (type), w; 10067 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1)); 10068 wide_int c2 = wi::to_wide (arg1); 10069 10070 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */ 10071 if ((c1 & c2) == c1) 10072 return omit_one_operand_loc (loc, type, arg1, 10073 TREE_OPERAND (arg0, 0)); 10074 10075 wide_int msk = wi::mask (width, false, 10076 TYPE_PRECISION (TREE_TYPE (arg1))); 10077 10078 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */ 10079 if (wi::bit_and_not (msk, c1 | c2) == 0) 10080 { 10081 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10082 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10083 } 10084 10085 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2, 10086 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some 10087 mode which allows further optimizations. */ 10088 c1 &= msk; 10089 c2 &= msk; 10090 wide_int c3 = wi::bit_and_not (c1, c2); 10091 for (w = BITS_PER_UNIT; w <= width; w <<= 1) 10092 { 10093 wide_int mask = wi::mask (w, false, 10094 TYPE_PRECISION (type)); 10095 if (((c1 | c2) & mask) == mask 10096 && wi::bit_and_not (c1, mask) == 0) 10097 { 10098 c3 = mask; 10099 break; 10100 } 10101 } 10102 10103 if (c3 != c1) 10104 { 10105 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10106 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem, 10107 wide_int_to_tree (type, c3)); 10108 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10109 } 10110 } 10111 10112 /* See if this can be simplified into a rotate first. If that 10113 is unsuccessful continue in the association code. */ 10114 goto bit_rotate; 10115 10116 case BIT_XOR_EXPR: 10117 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */ 10118 if (TREE_CODE (arg0) == BIT_AND_EXPR 10119 && INTEGRAL_TYPE_P (type) 10120 && integer_onep (TREE_OPERAND (arg0, 1)) 10121 && integer_onep (arg1)) 10122 return fold_build2_loc (loc, EQ_EXPR, type, arg0, 10123 build_zero_cst (TREE_TYPE (arg0))); 10124 10125 /* See if this can be simplified into a rotate first. If that 10126 is unsuccessful continue in the association code. */ 10127 goto bit_rotate; 10128 10129 case BIT_AND_EXPR: 10130 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */ 10131 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10132 && INTEGRAL_TYPE_P (type) 10133 && integer_onep (TREE_OPERAND (arg0, 1)) 10134 && integer_onep (arg1)) 10135 { 10136 tree tem2; 10137 tem = TREE_OPERAND (arg0, 0); 10138 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10139 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10140 tem, tem2); 10141 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10142 build_zero_cst (TREE_TYPE (tem))); 10143 } 10144 /* Fold ~X & 1 as (X & 1) == 0. */ 10145 if (TREE_CODE (arg0) == BIT_NOT_EXPR 10146 && INTEGRAL_TYPE_P (type) 10147 && integer_onep (arg1)) 10148 { 10149 tree tem2; 10150 tem = TREE_OPERAND (arg0, 0); 10151 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10152 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10153 tem, tem2); 10154 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10155 build_zero_cst (TREE_TYPE (tem))); 10156 } 10157 /* Fold !X & 1 as X == 0. */ 10158 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10159 && integer_onep (arg1)) 10160 { 10161 tem = TREE_OPERAND (arg0, 0); 10162 return fold_build2_loc (loc, EQ_EXPR, type, tem, 10163 build_zero_cst (TREE_TYPE (tem))); 10164 } 10165 10166 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant 10167 multiple of 1 << CST. */ 10168 if (TREE_CODE (arg1) == INTEGER_CST) 10169 { 10170 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10171 wide_int ncst1 = -cst1; 10172 if ((cst1 & ncst1) == ncst1 10173 && multiple_of_p (type, arg0, 10174 wide_int_to_tree (TREE_TYPE (arg1), ncst1))) 10175 return fold_convert_loc (loc, type, arg0); 10176 } 10177 10178 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero 10179 bits from CST2. */ 10180 if (TREE_CODE (arg1) == INTEGER_CST 10181 && TREE_CODE (arg0) == MULT_EXPR 10182 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10183 { 10184 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1); 10185 wide_int masked 10186 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1))); 10187 10188 if (masked == 0) 10189 return omit_two_operands_loc (loc, type, build_zero_cst (type), 10190 arg0, arg1); 10191 else if (masked != warg1) 10192 { 10193 /* Avoid the transform if arg1 is a mask of some 10194 mode which allows further optimizations. */ 10195 int pop = wi::popcount (warg1); 10196 if (!(pop >= BITS_PER_UNIT 10197 && pow2p_hwi (pop) 10198 && wi::mask (pop, false, warg1.get_precision ()) == warg1)) 10199 return fold_build2_loc (loc, code, type, op0, 10200 wide_int_to_tree (type, masked)); 10201 } 10202 } 10203 10204 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, 10205 ((A & N) + B) & M -> (A + B) & M 10206 Similarly if (N & M) == 0, 10207 ((A | N) + B) & M -> (A + B) & M 10208 and for - instead of + (or unary - instead of +) 10209 and/or ^ instead of |. 10210 If B is constant and (B & M) == 0, fold into A & M. */ 10211 if (TREE_CODE (arg1) == INTEGER_CST) 10212 { 10213 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10214 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0 10215 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 10216 && (TREE_CODE (arg0) == PLUS_EXPR 10217 || TREE_CODE (arg0) == MINUS_EXPR 10218 || TREE_CODE (arg0) == NEGATE_EXPR) 10219 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) 10220 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE)) 10221 { 10222 tree pmop[2]; 10223 int which = 0; 10224 wide_int cst0; 10225 10226 /* Now we know that arg0 is (C + D) or (C - D) or 10227 -C and arg1 (M) is == (1LL << cst) - 1. 10228 Store C into PMOP[0] and D into PMOP[1]. */ 10229 pmop[0] = TREE_OPERAND (arg0, 0); 10230 pmop[1] = NULL; 10231 if (TREE_CODE (arg0) != NEGATE_EXPR) 10232 { 10233 pmop[1] = TREE_OPERAND (arg0, 1); 10234 which = 1; 10235 } 10236 10237 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1) 10238 which = -1; 10239 10240 for (; which >= 0; which--) 10241 switch (TREE_CODE (pmop[which])) 10242 { 10243 case BIT_AND_EXPR: 10244 case BIT_IOR_EXPR: 10245 case BIT_XOR_EXPR: 10246 if (TREE_CODE (TREE_OPERAND (pmop[which], 1)) 10247 != INTEGER_CST) 10248 break; 10249 cst0 = wi::to_wide (TREE_OPERAND (pmop[which], 1)) & cst1; 10250 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR) 10251 { 10252 if (cst0 != cst1) 10253 break; 10254 } 10255 else if (cst0 != 0) 10256 break; 10257 /* If C or D is of the form (A & N) where 10258 (N & M) == M, or of the form (A | N) or 10259 (A ^ N) where (N & M) == 0, replace it with A. */ 10260 pmop[which] = TREE_OPERAND (pmop[which], 0); 10261 break; 10262 case INTEGER_CST: 10263 /* If C or D is a N where (N & M) == 0, it can be 10264 omitted (assumed 0). */ 10265 if ((TREE_CODE (arg0) == PLUS_EXPR 10266 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0)) 10267 && (cst1 & wi::to_wide (pmop[which])) == 0) 10268 pmop[which] = NULL; 10269 break; 10270 default: 10271 break; 10272 } 10273 10274 /* Only build anything new if we optimized one or both arguments 10275 above. */ 10276 if (pmop[0] != TREE_OPERAND (arg0, 0) 10277 || (TREE_CODE (arg0) != NEGATE_EXPR 10278 && pmop[1] != TREE_OPERAND (arg0, 1))) 10279 { 10280 tree utype = TREE_TYPE (arg0); 10281 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 10282 { 10283 /* Perform the operations in a type that has defined 10284 overflow behavior. */ 10285 utype = unsigned_type_for (TREE_TYPE (arg0)); 10286 if (pmop[0] != NULL) 10287 pmop[0] = fold_convert_loc (loc, utype, pmop[0]); 10288 if (pmop[1] != NULL) 10289 pmop[1] = fold_convert_loc (loc, utype, pmop[1]); 10290 } 10291 10292 if (TREE_CODE (arg0) == NEGATE_EXPR) 10293 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]); 10294 else if (TREE_CODE (arg0) == PLUS_EXPR) 10295 { 10296 if (pmop[0] != NULL && pmop[1] != NULL) 10297 tem = fold_build2_loc (loc, PLUS_EXPR, utype, 10298 pmop[0], pmop[1]); 10299 else if (pmop[0] != NULL) 10300 tem = pmop[0]; 10301 else if (pmop[1] != NULL) 10302 tem = pmop[1]; 10303 else 10304 return build_int_cst (type, 0); 10305 } 10306 else if (pmop[0] == NULL) 10307 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]); 10308 else 10309 tem = fold_build2_loc (loc, MINUS_EXPR, utype, 10310 pmop[0], pmop[1]); 10311 /* TEM is now the new binary +, - or unary - replacement. */ 10312 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem, 10313 fold_convert_loc (loc, utype, arg1)); 10314 return fold_convert_loc (loc, type, tem); 10315 } 10316 } 10317 } 10318 10319 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */ 10320 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR 10321 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0)))) 10322 { 10323 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0))); 10324 10325 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED); 10326 if (mask == -1) 10327 return 10328 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10329 } 10330 10331 goto associate; 10332 10333 case RDIV_EXPR: 10334 /* Don't touch a floating-point divide by zero unless the mode 10335 of the constant can represent infinity. */ 10336 if (TREE_CODE (arg1) == REAL_CST 10337 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))) 10338 && real_zerop (arg1)) 10339 return NULL_TREE; 10340 10341 /* (-A) / (-B) -> A / B */ 10342 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1)) 10343 return fold_build2_loc (loc, RDIV_EXPR, type, 10344 TREE_OPERAND (arg0, 0), 10345 negate_expr (arg1)); 10346 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0)) 10347 return fold_build2_loc (loc, RDIV_EXPR, type, 10348 negate_expr (arg0), 10349 TREE_OPERAND (arg1, 0)); 10350 return NULL_TREE; 10351 10352 case TRUNC_DIV_EXPR: 10353 /* Fall through */ 10354 10355 case FLOOR_DIV_EXPR: 10356 /* Simplify A / (B << N) where A and B are positive and B is 10357 a power of 2, to A >> (N + log2(B)). */ 10358 strict_overflow_p = false; 10359 if (TREE_CODE (arg1) == LSHIFT_EXPR 10360 && (TYPE_UNSIGNED (type) 10361 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p))) 10362 { 10363 tree sval = TREE_OPERAND (arg1, 0); 10364 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0) 10365 { 10366 tree sh_cnt = TREE_OPERAND (arg1, 1); 10367 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt), 10368 wi::exact_log2 (wi::to_wide (sval))); 10369 10370 if (strict_overflow_p) 10371 fold_overflow_warning (("assuming signed overflow does not " 10372 "occur when simplifying A / (B << N)"), 10373 WARN_STRICT_OVERFLOW_MISC); 10374 10375 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt), 10376 sh_cnt, pow2); 10377 return fold_build2_loc (loc, RSHIFT_EXPR, type, 10378 fold_convert_loc (loc, type, arg0), sh_cnt); 10379 } 10380 } 10381 10382 /* Fall through */ 10383 10384 case ROUND_DIV_EXPR: 10385 case CEIL_DIV_EXPR: 10386 case EXACT_DIV_EXPR: 10387 if (integer_zerop (arg1)) 10388 return NULL_TREE; 10389 10390 /* Convert -A / -B to A / B when the type is signed and overflow is 10391 undefined. */ 10392 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10393 && TREE_CODE (op0) == NEGATE_EXPR 10394 && negate_expr_p (op1)) 10395 { 10396 if (INTEGRAL_TYPE_P (type)) 10397 fold_overflow_warning (("assuming signed overflow does not occur " 10398 "when distributing negation across " 10399 "division"), 10400 WARN_STRICT_OVERFLOW_MISC); 10401 return fold_build2_loc (loc, code, type, 10402 fold_convert_loc (loc, type, 10403 TREE_OPERAND (arg0, 0)), 10404 negate_expr (op1)); 10405 } 10406 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10407 && TREE_CODE (arg1) == NEGATE_EXPR 10408 && negate_expr_p (op0)) 10409 { 10410 if (INTEGRAL_TYPE_P (type)) 10411 fold_overflow_warning (("assuming signed overflow does not occur " 10412 "when distributing negation across " 10413 "division"), 10414 WARN_STRICT_OVERFLOW_MISC); 10415 return fold_build2_loc (loc, code, type, 10416 negate_expr (op0), 10417 fold_convert_loc (loc, type, 10418 TREE_OPERAND (arg1, 0))); 10419 } 10420 10421 /* If arg0 is a multiple of arg1, then rewrite to the fastest div 10422 operation, EXACT_DIV_EXPR. 10423 10424 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now. 10425 At one time others generated faster code, it's not clear if they do 10426 after the last round to changes to the DIV code in expmed.c. */ 10427 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR) 10428 && multiple_of_p (type, arg0, arg1)) 10429 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, 10430 fold_convert (type, arg0), 10431 fold_convert (type, arg1)); 10432 10433 strict_overflow_p = false; 10434 if (TREE_CODE (arg1) == INTEGER_CST 10435 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10436 &strict_overflow_p)) != 0) 10437 { 10438 if (strict_overflow_p) 10439 fold_overflow_warning (("assuming signed overflow does not occur " 10440 "when simplifying division"), 10441 WARN_STRICT_OVERFLOW_MISC); 10442 return fold_convert_loc (loc, type, tem); 10443 } 10444 10445 return NULL_TREE; 10446 10447 case CEIL_MOD_EXPR: 10448 case FLOOR_MOD_EXPR: 10449 case ROUND_MOD_EXPR: 10450 case TRUNC_MOD_EXPR: 10451 strict_overflow_p = false; 10452 if (TREE_CODE (arg1) == INTEGER_CST 10453 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10454 &strict_overflow_p)) != 0) 10455 { 10456 if (strict_overflow_p) 10457 fold_overflow_warning (("assuming signed overflow does not occur " 10458 "when simplifying modulus"), 10459 WARN_STRICT_OVERFLOW_MISC); 10460 return fold_convert_loc (loc, type, tem); 10461 } 10462 10463 return NULL_TREE; 10464 10465 case LROTATE_EXPR: 10466 case RROTATE_EXPR: 10467 case RSHIFT_EXPR: 10468 case LSHIFT_EXPR: 10469 /* Since negative shift count is not well-defined, 10470 don't try to compute it in the compiler. */ 10471 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0) 10472 return NULL_TREE; 10473 10474 prec = element_precision (type); 10475 10476 /* If we have a rotate of a bit operation with the rotate count and 10477 the second operand of the bit operation both constant, 10478 permute the two operations. */ 10479 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10480 && (TREE_CODE (arg0) == BIT_AND_EXPR 10481 || TREE_CODE (arg0) == BIT_IOR_EXPR 10482 || TREE_CODE (arg0) == BIT_XOR_EXPR) 10483 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10484 { 10485 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10486 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10487 return fold_build2_loc (loc, TREE_CODE (arg0), type, 10488 fold_build2_loc (loc, code, type, 10489 arg00, arg1), 10490 fold_build2_loc (loc, code, type, 10491 arg01, arg1)); 10492 } 10493 10494 /* Two consecutive rotates adding up to the some integer 10495 multiple of the precision of the type can be ignored. */ 10496 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10497 && TREE_CODE (arg0) == RROTATE_EXPR 10498 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 10499 && wi::umod_trunc (wi::to_wide (arg1) 10500 + wi::to_wide (TREE_OPERAND (arg0, 1)), 10501 prec) == 0) 10502 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10503 10504 return NULL_TREE; 10505 10506 case MIN_EXPR: 10507 case MAX_EXPR: 10508 goto associate; 10509 10510 case TRUTH_ANDIF_EXPR: 10511 /* Note that the operands of this must be ints 10512 and their values must be 0 or 1. 10513 ("true" is a fixed value perhaps depending on the language.) */ 10514 /* If first arg is constant zero, return it. */ 10515 if (integer_zerop (arg0)) 10516 return fold_convert_loc (loc, type, arg0); 10517 /* FALLTHRU */ 10518 case TRUTH_AND_EXPR: 10519 /* If either arg is constant true, drop it. */ 10520 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10521 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10522 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1) 10523 /* Preserve sequence points. */ 10524 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10525 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10526 /* If second arg is constant zero, result is zero, but first arg 10527 must be evaluated. */ 10528 if (integer_zerop (arg1)) 10529 return omit_one_operand_loc (loc, type, arg1, arg0); 10530 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR 10531 case will be handled here. */ 10532 if (integer_zerop (arg0)) 10533 return omit_one_operand_loc (loc, type, arg0, arg1); 10534 10535 /* !X && X is always false. */ 10536 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10537 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10538 return omit_one_operand_loc (loc, type, integer_zero_node, arg1); 10539 /* X && !X is always false. */ 10540 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10541 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10542 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10543 10544 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y 10545 means A >= Y && A != MAX, but in this case we know that 10546 A < X <= MAX. */ 10547 10548 if (!TREE_SIDE_EFFECTS (arg0) 10549 && !TREE_SIDE_EFFECTS (arg1)) 10550 { 10551 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1); 10552 if (tem && !operand_equal_p (tem, arg0, 0)) 10553 return fold_build2_loc (loc, code, type, tem, arg1); 10554 10555 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0); 10556 if (tem && !operand_equal_p (tem, arg1, 0)) 10557 return fold_build2_loc (loc, code, type, arg0, tem); 10558 } 10559 10560 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10561 != NULL_TREE) 10562 return tem; 10563 10564 return NULL_TREE; 10565 10566 case TRUTH_ORIF_EXPR: 10567 /* Note that the operands of this must be ints 10568 and their values must be 0 or true. 10569 ("true" is a fixed value perhaps depending on the language.) */ 10570 /* If first arg is constant true, return it. */ 10571 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10572 return fold_convert_loc (loc, type, arg0); 10573 /* FALLTHRU */ 10574 case TRUTH_OR_EXPR: 10575 /* If either arg is constant zero, drop it. */ 10576 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0)) 10577 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10578 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1) 10579 /* Preserve sequence points. */ 10580 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10581 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10582 /* If second arg is constant true, result is true, but we must 10583 evaluate first arg. */ 10584 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)) 10585 return omit_one_operand_loc (loc, type, arg1, arg0); 10586 /* Likewise for first arg, but note this only occurs here for 10587 TRUTH_OR_EXPR. */ 10588 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10589 return omit_one_operand_loc (loc, type, arg0, arg1); 10590 10591 /* !X || X is always true. */ 10592 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10593 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10594 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10595 /* X || !X is always true. */ 10596 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10597 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10598 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10599 10600 /* (X && !Y) || (!X && Y) is X ^ Y */ 10601 if (TREE_CODE (arg0) == TRUTH_AND_EXPR 10602 && TREE_CODE (arg1) == TRUTH_AND_EXPR) 10603 { 10604 tree a0, a1, l0, l1, n0, n1; 10605 10606 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0)); 10607 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1)); 10608 10609 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10610 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10611 10612 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0); 10613 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1); 10614 10615 if ((operand_equal_p (n0, a0, 0) 10616 && operand_equal_p (n1, a1, 0)) 10617 || (operand_equal_p (n0, a1, 0) 10618 && operand_equal_p (n1, a0, 0))) 10619 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1); 10620 } 10621 10622 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10623 != NULL_TREE) 10624 return tem; 10625 10626 return NULL_TREE; 10627 10628 case TRUTH_XOR_EXPR: 10629 /* If the second arg is constant zero, drop it. */ 10630 if (integer_zerop (arg1)) 10631 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10632 /* If the second arg is constant true, this is a logical inversion. */ 10633 if (integer_onep (arg1)) 10634 { 10635 tem = invert_truthvalue_loc (loc, arg0); 10636 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem)); 10637 } 10638 /* Identical arguments cancel to zero. */ 10639 if (operand_equal_p (arg0, arg1, 0)) 10640 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10641 10642 /* !X ^ X is always true. */ 10643 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10644 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10645 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10646 10647 /* X ^ !X is always true. */ 10648 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10649 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10650 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10651 10652 return NULL_TREE; 10653 10654 case EQ_EXPR: 10655 case NE_EXPR: 10656 STRIP_NOPS (arg0); 10657 STRIP_NOPS (arg1); 10658 10659 tem = fold_comparison (loc, code, type, op0, op1); 10660 if (tem != NULL_TREE) 10661 return tem; 10662 10663 /* bool_var != 1 becomes !bool_var. */ 10664 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1) 10665 && code == NE_EXPR) 10666 return fold_convert_loc (loc, type, 10667 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10668 TREE_TYPE (arg0), arg0)); 10669 10670 /* bool_var == 0 becomes !bool_var. */ 10671 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1) 10672 && code == EQ_EXPR) 10673 return fold_convert_loc (loc, type, 10674 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10675 TREE_TYPE (arg0), arg0)); 10676 10677 /* !exp != 0 becomes !exp */ 10678 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1) 10679 && code == NE_EXPR) 10680 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10681 10682 /* If this is an EQ or NE comparison with zero and ARG0 is 10683 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require 10684 two operations, but the latter can be done in one less insn 10685 on machines that have only two-operand insns or on which a 10686 constant cannot be the first operand. */ 10687 if (TREE_CODE (arg0) == BIT_AND_EXPR 10688 && integer_zerop (arg1)) 10689 { 10690 tree arg00 = TREE_OPERAND (arg0, 0); 10691 tree arg01 = TREE_OPERAND (arg0, 1); 10692 if (TREE_CODE (arg00) == LSHIFT_EXPR 10693 && integer_onep (TREE_OPERAND (arg00, 0))) 10694 { 10695 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00), 10696 arg01, TREE_OPERAND (arg00, 1)); 10697 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10698 build_int_cst (TREE_TYPE (arg0), 1)); 10699 return fold_build2_loc (loc, code, type, 10700 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10701 arg1); 10702 } 10703 else if (TREE_CODE (arg01) == LSHIFT_EXPR 10704 && integer_onep (TREE_OPERAND (arg01, 0))) 10705 { 10706 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01), 10707 arg00, TREE_OPERAND (arg01, 1)); 10708 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10709 build_int_cst (TREE_TYPE (arg0), 1)); 10710 return fold_build2_loc (loc, code, type, 10711 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10712 arg1); 10713 } 10714 } 10715 10716 /* If this is an NE or EQ comparison of zero against the result of a 10717 signed MOD operation whose second operand is a power of 2, make 10718 the MOD operation unsigned since it is simpler and equivalent. */ 10719 if (integer_zerop (arg1) 10720 && !TYPE_UNSIGNED (TREE_TYPE (arg0)) 10721 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR 10722 || TREE_CODE (arg0) == CEIL_MOD_EXPR 10723 || TREE_CODE (arg0) == FLOOR_MOD_EXPR 10724 || TREE_CODE (arg0) == ROUND_MOD_EXPR) 10725 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10726 { 10727 tree newtype = unsigned_type_for (TREE_TYPE (arg0)); 10728 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype, 10729 fold_convert_loc (loc, newtype, 10730 TREE_OPERAND (arg0, 0)), 10731 fold_convert_loc (loc, newtype, 10732 TREE_OPERAND (arg0, 1))); 10733 10734 return fold_build2_loc (loc, code, type, newmod, 10735 fold_convert_loc (loc, newtype, arg1)); 10736 } 10737 10738 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where 10739 C1 is a valid shift constant, and C2 is a power of two, i.e. 10740 a single bit. */ 10741 if (TREE_CODE (arg0) == BIT_AND_EXPR 10742 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR 10743 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)) 10744 == INTEGER_CST 10745 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10746 && integer_zerop (arg1)) 10747 { 10748 tree itype = TREE_TYPE (arg0); 10749 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1); 10750 prec = TYPE_PRECISION (itype); 10751 10752 /* Check for a valid shift count. */ 10753 if (wi::ltu_p (wi::to_wide (arg001), prec)) 10754 { 10755 tree arg01 = TREE_OPERAND (arg0, 1); 10756 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10757 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01); 10758 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0 10759 can be rewritten as (X & (C2 << C1)) != 0. */ 10760 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec) 10761 { 10762 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001); 10763 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem); 10764 return fold_build2_loc (loc, code, type, tem, 10765 fold_convert_loc (loc, itype, arg1)); 10766 } 10767 /* Otherwise, for signed (arithmetic) shifts, 10768 ((X >> C1) & C2) != 0 is rewritten as X < 0, and 10769 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */ 10770 else if (!TYPE_UNSIGNED (itype)) 10771 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type, 10772 arg000, build_int_cst (itype, 0)); 10773 /* Otherwise, of unsigned (logical) shifts, 10774 ((X >> C1) & C2) != 0 is rewritten as (X,false), and 10775 ((X >> C1) & C2) == 0 is rewritten as (X,true). */ 10776 else 10777 return omit_one_operand_loc (loc, type, 10778 code == EQ_EXPR ? integer_one_node 10779 : integer_zero_node, 10780 arg000); 10781 } 10782 } 10783 10784 /* If this is a comparison of a field, we may be able to simplify it. */ 10785 if ((TREE_CODE (arg0) == COMPONENT_REF 10786 || TREE_CODE (arg0) == BIT_FIELD_REF) 10787 /* Handle the constant case even without -O 10788 to make sure the warnings are given. */ 10789 && (optimize || TREE_CODE (arg1) == INTEGER_CST)) 10790 { 10791 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1); 10792 if (t1) 10793 return t1; 10794 } 10795 10796 /* Optimize comparisons of strlen vs zero to a compare of the 10797 first character of the string vs zero. To wit, 10798 strlen(ptr) == 0 => *ptr == 0 10799 strlen(ptr) != 0 => *ptr != 0 10800 Other cases should reduce to one of these two (or a constant) 10801 due to the return value of strlen being unsigned. */ 10802 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1)) 10803 { 10804 tree fndecl = get_callee_fndecl (arg0); 10805 10806 if (fndecl 10807 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 10808 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN 10809 && call_expr_nargs (arg0) == 1 10810 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) 10811 == POINTER_TYPE)) 10812 { 10813 tree ptrtype 10814 = build_pointer_type (build_qualified_type (char_type_node, 10815 TYPE_QUAL_CONST)); 10816 tree ptr = fold_convert_loc (loc, ptrtype, 10817 CALL_EXPR_ARG (arg0, 0)); 10818 tree iref = build_fold_indirect_ref_loc (loc, ptr); 10819 return fold_build2_loc (loc, code, type, iref, 10820 build_int_cst (TREE_TYPE (iref), 0)); 10821 } 10822 } 10823 10824 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width 10825 of X. Similarly fold (X >> C) == 0 into X >= 0. */ 10826 if (TREE_CODE (arg0) == RSHIFT_EXPR 10827 && integer_zerop (arg1) 10828 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10829 { 10830 tree arg00 = TREE_OPERAND (arg0, 0); 10831 tree arg01 = TREE_OPERAND (arg0, 1); 10832 tree itype = TREE_TYPE (arg00); 10833 if (wi::to_wide (arg01) == element_precision (itype) - 1) 10834 { 10835 if (TYPE_UNSIGNED (itype)) 10836 { 10837 itype = signed_type_for (itype); 10838 arg00 = fold_convert_loc (loc, itype, arg00); 10839 } 10840 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 10841 type, arg00, build_zero_cst (itype)); 10842 } 10843 } 10844 10845 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into 10846 (X & C) == 0 when C is a single bit. */ 10847 if (TREE_CODE (arg0) == BIT_AND_EXPR 10848 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR 10849 && integer_zerop (arg1) 10850 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10851 { 10852 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), 10853 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0), 10854 TREE_OPERAND (arg0, 1)); 10855 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, 10856 type, tem, 10857 fold_convert_loc (loc, TREE_TYPE (arg0), 10858 arg1)); 10859 } 10860 10861 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the 10862 constant C is a power of two, i.e. a single bit. */ 10863 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10864 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 10865 && integer_zerop (arg1) 10866 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10867 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10868 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10869 { 10870 tree arg00 = TREE_OPERAND (arg0, 0); 10871 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10872 arg00, build_int_cst (TREE_TYPE (arg00), 0)); 10873 } 10874 10875 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0, 10876 when is C is a power of two, i.e. a single bit. */ 10877 if (TREE_CODE (arg0) == BIT_AND_EXPR 10878 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR 10879 && integer_zerop (arg1) 10880 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10881 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10882 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10883 { 10884 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10885 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000), 10886 arg000, TREE_OPERAND (arg0, 1)); 10887 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10888 tem, build_int_cst (TREE_TYPE (tem), 0)); 10889 } 10890 10891 if (integer_zerop (arg1) 10892 && tree_expr_nonzero_p (arg0)) 10893 { 10894 tree res = constant_boolean_node (code==NE_EXPR, type); 10895 return omit_one_operand_loc (loc, type, res, arg0); 10896 } 10897 10898 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */ 10899 if (TREE_CODE (arg0) == BIT_AND_EXPR 10900 && TREE_CODE (arg1) == BIT_AND_EXPR) 10901 { 10902 tree arg00 = TREE_OPERAND (arg0, 0); 10903 tree arg01 = TREE_OPERAND (arg0, 1); 10904 tree arg10 = TREE_OPERAND (arg1, 0); 10905 tree arg11 = TREE_OPERAND (arg1, 1); 10906 tree itype = TREE_TYPE (arg0); 10907 10908 if (operand_equal_p (arg01, arg11, 0)) 10909 { 10910 tem = fold_convert_loc (loc, itype, arg10); 10911 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10912 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10913 return fold_build2_loc (loc, code, type, tem, 10914 build_zero_cst (itype)); 10915 } 10916 if (operand_equal_p (arg01, arg10, 0)) 10917 { 10918 tem = fold_convert_loc (loc, itype, arg11); 10919 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10920 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10921 return fold_build2_loc (loc, code, type, tem, 10922 build_zero_cst (itype)); 10923 } 10924 if (operand_equal_p (arg00, arg11, 0)) 10925 { 10926 tem = fold_convert_loc (loc, itype, arg10); 10927 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10928 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10929 return fold_build2_loc (loc, code, type, tem, 10930 build_zero_cst (itype)); 10931 } 10932 if (operand_equal_p (arg00, arg10, 0)) 10933 { 10934 tem = fold_convert_loc (loc, itype, arg11); 10935 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10936 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10937 return fold_build2_loc (loc, code, type, tem, 10938 build_zero_cst (itype)); 10939 } 10940 } 10941 10942 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10943 && TREE_CODE (arg1) == BIT_XOR_EXPR) 10944 { 10945 tree arg00 = TREE_OPERAND (arg0, 0); 10946 tree arg01 = TREE_OPERAND (arg0, 1); 10947 tree arg10 = TREE_OPERAND (arg1, 0); 10948 tree arg11 = TREE_OPERAND (arg1, 1); 10949 tree itype = TREE_TYPE (arg0); 10950 10951 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries. 10952 operand_equal_p guarantees no side-effects so we don't need 10953 to use omit_one_operand on Z. */ 10954 if (operand_equal_p (arg01, arg11, 0)) 10955 return fold_build2_loc (loc, code, type, arg00, 10956 fold_convert_loc (loc, TREE_TYPE (arg00), 10957 arg10)); 10958 if (operand_equal_p (arg01, arg10, 0)) 10959 return fold_build2_loc (loc, code, type, arg00, 10960 fold_convert_loc (loc, TREE_TYPE (arg00), 10961 arg11)); 10962 if (operand_equal_p (arg00, arg11, 0)) 10963 return fold_build2_loc (loc, code, type, arg01, 10964 fold_convert_loc (loc, TREE_TYPE (arg01), 10965 arg10)); 10966 if (operand_equal_p (arg00, arg10, 0)) 10967 return fold_build2_loc (loc, code, type, arg01, 10968 fold_convert_loc (loc, TREE_TYPE (arg01), 10969 arg11)); 10970 10971 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */ 10972 if (TREE_CODE (arg01) == INTEGER_CST 10973 && TREE_CODE (arg11) == INTEGER_CST) 10974 { 10975 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, 10976 fold_convert_loc (loc, itype, arg11)); 10977 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10978 return fold_build2_loc (loc, code, type, tem, 10979 fold_convert_loc (loc, itype, arg10)); 10980 } 10981 } 10982 10983 /* Attempt to simplify equality/inequality comparisons of complex 10984 values. Only lower the comparison if the result is known or 10985 can be simplified to a single scalar comparison. */ 10986 if ((TREE_CODE (arg0) == COMPLEX_EXPR 10987 || TREE_CODE (arg0) == COMPLEX_CST) 10988 && (TREE_CODE (arg1) == COMPLEX_EXPR 10989 || TREE_CODE (arg1) == COMPLEX_CST)) 10990 { 10991 tree real0, imag0, real1, imag1; 10992 tree rcond, icond; 10993 10994 if (TREE_CODE (arg0) == COMPLEX_EXPR) 10995 { 10996 real0 = TREE_OPERAND (arg0, 0); 10997 imag0 = TREE_OPERAND (arg0, 1); 10998 } 10999 else 11000 { 11001 real0 = TREE_REALPART (arg0); 11002 imag0 = TREE_IMAGPART (arg0); 11003 } 11004 11005 if (TREE_CODE (arg1) == COMPLEX_EXPR) 11006 { 11007 real1 = TREE_OPERAND (arg1, 0); 11008 imag1 = TREE_OPERAND (arg1, 1); 11009 } 11010 else 11011 { 11012 real1 = TREE_REALPART (arg1); 11013 imag1 = TREE_IMAGPART (arg1); 11014 } 11015 11016 rcond = fold_binary_loc (loc, code, type, real0, real1); 11017 if (rcond && TREE_CODE (rcond) == INTEGER_CST) 11018 { 11019 if (integer_zerop (rcond)) 11020 { 11021 if (code == EQ_EXPR) 11022 return omit_two_operands_loc (loc, type, boolean_false_node, 11023 imag0, imag1); 11024 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1); 11025 } 11026 else 11027 { 11028 if (code == NE_EXPR) 11029 return omit_two_operands_loc (loc, type, boolean_true_node, 11030 imag0, imag1); 11031 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1); 11032 } 11033 } 11034 11035 icond = fold_binary_loc (loc, code, type, imag0, imag1); 11036 if (icond && TREE_CODE (icond) == INTEGER_CST) 11037 { 11038 if (integer_zerop (icond)) 11039 { 11040 if (code == EQ_EXPR) 11041 return omit_two_operands_loc (loc, type, boolean_false_node, 11042 real0, real1); 11043 return fold_build2_loc (loc, NE_EXPR, type, real0, real1); 11044 } 11045 else 11046 { 11047 if (code == NE_EXPR) 11048 return omit_two_operands_loc (loc, type, boolean_true_node, 11049 real0, real1); 11050 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1); 11051 } 11052 } 11053 } 11054 11055 return NULL_TREE; 11056 11057 case LT_EXPR: 11058 case GT_EXPR: 11059 case LE_EXPR: 11060 case GE_EXPR: 11061 tem = fold_comparison (loc, code, type, op0, op1); 11062 if (tem != NULL_TREE) 11063 return tem; 11064 11065 /* Transform comparisons of the form X +- C CMP X. */ 11066 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 11067 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0) 11068 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST 11069 && !HONOR_SNANS (arg0)) 11070 { 11071 tree arg01 = TREE_OPERAND (arg0, 1); 11072 enum tree_code code0 = TREE_CODE (arg0); 11073 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1; 11074 11075 /* (X - c) > X becomes false. */ 11076 if (code == GT_EXPR 11077 && ((code0 == MINUS_EXPR && is_positive >= 0) 11078 || (code0 == PLUS_EXPR && is_positive <= 0))) 11079 return constant_boolean_node (0, type); 11080 11081 /* Likewise (X + c) < X becomes false. */ 11082 if (code == LT_EXPR 11083 && ((code0 == PLUS_EXPR && is_positive >= 0) 11084 || (code0 == MINUS_EXPR && is_positive <= 0))) 11085 return constant_boolean_node (0, type); 11086 11087 /* Convert (X - c) <= X to true. */ 11088 if (!HONOR_NANS (arg1) 11089 && code == LE_EXPR 11090 && ((code0 == MINUS_EXPR && is_positive >= 0) 11091 || (code0 == PLUS_EXPR && is_positive <= 0))) 11092 return constant_boolean_node (1, type); 11093 11094 /* Convert (X + c) >= X to true. */ 11095 if (!HONOR_NANS (arg1) 11096 && code == GE_EXPR 11097 && ((code0 == PLUS_EXPR && is_positive >= 0) 11098 || (code0 == MINUS_EXPR && is_positive <= 0))) 11099 return constant_boolean_node (1, type); 11100 } 11101 11102 /* If we are comparing an ABS_EXPR with a constant, we can 11103 convert all the cases into explicit comparisons, but they may 11104 well not be faster than doing the ABS and one comparison. 11105 But ABS (X) <= C is a range comparison, which becomes a subtraction 11106 and a comparison, and is probably faster. */ 11107 if (code == LE_EXPR 11108 && TREE_CODE (arg1) == INTEGER_CST 11109 && TREE_CODE (arg0) == ABS_EXPR 11110 && ! TREE_SIDE_EFFECTS (arg0) 11111 && (tem = negate_expr (arg1)) != 0 11112 && TREE_CODE (tem) == INTEGER_CST 11113 && !TREE_OVERFLOW (tem)) 11114 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type, 11115 build2 (GE_EXPR, type, 11116 TREE_OPERAND (arg0, 0), tem), 11117 build2 (LE_EXPR, type, 11118 TREE_OPERAND (arg0, 0), arg1)); 11119 11120 /* Convert ABS_EXPR<x> >= 0 to true. */ 11121 strict_overflow_p = false; 11122 if (code == GE_EXPR 11123 && (integer_zerop (arg1) 11124 || (! HONOR_NANS (arg0) 11125 && real_zerop (arg1))) 11126 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11127 { 11128 if (strict_overflow_p) 11129 fold_overflow_warning (("assuming signed overflow does not occur " 11130 "when simplifying comparison of " 11131 "absolute value and zero"), 11132 WARN_STRICT_OVERFLOW_CONDITIONAL); 11133 return omit_one_operand_loc (loc, type, 11134 constant_boolean_node (true, type), 11135 arg0); 11136 } 11137 11138 /* Convert ABS_EXPR<x> < 0 to false. */ 11139 strict_overflow_p = false; 11140 if (code == LT_EXPR 11141 && (integer_zerop (arg1) || real_zerop (arg1)) 11142 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11143 { 11144 if (strict_overflow_p) 11145 fold_overflow_warning (("assuming signed overflow does not occur " 11146 "when simplifying comparison of " 11147 "absolute value and zero"), 11148 WARN_STRICT_OVERFLOW_CONDITIONAL); 11149 return omit_one_operand_loc (loc, type, 11150 constant_boolean_node (false, type), 11151 arg0); 11152 } 11153 11154 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0 11155 and similarly for >= into !=. */ 11156 if ((code == LT_EXPR || code == GE_EXPR) 11157 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11158 && TREE_CODE (arg1) == LSHIFT_EXPR 11159 && integer_onep (TREE_OPERAND (arg1, 0))) 11160 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11161 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11162 TREE_OPERAND (arg1, 1)), 11163 build_zero_cst (TREE_TYPE (arg0))); 11164 11165 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing, 11166 otherwise Y might be >= # of bits in X's type and thus e.g. 11167 (unsigned char) (1 << Y) for Y 15 might be 0. 11168 If the cast is widening, then 1 << Y should have unsigned type, 11169 otherwise if Y is number of bits in the signed shift type minus 1, 11170 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y 11171 31 might be 0xffffffff80000000. */ 11172 if ((code == LT_EXPR || code == GE_EXPR) 11173 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11174 && CONVERT_EXPR_P (arg1) 11175 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR 11176 && (element_precision (TREE_TYPE (arg1)) 11177 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))) 11178 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))) 11179 || (element_precision (TREE_TYPE (arg1)) 11180 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))) 11181 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0))) 11182 { 11183 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11184 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1)); 11185 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11186 fold_convert_loc (loc, TREE_TYPE (arg0), tem), 11187 build_zero_cst (TREE_TYPE (arg0))); 11188 } 11189 11190 return NULL_TREE; 11191 11192 case UNORDERED_EXPR: 11193 case ORDERED_EXPR: 11194 case UNLT_EXPR: 11195 case UNLE_EXPR: 11196 case UNGT_EXPR: 11197 case UNGE_EXPR: 11198 case UNEQ_EXPR: 11199 case LTGT_EXPR: 11200 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */ 11201 { 11202 tree targ0 = strip_float_extensions (arg0); 11203 tree targ1 = strip_float_extensions (arg1); 11204 tree newtype = TREE_TYPE (targ0); 11205 11206 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype)) 11207 newtype = TREE_TYPE (targ1); 11208 11209 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0))) 11210 return fold_build2_loc (loc, code, type, 11211 fold_convert_loc (loc, newtype, targ0), 11212 fold_convert_loc (loc, newtype, targ1)); 11213 } 11214 11215 return NULL_TREE; 11216 11217 case COMPOUND_EXPR: 11218 /* When pedantic, a compound expression can be neither an lvalue 11219 nor an integer constant expression. */ 11220 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1)) 11221 return NULL_TREE; 11222 /* Don't let (0, 0) be null pointer constant. */ 11223 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1) 11224 : fold_convert_loc (loc, type, arg1); 11225 return pedantic_non_lvalue_loc (loc, tem); 11226 11227 case ASSERT_EXPR: 11228 /* An ASSERT_EXPR should never be passed to fold_binary. */ 11229 gcc_unreachable (); 11230 11231 default: 11232 return NULL_TREE; 11233 } /* switch (code) */ 11234 } 11235 11236 /* Used by contains_label_[p1]. */ 11237 11238 struct contains_label_data 11239 { 11240 hash_set<tree> *pset; 11241 bool inside_switch_p; 11242 }; 11243 11244 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is 11245 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise 11246 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */ 11247 11248 static tree 11249 contains_label_1 (tree *tp, int *walk_subtrees, void *data) 11250 { 11251 contains_label_data *d = (contains_label_data *) data; 11252 switch (TREE_CODE (*tp)) 11253 { 11254 case LABEL_EXPR: 11255 return *tp; 11256 11257 case CASE_LABEL_EXPR: 11258 if (!d->inside_switch_p) 11259 return *tp; 11260 return NULL_TREE; 11261 11262 case SWITCH_EXPR: 11263 if (!d->inside_switch_p) 11264 { 11265 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset)) 11266 return *tp; 11267 d->inside_switch_p = true; 11268 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset)) 11269 return *tp; 11270 d->inside_switch_p = false; 11271 *walk_subtrees = 0; 11272 } 11273 return NULL_TREE; 11274 11275 case GOTO_EXPR: 11276 *walk_subtrees = 0; 11277 return NULL_TREE; 11278 11279 default: 11280 return NULL_TREE; 11281 } 11282 } 11283 11284 /* Return whether the sub-tree ST contains a label which is accessible from 11285 outside the sub-tree. */ 11286 11287 static bool 11288 contains_label_p (tree st) 11289 { 11290 hash_set<tree> pset; 11291 contains_label_data data = { &pset, false }; 11292 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE; 11293 } 11294 11295 /* Fold a ternary expression of code CODE and type TYPE with operands 11296 OP0, OP1, and OP2. Return the folded expression if folding is 11297 successful. Otherwise, return NULL_TREE. */ 11298 11299 tree 11300 fold_ternary_loc (location_t loc, enum tree_code code, tree type, 11301 tree op0, tree op1, tree op2) 11302 { 11303 tree tem; 11304 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE; 11305 enum tree_code_class kind = TREE_CODE_CLASS (code); 11306 11307 gcc_assert (IS_EXPR_CODE_CLASS (kind) 11308 && TREE_CODE_LENGTH (code) == 3); 11309 11310 /* If this is a commutative operation, and OP0 is a constant, move it 11311 to OP1 to reduce the number of tests below. */ 11312 if (commutative_ternary_tree_code (code) 11313 && tree_swap_operands_p (op0, op1)) 11314 return fold_build3_loc (loc, code, type, op1, op0, op2); 11315 11316 tem = generic_simplify (loc, code, type, op0, op1, op2); 11317 if (tem) 11318 return tem; 11319 11320 /* Strip any conversions that don't change the mode. This is safe 11321 for every expression, except for a comparison expression because 11322 its signedness is derived from its operands. So, in the latter 11323 case, only strip conversions that don't change the signedness. 11324 11325 Note that this is done as an internal manipulation within the 11326 constant folder, in order to find the simplest representation of 11327 the arguments so that their form can be studied. In any cases, 11328 the appropriate type conversions should be put back in the tree 11329 that will get out of the constant folder. */ 11330 if (op0) 11331 { 11332 arg0 = op0; 11333 STRIP_NOPS (arg0); 11334 } 11335 11336 if (op1) 11337 { 11338 arg1 = op1; 11339 STRIP_NOPS (arg1); 11340 } 11341 11342 if (op2) 11343 { 11344 arg2 = op2; 11345 STRIP_NOPS (arg2); 11346 } 11347 11348 switch (code) 11349 { 11350 case COMPONENT_REF: 11351 if (TREE_CODE (arg0) == CONSTRUCTOR 11352 && ! type_contains_placeholder_p (TREE_TYPE (arg0))) 11353 { 11354 unsigned HOST_WIDE_INT idx; 11355 tree field, value; 11356 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value) 11357 if (field == arg1) 11358 return value; 11359 } 11360 return NULL_TREE; 11361 11362 case COND_EXPR: 11363 case VEC_COND_EXPR: 11364 /* Pedantic ANSI C says that a conditional expression is never an lvalue, 11365 so all simple results must be passed through pedantic_non_lvalue. */ 11366 if (TREE_CODE (arg0) == INTEGER_CST) 11367 { 11368 tree unused_op = integer_zerop (arg0) ? op1 : op2; 11369 tem = integer_zerop (arg0) ? op2 : op1; 11370 /* Only optimize constant conditions when the selected branch 11371 has the same type as the COND_EXPR. This avoids optimizing 11372 away "c ? x : throw", where the throw has a void type. 11373 Avoid throwing away that operand which contains label. */ 11374 if ((!TREE_SIDE_EFFECTS (unused_op) 11375 || !contains_label_p (unused_op)) 11376 && (! VOID_TYPE_P (TREE_TYPE (tem)) 11377 || VOID_TYPE_P (type))) 11378 return pedantic_non_lvalue_loc (loc, tem); 11379 return NULL_TREE; 11380 } 11381 else if (TREE_CODE (arg0) == VECTOR_CST) 11382 { 11383 unsigned HOST_WIDE_INT nelts; 11384 if ((TREE_CODE (arg1) == VECTOR_CST 11385 || TREE_CODE (arg1) == CONSTRUCTOR) 11386 && (TREE_CODE (arg2) == VECTOR_CST 11387 || TREE_CODE (arg2) == CONSTRUCTOR) 11388 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)) 11389 { 11390 vec_perm_builder sel (nelts, nelts, 1); 11391 for (unsigned int i = 0; i < nelts; i++) 11392 { 11393 tree val = VECTOR_CST_ELT (arg0, i); 11394 if (integer_all_onesp (val)) 11395 sel.quick_push (i); 11396 else if (integer_zerop (val)) 11397 sel.quick_push (nelts + i); 11398 else /* Currently unreachable. */ 11399 return NULL_TREE; 11400 } 11401 vec_perm_indices indices (sel, 2, nelts); 11402 tree t = fold_vec_perm (type, arg1, arg2, indices); 11403 if (t != NULL_TREE) 11404 return t; 11405 } 11406 } 11407 11408 /* If we have A op B ? A : C, we may be able to convert this to a 11409 simpler expression, depending on the operation and the values 11410 of B and C. Signed zeros prevent all of these transformations, 11411 for reasons given above each one. 11412 11413 Also try swapping the arguments and inverting the conditional. */ 11414 if (COMPARISON_CLASS_P (arg0) 11415 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1) 11416 && !HONOR_SIGNED_ZEROS (element_mode (op1))) 11417 { 11418 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2); 11419 if (tem) 11420 return tem; 11421 } 11422 11423 if (COMPARISON_CLASS_P (arg0) 11424 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2) 11425 && !HONOR_SIGNED_ZEROS (element_mode (op2))) 11426 { 11427 location_t loc0 = expr_location_or (arg0, loc); 11428 tem = fold_invert_truthvalue (loc0, arg0); 11429 if (tem && COMPARISON_CLASS_P (tem)) 11430 { 11431 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1); 11432 if (tem) 11433 return tem; 11434 } 11435 } 11436 11437 /* If the second operand is simpler than the third, swap them 11438 since that produces better jump optimization results. */ 11439 if (truth_value_p (TREE_CODE (arg0)) 11440 && tree_swap_operands_p (op1, op2)) 11441 { 11442 location_t loc0 = expr_location_or (arg0, loc); 11443 /* See if this can be inverted. If it can't, possibly because 11444 it was a floating-point inequality comparison, don't do 11445 anything. */ 11446 tem = fold_invert_truthvalue (loc0, arg0); 11447 if (tem) 11448 return fold_build3_loc (loc, code, type, tem, op2, op1); 11449 } 11450 11451 /* Convert A ? 1 : 0 to simply A. */ 11452 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1) 11453 : (integer_onep (op1) 11454 && !VECTOR_TYPE_P (type))) 11455 && integer_zerop (op2) 11456 /* If we try to convert OP0 to our type, the 11457 call to fold will try to move the conversion inside 11458 a COND, which will recurse. In that case, the COND_EXPR 11459 is probably the best choice, so leave it alone. */ 11460 && type == TREE_TYPE (arg0)) 11461 return pedantic_non_lvalue_loc (loc, arg0); 11462 11463 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR 11464 over COND_EXPR in cases such as floating point comparisons. */ 11465 if (integer_zerop (op1) 11466 && code == COND_EXPR 11467 && integer_onep (op2) 11468 && !VECTOR_TYPE_P (type) 11469 && truth_value_p (TREE_CODE (arg0))) 11470 return pedantic_non_lvalue_loc (loc, 11471 fold_convert_loc (loc, type, 11472 invert_truthvalue_loc (loc, 11473 arg0))); 11474 11475 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */ 11476 if (TREE_CODE (arg0) == LT_EXPR 11477 && integer_zerop (TREE_OPERAND (arg0, 1)) 11478 && integer_zerop (op2) 11479 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) 11480 { 11481 /* sign_bit_p looks through both zero and sign extensions, 11482 but for this optimization only sign extensions are 11483 usable. */ 11484 tree tem2 = TREE_OPERAND (arg0, 0); 11485 while (tem != tem2) 11486 { 11487 if (TREE_CODE (tem2) != NOP_EXPR 11488 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0)))) 11489 { 11490 tem = NULL_TREE; 11491 break; 11492 } 11493 tem2 = TREE_OPERAND (tem2, 0); 11494 } 11495 /* sign_bit_p only checks ARG1 bits within A's precision. 11496 If <sign bit of A> has wider type than A, bits outside 11497 of A's precision in <sign bit of A> need to be checked. 11498 If they are all 0, this optimization needs to be done 11499 in unsigned A's type, if they are all 1 in signed A's type, 11500 otherwise this can't be done. */ 11501 if (tem 11502 && TYPE_PRECISION (TREE_TYPE (tem)) 11503 < TYPE_PRECISION (TREE_TYPE (arg1)) 11504 && TYPE_PRECISION (TREE_TYPE (tem)) 11505 < TYPE_PRECISION (type)) 11506 { 11507 int inner_width, outer_width; 11508 tree tem_type; 11509 11510 inner_width = TYPE_PRECISION (TREE_TYPE (tem)); 11511 outer_width = TYPE_PRECISION (TREE_TYPE (arg1)); 11512 if (outer_width > TYPE_PRECISION (type)) 11513 outer_width = TYPE_PRECISION (type); 11514 11515 wide_int mask = wi::shifted_mask 11516 (inner_width, outer_width - inner_width, false, 11517 TYPE_PRECISION (TREE_TYPE (arg1))); 11518 11519 wide_int common = mask & wi::to_wide (arg1); 11520 if (common == mask) 11521 { 11522 tem_type = signed_type_for (TREE_TYPE (tem)); 11523 tem = fold_convert_loc (loc, tem_type, tem); 11524 } 11525 else if (common == 0) 11526 { 11527 tem_type = unsigned_type_for (TREE_TYPE (tem)); 11528 tem = fold_convert_loc (loc, tem_type, tem); 11529 } 11530 else 11531 tem = NULL; 11532 } 11533 11534 if (tem) 11535 return 11536 fold_convert_loc (loc, type, 11537 fold_build2_loc (loc, BIT_AND_EXPR, 11538 TREE_TYPE (tem), tem, 11539 fold_convert_loc (loc, 11540 TREE_TYPE (tem), 11541 arg1))); 11542 } 11543 11544 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was 11545 already handled above. */ 11546 if (TREE_CODE (arg0) == BIT_AND_EXPR 11547 && integer_onep (TREE_OPERAND (arg0, 1)) 11548 && integer_zerop (op2) 11549 && integer_pow2p (arg1)) 11550 { 11551 tree tem = TREE_OPERAND (arg0, 0); 11552 STRIP_NOPS (tem); 11553 if (TREE_CODE (tem) == RSHIFT_EXPR 11554 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)) 11555 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) 11556 == tree_to_uhwi (TREE_OPERAND (tem, 1))) 11557 return fold_build2_loc (loc, BIT_AND_EXPR, type, 11558 fold_convert_loc (loc, type, 11559 TREE_OPERAND (tem, 0)), 11560 op1); 11561 } 11562 11563 /* A & N ? N : 0 is simply A & N if N is a power of two. This 11564 is probably obsolete because the first operand should be a 11565 truth value (that's why we have the two cases above), but let's 11566 leave it in until we can confirm this for all front-ends. */ 11567 if (integer_zerop (op2) 11568 && TREE_CODE (arg0) == NE_EXPR 11569 && integer_zerop (TREE_OPERAND (arg0, 1)) 11570 && integer_pow2p (arg1) 11571 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 11572 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 11573 arg1, OEP_ONLY_CONST) 11574 /* operand_equal_p compares just value, not precision, so e.g. 11575 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR 11576 second operand 32-bit -128, which is not a power of two (or vice 11577 versa. */ 11578 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))) 11579 return pedantic_non_lvalue_loc (loc, 11580 fold_convert_loc (loc, type, 11581 TREE_OPERAND (arg0, 11582 0))); 11583 11584 /* Disable the transformations below for vectors, since 11585 fold_binary_op_with_conditional_arg may undo them immediately, 11586 yielding an infinite loop. */ 11587 if (code == VEC_COND_EXPR) 11588 return NULL_TREE; 11589 11590 /* Convert A ? B : 0 into A && B if A and B are truth values. */ 11591 if (integer_zerop (op2) 11592 && truth_value_p (TREE_CODE (arg0)) 11593 && truth_value_p (TREE_CODE (arg1)) 11594 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11595 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR 11596 : TRUTH_ANDIF_EXPR, 11597 type, fold_convert_loc (loc, type, arg0), op1); 11598 11599 /* Convert A ? B : 1 into !A || B if A and B are truth values. */ 11600 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2) 11601 && truth_value_p (TREE_CODE (arg0)) 11602 && truth_value_p (TREE_CODE (arg1)) 11603 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11604 { 11605 location_t loc0 = expr_location_or (arg0, loc); 11606 /* Only perform transformation if ARG0 is easily inverted. */ 11607 tem = fold_invert_truthvalue (loc0, arg0); 11608 if (tem) 11609 return fold_build2_loc (loc, code == VEC_COND_EXPR 11610 ? BIT_IOR_EXPR 11611 : TRUTH_ORIF_EXPR, 11612 type, fold_convert_loc (loc, type, tem), 11613 op1); 11614 } 11615 11616 /* Convert A ? 0 : B into !A && B if A and B are truth values. */ 11617 if (integer_zerop (arg1) 11618 && truth_value_p (TREE_CODE (arg0)) 11619 && truth_value_p (TREE_CODE (op2)) 11620 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11621 { 11622 location_t loc0 = expr_location_or (arg0, loc); 11623 /* Only perform transformation if ARG0 is easily inverted. */ 11624 tem = fold_invert_truthvalue (loc0, arg0); 11625 if (tem) 11626 return fold_build2_loc (loc, code == VEC_COND_EXPR 11627 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR, 11628 type, fold_convert_loc (loc, type, tem), 11629 op2); 11630 } 11631 11632 /* Convert A ? 1 : B into A || B if A and B are truth values. */ 11633 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1) 11634 && truth_value_p (TREE_CODE (arg0)) 11635 && truth_value_p (TREE_CODE (op2)) 11636 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11637 return fold_build2_loc (loc, code == VEC_COND_EXPR 11638 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR, 11639 type, fold_convert_loc (loc, type, arg0), op2); 11640 11641 return NULL_TREE; 11642 11643 case CALL_EXPR: 11644 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses 11645 of fold_ternary on them. */ 11646 gcc_unreachable (); 11647 11648 case BIT_FIELD_REF: 11649 if (TREE_CODE (arg0) == VECTOR_CST 11650 && (type == TREE_TYPE (TREE_TYPE (arg0)) 11651 || (VECTOR_TYPE_P (type) 11652 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))) 11653 && tree_fits_uhwi_p (op1) 11654 && tree_fits_uhwi_p (op2)) 11655 { 11656 tree eltype = TREE_TYPE (TREE_TYPE (arg0)); 11657 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype)); 11658 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1); 11659 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2); 11660 11661 if (n != 0 11662 && (idx % width) == 0 11663 && (n % width) == 0 11664 && known_le ((idx + n) / width, 11665 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))) 11666 { 11667 idx = idx / width; 11668 n = n / width; 11669 11670 if (TREE_CODE (arg0) == VECTOR_CST) 11671 { 11672 if (n == 1) 11673 { 11674 tem = VECTOR_CST_ELT (arg0, idx); 11675 if (VECTOR_TYPE_P (type)) 11676 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem); 11677 return tem; 11678 } 11679 11680 tree_vector_builder vals (type, n, 1); 11681 for (unsigned i = 0; i < n; ++i) 11682 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i)); 11683 return vals.build (); 11684 } 11685 } 11686 } 11687 11688 /* On constants we can use native encode/interpret to constant 11689 fold (nearly) all BIT_FIELD_REFs. */ 11690 if (CONSTANT_CLASS_P (arg0) 11691 && can_native_interpret_type_p (type) 11692 && BITS_PER_UNIT == 8 11693 && tree_fits_uhwi_p (op1) 11694 && tree_fits_uhwi_p (op2)) 11695 { 11696 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11697 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1); 11698 /* Limit us to a reasonable amount of work. To relax the 11699 other limitations we need bit-shifting of the buffer 11700 and rounding up the size. */ 11701 if (bitpos % BITS_PER_UNIT == 0 11702 && bitsize % BITS_PER_UNIT == 0 11703 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE) 11704 { 11705 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; 11706 unsigned HOST_WIDE_INT len 11707 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT, 11708 bitpos / BITS_PER_UNIT); 11709 if (len > 0 11710 && len * BITS_PER_UNIT >= bitsize) 11711 { 11712 tree v = native_interpret_expr (type, b, 11713 bitsize / BITS_PER_UNIT); 11714 if (v) 11715 return v; 11716 } 11717 } 11718 } 11719 11720 return NULL_TREE; 11721 11722 case FMA_EXPR: 11723 /* For integers we can decompose the FMA if possible. */ 11724 if (TREE_CODE (arg0) == INTEGER_CST 11725 && TREE_CODE (arg1) == INTEGER_CST) 11726 return fold_build2_loc (loc, PLUS_EXPR, type, 11727 const_binop (MULT_EXPR, arg0, arg1), arg2); 11728 if (integer_zerop (arg2)) 11729 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1); 11730 11731 return fold_fma (loc, type, arg0, arg1, arg2); 11732 11733 case VEC_PERM_EXPR: 11734 if (TREE_CODE (arg2) == VECTOR_CST) 11735 { 11736 /* Build a vector of integers from the tree mask. */ 11737 vec_perm_builder builder; 11738 if (!tree_to_vec_perm_builder (&builder, arg2)) 11739 return NULL_TREE; 11740 11741 /* Create a vec_perm_indices for the integer vector. */ 11742 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); 11743 bool single_arg = (op0 == op1); 11744 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts); 11745 11746 /* Check for cases that fold to OP0 or OP1 in their original 11747 element order. */ 11748 if (sel.series_p (0, 1, 0, 1)) 11749 return op0; 11750 if (sel.series_p (0, 1, nelts, 1)) 11751 return op1; 11752 11753 if (!single_arg) 11754 { 11755 if (sel.all_from_input_p (0)) 11756 op1 = op0; 11757 else if (sel.all_from_input_p (1)) 11758 { 11759 op0 = op1; 11760 sel.rotate_inputs (1); 11761 } 11762 } 11763 11764 if ((TREE_CODE (op0) == VECTOR_CST 11765 || TREE_CODE (op0) == CONSTRUCTOR) 11766 && (TREE_CODE (op1) == VECTOR_CST 11767 || TREE_CODE (op1) == CONSTRUCTOR)) 11768 { 11769 tree t = fold_vec_perm (type, op0, op1, sel); 11770 if (t != NULL_TREE) 11771 return t; 11772 } 11773 11774 bool changed = (op0 == op1 && !single_arg); 11775 11776 /* Generate a canonical form of the selector. */ 11777 if (arg2 == op2 && sel.encoding () != builder) 11778 { 11779 /* Some targets are deficient and fail to expand a single 11780 argument permutation while still allowing an equivalent 11781 2-argument version. */ 11782 if (sel.ninputs () == 2 11783 || can_vec_perm_const_p (TYPE_MODE (type), sel, false)) 11784 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11785 else 11786 { 11787 vec_perm_indices sel2 (builder, 2, nelts); 11788 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false)) 11789 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel2); 11790 else 11791 /* Not directly supported with either encoding, 11792 so use the preferred form. */ 11793 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11794 } 11795 changed = true; 11796 } 11797 11798 if (changed) 11799 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2); 11800 } 11801 return NULL_TREE; 11802 11803 case BIT_INSERT_EXPR: 11804 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */ 11805 if (TREE_CODE (arg0) == INTEGER_CST 11806 && TREE_CODE (arg1) == INTEGER_CST) 11807 { 11808 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11809 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1)); 11810 wide_int tem = (wi::to_wide (arg0) 11811 & wi::shifted_mask (bitpos, bitsize, true, 11812 TYPE_PRECISION (type))); 11813 wide_int tem2 11814 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)), 11815 bitsize), bitpos); 11816 return wide_int_to_tree (type, wi::bit_or (tem, tem2)); 11817 } 11818 else if (TREE_CODE (arg0) == VECTOR_CST 11819 && CONSTANT_CLASS_P (arg1) 11820 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)), 11821 TREE_TYPE (arg1))) 11822 { 11823 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11824 unsigned HOST_WIDE_INT elsize 11825 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1))); 11826 if (bitpos % elsize == 0) 11827 { 11828 unsigned k = bitpos / elsize; 11829 unsigned HOST_WIDE_INT nelts; 11830 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0)) 11831 return arg0; 11832 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts)) 11833 { 11834 tree_vector_builder elts (type, nelts, 1); 11835 elts.quick_grow (nelts); 11836 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i) 11837 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i)); 11838 return elts.build (); 11839 } 11840 } 11841 } 11842 return NULL_TREE; 11843 11844 default: 11845 return NULL_TREE; 11846 } /* switch (code) */ 11847 } 11848 11849 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR 11850 of an array (or vector). */ 11851 11852 tree 11853 get_array_ctor_element_at_index (tree ctor, offset_int access_index) 11854 { 11855 tree index_type = NULL_TREE; 11856 offset_int low_bound = 0; 11857 11858 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) 11859 { 11860 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); 11861 if (domain_type && TYPE_MIN_VALUE (domain_type)) 11862 { 11863 /* Static constructors for variably sized objects makes no sense. */ 11864 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); 11865 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type)); 11866 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); 11867 } 11868 } 11869 11870 if (index_type) 11871 access_index = wi::ext (access_index, TYPE_PRECISION (index_type), 11872 TYPE_SIGN (index_type)); 11873 11874 offset_int index = low_bound - 1; 11875 if (index_type) 11876 index = wi::ext (index, TYPE_PRECISION (index_type), 11877 TYPE_SIGN (index_type)); 11878 11879 offset_int max_index; 11880 unsigned HOST_WIDE_INT cnt; 11881 tree cfield, cval; 11882 11883 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) 11884 { 11885 /* Array constructor might explicitly set index, or specify a range, 11886 or leave index NULL meaning that it is next index after previous 11887 one. */ 11888 if (cfield) 11889 { 11890 if (TREE_CODE (cfield) == INTEGER_CST) 11891 max_index = index = wi::to_offset (cfield); 11892 else 11893 { 11894 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); 11895 index = wi::to_offset (TREE_OPERAND (cfield, 0)); 11896 max_index = wi::to_offset (TREE_OPERAND (cfield, 1)); 11897 } 11898 } 11899 else 11900 { 11901 index += 1; 11902 if (index_type) 11903 index = wi::ext (index, TYPE_PRECISION (index_type), 11904 TYPE_SIGN (index_type)); 11905 max_index = index; 11906 } 11907 11908 /* Do we have match? */ 11909 if (wi::cmpu (access_index, index) >= 0 11910 && wi::cmpu (access_index, max_index) <= 0) 11911 return cval; 11912 } 11913 return NULL_TREE; 11914 } 11915 11916 /* Perform constant folding and related simplification of EXPR. 11917 The related simplifications include x*1 => x, x*0 => 0, etc., 11918 and application of the associative law. 11919 NOP_EXPR conversions may be removed freely (as long as we 11920 are careful not to change the type of the overall expression). 11921 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR, 11922 but we can constant-fold them if they have constant operands. */ 11923 11924 #ifdef ENABLE_FOLD_CHECKING 11925 # define fold(x) fold_1 (x) 11926 static tree fold_1 (tree); 11927 static 11928 #endif 11929 tree 11930 fold (tree expr) 11931 { 11932 const tree t = expr; 11933 enum tree_code code = TREE_CODE (t); 11934 enum tree_code_class kind = TREE_CODE_CLASS (code); 11935 tree tem; 11936 location_t loc = EXPR_LOCATION (expr); 11937 11938 /* Return right away if a constant. */ 11939 if (kind == tcc_constant) 11940 return t; 11941 11942 /* CALL_EXPR-like objects with variable numbers of operands are 11943 treated specially. */ 11944 if (kind == tcc_vl_exp) 11945 { 11946 if (code == CALL_EXPR) 11947 { 11948 tem = fold_call_expr (loc, expr, false); 11949 return tem ? tem : expr; 11950 } 11951 return expr; 11952 } 11953 11954 if (IS_EXPR_CODE_CLASS (kind)) 11955 { 11956 tree type = TREE_TYPE (t); 11957 tree op0, op1, op2; 11958 11959 switch (TREE_CODE_LENGTH (code)) 11960 { 11961 case 1: 11962 op0 = TREE_OPERAND (t, 0); 11963 tem = fold_unary_loc (loc, code, type, op0); 11964 return tem ? tem : expr; 11965 case 2: 11966 op0 = TREE_OPERAND (t, 0); 11967 op1 = TREE_OPERAND (t, 1); 11968 tem = fold_binary_loc (loc, code, type, op0, op1); 11969 return tem ? tem : expr; 11970 case 3: 11971 op0 = TREE_OPERAND (t, 0); 11972 op1 = TREE_OPERAND (t, 1); 11973 op2 = TREE_OPERAND (t, 2); 11974 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 11975 return tem ? tem : expr; 11976 default: 11977 break; 11978 } 11979 } 11980 11981 switch (code) 11982 { 11983 case ARRAY_REF: 11984 { 11985 tree op0 = TREE_OPERAND (t, 0); 11986 tree op1 = TREE_OPERAND (t, 1); 11987 11988 if (TREE_CODE (op1) == INTEGER_CST 11989 && TREE_CODE (op0) == CONSTRUCTOR 11990 && ! type_contains_placeholder_p (TREE_TYPE (op0))) 11991 { 11992 tree val = get_array_ctor_element_at_index (op0, 11993 wi::to_offset (op1)); 11994 if (val) 11995 return val; 11996 } 11997 11998 return t; 11999 } 12000 12001 /* Return a VECTOR_CST if possible. */ 12002 case CONSTRUCTOR: 12003 { 12004 tree type = TREE_TYPE (t); 12005 if (TREE_CODE (type) != VECTOR_TYPE) 12006 return t; 12007 12008 unsigned i; 12009 tree val; 12010 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) 12011 if (! CONSTANT_CLASS_P (val)) 12012 return t; 12013 12014 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t)); 12015 } 12016 12017 case CONST_DECL: 12018 return fold (DECL_INITIAL (t)); 12019 12020 default: 12021 return t; 12022 } /* switch (code) */ 12023 } 12024 12025 #ifdef ENABLE_FOLD_CHECKING 12026 #undef fold 12027 12028 static void fold_checksum_tree (const_tree, struct md5_ctx *, 12029 hash_table<nofree_ptr_hash<const tree_node> > *); 12030 static void fold_check_failed (const_tree, const_tree); 12031 void print_fold_checksum (const_tree); 12032 12033 /* When --enable-checking=fold, compute a digest of expr before 12034 and after actual fold call to see if fold did not accidentally 12035 change original expr. */ 12036 12037 tree 12038 fold (tree expr) 12039 { 12040 tree ret; 12041 struct md5_ctx ctx; 12042 unsigned char checksum_before[16], checksum_after[16]; 12043 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12044 12045 md5_init_ctx (&ctx); 12046 fold_checksum_tree (expr, &ctx, &ht); 12047 md5_finish_ctx (&ctx, checksum_before); 12048 ht.empty (); 12049 12050 ret = fold_1 (expr); 12051 12052 md5_init_ctx (&ctx); 12053 fold_checksum_tree (expr, &ctx, &ht); 12054 md5_finish_ctx (&ctx, checksum_after); 12055 12056 if (memcmp (checksum_before, checksum_after, 16)) 12057 fold_check_failed (expr, ret); 12058 12059 return ret; 12060 } 12061 12062 void 12063 print_fold_checksum (const_tree expr) 12064 { 12065 struct md5_ctx ctx; 12066 unsigned char checksum[16], cnt; 12067 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12068 12069 md5_init_ctx (&ctx); 12070 fold_checksum_tree (expr, &ctx, &ht); 12071 md5_finish_ctx (&ctx, checksum); 12072 for (cnt = 0; cnt < 16; ++cnt) 12073 fprintf (stderr, "%02x", checksum[cnt]); 12074 putc ('\n', stderr); 12075 } 12076 12077 static void 12078 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED) 12079 { 12080 internal_error ("fold check: original tree changed by fold"); 12081 } 12082 12083 static void 12084 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, 12085 hash_table<nofree_ptr_hash <const tree_node> > *ht) 12086 { 12087 const tree_node **slot; 12088 enum tree_code code; 12089 union tree_node buf; 12090 int i, len; 12091 12092 recursive_label: 12093 if (expr == NULL) 12094 return; 12095 slot = ht->find_slot (expr, INSERT); 12096 if (*slot != NULL) 12097 return; 12098 *slot = expr; 12099 code = TREE_CODE (expr); 12100 if (TREE_CODE_CLASS (code) == tcc_declaration 12101 && HAS_DECL_ASSEMBLER_NAME_P (expr)) 12102 { 12103 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */ 12104 memcpy ((char *) &buf, expr, tree_size (expr)); 12105 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL); 12106 buf.decl_with_vis.symtab_node = NULL; 12107 expr = (tree) &buf; 12108 } 12109 else if (TREE_CODE_CLASS (code) == tcc_type 12110 && (TYPE_POINTER_TO (expr) 12111 || TYPE_REFERENCE_TO (expr) 12112 || TYPE_CACHED_VALUES_P (expr) 12113 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) 12114 || TYPE_NEXT_VARIANT (expr) 12115 || TYPE_ALIAS_SET_KNOWN_P (expr))) 12116 { 12117 /* Allow these fields to be modified. */ 12118 tree tmp; 12119 memcpy ((char *) &buf, expr, tree_size (expr)); 12120 expr = tmp = (tree) &buf; 12121 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0; 12122 TYPE_POINTER_TO (tmp) = NULL; 12123 TYPE_REFERENCE_TO (tmp) = NULL; 12124 TYPE_NEXT_VARIANT (tmp) = NULL; 12125 TYPE_ALIAS_SET (tmp) = -1; 12126 if (TYPE_CACHED_VALUES_P (tmp)) 12127 { 12128 TYPE_CACHED_VALUES_P (tmp) = 0; 12129 TYPE_CACHED_VALUES (tmp) = NULL; 12130 } 12131 } 12132 md5_process_bytes (expr, tree_size (expr), ctx); 12133 if (CODE_CONTAINS_STRUCT (code, TS_TYPED)) 12134 fold_checksum_tree (TREE_TYPE (expr), ctx, ht); 12135 if (TREE_CODE_CLASS (code) != tcc_type 12136 && TREE_CODE_CLASS (code) != tcc_declaration 12137 && code != TREE_LIST 12138 && code != SSA_NAME 12139 && CODE_CONTAINS_STRUCT (code, TS_COMMON)) 12140 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht); 12141 switch (TREE_CODE_CLASS (code)) 12142 { 12143 case tcc_constant: 12144 switch (code) 12145 { 12146 case STRING_CST: 12147 md5_process_bytes (TREE_STRING_POINTER (expr), 12148 TREE_STRING_LENGTH (expr), ctx); 12149 break; 12150 case COMPLEX_CST: 12151 fold_checksum_tree (TREE_REALPART (expr), ctx, ht); 12152 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht); 12153 break; 12154 case VECTOR_CST: 12155 len = vector_cst_encoded_nelts (expr); 12156 for (i = 0; i < len; ++i) 12157 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht); 12158 break; 12159 default: 12160 break; 12161 } 12162 break; 12163 case tcc_exceptional: 12164 switch (code) 12165 { 12166 case TREE_LIST: 12167 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht); 12168 fold_checksum_tree (TREE_VALUE (expr), ctx, ht); 12169 expr = TREE_CHAIN (expr); 12170 goto recursive_label; 12171 break; 12172 case TREE_VEC: 12173 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i) 12174 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht); 12175 break; 12176 default: 12177 break; 12178 } 12179 break; 12180 case tcc_expression: 12181 case tcc_reference: 12182 case tcc_comparison: 12183 case tcc_unary: 12184 case tcc_binary: 12185 case tcc_statement: 12186 case tcc_vl_exp: 12187 len = TREE_OPERAND_LENGTH (expr); 12188 for (i = 0; i < len; ++i) 12189 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht); 12190 break; 12191 case tcc_declaration: 12192 fold_checksum_tree (DECL_NAME (expr), ctx, ht); 12193 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht); 12194 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON)) 12195 { 12196 fold_checksum_tree (DECL_SIZE (expr), ctx, ht); 12197 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht); 12198 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht); 12199 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht); 12200 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht); 12201 } 12202 12203 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON)) 12204 { 12205 if (TREE_CODE (expr) == FUNCTION_DECL) 12206 { 12207 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht); 12208 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht); 12209 } 12210 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht); 12211 } 12212 break; 12213 case tcc_type: 12214 if (TREE_CODE (expr) == ENUMERAL_TYPE) 12215 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht); 12216 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht); 12217 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht); 12218 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht); 12219 fold_checksum_tree (TYPE_NAME (expr), ctx, ht); 12220 if (INTEGRAL_TYPE_P (expr) 12221 || SCALAR_FLOAT_TYPE_P (expr)) 12222 { 12223 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht); 12224 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht); 12225 } 12226 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht); 12227 if (TREE_CODE (expr) == RECORD_TYPE 12228 || TREE_CODE (expr) == UNION_TYPE 12229 || TREE_CODE (expr) == QUAL_UNION_TYPE) 12230 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht); 12231 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht); 12232 break; 12233 default: 12234 break; 12235 } 12236 } 12237 12238 /* Helper function for outputting the checksum of a tree T. When 12239 debugging with gdb, you can "define mynext" to be "next" followed 12240 by "call debug_fold_checksum (op0)", then just trace down till the 12241 outputs differ. */ 12242 12243 DEBUG_FUNCTION void 12244 debug_fold_checksum (const_tree t) 12245 { 12246 int i; 12247 unsigned char checksum[16]; 12248 struct md5_ctx ctx; 12249 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12250 12251 md5_init_ctx (&ctx); 12252 fold_checksum_tree (t, &ctx, &ht); 12253 md5_finish_ctx (&ctx, checksum); 12254 ht.empty (); 12255 12256 for (i = 0; i < 16; i++) 12257 fprintf (stderr, "%d ", checksum[i]); 12258 12259 fprintf (stderr, "\n"); 12260 } 12261 12262 #endif 12263 12264 /* Fold a unary tree expression with code CODE of type TYPE with an 12265 operand OP0. LOC is the location of the resulting expression. 12266 Return a folded expression if successful. Otherwise, return a tree 12267 expression with code CODE of type TYPE with an operand OP0. */ 12268 12269 tree 12270 fold_build1_loc (location_t loc, 12271 enum tree_code code, tree type, tree op0 MEM_STAT_DECL) 12272 { 12273 tree tem; 12274 #ifdef ENABLE_FOLD_CHECKING 12275 unsigned char checksum_before[16], checksum_after[16]; 12276 struct md5_ctx ctx; 12277 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12278 12279 md5_init_ctx (&ctx); 12280 fold_checksum_tree (op0, &ctx, &ht); 12281 md5_finish_ctx (&ctx, checksum_before); 12282 ht.empty (); 12283 #endif 12284 12285 tem = fold_unary_loc (loc, code, type, op0); 12286 if (!tem) 12287 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT); 12288 12289 #ifdef ENABLE_FOLD_CHECKING 12290 md5_init_ctx (&ctx); 12291 fold_checksum_tree (op0, &ctx, &ht); 12292 md5_finish_ctx (&ctx, checksum_after); 12293 12294 if (memcmp (checksum_before, checksum_after, 16)) 12295 fold_check_failed (op0, tem); 12296 #endif 12297 return tem; 12298 } 12299 12300 /* Fold a binary tree expression with code CODE of type TYPE with 12301 operands OP0 and OP1. LOC is the location of the resulting 12302 expression. Return a folded expression if successful. Otherwise, 12303 return a tree expression with code CODE of type TYPE with operands 12304 OP0 and OP1. */ 12305 12306 tree 12307 fold_build2_loc (location_t loc, 12308 enum tree_code code, tree type, tree op0, tree op1 12309 MEM_STAT_DECL) 12310 { 12311 tree tem; 12312 #ifdef ENABLE_FOLD_CHECKING 12313 unsigned char checksum_before_op0[16], 12314 checksum_before_op1[16], 12315 checksum_after_op0[16], 12316 checksum_after_op1[16]; 12317 struct md5_ctx ctx; 12318 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12319 12320 md5_init_ctx (&ctx); 12321 fold_checksum_tree (op0, &ctx, &ht); 12322 md5_finish_ctx (&ctx, checksum_before_op0); 12323 ht.empty (); 12324 12325 md5_init_ctx (&ctx); 12326 fold_checksum_tree (op1, &ctx, &ht); 12327 md5_finish_ctx (&ctx, checksum_before_op1); 12328 ht.empty (); 12329 #endif 12330 12331 tem = fold_binary_loc (loc, code, type, op0, op1); 12332 if (!tem) 12333 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT); 12334 12335 #ifdef ENABLE_FOLD_CHECKING 12336 md5_init_ctx (&ctx); 12337 fold_checksum_tree (op0, &ctx, &ht); 12338 md5_finish_ctx (&ctx, checksum_after_op0); 12339 ht.empty (); 12340 12341 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12342 fold_check_failed (op0, tem); 12343 12344 md5_init_ctx (&ctx); 12345 fold_checksum_tree (op1, &ctx, &ht); 12346 md5_finish_ctx (&ctx, checksum_after_op1); 12347 12348 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12349 fold_check_failed (op1, tem); 12350 #endif 12351 return tem; 12352 } 12353 12354 /* Fold a ternary tree expression with code CODE of type TYPE with 12355 operands OP0, OP1, and OP2. Return a folded expression if 12356 successful. Otherwise, return a tree expression with code CODE of 12357 type TYPE with operands OP0, OP1, and OP2. */ 12358 12359 tree 12360 fold_build3_loc (location_t loc, enum tree_code code, tree type, 12361 tree op0, tree op1, tree op2 MEM_STAT_DECL) 12362 { 12363 tree tem; 12364 #ifdef ENABLE_FOLD_CHECKING 12365 unsigned char checksum_before_op0[16], 12366 checksum_before_op1[16], 12367 checksum_before_op2[16], 12368 checksum_after_op0[16], 12369 checksum_after_op1[16], 12370 checksum_after_op2[16]; 12371 struct md5_ctx ctx; 12372 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12373 12374 md5_init_ctx (&ctx); 12375 fold_checksum_tree (op0, &ctx, &ht); 12376 md5_finish_ctx (&ctx, checksum_before_op0); 12377 ht.empty (); 12378 12379 md5_init_ctx (&ctx); 12380 fold_checksum_tree (op1, &ctx, &ht); 12381 md5_finish_ctx (&ctx, checksum_before_op1); 12382 ht.empty (); 12383 12384 md5_init_ctx (&ctx); 12385 fold_checksum_tree (op2, &ctx, &ht); 12386 md5_finish_ctx (&ctx, checksum_before_op2); 12387 ht.empty (); 12388 #endif 12389 12390 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 12391 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 12392 if (!tem) 12393 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT); 12394 12395 #ifdef ENABLE_FOLD_CHECKING 12396 md5_init_ctx (&ctx); 12397 fold_checksum_tree (op0, &ctx, &ht); 12398 md5_finish_ctx (&ctx, checksum_after_op0); 12399 ht.empty (); 12400 12401 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12402 fold_check_failed (op0, tem); 12403 12404 md5_init_ctx (&ctx); 12405 fold_checksum_tree (op1, &ctx, &ht); 12406 md5_finish_ctx (&ctx, checksum_after_op1); 12407 ht.empty (); 12408 12409 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12410 fold_check_failed (op1, tem); 12411 12412 md5_init_ctx (&ctx); 12413 fold_checksum_tree (op2, &ctx, &ht); 12414 md5_finish_ctx (&ctx, checksum_after_op2); 12415 12416 if (memcmp (checksum_before_op2, checksum_after_op2, 16)) 12417 fold_check_failed (op2, tem); 12418 #endif 12419 return tem; 12420 } 12421 12422 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS 12423 arguments in ARGARRAY, and a null static chain. 12424 Return a folded expression if successful. Otherwise, return a CALL_EXPR 12425 of type TYPE from the given operands as constructed by build_call_array. */ 12426 12427 tree 12428 fold_build_call_array_loc (location_t loc, tree type, tree fn, 12429 int nargs, tree *argarray) 12430 { 12431 tree tem; 12432 #ifdef ENABLE_FOLD_CHECKING 12433 unsigned char checksum_before_fn[16], 12434 checksum_before_arglist[16], 12435 checksum_after_fn[16], 12436 checksum_after_arglist[16]; 12437 struct md5_ctx ctx; 12438 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12439 int i; 12440 12441 md5_init_ctx (&ctx); 12442 fold_checksum_tree (fn, &ctx, &ht); 12443 md5_finish_ctx (&ctx, checksum_before_fn); 12444 ht.empty (); 12445 12446 md5_init_ctx (&ctx); 12447 for (i = 0; i < nargs; i++) 12448 fold_checksum_tree (argarray[i], &ctx, &ht); 12449 md5_finish_ctx (&ctx, checksum_before_arglist); 12450 ht.empty (); 12451 #endif 12452 12453 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray); 12454 if (!tem) 12455 tem = build_call_array_loc (loc, type, fn, nargs, argarray); 12456 12457 #ifdef ENABLE_FOLD_CHECKING 12458 md5_init_ctx (&ctx); 12459 fold_checksum_tree (fn, &ctx, &ht); 12460 md5_finish_ctx (&ctx, checksum_after_fn); 12461 ht.empty (); 12462 12463 if (memcmp (checksum_before_fn, checksum_after_fn, 16)) 12464 fold_check_failed (fn, tem); 12465 12466 md5_init_ctx (&ctx); 12467 for (i = 0; i < nargs; i++) 12468 fold_checksum_tree (argarray[i], &ctx, &ht); 12469 md5_finish_ctx (&ctx, checksum_after_arglist); 12470 12471 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16)) 12472 fold_check_failed (NULL_TREE, tem); 12473 #endif 12474 return tem; 12475 } 12476 12477 /* Perform constant folding and related simplification of initializer 12478 expression EXPR. These behave identically to "fold_buildN" but ignore 12479 potential run-time traps and exceptions that fold must preserve. */ 12480 12481 #define START_FOLD_INIT \ 12482 int saved_signaling_nans = flag_signaling_nans;\ 12483 int saved_trapping_math = flag_trapping_math;\ 12484 int saved_rounding_math = flag_rounding_math;\ 12485 int saved_trapv = flag_trapv;\ 12486 int saved_folding_initializer = folding_initializer;\ 12487 flag_signaling_nans = 0;\ 12488 flag_trapping_math = 0;\ 12489 flag_rounding_math = 0;\ 12490 flag_trapv = 0;\ 12491 folding_initializer = 1; 12492 12493 #define END_FOLD_INIT \ 12494 flag_signaling_nans = saved_signaling_nans;\ 12495 flag_trapping_math = saved_trapping_math;\ 12496 flag_rounding_math = saved_rounding_math;\ 12497 flag_trapv = saved_trapv;\ 12498 folding_initializer = saved_folding_initializer; 12499 12500 tree 12501 fold_build1_initializer_loc (location_t loc, enum tree_code code, 12502 tree type, tree op) 12503 { 12504 tree result; 12505 START_FOLD_INIT; 12506 12507 result = fold_build1_loc (loc, code, type, op); 12508 12509 END_FOLD_INIT; 12510 return result; 12511 } 12512 12513 tree 12514 fold_build2_initializer_loc (location_t loc, enum tree_code code, 12515 tree type, tree op0, tree op1) 12516 { 12517 tree result; 12518 START_FOLD_INIT; 12519 12520 result = fold_build2_loc (loc, code, type, op0, op1); 12521 12522 END_FOLD_INIT; 12523 return result; 12524 } 12525 12526 tree 12527 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn, 12528 int nargs, tree *argarray) 12529 { 12530 tree result; 12531 START_FOLD_INIT; 12532 12533 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray); 12534 12535 END_FOLD_INIT; 12536 return result; 12537 } 12538 12539 #undef START_FOLD_INIT 12540 #undef END_FOLD_INIT 12541 12542 /* Determine if first argument is a multiple of second argument. Return 0 if 12543 it is not, or we cannot easily determined it to be. 12544 12545 An example of the sort of thing we care about (at this point; this routine 12546 could surely be made more general, and expanded to do what the *_DIV_EXPR's 12547 fold cases do now) is discovering that 12548 12549 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12550 12551 is a multiple of 12552 12553 SAVE_EXPR (J * 8) 12554 12555 when we know that the two SAVE_EXPR (J * 8) nodes are the same node. 12556 12557 This code also handles discovering that 12558 12559 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12560 12561 is a multiple of 8 so we don't have to worry about dealing with a 12562 possible remainder. 12563 12564 Note that we *look* inside a SAVE_EXPR only to determine how it was 12565 calculated; it is not safe for fold to do much of anything else with the 12566 internals of a SAVE_EXPR, since it cannot know when it will be evaluated 12567 at run time. For example, the latter example above *cannot* be implemented 12568 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at 12569 evaluation time of the original SAVE_EXPR is not necessarily the same at 12570 the time the new expression is evaluated. The only optimization of this 12571 sort that would be valid is changing 12572 12573 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8) 12574 12575 divided by 8 to 12576 12577 SAVE_EXPR (I) * SAVE_EXPR (J) 12578 12579 (where the same SAVE_EXPR (J) is used in the original and the 12580 transformed version). */ 12581 12582 int 12583 multiple_of_p (tree type, const_tree top, const_tree bottom) 12584 { 12585 gimple *stmt; 12586 tree t1, op1, op2; 12587 12588 if (operand_equal_p (top, bottom, 0)) 12589 return 1; 12590 12591 if (TREE_CODE (type) != INTEGER_TYPE) 12592 return 0; 12593 12594 switch (TREE_CODE (top)) 12595 { 12596 case BIT_AND_EXPR: 12597 /* Bitwise and provides a power of two multiple. If the mask is 12598 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */ 12599 if (!integer_pow2p (bottom)) 12600 return 0; 12601 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12602 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12603 12604 case MULT_EXPR: 12605 if (TREE_CODE (bottom) == INTEGER_CST) 12606 { 12607 op1 = TREE_OPERAND (top, 0); 12608 op2 = TREE_OPERAND (top, 1); 12609 if (TREE_CODE (op1) == INTEGER_CST) 12610 std::swap (op1, op2); 12611 if (TREE_CODE (op2) == INTEGER_CST) 12612 { 12613 if (multiple_of_p (type, op2, bottom)) 12614 return 1; 12615 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */ 12616 if (multiple_of_p (type, bottom, op2)) 12617 { 12618 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom), 12619 wi::to_widest (op2)); 12620 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom))) 12621 { 12622 op2 = wide_int_to_tree (TREE_TYPE (bottom), w); 12623 return multiple_of_p (type, op1, op2); 12624 } 12625 } 12626 return multiple_of_p (type, op1, bottom); 12627 } 12628 } 12629 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12630 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12631 12632 case MINUS_EXPR: 12633 /* It is impossible to prove if op0 - op1 is multiple of bottom 12634 precisely, so be conservative here checking if both op0 and op1 12635 are multiple of bottom. Note we check the second operand first 12636 since it's usually simpler. */ 12637 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12638 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12639 12640 case PLUS_EXPR: 12641 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd 12642 as op0 - 3 if the expression has unsigned type. For example, 12643 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */ 12644 op1 = TREE_OPERAND (top, 1); 12645 if (TYPE_UNSIGNED (type) 12646 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1)) 12647 op1 = fold_build1 (NEGATE_EXPR, type, op1); 12648 return (multiple_of_p (type, op1, bottom) 12649 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12650 12651 case LSHIFT_EXPR: 12652 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST) 12653 { 12654 op1 = TREE_OPERAND (top, 1); 12655 /* const_binop may not detect overflow correctly, 12656 so check for it explicitly here. */ 12657 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 12658 wi::to_wide (op1)) 12659 && (t1 = fold_convert (type, 12660 const_binop (LSHIFT_EXPR, size_one_node, 12661 op1))) != 0 12662 && !TREE_OVERFLOW (t1)) 12663 return multiple_of_p (type, t1, bottom); 12664 } 12665 return 0; 12666 12667 case NOP_EXPR: 12668 /* Can't handle conversions from non-integral or wider integral type. */ 12669 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE) 12670 || (TYPE_PRECISION (type) 12671 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0))))) 12672 return 0; 12673 12674 /* fall through */ 12675 12676 case SAVE_EXPR: 12677 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom); 12678 12679 case COND_EXPR: 12680 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12681 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom)); 12682 12683 case INTEGER_CST: 12684 if (TREE_CODE (bottom) != INTEGER_CST 12685 || integer_zerop (bottom) 12686 || (TYPE_UNSIGNED (type) 12687 && (tree_int_cst_sgn (top) < 0 12688 || tree_int_cst_sgn (bottom) < 0))) 12689 return 0; 12690 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom), 12691 SIGNED); 12692 12693 case SSA_NAME: 12694 if (TREE_CODE (bottom) == INTEGER_CST 12695 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL 12696 && gimple_code (stmt) == GIMPLE_ASSIGN) 12697 { 12698 enum tree_code code = gimple_assign_rhs_code (stmt); 12699 12700 /* Check for special cases to see if top is defined as multiple 12701 of bottom: 12702 12703 top = (X & ~(bottom - 1) ; bottom is power of 2 12704 12705 or 12706 12707 Y = X % bottom 12708 top = X - Y. */ 12709 if (code == BIT_AND_EXPR 12710 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12711 && TREE_CODE (op2) == INTEGER_CST 12712 && integer_pow2p (bottom) 12713 && wi::multiple_of_p (wi::to_widest (op2), 12714 wi::to_widest (bottom), UNSIGNED)) 12715 return 1; 12716 12717 op1 = gimple_assign_rhs1 (stmt); 12718 if (code == MINUS_EXPR 12719 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12720 && TREE_CODE (op2) == SSA_NAME 12721 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL 12722 && gimple_code (stmt) == GIMPLE_ASSIGN 12723 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR 12724 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0) 12725 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0)) 12726 return 1; 12727 } 12728 12729 /* fall through */ 12730 12731 default: 12732 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom)) 12733 return multiple_p (wi::to_poly_widest (top), 12734 wi::to_poly_widest (bottom)); 12735 12736 return 0; 12737 } 12738 } 12739 12740 #define tree_expr_nonnegative_warnv_p(X, Y) \ 12741 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 12742 12743 #define RECURSE(X) \ 12744 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1)) 12745 12746 /* Return true if CODE or TYPE is known to be non-negative. */ 12747 12748 static bool 12749 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type) 12750 { 12751 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type)) 12752 && truth_value_p (code)) 12753 /* Truth values evaluate to 0 or 1, which is nonnegative unless we 12754 have a signed:1 type (where the value is -1 and 0). */ 12755 return true; 12756 return false; 12757 } 12758 12759 /* Return true if (CODE OP0) is known to be non-negative. If the return 12760 value is based on the assumption that signed overflow is undefined, 12761 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12762 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12763 12764 bool 12765 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12766 bool *strict_overflow_p, int depth) 12767 { 12768 if (TYPE_UNSIGNED (type)) 12769 return true; 12770 12771 switch (code) 12772 { 12773 case ABS_EXPR: 12774 /* We can't return 1 if flag_wrapv is set because 12775 ABS_EXPR<INT_MIN> = INT_MIN. */ 12776 if (!ANY_INTEGRAL_TYPE_P (type)) 12777 return true; 12778 if (TYPE_OVERFLOW_UNDEFINED (type)) 12779 { 12780 *strict_overflow_p = true; 12781 return true; 12782 } 12783 break; 12784 12785 case NON_LVALUE_EXPR: 12786 case FLOAT_EXPR: 12787 case FIX_TRUNC_EXPR: 12788 return RECURSE (op0); 12789 12790 CASE_CONVERT: 12791 { 12792 tree inner_type = TREE_TYPE (op0); 12793 tree outer_type = type; 12794 12795 if (TREE_CODE (outer_type) == REAL_TYPE) 12796 { 12797 if (TREE_CODE (inner_type) == REAL_TYPE) 12798 return RECURSE (op0); 12799 if (INTEGRAL_TYPE_P (inner_type)) 12800 { 12801 if (TYPE_UNSIGNED (inner_type)) 12802 return true; 12803 return RECURSE (op0); 12804 } 12805 } 12806 else if (INTEGRAL_TYPE_P (outer_type)) 12807 { 12808 if (TREE_CODE (inner_type) == REAL_TYPE) 12809 return RECURSE (op0); 12810 if (INTEGRAL_TYPE_P (inner_type)) 12811 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type) 12812 && TYPE_UNSIGNED (inner_type); 12813 } 12814 } 12815 break; 12816 12817 default: 12818 return tree_simple_nonnegative_warnv_p (code, type); 12819 } 12820 12821 /* We don't know sign of `t', so be conservative and return false. */ 12822 return false; 12823 } 12824 12825 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return 12826 value is based on the assumption that signed overflow is undefined, 12827 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12828 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12829 12830 bool 12831 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12832 tree op1, bool *strict_overflow_p, 12833 int depth) 12834 { 12835 if (TYPE_UNSIGNED (type)) 12836 return true; 12837 12838 switch (code) 12839 { 12840 case POINTER_PLUS_EXPR: 12841 case PLUS_EXPR: 12842 if (FLOAT_TYPE_P (type)) 12843 return RECURSE (op0) && RECURSE (op1); 12844 12845 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are 12846 both unsigned and at least 2 bits shorter than the result. */ 12847 if (TREE_CODE (type) == INTEGER_TYPE 12848 && TREE_CODE (op0) == NOP_EXPR 12849 && TREE_CODE (op1) == NOP_EXPR) 12850 { 12851 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0)); 12852 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0)); 12853 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1) 12854 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2)) 12855 { 12856 unsigned int prec = MAX (TYPE_PRECISION (inner1), 12857 TYPE_PRECISION (inner2)) + 1; 12858 return prec < TYPE_PRECISION (type); 12859 } 12860 } 12861 break; 12862 12863 case MULT_EXPR: 12864 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 12865 { 12866 /* x * x is always non-negative for floating point x 12867 or without overflow. */ 12868 if (operand_equal_p (op0, op1, 0) 12869 || (RECURSE (op0) && RECURSE (op1))) 12870 { 12871 if (ANY_INTEGRAL_TYPE_P (type) 12872 && TYPE_OVERFLOW_UNDEFINED (type)) 12873 *strict_overflow_p = true; 12874 return true; 12875 } 12876 } 12877 12878 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are 12879 both unsigned and their total bits is shorter than the result. */ 12880 if (TREE_CODE (type) == INTEGER_TYPE 12881 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST) 12882 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST)) 12883 { 12884 tree inner0 = (TREE_CODE (op0) == NOP_EXPR) 12885 ? TREE_TYPE (TREE_OPERAND (op0, 0)) 12886 : TREE_TYPE (op0); 12887 tree inner1 = (TREE_CODE (op1) == NOP_EXPR) 12888 ? TREE_TYPE (TREE_OPERAND (op1, 0)) 12889 : TREE_TYPE (op1); 12890 12891 bool unsigned0 = TYPE_UNSIGNED (inner0); 12892 bool unsigned1 = TYPE_UNSIGNED (inner1); 12893 12894 if (TREE_CODE (op0) == INTEGER_CST) 12895 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0; 12896 12897 if (TREE_CODE (op1) == INTEGER_CST) 12898 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0; 12899 12900 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0 12901 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1) 12902 { 12903 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST) 12904 ? tree_int_cst_min_precision (op0, UNSIGNED) 12905 : TYPE_PRECISION (inner0); 12906 12907 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST) 12908 ? tree_int_cst_min_precision (op1, UNSIGNED) 12909 : TYPE_PRECISION (inner1); 12910 12911 return precision0 + precision1 < TYPE_PRECISION (type); 12912 } 12913 } 12914 return false; 12915 12916 case BIT_AND_EXPR: 12917 case MAX_EXPR: 12918 return RECURSE (op0) || RECURSE (op1); 12919 12920 case BIT_IOR_EXPR: 12921 case BIT_XOR_EXPR: 12922 case MIN_EXPR: 12923 case RDIV_EXPR: 12924 case TRUNC_DIV_EXPR: 12925 case CEIL_DIV_EXPR: 12926 case FLOOR_DIV_EXPR: 12927 case ROUND_DIV_EXPR: 12928 return RECURSE (op0) && RECURSE (op1); 12929 12930 case TRUNC_MOD_EXPR: 12931 return RECURSE (op0); 12932 12933 case FLOOR_MOD_EXPR: 12934 return RECURSE (op1); 12935 12936 case CEIL_MOD_EXPR: 12937 case ROUND_MOD_EXPR: 12938 default: 12939 return tree_simple_nonnegative_warnv_p (code, type); 12940 } 12941 12942 /* We don't know sign of `t', so be conservative and return false. */ 12943 return false; 12944 } 12945 12946 /* Return true if T is known to be non-negative. If the return 12947 value is based on the assumption that signed overflow is undefined, 12948 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12949 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12950 12951 bool 12952 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 12953 { 12954 if (TYPE_UNSIGNED (TREE_TYPE (t))) 12955 return true; 12956 12957 switch (TREE_CODE (t)) 12958 { 12959 case INTEGER_CST: 12960 return tree_int_cst_sgn (t) >= 0; 12961 12962 case REAL_CST: 12963 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 12964 12965 case FIXED_CST: 12966 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t)); 12967 12968 case COND_EXPR: 12969 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 12970 12971 case SSA_NAME: 12972 /* Limit the depth of recursion to avoid quadratic behavior. 12973 This is expected to catch almost all occurrences in practice. 12974 If this code misses important cases that unbounded recursion 12975 would not, passes that need this information could be revised 12976 to provide it through dataflow propagation. */ 12977 return (!name_registered_for_update_p (t) 12978 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 12979 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t), 12980 strict_overflow_p, depth)); 12981 12982 default: 12983 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 12984 } 12985 } 12986 12987 /* Return true if T is known to be non-negative. If the return 12988 value is based on the assumption that signed overflow is undefined, 12989 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12990 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12991 12992 bool 12993 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1, 12994 bool *strict_overflow_p, int depth) 12995 { 12996 switch (fn) 12997 { 12998 CASE_CFN_ACOS: 12999 CASE_CFN_ACOSH: 13000 CASE_CFN_CABS: 13001 CASE_CFN_COSH: 13002 CASE_CFN_ERFC: 13003 CASE_CFN_EXP: 13004 CASE_CFN_EXP10: 13005 CASE_CFN_EXP2: 13006 CASE_CFN_FABS: 13007 CASE_CFN_FDIM: 13008 CASE_CFN_HYPOT: 13009 CASE_CFN_POW10: 13010 CASE_CFN_FFS: 13011 CASE_CFN_PARITY: 13012 CASE_CFN_POPCOUNT: 13013 CASE_CFN_CLZ: 13014 CASE_CFN_CLRSB: 13015 case CFN_BUILT_IN_BSWAP32: 13016 case CFN_BUILT_IN_BSWAP64: 13017 /* Always true. */ 13018 return true; 13019 13020 CASE_CFN_SQRT: 13021 CASE_CFN_SQRT_FN: 13022 /* sqrt(-0.0) is -0.0. */ 13023 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 13024 return true; 13025 return RECURSE (arg0); 13026 13027 CASE_CFN_ASINH: 13028 CASE_CFN_ATAN: 13029 CASE_CFN_ATANH: 13030 CASE_CFN_CBRT: 13031 CASE_CFN_CEIL: 13032 CASE_CFN_CEIL_FN: 13033 CASE_CFN_ERF: 13034 CASE_CFN_EXPM1: 13035 CASE_CFN_FLOOR: 13036 CASE_CFN_FLOOR_FN: 13037 CASE_CFN_FMOD: 13038 CASE_CFN_FREXP: 13039 CASE_CFN_ICEIL: 13040 CASE_CFN_IFLOOR: 13041 CASE_CFN_IRINT: 13042 CASE_CFN_IROUND: 13043 CASE_CFN_LCEIL: 13044 CASE_CFN_LDEXP: 13045 CASE_CFN_LFLOOR: 13046 CASE_CFN_LLCEIL: 13047 CASE_CFN_LLFLOOR: 13048 CASE_CFN_LLRINT: 13049 CASE_CFN_LLROUND: 13050 CASE_CFN_LRINT: 13051 CASE_CFN_LROUND: 13052 CASE_CFN_MODF: 13053 CASE_CFN_NEARBYINT: 13054 CASE_CFN_NEARBYINT_FN: 13055 CASE_CFN_RINT: 13056 CASE_CFN_RINT_FN: 13057 CASE_CFN_ROUND: 13058 CASE_CFN_ROUND_FN: 13059 CASE_CFN_SCALB: 13060 CASE_CFN_SCALBLN: 13061 CASE_CFN_SCALBN: 13062 CASE_CFN_SIGNBIT: 13063 CASE_CFN_SIGNIFICAND: 13064 CASE_CFN_SINH: 13065 CASE_CFN_TANH: 13066 CASE_CFN_TRUNC: 13067 CASE_CFN_TRUNC_FN: 13068 /* True if the 1st argument is nonnegative. */ 13069 return RECURSE (arg0); 13070 13071 CASE_CFN_FMAX: 13072 CASE_CFN_FMAX_FN: 13073 /* True if the 1st OR 2nd arguments are nonnegative. */ 13074 return RECURSE (arg0) || RECURSE (arg1); 13075 13076 CASE_CFN_FMIN: 13077 CASE_CFN_FMIN_FN: 13078 /* True if the 1st AND 2nd arguments are nonnegative. */ 13079 return RECURSE (arg0) && RECURSE (arg1); 13080 13081 CASE_CFN_COPYSIGN: 13082 CASE_CFN_COPYSIGN_FN: 13083 /* True if the 2nd argument is nonnegative. */ 13084 return RECURSE (arg1); 13085 13086 CASE_CFN_POWI: 13087 /* True if the 1st argument is nonnegative or the second 13088 argument is an even integer. */ 13089 if (TREE_CODE (arg1) == INTEGER_CST 13090 && (TREE_INT_CST_LOW (arg1) & 1) == 0) 13091 return true; 13092 return RECURSE (arg0); 13093 13094 CASE_CFN_POW: 13095 /* True if the 1st argument is nonnegative or the second 13096 argument is an even integer valued real. */ 13097 if (TREE_CODE (arg1) == REAL_CST) 13098 { 13099 REAL_VALUE_TYPE c; 13100 HOST_WIDE_INT n; 13101 13102 c = TREE_REAL_CST (arg1); 13103 n = real_to_integer (&c); 13104 if ((n & 1) == 0) 13105 { 13106 REAL_VALUE_TYPE cint; 13107 real_from_integer (&cint, VOIDmode, n, SIGNED); 13108 if (real_identical (&c, &cint)) 13109 return true; 13110 } 13111 } 13112 return RECURSE (arg0); 13113 13114 default: 13115 break; 13116 } 13117 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type); 13118 } 13119 13120 /* Return true if T is known to be non-negative. If the return 13121 value is based on the assumption that signed overflow is undefined, 13122 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13123 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13124 13125 static bool 13126 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13127 { 13128 enum tree_code code = TREE_CODE (t); 13129 if (TYPE_UNSIGNED (TREE_TYPE (t))) 13130 return true; 13131 13132 switch (code) 13133 { 13134 case TARGET_EXPR: 13135 { 13136 tree temp = TARGET_EXPR_SLOT (t); 13137 t = TARGET_EXPR_INITIAL (t); 13138 13139 /* If the initializer is non-void, then it's a normal expression 13140 that will be assigned to the slot. */ 13141 if (!VOID_TYPE_P (t)) 13142 return RECURSE (t); 13143 13144 /* Otherwise, the initializer sets the slot in some way. One common 13145 way is an assignment statement at the end of the initializer. */ 13146 while (1) 13147 { 13148 if (TREE_CODE (t) == BIND_EXPR) 13149 t = expr_last (BIND_EXPR_BODY (t)); 13150 else if (TREE_CODE (t) == TRY_FINALLY_EXPR 13151 || TREE_CODE (t) == TRY_CATCH_EXPR) 13152 t = expr_last (TREE_OPERAND (t, 0)); 13153 else if (TREE_CODE (t) == STATEMENT_LIST) 13154 t = expr_last (t); 13155 else 13156 break; 13157 } 13158 if (TREE_CODE (t) == MODIFY_EXPR 13159 && TREE_OPERAND (t, 0) == temp) 13160 return RECURSE (TREE_OPERAND (t, 1)); 13161 13162 return false; 13163 } 13164 13165 case CALL_EXPR: 13166 { 13167 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE; 13168 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE; 13169 13170 return tree_call_nonnegative_warnv_p (TREE_TYPE (t), 13171 get_call_combined_fn (t), 13172 arg0, 13173 arg1, 13174 strict_overflow_p, depth); 13175 } 13176 case COMPOUND_EXPR: 13177 case MODIFY_EXPR: 13178 return RECURSE (TREE_OPERAND (t, 1)); 13179 13180 case BIND_EXPR: 13181 return RECURSE (expr_last (TREE_OPERAND (t, 1))); 13182 13183 case SAVE_EXPR: 13184 return RECURSE (TREE_OPERAND (t, 0)); 13185 13186 default: 13187 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 13188 } 13189 } 13190 13191 #undef RECURSE 13192 #undef tree_expr_nonnegative_warnv_p 13193 13194 /* Return true if T is known to be non-negative. If the return 13195 value is based on the assumption that signed overflow is undefined, 13196 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13197 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13198 13199 bool 13200 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13201 { 13202 enum tree_code code; 13203 if (t == error_mark_node) 13204 return false; 13205 13206 code = TREE_CODE (t); 13207 switch (TREE_CODE_CLASS (code)) 13208 { 13209 case tcc_binary: 13210 case tcc_comparison: 13211 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13212 TREE_TYPE (t), 13213 TREE_OPERAND (t, 0), 13214 TREE_OPERAND (t, 1), 13215 strict_overflow_p, depth); 13216 13217 case tcc_unary: 13218 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13219 TREE_TYPE (t), 13220 TREE_OPERAND (t, 0), 13221 strict_overflow_p, depth); 13222 13223 case tcc_constant: 13224 case tcc_declaration: 13225 case tcc_reference: 13226 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13227 13228 default: 13229 break; 13230 } 13231 13232 switch (code) 13233 { 13234 case TRUTH_AND_EXPR: 13235 case TRUTH_OR_EXPR: 13236 case TRUTH_XOR_EXPR: 13237 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13238 TREE_TYPE (t), 13239 TREE_OPERAND (t, 0), 13240 TREE_OPERAND (t, 1), 13241 strict_overflow_p, depth); 13242 case TRUTH_NOT_EXPR: 13243 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13244 TREE_TYPE (t), 13245 TREE_OPERAND (t, 0), 13246 strict_overflow_p, depth); 13247 13248 case COND_EXPR: 13249 case CONSTRUCTOR: 13250 case OBJ_TYPE_REF: 13251 case ASSERT_EXPR: 13252 case ADDR_EXPR: 13253 case WITH_SIZE_EXPR: 13254 case SSA_NAME: 13255 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13256 13257 default: 13258 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth); 13259 } 13260 } 13261 13262 /* Return true if `t' is known to be non-negative. Handle warnings 13263 about undefined signed overflow. */ 13264 13265 bool 13266 tree_expr_nonnegative_p (tree t) 13267 { 13268 bool ret, strict_overflow_p; 13269 13270 strict_overflow_p = false; 13271 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p); 13272 if (strict_overflow_p) 13273 fold_overflow_warning (("assuming signed overflow does not occur when " 13274 "determining that expression is always " 13275 "non-negative"), 13276 WARN_STRICT_OVERFLOW_MISC); 13277 return ret; 13278 } 13279 13280 13281 /* Return true when (CODE OP0) is an address and is known to be nonzero. 13282 For floating point we further ensure that T is not denormal. 13283 Similar logic is present in nonzero_address in rtlanal.h. 13284 13285 If the return value is based on the assumption that signed overflow 13286 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13287 change *STRICT_OVERFLOW_P. */ 13288 13289 bool 13290 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0, 13291 bool *strict_overflow_p) 13292 { 13293 switch (code) 13294 { 13295 case ABS_EXPR: 13296 return tree_expr_nonzero_warnv_p (op0, 13297 strict_overflow_p); 13298 13299 case NOP_EXPR: 13300 { 13301 tree inner_type = TREE_TYPE (op0); 13302 tree outer_type = type; 13303 13304 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type) 13305 && tree_expr_nonzero_warnv_p (op0, 13306 strict_overflow_p)); 13307 } 13308 break; 13309 13310 case NON_LVALUE_EXPR: 13311 return tree_expr_nonzero_warnv_p (op0, 13312 strict_overflow_p); 13313 13314 default: 13315 break; 13316 } 13317 13318 return false; 13319 } 13320 13321 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero. 13322 For floating point we further ensure that T is not denormal. 13323 Similar logic is present in nonzero_address in rtlanal.h. 13324 13325 If the return value is based on the assumption that signed overflow 13326 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13327 change *STRICT_OVERFLOW_P. */ 13328 13329 bool 13330 tree_binary_nonzero_warnv_p (enum tree_code code, 13331 tree type, 13332 tree op0, 13333 tree op1, bool *strict_overflow_p) 13334 { 13335 bool sub_strict_overflow_p; 13336 switch (code) 13337 { 13338 case POINTER_PLUS_EXPR: 13339 case PLUS_EXPR: 13340 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type)) 13341 { 13342 /* With the presence of negative values it is hard 13343 to say something. */ 13344 sub_strict_overflow_p = false; 13345 if (!tree_expr_nonnegative_warnv_p (op0, 13346 &sub_strict_overflow_p) 13347 || !tree_expr_nonnegative_warnv_p (op1, 13348 &sub_strict_overflow_p)) 13349 return false; 13350 /* One of operands must be positive and the other non-negative. */ 13351 /* We don't set *STRICT_OVERFLOW_P here: even if this value 13352 overflows, on a twos-complement machine the sum of two 13353 nonnegative numbers can never be zero. */ 13354 return (tree_expr_nonzero_warnv_p (op0, 13355 strict_overflow_p) 13356 || tree_expr_nonzero_warnv_p (op1, 13357 strict_overflow_p)); 13358 } 13359 break; 13360 13361 case MULT_EXPR: 13362 if (TYPE_OVERFLOW_UNDEFINED (type)) 13363 { 13364 if (tree_expr_nonzero_warnv_p (op0, 13365 strict_overflow_p) 13366 && tree_expr_nonzero_warnv_p (op1, 13367 strict_overflow_p)) 13368 { 13369 *strict_overflow_p = true; 13370 return true; 13371 } 13372 } 13373 break; 13374 13375 case MIN_EXPR: 13376 sub_strict_overflow_p = false; 13377 if (tree_expr_nonzero_warnv_p (op0, 13378 &sub_strict_overflow_p) 13379 && tree_expr_nonzero_warnv_p (op1, 13380 &sub_strict_overflow_p)) 13381 { 13382 if (sub_strict_overflow_p) 13383 *strict_overflow_p = true; 13384 } 13385 break; 13386 13387 case MAX_EXPR: 13388 sub_strict_overflow_p = false; 13389 if (tree_expr_nonzero_warnv_p (op0, 13390 &sub_strict_overflow_p)) 13391 { 13392 if (sub_strict_overflow_p) 13393 *strict_overflow_p = true; 13394 13395 /* When both operands are nonzero, then MAX must be too. */ 13396 if (tree_expr_nonzero_warnv_p (op1, 13397 strict_overflow_p)) 13398 return true; 13399 13400 /* MAX where operand 0 is positive is positive. */ 13401 return tree_expr_nonnegative_warnv_p (op0, 13402 strict_overflow_p); 13403 } 13404 /* MAX where operand 1 is positive is positive. */ 13405 else if (tree_expr_nonzero_warnv_p (op1, 13406 &sub_strict_overflow_p) 13407 && tree_expr_nonnegative_warnv_p (op1, 13408 &sub_strict_overflow_p)) 13409 { 13410 if (sub_strict_overflow_p) 13411 *strict_overflow_p = true; 13412 return true; 13413 } 13414 break; 13415 13416 case BIT_IOR_EXPR: 13417 return (tree_expr_nonzero_warnv_p (op1, 13418 strict_overflow_p) 13419 || tree_expr_nonzero_warnv_p (op0, 13420 strict_overflow_p)); 13421 13422 default: 13423 break; 13424 } 13425 13426 return false; 13427 } 13428 13429 /* Return true when T is an address and is known to be nonzero. 13430 For floating point we further ensure that T is not denormal. 13431 Similar logic is present in nonzero_address in rtlanal.h. 13432 13433 If the return value is based on the assumption that signed overflow 13434 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13435 change *STRICT_OVERFLOW_P. */ 13436 13437 bool 13438 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p) 13439 { 13440 bool sub_strict_overflow_p; 13441 switch (TREE_CODE (t)) 13442 { 13443 case INTEGER_CST: 13444 return !integer_zerop (t); 13445 13446 case ADDR_EXPR: 13447 { 13448 tree base = TREE_OPERAND (t, 0); 13449 13450 if (!DECL_P (base)) 13451 base = get_base_address (base); 13452 13453 if (base && TREE_CODE (base) == TARGET_EXPR) 13454 base = TARGET_EXPR_SLOT (base); 13455 13456 if (!base) 13457 return false; 13458 13459 /* For objects in symbol table check if we know they are non-zero. 13460 Don't do anything for variables and functions before symtab is built; 13461 it is quite possible that they will be declared weak later. */ 13462 int nonzero_addr = maybe_nonzero_address (base); 13463 if (nonzero_addr >= 0) 13464 return nonzero_addr; 13465 13466 /* Constants are never weak. */ 13467 if (CONSTANT_CLASS_P (base)) 13468 return true; 13469 13470 return false; 13471 } 13472 13473 case COND_EXPR: 13474 sub_strict_overflow_p = false; 13475 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 13476 &sub_strict_overflow_p) 13477 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2), 13478 &sub_strict_overflow_p)) 13479 { 13480 if (sub_strict_overflow_p) 13481 *strict_overflow_p = true; 13482 return true; 13483 } 13484 break; 13485 13486 case SSA_NAME: 13487 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 13488 break; 13489 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t)))); 13490 13491 default: 13492 break; 13493 } 13494 return false; 13495 } 13496 13497 #define integer_valued_real_p(X) \ 13498 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 13499 13500 #define RECURSE(X) \ 13501 ((integer_valued_real_p) (X, depth + 1)) 13502 13503 /* Return true if the floating point result of (CODE OP0) has an 13504 integer value. We also allow +Inf, -Inf and NaN to be considered 13505 integer values. Return false for signaling NaN. 13506 13507 DEPTH is the current nesting depth of the query. */ 13508 13509 bool 13510 integer_valued_real_unary_p (tree_code code, tree op0, int depth) 13511 { 13512 switch (code) 13513 { 13514 case FLOAT_EXPR: 13515 return true; 13516 13517 case ABS_EXPR: 13518 return RECURSE (op0); 13519 13520 CASE_CONVERT: 13521 { 13522 tree type = TREE_TYPE (op0); 13523 if (TREE_CODE (type) == INTEGER_TYPE) 13524 return true; 13525 if (TREE_CODE (type) == REAL_TYPE) 13526 return RECURSE (op0); 13527 break; 13528 } 13529 13530 default: 13531 break; 13532 } 13533 return false; 13534 } 13535 13536 /* Return true if the floating point result of (CODE OP0 OP1) has an 13537 integer value. We also allow +Inf, -Inf and NaN to be considered 13538 integer values. Return false for signaling NaN. 13539 13540 DEPTH is the current nesting depth of the query. */ 13541 13542 bool 13543 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth) 13544 { 13545 switch (code) 13546 { 13547 case PLUS_EXPR: 13548 case MINUS_EXPR: 13549 case MULT_EXPR: 13550 case MIN_EXPR: 13551 case MAX_EXPR: 13552 return RECURSE (op0) && RECURSE (op1); 13553 13554 default: 13555 break; 13556 } 13557 return false; 13558 } 13559 13560 /* Return true if the floating point result of calling FNDECL with arguments 13561 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be 13562 considered integer values. Return false for signaling NaN. If FNDECL 13563 takes fewer than 2 arguments, the remaining ARGn are null. 13564 13565 DEPTH is the current nesting depth of the query. */ 13566 13567 bool 13568 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth) 13569 { 13570 switch (fn) 13571 { 13572 CASE_CFN_CEIL: 13573 CASE_CFN_CEIL_FN: 13574 CASE_CFN_FLOOR: 13575 CASE_CFN_FLOOR_FN: 13576 CASE_CFN_NEARBYINT: 13577 CASE_CFN_NEARBYINT_FN: 13578 CASE_CFN_RINT: 13579 CASE_CFN_RINT_FN: 13580 CASE_CFN_ROUND: 13581 CASE_CFN_ROUND_FN: 13582 CASE_CFN_TRUNC: 13583 CASE_CFN_TRUNC_FN: 13584 return true; 13585 13586 CASE_CFN_FMIN: 13587 CASE_CFN_FMIN_FN: 13588 CASE_CFN_FMAX: 13589 CASE_CFN_FMAX_FN: 13590 return RECURSE (arg0) && RECURSE (arg1); 13591 13592 default: 13593 break; 13594 } 13595 return false; 13596 } 13597 13598 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS) 13599 has an integer value. We also allow +Inf, -Inf and NaN to be 13600 considered integer values. Return false for signaling NaN. 13601 13602 DEPTH is the current nesting depth of the query. */ 13603 13604 bool 13605 integer_valued_real_single_p (tree t, int depth) 13606 { 13607 switch (TREE_CODE (t)) 13608 { 13609 case REAL_CST: 13610 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t))); 13611 13612 case COND_EXPR: 13613 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 13614 13615 case SSA_NAME: 13616 /* Limit the depth of recursion to avoid quadratic behavior. 13617 This is expected to catch almost all occurrences in practice. 13618 If this code misses important cases that unbounded recursion 13619 would not, passes that need this information could be revised 13620 to provide it through dataflow propagation. */ 13621 return (!name_registered_for_update_p (t) 13622 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 13623 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t), 13624 depth)); 13625 13626 default: 13627 break; 13628 } 13629 return false; 13630 } 13631 13632 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS) 13633 has an integer value. We also allow +Inf, -Inf and NaN to be 13634 considered integer values. Return false for signaling NaN. 13635 13636 DEPTH is the current nesting depth of the query. */ 13637 13638 static bool 13639 integer_valued_real_invalid_p (tree t, int depth) 13640 { 13641 switch (TREE_CODE (t)) 13642 { 13643 case COMPOUND_EXPR: 13644 case MODIFY_EXPR: 13645 case BIND_EXPR: 13646 return RECURSE (TREE_OPERAND (t, 1)); 13647 13648 case SAVE_EXPR: 13649 return RECURSE (TREE_OPERAND (t, 0)); 13650 13651 default: 13652 break; 13653 } 13654 return false; 13655 } 13656 13657 #undef RECURSE 13658 #undef integer_valued_real_p 13659 13660 /* Return true if the floating point expression T has an integer value. 13661 We also allow +Inf, -Inf and NaN to be considered integer values. 13662 Return false for signaling NaN. 13663 13664 DEPTH is the current nesting depth of the query. */ 13665 13666 bool 13667 integer_valued_real_p (tree t, int depth) 13668 { 13669 if (t == error_mark_node) 13670 return false; 13671 13672 tree_code code = TREE_CODE (t); 13673 switch (TREE_CODE_CLASS (code)) 13674 { 13675 case tcc_binary: 13676 case tcc_comparison: 13677 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0), 13678 TREE_OPERAND (t, 1), depth); 13679 13680 case tcc_unary: 13681 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth); 13682 13683 case tcc_constant: 13684 case tcc_declaration: 13685 case tcc_reference: 13686 return integer_valued_real_single_p (t, depth); 13687 13688 default: 13689 break; 13690 } 13691 13692 switch (code) 13693 { 13694 case COND_EXPR: 13695 case SSA_NAME: 13696 return integer_valued_real_single_p (t, depth); 13697 13698 case CALL_EXPR: 13699 { 13700 tree arg0 = (call_expr_nargs (t) > 0 13701 ? CALL_EXPR_ARG (t, 0) 13702 : NULL_TREE); 13703 tree arg1 = (call_expr_nargs (t) > 1 13704 ? CALL_EXPR_ARG (t, 1) 13705 : NULL_TREE); 13706 return integer_valued_real_call_p (get_call_combined_fn (t), 13707 arg0, arg1, depth); 13708 } 13709 13710 default: 13711 return integer_valued_real_invalid_p (t, depth); 13712 } 13713 } 13714 13715 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1, 13716 attempt to fold the expression to a constant without modifying TYPE, 13717 OP0 or OP1. 13718 13719 If the expression could be simplified to a constant, then return 13720 the constant. If the expression would not be simplified to a 13721 constant, then return NULL_TREE. */ 13722 13723 tree 13724 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1) 13725 { 13726 tree tem = fold_binary (code, type, op0, op1); 13727 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13728 } 13729 13730 /* Given the components of a unary expression CODE, TYPE and OP0, 13731 attempt to fold the expression to a constant without modifying 13732 TYPE or OP0. 13733 13734 If the expression could be simplified to a constant, then return 13735 the constant. If the expression would not be simplified to a 13736 constant, then return NULL_TREE. */ 13737 13738 tree 13739 fold_unary_to_constant (enum tree_code code, tree type, tree op0) 13740 { 13741 tree tem = fold_unary (code, type, op0); 13742 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13743 } 13744 13745 /* If EXP represents referencing an element in a constant string 13746 (either via pointer arithmetic or array indexing), return the 13747 tree representing the value accessed, otherwise return NULL. */ 13748 13749 tree 13750 fold_read_from_constant_string (tree exp) 13751 { 13752 if ((TREE_CODE (exp) == INDIRECT_REF 13753 || TREE_CODE (exp) == ARRAY_REF) 13754 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE) 13755 { 13756 tree exp1 = TREE_OPERAND (exp, 0); 13757 tree index; 13758 tree string; 13759 location_t loc = EXPR_LOCATION (exp); 13760 13761 if (TREE_CODE (exp) == INDIRECT_REF) 13762 string = string_constant (exp1, &index); 13763 else 13764 { 13765 tree low_bound = array_ref_low_bound (exp); 13766 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1)); 13767 13768 /* Optimize the special-case of a zero lower bound. 13769 13770 We convert the low_bound to sizetype to avoid some problems 13771 with constant folding. (E.g. suppose the lower bound is 1, 13772 and its mode is QI. Without the conversion,l (ARRAY 13773 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1)) 13774 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */ 13775 if (! integer_zerop (low_bound)) 13776 index = size_diffop_loc (loc, index, 13777 fold_convert_loc (loc, sizetype, low_bound)); 13778 13779 string = exp1; 13780 } 13781 13782 scalar_int_mode char_mode; 13783 if (string 13784 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string))) 13785 && TREE_CODE (string) == STRING_CST 13786 && TREE_CODE (index) == INTEGER_CST 13787 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0 13788 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))), 13789 &char_mode) 13790 && GET_MODE_SIZE (char_mode) == 1) 13791 return build_int_cst_type (TREE_TYPE (exp), 13792 (TREE_STRING_POINTER (string) 13793 [TREE_INT_CST_LOW (index)])); 13794 } 13795 return NULL; 13796 } 13797 13798 /* Return the tree for neg (ARG0) when ARG0 is known to be either 13799 an integer constant, real, or fixed-point constant. 13800 13801 TYPE is the type of the result. */ 13802 13803 static tree 13804 fold_negate_const (tree arg0, tree type) 13805 { 13806 tree t = NULL_TREE; 13807 13808 switch (TREE_CODE (arg0)) 13809 { 13810 case REAL_CST: 13811 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13812 break; 13813 13814 case FIXED_CST: 13815 { 13816 FIXED_VALUE_TYPE f; 13817 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR, 13818 &(TREE_FIXED_CST (arg0)), NULL, 13819 TYPE_SATURATING (type)); 13820 t = build_fixed (type, f); 13821 /* Propagate overflow flags. */ 13822 if (overflow_p | TREE_OVERFLOW (arg0)) 13823 TREE_OVERFLOW (t) = 1; 13824 break; 13825 } 13826 13827 default: 13828 if (poly_int_tree_p (arg0)) 13829 { 13830 bool overflow; 13831 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow); 13832 t = force_fit_type (type, res, 1, 13833 (overflow && ! TYPE_UNSIGNED (type)) 13834 || TREE_OVERFLOW (arg0)); 13835 break; 13836 } 13837 13838 gcc_unreachable (); 13839 } 13840 13841 return t; 13842 } 13843 13844 /* Return the tree for abs (ARG0) when ARG0 is known to be either 13845 an integer constant or real constant. 13846 13847 TYPE is the type of the result. */ 13848 13849 tree 13850 fold_abs_const (tree arg0, tree type) 13851 { 13852 tree t = NULL_TREE; 13853 13854 switch (TREE_CODE (arg0)) 13855 { 13856 case INTEGER_CST: 13857 { 13858 /* If the value is unsigned or non-negative, then the absolute value 13859 is the same as the ordinary value. */ 13860 if (!wi::neg_p (wi::to_wide (arg0), TYPE_SIGN (type))) 13861 t = arg0; 13862 13863 /* If the value is negative, then the absolute value is 13864 its negation. */ 13865 else 13866 { 13867 bool overflow; 13868 wide_int val = wi::neg (wi::to_wide (arg0), &overflow); 13869 t = force_fit_type (type, val, -1, 13870 overflow | TREE_OVERFLOW (arg0)); 13871 } 13872 } 13873 break; 13874 13875 case REAL_CST: 13876 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0))) 13877 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13878 else 13879 t = arg0; 13880 break; 13881 13882 default: 13883 gcc_unreachable (); 13884 } 13885 13886 return t; 13887 } 13888 13889 /* Return the tree for not (ARG0) when ARG0 is known to be an integer 13890 constant. TYPE is the type of the result. */ 13891 13892 static tree 13893 fold_not_const (const_tree arg0, tree type) 13894 { 13895 gcc_assert (TREE_CODE (arg0) == INTEGER_CST); 13896 13897 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0)); 13898 } 13899 13900 /* Given CODE, a relational operator, the target type, TYPE and two 13901 constant operands OP0 and OP1, return the result of the 13902 relational operation. If the result is not a compile time 13903 constant, then return NULL_TREE. */ 13904 13905 static tree 13906 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1) 13907 { 13908 int result, invert; 13909 13910 /* From here on, the only cases we handle are when the result is 13911 known to be a constant. */ 13912 13913 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST) 13914 { 13915 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0); 13916 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1); 13917 13918 /* Handle the cases where either operand is a NaN. */ 13919 if (real_isnan (c0) || real_isnan (c1)) 13920 { 13921 switch (code) 13922 { 13923 case EQ_EXPR: 13924 case ORDERED_EXPR: 13925 result = 0; 13926 break; 13927 13928 case NE_EXPR: 13929 case UNORDERED_EXPR: 13930 case UNLT_EXPR: 13931 case UNLE_EXPR: 13932 case UNGT_EXPR: 13933 case UNGE_EXPR: 13934 case UNEQ_EXPR: 13935 result = 1; 13936 break; 13937 13938 case LT_EXPR: 13939 case LE_EXPR: 13940 case GT_EXPR: 13941 case GE_EXPR: 13942 case LTGT_EXPR: 13943 if (flag_trapping_math) 13944 return NULL_TREE; 13945 result = 0; 13946 break; 13947 13948 default: 13949 gcc_unreachable (); 13950 } 13951 13952 return constant_boolean_node (result, type); 13953 } 13954 13955 return constant_boolean_node (real_compare (code, c0, c1), type); 13956 } 13957 13958 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST) 13959 { 13960 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0); 13961 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1); 13962 return constant_boolean_node (fixed_compare (code, c0, c1), type); 13963 } 13964 13965 /* Handle equality/inequality of complex constants. */ 13966 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST) 13967 { 13968 tree rcond = fold_relational_const (code, type, 13969 TREE_REALPART (op0), 13970 TREE_REALPART (op1)); 13971 tree icond = fold_relational_const (code, type, 13972 TREE_IMAGPART (op0), 13973 TREE_IMAGPART (op1)); 13974 if (code == EQ_EXPR) 13975 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond); 13976 else if (code == NE_EXPR) 13977 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond); 13978 else 13979 return NULL_TREE; 13980 } 13981 13982 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST) 13983 { 13984 if (!VECTOR_TYPE_P (type)) 13985 { 13986 /* Have vector comparison with scalar boolean result. */ 13987 gcc_assert ((code == EQ_EXPR || code == NE_EXPR) 13988 && known_eq (VECTOR_CST_NELTS (op0), 13989 VECTOR_CST_NELTS (op1))); 13990 unsigned HOST_WIDE_INT nunits; 13991 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits)) 13992 return NULL_TREE; 13993 for (unsigned i = 0; i < nunits; i++) 13994 { 13995 tree elem0 = VECTOR_CST_ELT (op0, i); 13996 tree elem1 = VECTOR_CST_ELT (op1, i); 13997 tree tmp = fold_relational_const (code, type, elem0, elem1); 13998 if (tmp == NULL_TREE) 13999 return NULL_TREE; 14000 if (integer_zerop (tmp)) 14001 return constant_boolean_node (false, type); 14002 } 14003 return constant_boolean_node (true, type); 14004 } 14005 tree_vector_builder elts; 14006 if (!elts.new_binary_operation (type, op0, op1, false)) 14007 return NULL_TREE; 14008 unsigned int count = elts.encoded_nelts (); 14009 for (unsigned i = 0; i < count; i++) 14010 { 14011 tree elem_type = TREE_TYPE (type); 14012 tree elem0 = VECTOR_CST_ELT (op0, i); 14013 tree elem1 = VECTOR_CST_ELT (op1, i); 14014 14015 tree tem = fold_relational_const (code, elem_type, 14016 elem0, elem1); 14017 14018 if (tem == NULL_TREE) 14019 return NULL_TREE; 14020 14021 elts.quick_push (build_int_cst (elem_type, 14022 integer_zerop (tem) ? 0 : -1)); 14023 } 14024 14025 return elts.build (); 14026 } 14027 14028 /* From here on we only handle LT, LE, GT, GE, EQ and NE. 14029 14030 To compute GT, swap the arguments and do LT. 14031 To compute GE, do LT and invert the result. 14032 To compute LE, swap the arguments, do LT and invert the result. 14033 To compute NE, do EQ and invert the result. 14034 14035 Therefore, the code below must handle only EQ and LT. */ 14036 14037 if (code == LE_EXPR || code == GT_EXPR) 14038 { 14039 std::swap (op0, op1); 14040 code = swap_tree_comparison (code); 14041 } 14042 14043 /* Note that it is safe to invert for real values here because we 14044 have already handled the one case that it matters. */ 14045 14046 invert = 0; 14047 if (code == NE_EXPR || code == GE_EXPR) 14048 { 14049 invert = 1; 14050 code = invert_tree_comparison (code, false); 14051 } 14052 14053 /* Compute a result for LT or EQ if args permit; 14054 Otherwise return T. */ 14055 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST) 14056 { 14057 if (code == EQ_EXPR) 14058 result = tree_int_cst_equal (op0, op1); 14059 else 14060 result = tree_int_cst_lt (op0, op1); 14061 } 14062 else 14063 return NULL_TREE; 14064 14065 if (invert) 14066 result ^= 1; 14067 return constant_boolean_node (result, type); 14068 } 14069 14070 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the 14071 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR 14072 itself. */ 14073 14074 tree 14075 fold_build_cleanup_point_expr (tree type, tree expr) 14076 { 14077 /* If the expression does not have side effects then we don't have to wrap 14078 it with a cleanup point expression. */ 14079 if (!TREE_SIDE_EFFECTS (expr)) 14080 return expr; 14081 14082 /* If the expression is a return, check to see if the expression inside the 14083 return has no side effects or the right hand side of the modify expression 14084 inside the return. If either don't have side effects set we don't need to 14085 wrap the expression in a cleanup point expression. Note we don't check the 14086 left hand side of the modify because it should always be a return decl. */ 14087 if (TREE_CODE (expr) == RETURN_EXPR) 14088 { 14089 tree op = TREE_OPERAND (expr, 0); 14090 if (!op || !TREE_SIDE_EFFECTS (op)) 14091 return expr; 14092 op = TREE_OPERAND (op, 1); 14093 if (!TREE_SIDE_EFFECTS (op)) 14094 return expr; 14095 } 14096 14097 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr); 14098 } 14099 14100 /* Given a pointer value OP0 and a type TYPE, return a simplified version 14101 of an indirection through OP0, or NULL_TREE if no simplification is 14102 possible. */ 14103 14104 tree 14105 fold_indirect_ref_1 (location_t loc, tree type, tree op0) 14106 { 14107 tree sub = op0; 14108 tree subtype; 14109 poly_uint64 const_op01; 14110 14111 STRIP_NOPS (sub); 14112 subtype = TREE_TYPE (sub); 14113 if (!POINTER_TYPE_P (subtype) 14114 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0))) 14115 return NULL_TREE; 14116 14117 if (TREE_CODE (sub) == ADDR_EXPR) 14118 { 14119 tree op = TREE_OPERAND (sub, 0); 14120 tree optype = TREE_TYPE (op); 14121 14122 /* *&CONST_DECL -> to the value of the const decl. */ 14123 if (TREE_CODE (op) == CONST_DECL) 14124 return DECL_INITIAL (op); 14125 /* *&p => p; make sure to handle *&"str"[cst] here. */ 14126 if (type == optype) 14127 { 14128 tree fop = fold_read_from_constant_string (op); 14129 if (fop) 14130 return fop; 14131 else 14132 return op; 14133 } 14134 /* *(foo *)&fooarray => fooarray[0] */ 14135 else if (TREE_CODE (optype) == ARRAY_TYPE 14136 && type == TREE_TYPE (optype) 14137 && (!in_gimple_form 14138 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14139 { 14140 tree type_domain = TYPE_DOMAIN (optype); 14141 tree min_val = size_zero_node; 14142 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14143 min_val = TYPE_MIN_VALUE (type_domain); 14144 if (in_gimple_form 14145 && TREE_CODE (min_val) != INTEGER_CST) 14146 return NULL_TREE; 14147 return build4_loc (loc, ARRAY_REF, type, op, min_val, 14148 NULL_TREE, NULL_TREE); 14149 } 14150 /* *(foo *)&complexfoo => __real__ complexfoo */ 14151 else if (TREE_CODE (optype) == COMPLEX_TYPE 14152 && type == TREE_TYPE (optype)) 14153 return fold_build1_loc (loc, REALPART_EXPR, type, op); 14154 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */ 14155 else if (VECTOR_TYPE_P (optype) 14156 && type == TREE_TYPE (optype)) 14157 { 14158 tree part_width = TYPE_SIZE (type); 14159 tree index = bitsize_int (0); 14160 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, 14161 index); 14162 } 14163 } 14164 14165 if (TREE_CODE (sub) == POINTER_PLUS_EXPR 14166 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01)) 14167 { 14168 tree op00 = TREE_OPERAND (sub, 0); 14169 tree op01 = TREE_OPERAND (sub, 1); 14170 14171 STRIP_NOPS (op00); 14172 if (TREE_CODE (op00) == ADDR_EXPR) 14173 { 14174 tree op00type; 14175 op00 = TREE_OPERAND (op00, 0); 14176 op00type = TREE_TYPE (op00); 14177 14178 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */ 14179 if (VECTOR_TYPE_P (op00type) 14180 && type == TREE_TYPE (op00type) 14181 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned, 14182 but we want to treat offsets with MSB set as negative. 14183 For the code below negative offsets are invalid and 14184 TYPE_SIZE of the element is something unsigned, so 14185 check whether op01 fits into poly_int64, which implies 14186 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and 14187 then just use poly_uint64 because we want to treat the 14188 value as unsigned. */ 14189 && tree_fits_poly_int64_p (op01)) 14190 { 14191 tree part_width = TYPE_SIZE (type); 14192 poly_uint64 max_offset 14193 = (tree_to_uhwi (part_width) / BITS_PER_UNIT 14194 * TYPE_VECTOR_SUBPARTS (op00type)); 14195 if (known_lt (const_op01, max_offset)) 14196 { 14197 tree index = bitsize_int (const_op01 * BITS_PER_UNIT); 14198 return fold_build3_loc (loc, 14199 BIT_FIELD_REF, type, op00, 14200 part_width, index); 14201 } 14202 } 14203 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ 14204 else if (TREE_CODE (op00type) == COMPLEX_TYPE 14205 && type == TREE_TYPE (op00type)) 14206 { 14207 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)), 14208 const_op01)) 14209 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00); 14210 } 14211 /* ((foo *)&fooarray)[1] => fooarray[1] */ 14212 else if (TREE_CODE (op00type) == ARRAY_TYPE 14213 && type == TREE_TYPE (op00type)) 14214 { 14215 tree type_domain = TYPE_DOMAIN (op00type); 14216 tree min_val = size_zero_node; 14217 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14218 min_val = TYPE_MIN_VALUE (type_domain); 14219 offset_int off = wi::to_offset (op01); 14220 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type)); 14221 offset_int remainder; 14222 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder); 14223 if (remainder == 0 && TREE_CODE (min_val) == INTEGER_CST) 14224 { 14225 off = off + wi::to_offset (min_val); 14226 op01 = wide_int_to_tree (sizetype, off); 14227 return build4_loc (loc, ARRAY_REF, type, op00, op01, 14228 NULL_TREE, NULL_TREE); 14229 } 14230 } 14231 } 14232 } 14233 14234 /* *(foo *)fooarrptr => (*fooarrptr)[0] */ 14235 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE 14236 && type == TREE_TYPE (TREE_TYPE (subtype)) 14237 && (!in_gimple_form 14238 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14239 { 14240 tree type_domain; 14241 tree min_val = size_zero_node; 14242 sub = build_fold_indirect_ref_loc (loc, sub); 14243 type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); 14244 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14245 min_val = TYPE_MIN_VALUE (type_domain); 14246 if (in_gimple_form 14247 && TREE_CODE (min_val) != INTEGER_CST) 14248 return NULL_TREE; 14249 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE, 14250 NULL_TREE); 14251 } 14252 14253 return NULL_TREE; 14254 } 14255 14256 /* Builds an expression for an indirection through T, simplifying some 14257 cases. */ 14258 14259 tree 14260 build_fold_indirect_ref_loc (location_t loc, tree t) 14261 { 14262 tree type = TREE_TYPE (TREE_TYPE (t)); 14263 tree sub = fold_indirect_ref_1 (loc, type, t); 14264 14265 if (sub) 14266 return sub; 14267 14268 return build1_loc (loc, INDIRECT_REF, type, t); 14269 } 14270 14271 /* Given an INDIRECT_REF T, return either T or a simplified version. */ 14272 14273 tree 14274 fold_indirect_ref_loc (location_t loc, tree t) 14275 { 14276 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0)); 14277 14278 if (sub) 14279 return sub; 14280 else 14281 return t; 14282 } 14283 14284 /* Strip non-trapping, non-side-effecting tree nodes from an expression 14285 whose result is ignored. The type of the returned tree need not be 14286 the same as the original expression. */ 14287 14288 tree 14289 fold_ignored_result (tree t) 14290 { 14291 if (!TREE_SIDE_EFFECTS (t)) 14292 return integer_zero_node; 14293 14294 for (;;) 14295 switch (TREE_CODE_CLASS (TREE_CODE (t))) 14296 { 14297 case tcc_unary: 14298 t = TREE_OPERAND (t, 0); 14299 break; 14300 14301 case tcc_binary: 14302 case tcc_comparison: 14303 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14304 t = TREE_OPERAND (t, 0); 14305 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))) 14306 t = TREE_OPERAND (t, 1); 14307 else 14308 return t; 14309 break; 14310 14311 case tcc_expression: 14312 switch (TREE_CODE (t)) 14313 { 14314 case COMPOUND_EXPR: 14315 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14316 return t; 14317 t = TREE_OPERAND (t, 0); 14318 break; 14319 14320 case COND_EXPR: 14321 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)) 14322 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2))) 14323 return t; 14324 t = TREE_OPERAND (t, 0); 14325 break; 14326 14327 default: 14328 return t; 14329 } 14330 break; 14331 14332 default: 14333 return t; 14334 } 14335 } 14336 14337 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */ 14338 14339 tree 14340 round_up_loc (location_t loc, tree value, unsigned int divisor) 14341 { 14342 tree div = NULL_TREE; 14343 14344 if (divisor == 1) 14345 return value; 14346 14347 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14348 have to do anything. Only do this when we are not given a const, 14349 because in that case, this check is more expensive than just 14350 doing it. */ 14351 if (TREE_CODE (value) != INTEGER_CST) 14352 { 14353 div = build_int_cst (TREE_TYPE (value), divisor); 14354 14355 if (multiple_of_p (TREE_TYPE (value), value, div)) 14356 return value; 14357 } 14358 14359 /* If divisor is a power of two, simplify this to bit manipulation. */ 14360 if (pow2_or_zerop (divisor)) 14361 { 14362 if (TREE_CODE (value) == INTEGER_CST) 14363 { 14364 wide_int val = wi::to_wide (value); 14365 bool overflow_p; 14366 14367 if ((val & (divisor - 1)) == 0) 14368 return value; 14369 14370 overflow_p = TREE_OVERFLOW (value); 14371 val += divisor - 1; 14372 val &= (int) -divisor; 14373 if (val == 0) 14374 overflow_p = true; 14375 14376 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p); 14377 } 14378 else 14379 { 14380 tree t; 14381 14382 t = build_int_cst (TREE_TYPE (value), divisor - 1); 14383 value = size_binop_loc (loc, PLUS_EXPR, value, t); 14384 t = build_int_cst (TREE_TYPE (value), - (int) divisor); 14385 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14386 } 14387 } 14388 else 14389 { 14390 if (!div) 14391 div = build_int_cst (TREE_TYPE (value), divisor); 14392 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div); 14393 value = size_binop_loc (loc, MULT_EXPR, value, div); 14394 } 14395 14396 return value; 14397 } 14398 14399 /* Likewise, but round down. */ 14400 14401 tree 14402 round_down_loc (location_t loc, tree value, int divisor) 14403 { 14404 tree div = NULL_TREE; 14405 14406 gcc_assert (divisor > 0); 14407 if (divisor == 1) 14408 return value; 14409 14410 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14411 have to do anything. Only do this when we are not given a const, 14412 because in that case, this check is more expensive than just 14413 doing it. */ 14414 if (TREE_CODE (value) != INTEGER_CST) 14415 { 14416 div = build_int_cst (TREE_TYPE (value), divisor); 14417 14418 if (multiple_of_p (TREE_TYPE (value), value, div)) 14419 return value; 14420 } 14421 14422 /* If divisor is a power of two, simplify this to bit manipulation. */ 14423 if (pow2_or_zerop (divisor)) 14424 { 14425 tree t; 14426 14427 t = build_int_cst (TREE_TYPE (value), -divisor); 14428 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14429 } 14430 else 14431 { 14432 if (!div) 14433 div = build_int_cst (TREE_TYPE (value), divisor); 14434 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div); 14435 value = size_binop_loc (loc, MULT_EXPR, value, div); 14436 } 14437 14438 return value; 14439 } 14440 14441 /* Returns the pointer to the base of the object addressed by EXP and 14442 extracts the information about the offset of the access, storing it 14443 to PBITPOS and POFFSET. */ 14444 14445 static tree 14446 split_address_to_core_and_offset (tree exp, 14447 poly_int64_pod *pbitpos, tree *poffset) 14448 { 14449 tree core; 14450 machine_mode mode; 14451 int unsignedp, reversep, volatilep; 14452 poly_int64 bitsize; 14453 location_t loc = EXPR_LOCATION (exp); 14454 14455 if (TREE_CODE (exp) == ADDR_EXPR) 14456 { 14457 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos, 14458 poffset, &mode, &unsignedp, &reversep, 14459 &volatilep); 14460 core = build_fold_addr_expr_loc (loc, core); 14461 } 14462 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR) 14463 { 14464 core = TREE_OPERAND (exp, 0); 14465 STRIP_NOPS (core); 14466 *pbitpos = 0; 14467 *poffset = TREE_OPERAND (exp, 1); 14468 if (poly_int_tree_p (*poffset)) 14469 { 14470 poly_offset_int tem 14471 = wi::sext (wi::to_poly_offset (*poffset), 14472 TYPE_PRECISION (TREE_TYPE (*poffset))); 14473 tem <<= LOG2_BITS_PER_UNIT; 14474 if (tem.to_shwi (pbitpos)) 14475 *poffset = NULL_TREE; 14476 } 14477 } 14478 else 14479 { 14480 core = exp; 14481 *pbitpos = 0; 14482 *poffset = NULL_TREE; 14483 } 14484 14485 return core; 14486 } 14487 14488 /* Returns true if addresses of E1 and E2 differ by a constant, false 14489 otherwise. If they do, E1 - E2 is stored in *DIFF. */ 14490 14491 bool 14492 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff) 14493 { 14494 tree core1, core2; 14495 poly_int64 bitpos1, bitpos2; 14496 tree toffset1, toffset2, tdiff, type; 14497 14498 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1); 14499 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2); 14500 14501 poly_int64 bytepos1, bytepos2; 14502 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1) 14503 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2) 14504 || !operand_equal_p (core1, core2, 0)) 14505 return false; 14506 14507 if (toffset1 && toffset2) 14508 { 14509 type = TREE_TYPE (toffset1); 14510 if (type != TREE_TYPE (toffset2)) 14511 toffset2 = fold_convert (type, toffset2); 14512 14513 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2); 14514 if (!cst_and_fits_in_hwi (tdiff)) 14515 return false; 14516 14517 *diff = int_cst_value (tdiff); 14518 } 14519 else if (toffset1 || toffset2) 14520 { 14521 /* If only one of the offsets is non-constant, the difference cannot 14522 be a constant. */ 14523 return false; 14524 } 14525 else 14526 *diff = 0; 14527 14528 *diff += bytepos1 - bytepos2; 14529 return true; 14530 } 14531 14532 /* Return OFF converted to a pointer offset type suitable as offset for 14533 POINTER_PLUS_EXPR. Use location LOC for this conversion. */ 14534 tree 14535 convert_to_ptrofftype_loc (location_t loc, tree off) 14536 { 14537 return fold_convert_loc (loc, sizetype, off); 14538 } 14539 14540 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14541 tree 14542 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off) 14543 { 14544 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14545 ptr, convert_to_ptrofftype_loc (loc, off)); 14546 } 14547 14548 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14549 tree 14550 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off) 14551 { 14552 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14553 ptr, size_int (off)); 14554 } 14555 14556 /* Return a char pointer for a C string if it is a string constant 14557 or sum of string constant and integer constant. We only support 14558 string constants properly terminated with '\0' character. 14559 If STRLEN is a valid pointer, length (including terminating character) 14560 of returned string is stored to the argument. */ 14561 14562 const char * 14563 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen) 14564 { 14565 tree offset_node; 14566 14567 if (strlen) 14568 *strlen = 0; 14569 14570 src = string_constant (src, &offset_node); 14571 if (src == 0) 14572 return NULL; 14573 14574 unsigned HOST_WIDE_INT offset = 0; 14575 if (offset_node != NULL_TREE) 14576 { 14577 if (!tree_fits_uhwi_p (offset_node)) 14578 return NULL; 14579 else 14580 offset = tree_to_uhwi (offset_node); 14581 } 14582 14583 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src); 14584 const char *string = TREE_STRING_POINTER (src); 14585 14586 /* Support only properly null-terminated strings. */ 14587 if (string_length == 0 14588 || string[string_length - 1] != '\0' 14589 || offset >= string_length) 14590 return NULL; 14591 14592 if (strlen) 14593 *strlen = string_length - offset; 14594 return string + offset; 14595 } 14596 14597 #if CHECKING_P 14598 14599 namespace selftest { 14600 14601 /* Helper functions for writing tests of folding trees. */ 14602 14603 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */ 14604 14605 static void 14606 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs, 14607 tree constant) 14608 { 14609 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs)); 14610 } 14611 14612 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR 14613 wrapping WRAPPED_EXPR. */ 14614 14615 static void 14616 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs, 14617 tree wrapped_expr) 14618 { 14619 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs); 14620 ASSERT_NE (wrapped_expr, result); 14621 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result)); 14622 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0)); 14623 } 14624 14625 /* Verify that various arithmetic binary operations are folded 14626 correctly. */ 14627 14628 static void 14629 test_arithmetic_folding () 14630 { 14631 tree type = integer_type_node; 14632 tree x = create_tmp_var_raw (type, "x"); 14633 tree zero = build_zero_cst (type); 14634 tree one = build_int_cst (type, 1); 14635 14636 /* Addition. */ 14637 /* 1 <-- (0 + 1) */ 14638 assert_binop_folds_to_const (zero, PLUS_EXPR, one, 14639 one); 14640 assert_binop_folds_to_const (one, PLUS_EXPR, zero, 14641 one); 14642 14643 /* (nonlvalue)x <-- (x + 0) */ 14644 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero, 14645 x); 14646 14647 /* Subtraction. */ 14648 /* 0 <-- (x - x) */ 14649 assert_binop_folds_to_const (x, MINUS_EXPR, x, 14650 zero); 14651 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero, 14652 x); 14653 14654 /* Multiplication. */ 14655 /* 0 <-- (x * 0) */ 14656 assert_binop_folds_to_const (x, MULT_EXPR, zero, 14657 zero); 14658 14659 /* (nonlvalue)x <-- (x * 1) */ 14660 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one, 14661 x); 14662 } 14663 14664 /* Verify that various binary operations on vectors are folded 14665 correctly. */ 14666 14667 static void 14668 test_vector_folding () 14669 { 14670 tree inner_type = integer_type_node; 14671 tree type = build_vector_type (inner_type, 4); 14672 tree zero = build_zero_cst (type); 14673 tree one = build_one_cst (type); 14674 14675 /* Verify equality tests that return a scalar boolean result. */ 14676 tree res_type = boolean_type_node; 14677 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one))); 14678 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero))); 14679 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one))); 14680 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one))); 14681 } 14682 14683 /* Verify folding of VEC_DUPLICATE_EXPRs. */ 14684 14685 static void 14686 test_vec_duplicate_folding () 14687 { 14688 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype); 14689 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode); 14690 /* This will be 1 if VEC_MODE isn't a vector mode. */ 14691 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode); 14692 14693 tree type = build_vector_type (ssizetype, nunits); 14694 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5)); 14695 tree dup5_cst = build_vector_from_val (type, ssize_int (5)); 14696 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0)); 14697 } 14698 14699 /* Run all of the selftests within this file. */ 14700 14701 void 14702 fold_const_c_tests () 14703 { 14704 test_arithmetic_folding (); 14705 test_vector_folding (); 14706 test_vec_duplicate_folding (); 14707 } 14708 14709 } // namespace selftest 14710 14711 #endif /* CHECKING_P */ 14712