1*38fd1498Szrj /* Operations with long integers.
2*38fd1498Szrj Copyright (C) 2006-2018 Free Software Foundation, Inc.
3*38fd1498Szrj
4*38fd1498Szrj This file is part of GCC.
5*38fd1498Szrj
6*38fd1498Szrj GCC is free software; you can redistribute it and/or modify it
7*38fd1498Szrj under the terms of the GNU General Public License as published by the
8*38fd1498Szrj Free Software Foundation; either version 3, or (at your option) any
9*38fd1498Szrj later version.
10*38fd1498Szrj
11*38fd1498Szrj GCC is distributed in the hope that it will be useful, but WITHOUT
12*38fd1498Szrj ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13*38fd1498Szrj FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14*38fd1498Szrj for more details.
15*38fd1498Szrj
16*38fd1498Szrj You should have received a copy of the GNU General Public License
17*38fd1498Szrj along with GCC; see the file COPYING3. If not see
18*38fd1498Szrj <http://www.gnu.org/licenses/>. */
19*38fd1498Szrj
20*38fd1498Szrj #include "config.h"
21*38fd1498Szrj #include "system.h"
22*38fd1498Szrj #include "coretypes.h"
23*38fd1498Szrj #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
24*38fd1498Szrj #include "tree.h"
25*38fd1498Szrj
26*38fd1498Szrj static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
27*38fd1498Szrj unsigned HOST_WIDE_INT, HOST_WIDE_INT,
28*38fd1498Szrj unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
29*38fd1498Szrj bool);
30*38fd1498Szrj
31*38fd1498Szrj #define add_double(l1,h1,l2,h2,lv,hv) \
32*38fd1498Szrj add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
33*38fd1498Szrj
34*38fd1498Szrj static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
35*38fd1498Szrj unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
36*38fd1498Szrj
37*38fd1498Szrj static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38*38fd1498Szrj unsigned HOST_WIDE_INT, HOST_WIDE_INT,
39*38fd1498Szrj unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
40*38fd1498Szrj unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
41*38fd1498Szrj bool);
42*38fd1498Szrj
43*38fd1498Szrj #define mul_double(l1,h1,l2,h2,lv,hv) \
44*38fd1498Szrj mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
45*38fd1498Szrj
46*38fd1498Szrj static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
47*38fd1498Szrj HOST_WIDE_INT, unsigned HOST_WIDE_INT,
48*38fd1498Szrj HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
49*38fd1498Szrj HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
50*38fd1498Szrj HOST_WIDE_INT *);
51*38fd1498Szrj
52*38fd1498Szrj /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
53*38fd1498Szrj overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
54*38fd1498Szrj and SUM1. Then this yields nonzero if overflow occurred during the
55*38fd1498Szrj addition.
56*38fd1498Szrj
57*38fd1498Szrj Overflow occurs if A and B have the same sign, but A and SUM differ in
58*38fd1498Szrj sign. Use `^' to test whether signs differ, and `< 0' to isolate the
59*38fd1498Szrj sign. */
60*38fd1498Szrj #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
61*38fd1498Szrj
62*38fd1498Szrj /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
63*38fd1498Szrj We do that by representing the two-word integer in 4 words, with only
64*38fd1498Szrj HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
65*38fd1498Szrj number. The value of the word is LOWPART + HIGHPART * BASE. */
66*38fd1498Szrj
67*38fd1498Szrj #define LOWPART(x) \
68*38fd1498Szrj ((x) & ((HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
69*38fd1498Szrj #define HIGHPART(x) \
70*38fd1498Szrj ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
71*38fd1498Szrj #define BASE (HOST_WIDE_INT_1U << HOST_BITS_PER_WIDE_INT / 2)
72*38fd1498Szrj
73*38fd1498Szrj /* Unpack a two-word integer into 4 words.
74*38fd1498Szrj LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
75*38fd1498Szrj WORDS points to the array of HOST_WIDE_INTs. */
76*38fd1498Szrj
77*38fd1498Szrj static void
encode(HOST_WIDE_INT * words,unsigned HOST_WIDE_INT low,HOST_WIDE_INT hi)78*38fd1498Szrj encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
79*38fd1498Szrj {
80*38fd1498Szrj words[0] = LOWPART (low);
81*38fd1498Szrj words[1] = HIGHPART (low);
82*38fd1498Szrj words[2] = LOWPART (hi);
83*38fd1498Szrj words[3] = HIGHPART (hi);
84*38fd1498Szrj }
85*38fd1498Szrj
86*38fd1498Szrj /* Pack an array of 4 words into a two-word integer.
87*38fd1498Szrj WORDS points to the array of words.
88*38fd1498Szrj The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
89*38fd1498Szrj
90*38fd1498Szrj static void
decode(HOST_WIDE_INT * words,unsigned HOST_WIDE_INT * low,HOST_WIDE_INT * hi)91*38fd1498Szrj decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
92*38fd1498Szrj HOST_WIDE_INT *hi)
93*38fd1498Szrj {
94*38fd1498Szrj *low = words[0] + words[1] * BASE;
95*38fd1498Szrj *hi = words[2] + words[3] * BASE;
96*38fd1498Szrj }
97*38fd1498Szrj
98*38fd1498Szrj /* Add two doubleword integers with doubleword result.
99*38fd1498Szrj Return nonzero if the operation overflows according to UNSIGNED_P.
100*38fd1498Szrj Each argument is given as two `HOST_WIDE_INT' pieces.
101*38fd1498Szrj One argument is L1 and H1; the other, L2 and H2.
102*38fd1498Szrj The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
103*38fd1498Szrj
104*38fd1498Szrj static int
add_double_with_sign(unsigned HOST_WIDE_INT l1,HOST_WIDE_INT h1,unsigned HOST_WIDE_INT l2,HOST_WIDE_INT h2,unsigned HOST_WIDE_INT * lv,HOST_WIDE_INT * hv,bool unsigned_p)105*38fd1498Szrj add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
106*38fd1498Szrj unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
107*38fd1498Szrj unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
108*38fd1498Szrj bool unsigned_p)
109*38fd1498Szrj {
110*38fd1498Szrj unsigned HOST_WIDE_INT l;
111*38fd1498Szrj HOST_WIDE_INT h;
112*38fd1498Szrj
113*38fd1498Szrj l = l1 + l2;
114*38fd1498Szrj h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
115*38fd1498Szrj + (unsigned HOST_WIDE_INT) h2
116*38fd1498Szrj + (l < l1));
117*38fd1498Szrj
118*38fd1498Szrj *lv = l;
119*38fd1498Szrj *hv = h;
120*38fd1498Szrj
121*38fd1498Szrj if (unsigned_p)
122*38fd1498Szrj return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
123*38fd1498Szrj || (h == h1
124*38fd1498Szrj && l < l1));
125*38fd1498Szrj else
126*38fd1498Szrj return OVERFLOW_SUM_SIGN (h1, h2, h);
127*38fd1498Szrj }
128*38fd1498Szrj
129*38fd1498Szrj /* Negate a doubleword integer with doubleword result.
130*38fd1498Szrj Return nonzero if the operation overflows, assuming it's signed.
131*38fd1498Szrj The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
132*38fd1498Szrj The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
133*38fd1498Szrj
134*38fd1498Szrj static int
neg_double(unsigned HOST_WIDE_INT l1,HOST_WIDE_INT h1,unsigned HOST_WIDE_INT * lv,HOST_WIDE_INT * hv)135*38fd1498Szrj neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
136*38fd1498Szrj unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
137*38fd1498Szrj {
138*38fd1498Szrj if (l1 == 0)
139*38fd1498Szrj {
140*38fd1498Szrj *lv = 0;
141*38fd1498Szrj *hv = - (unsigned HOST_WIDE_INT) h1;
142*38fd1498Szrj return (*hv & h1) < 0;
143*38fd1498Szrj }
144*38fd1498Szrj else
145*38fd1498Szrj {
146*38fd1498Szrj *lv = -l1;
147*38fd1498Szrj *hv = ~h1;
148*38fd1498Szrj return 0;
149*38fd1498Szrj }
150*38fd1498Szrj }
151*38fd1498Szrj
152*38fd1498Szrj /* Multiply two doubleword integers with quadword result.
153*38fd1498Szrj Return nonzero if the operation overflows according to UNSIGNED_P.
154*38fd1498Szrj Each argument is given as two `HOST_WIDE_INT' pieces.
155*38fd1498Szrj One argument is L1 and H1; the other, L2 and H2.
156*38fd1498Szrj The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
157*38fd1498Szrj *LW and *HW.
158*38fd1498Szrj If lw is NULL then only the low part and no overflow is computed. */
159*38fd1498Szrj
160*38fd1498Szrj static int
mul_double_wide_with_sign(unsigned HOST_WIDE_INT l1,HOST_WIDE_INT h1,unsigned HOST_WIDE_INT l2,HOST_WIDE_INT h2,unsigned HOST_WIDE_INT * lv,HOST_WIDE_INT * hv,unsigned HOST_WIDE_INT * lw,HOST_WIDE_INT * hw,bool unsigned_p)161*38fd1498Szrj mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
162*38fd1498Szrj unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
163*38fd1498Szrj unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
164*38fd1498Szrj unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
165*38fd1498Szrj bool unsigned_p)
166*38fd1498Szrj {
167*38fd1498Szrj HOST_WIDE_INT arg1[4];
168*38fd1498Szrj HOST_WIDE_INT arg2[4];
169*38fd1498Szrj HOST_WIDE_INT prod[4 * 2];
170*38fd1498Szrj unsigned HOST_WIDE_INT carry;
171*38fd1498Szrj int i, j, k;
172*38fd1498Szrj unsigned HOST_WIDE_INT neglow;
173*38fd1498Szrj HOST_WIDE_INT neghigh;
174*38fd1498Szrj
175*38fd1498Szrj encode (arg1, l1, h1);
176*38fd1498Szrj encode (arg2, l2, h2);
177*38fd1498Szrj
178*38fd1498Szrj memset (prod, 0, sizeof prod);
179*38fd1498Szrj
180*38fd1498Szrj for (i = 0; i < 4; i++)
181*38fd1498Szrj {
182*38fd1498Szrj carry = 0;
183*38fd1498Szrj for (j = 0; j < 4; j++)
184*38fd1498Szrj {
185*38fd1498Szrj k = i + j;
186*38fd1498Szrj /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
187*38fd1498Szrj carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
188*38fd1498Szrj /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
189*38fd1498Szrj carry += prod[k];
190*38fd1498Szrj prod[k] = LOWPART (carry);
191*38fd1498Szrj carry = HIGHPART (carry);
192*38fd1498Szrj }
193*38fd1498Szrj prod[i + 4] = carry;
194*38fd1498Szrj }
195*38fd1498Szrj
196*38fd1498Szrj decode (prod, lv, hv);
197*38fd1498Szrj
198*38fd1498Szrj /* We are not interested in the wide part nor in overflow. */
199*38fd1498Szrj if (lw == NULL)
200*38fd1498Szrj return 0;
201*38fd1498Szrj
202*38fd1498Szrj decode (prod + 4, lw, hw);
203*38fd1498Szrj
204*38fd1498Szrj /* Unsigned overflow is immediate. */
205*38fd1498Szrj if (unsigned_p)
206*38fd1498Szrj return (*lw | *hw) != 0;
207*38fd1498Szrj
208*38fd1498Szrj /* Check for signed overflow by calculating the signed representation of the
209*38fd1498Szrj top half of the result; it should agree with the low half's sign bit. */
210*38fd1498Szrj if (h1 < 0)
211*38fd1498Szrj {
212*38fd1498Szrj neg_double (l2, h2, &neglow, &neghigh);
213*38fd1498Szrj add_double (neglow, neghigh, *lw, *hw, lw, hw);
214*38fd1498Szrj }
215*38fd1498Szrj if (h2 < 0)
216*38fd1498Szrj {
217*38fd1498Szrj neg_double (l1, h1, &neglow, &neghigh);
218*38fd1498Szrj add_double (neglow, neghigh, *lw, *hw, lw, hw);
219*38fd1498Szrj }
220*38fd1498Szrj return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
221*38fd1498Szrj }
222*38fd1498Szrj
223*38fd1498Szrj /* Shift the doubleword integer in L1, H1 right by COUNT places
224*38fd1498Szrj keeping only PREC bits of result. ARITH nonzero specifies
225*38fd1498Szrj arithmetic shifting; otherwise use logical shift.
226*38fd1498Szrj Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
227*38fd1498Szrj
228*38fd1498Szrj static void
rshift_double(unsigned HOST_WIDE_INT l1,HOST_WIDE_INT h1,unsigned HOST_WIDE_INT count,unsigned int prec,unsigned HOST_WIDE_INT * lv,HOST_WIDE_INT * hv,bool arith)229*38fd1498Szrj rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
230*38fd1498Szrj unsigned HOST_WIDE_INT count, unsigned int prec,
231*38fd1498Szrj unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
232*38fd1498Szrj bool arith)
233*38fd1498Szrj {
234*38fd1498Szrj unsigned HOST_WIDE_INT signmask;
235*38fd1498Szrj
236*38fd1498Szrj signmask = (arith
237*38fd1498Szrj ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
238*38fd1498Szrj : 0);
239*38fd1498Szrj
240*38fd1498Szrj if (count >= HOST_BITS_PER_DOUBLE_INT)
241*38fd1498Szrj {
242*38fd1498Szrj /* Shifting by the host word size is undefined according to the
243*38fd1498Szrj ANSI standard, so we must handle this as a special case. */
244*38fd1498Szrj *hv = 0;
245*38fd1498Szrj *lv = 0;
246*38fd1498Szrj }
247*38fd1498Szrj else if (count >= HOST_BITS_PER_WIDE_INT)
248*38fd1498Szrj {
249*38fd1498Szrj *hv = 0;
250*38fd1498Szrj *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
251*38fd1498Szrj }
252*38fd1498Szrj else
253*38fd1498Szrj {
254*38fd1498Szrj *hv = (unsigned HOST_WIDE_INT) h1 >> count;
255*38fd1498Szrj *lv = ((l1 >> count)
256*38fd1498Szrj | ((unsigned HOST_WIDE_INT) h1
257*38fd1498Szrj << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
258*38fd1498Szrj }
259*38fd1498Szrj
260*38fd1498Szrj /* Zero / sign extend all bits that are beyond the precision. */
261*38fd1498Szrj
262*38fd1498Szrj if (count >= prec)
263*38fd1498Szrj {
264*38fd1498Szrj *hv = signmask;
265*38fd1498Szrj *lv = signmask;
266*38fd1498Szrj }
267*38fd1498Szrj else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
268*38fd1498Szrj ;
269*38fd1498Szrj else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
270*38fd1498Szrj {
271*38fd1498Szrj *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
272*38fd1498Szrj *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
273*38fd1498Szrj }
274*38fd1498Szrj else
275*38fd1498Szrj {
276*38fd1498Szrj *hv = signmask;
277*38fd1498Szrj *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
278*38fd1498Szrj *lv |= signmask << (prec - count);
279*38fd1498Szrj }
280*38fd1498Szrj }
281*38fd1498Szrj
282*38fd1498Szrj /* Shift the doubleword integer in L1, H1 left by COUNT places
283*38fd1498Szrj keeping only PREC bits of result.
284*38fd1498Szrj Shift right if COUNT is negative.
285*38fd1498Szrj ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
286*38fd1498Szrj Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
287*38fd1498Szrj
288*38fd1498Szrj static void
lshift_double(unsigned HOST_WIDE_INT l1,HOST_WIDE_INT h1,unsigned HOST_WIDE_INT count,unsigned int prec,unsigned HOST_WIDE_INT * lv,HOST_WIDE_INT * hv)289*38fd1498Szrj lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
290*38fd1498Szrj unsigned HOST_WIDE_INT count, unsigned int prec,
291*38fd1498Szrj unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
292*38fd1498Szrj {
293*38fd1498Szrj unsigned HOST_WIDE_INT signmask;
294*38fd1498Szrj
295*38fd1498Szrj if (count >= HOST_BITS_PER_DOUBLE_INT)
296*38fd1498Szrj {
297*38fd1498Szrj /* Shifting by the host word size is undefined according to the
298*38fd1498Szrj ANSI standard, so we must handle this as a special case. */
299*38fd1498Szrj *hv = 0;
300*38fd1498Szrj *lv = 0;
301*38fd1498Szrj }
302*38fd1498Szrj else if (count >= HOST_BITS_PER_WIDE_INT)
303*38fd1498Szrj {
304*38fd1498Szrj *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
305*38fd1498Szrj *lv = 0;
306*38fd1498Szrj }
307*38fd1498Szrj else
308*38fd1498Szrj {
309*38fd1498Szrj *hv = (((unsigned HOST_WIDE_INT) h1 << count)
310*38fd1498Szrj | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
311*38fd1498Szrj *lv = l1 << count;
312*38fd1498Szrj }
313*38fd1498Szrj
314*38fd1498Szrj /* Sign extend all bits that are beyond the precision. */
315*38fd1498Szrj
316*38fd1498Szrj signmask = -((prec > HOST_BITS_PER_WIDE_INT
317*38fd1498Szrj ? ((unsigned HOST_WIDE_INT) *hv
318*38fd1498Szrj >> (prec - HOST_BITS_PER_WIDE_INT - 1))
319*38fd1498Szrj : (*lv >> (prec - 1))) & 1);
320*38fd1498Szrj
321*38fd1498Szrj if (prec >= HOST_BITS_PER_DOUBLE_INT)
322*38fd1498Szrj ;
323*38fd1498Szrj else if (prec >= HOST_BITS_PER_WIDE_INT)
324*38fd1498Szrj {
325*38fd1498Szrj *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
326*38fd1498Szrj *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
327*38fd1498Szrj }
328*38fd1498Szrj else
329*38fd1498Szrj {
330*38fd1498Szrj *hv = signmask;
331*38fd1498Szrj *lv &= ~(HOST_WIDE_INT_M1U << prec);
332*38fd1498Szrj *lv |= signmask << prec;
333*38fd1498Szrj }
334*38fd1498Szrj }
335*38fd1498Szrj
336*38fd1498Szrj /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
337*38fd1498Szrj for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
338*38fd1498Szrj CODE is a tree code for a kind of division, one of
339*38fd1498Szrj TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
340*38fd1498Szrj or EXACT_DIV_EXPR
341*38fd1498Szrj It controls how the quotient is rounded to an integer.
342*38fd1498Szrj Return nonzero if the operation overflows.
343*38fd1498Szrj UNS nonzero says do unsigned division. */
344*38fd1498Szrj
345*38fd1498Szrj static int
div_and_round_double(unsigned code,int uns,unsigned HOST_WIDE_INT lnum_orig,HOST_WIDE_INT hnum_orig,unsigned HOST_WIDE_INT lden_orig,HOST_WIDE_INT hden_orig,unsigned HOST_WIDE_INT * lquo,HOST_WIDE_INT * hquo,unsigned HOST_WIDE_INT * lrem,HOST_WIDE_INT * hrem)346*38fd1498Szrj div_and_round_double (unsigned code, int uns,
347*38fd1498Szrj /* num == numerator == dividend */
348*38fd1498Szrj unsigned HOST_WIDE_INT lnum_orig,
349*38fd1498Szrj HOST_WIDE_INT hnum_orig,
350*38fd1498Szrj /* den == denominator == divisor */
351*38fd1498Szrj unsigned HOST_WIDE_INT lden_orig,
352*38fd1498Szrj HOST_WIDE_INT hden_orig,
353*38fd1498Szrj unsigned HOST_WIDE_INT *lquo,
354*38fd1498Szrj HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
355*38fd1498Szrj HOST_WIDE_INT *hrem)
356*38fd1498Szrj {
357*38fd1498Szrj int quo_neg = 0;
358*38fd1498Szrj HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
359*38fd1498Szrj HOST_WIDE_INT den[4], quo[4];
360*38fd1498Szrj int i, j;
361*38fd1498Szrj unsigned HOST_WIDE_INT work;
362*38fd1498Szrj unsigned HOST_WIDE_INT carry = 0;
363*38fd1498Szrj unsigned HOST_WIDE_INT lnum = lnum_orig;
364*38fd1498Szrj HOST_WIDE_INT hnum = hnum_orig;
365*38fd1498Szrj unsigned HOST_WIDE_INT lden = lden_orig;
366*38fd1498Szrj HOST_WIDE_INT hden = hden_orig;
367*38fd1498Szrj int overflow = 0;
368*38fd1498Szrj
369*38fd1498Szrj if (hden == 0 && lden == 0)
370*38fd1498Szrj overflow = 1, lden = 1;
371*38fd1498Szrj
372*38fd1498Szrj /* Calculate quotient sign and convert operands to unsigned. */
373*38fd1498Szrj if (!uns)
374*38fd1498Szrj {
375*38fd1498Szrj if (hnum < 0)
376*38fd1498Szrj {
377*38fd1498Szrj quo_neg = ~ quo_neg;
378*38fd1498Szrj /* (minimum integer) / (-1) is the only overflow case. */
379*38fd1498Szrj if (neg_double (lnum, hnum, &lnum, &hnum)
380*38fd1498Szrj && ((HOST_WIDE_INT) lden & hden) == -1)
381*38fd1498Szrj overflow = 1;
382*38fd1498Szrj }
383*38fd1498Szrj if (hden < 0)
384*38fd1498Szrj {
385*38fd1498Szrj quo_neg = ~ quo_neg;
386*38fd1498Szrj neg_double (lden, hden, &lden, &hden);
387*38fd1498Szrj }
388*38fd1498Szrj }
389*38fd1498Szrj
390*38fd1498Szrj if (hnum == 0 && hden == 0)
391*38fd1498Szrj { /* single precision */
392*38fd1498Szrj *hquo = *hrem = 0;
393*38fd1498Szrj /* This unsigned division rounds toward zero. */
394*38fd1498Szrj *lquo = lnum / lden;
395*38fd1498Szrj goto finish_up;
396*38fd1498Szrj }
397*38fd1498Szrj
398*38fd1498Szrj if (hnum == 0)
399*38fd1498Szrj { /* trivial case: dividend < divisor */
400*38fd1498Szrj /* hden != 0 already checked. */
401*38fd1498Szrj *hquo = *lquo = 0;
402*38fd1498Szrj *hrem = hnum;
403*38fd1498Szrj *lrem = lnum;
404*38fd1498Szrj goto finish_up;
405*38fd1498Szrj }
406*38fd1498Szrj
407*38fd1498Szrj memset (quo, 0, sizeof quo);
408*38fd1498Szrj
409*38fd1498Szrj memset (num, 0, sizeof num); /* to zero 9th element */
410*38fd1498Szrj memset (den, 0, sizeof den);
411*38fd1498Szrj
412*38fd1498Szrj encode (num, lnum, hnum);
413*38fd1498Szrj encode (den, lden, hden);
414*38fd1498Szrj
415*38fd1498Szrj /* Special code for when the divisor < BASE. */
416*38fd1498Szrj if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
417*38fd1498Szrj {
418*38fd1498Szrj /* hnum != 0 already checked. */
419*38fd1498Szrj for (i = 4 - 1; i >= 0; i--)
420*38fd1498Szrj {
421*38fd1498Szrj work = num[i] + carry * BASE;
422*38fd1498Szrj quo[i] = work / lden;
423*38fd1498Szrj carry = work % lden;
424*38fd1498Szrj }
425*38fd1498Szrj }
426*38fd1498Szrj else
427*38fd1498Szrj {
428*38fd1498Szrj /* Full double precision division,
429*38fd1498Szrj with thanks to Don Knuth's "Seminumerical Algorithms". */
430*38fd1498Szrj int num_hi_sig, den_hi_sig;
431*38fd1498Szrj unsigned HOST_WIDE_INT quo_est, scale;
432*38fd1498Szrj
433*38fd1498Szrj /* Find the highest nonzero divisor digit. */
434*38fd1498Szrj for (i = 4 - 1;; i--)
435*38fd1498Szrj if (den[i] != 0)
436*38fd1498Szrj {
437*38fd1498Szrj den_hi_sig = i;
438*38fd1498Szrj break;
439*38fd1498Szrj }
440*38fd1498Szrj
441*38fd1498Szrj /* Insure that the first digit of the divisor is at least BASE/2.
442*38fd1498Szrj This is required by the quotient digit estimation algorithm. */
443*38fd1498Szrj
444*38fd1498Szrj scale = BASE / (den[den_hi_sig] + 1);
445*38fd1498Szrj if (scale > 1)
446*38fd1498Szrj { /* scale divisor and dividend */
447*38fd1498Szrj carry = 0;
448*38fd1498Szrj for (i = 0; i <= 4 - 1; i++)
449*38fd1498Szrj {
450*38fd1498Szrj work = (num[i] * scale) + carry;
451*38fd1498Szrj num[i] = LOWPART (work);
452*38fd1498Szrj carry = HIGHPART (work);
453*38fd1498Szrj }
454*38fd1498Szrj
455*38fd1498Szrj num[4] = carry;
456*38fd1498Szrj carry = 0;
457*38fd1498Szrj for (i = 0; i <= 4 - 1; i++)
458*38fd1498Szrj {
459*38fd1498Szrj work = (den[i] * scale) + carry;
460*38fd1498Szrj den[i] = LOWPART (work);
461*38fd1498Szrj carry = HIGHPART (work);
462*38fd1498Szrj if (den[i] != 0) den_hi_sig = i;
463*38fd1498Szrj }
464*38fd1498Szrj }
465*38fd1498Szrj
466*38fd1498Szrj num_hi_sig = 4;
467*38fd1498Szrj
468*38fd1498Szrj /* Main loop */
469*38fd1498Szrj for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
470*38fd1498Szrj {
471*38fd1498Szrj /* Guess the next quotient digit, quo_est, by dividing the first
472*38fd1498Szrj two remaining dividend digits by the high order quotient digit.
473*38fd1498Szrj quo_est is never low and is at most 2 high. */
474*38fd1498Szrj unsigned HOST_WIDE_INT tmp;
475*38fd1498Szrj
476*38fd1498Szrj num_hi_sig = i + den_hi_sig + 1;
477*38fd1498Szrj work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
478*38fd1498Szrj if (num[num_hi_sig] != den[den_hi_sig])
479*38fd1498Szrj quo_est = work / den[den_hi_sig];
480*38fd1498Szrj else
481*38fd1498Szrj quo_est = BASE - 1;
482*38fd1498Szrj
483*38fd1498Szrj /* Refine quo_est so it's usually correct, and at most one high. */
484*38fd1498Szrj tmp = work - quo_est * den[den_hi_sig];
485*38fd1498Szrj if (tmp < BASE
486*38fd1498Szrj && (den[den_hi_sig - 1] * quo_est
487*38fd1498Szrj > (tmp * BASE + num[num_hi_sig - 2])))
488*38fd1498Szrj quo_est--;
489*38fd1498Szrj
490*38fd1498Szrj /* Try QUO_EST as the quotient digit, by multiplying the
491*38fd1498Szrj divisor by QUO_EST and subtracting from the remaining dividend.
492*38fd1498Szrj Keep in mind that QUO_EST is the I - 1st digit. */
493*38fd1498Szrj
494*38fd1498Szrj carry = 0;
495*38fd1498Szrj for (j = 0; j <= den_hi_sig; j++)
496*38fd1498Szrj {
497*38fd1498Szrj work = quo_est * den[j] + carry;
498*38fd1498Szrj carry = HIGHPART (work);
499*38fd1498Szrj work = num[i + j] - LOWPART (work);
500*38fd1498Szrj num[i + j] = LOWPART (work);
501*38fd1498Szrj carry += HIGHPART (work) != 0;
502*38fd1498Szrj }
503*38fd1498Szrj
504*38fd1498Szrj /* If quo_est was high by one, then num[i] went negative and
505*38fd1498Szrj we need to correct things. */
506*38fd1498Szrj if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
507*38fd1498Szrj {
508*38fd1498Szrj quo_est--;
509*38fd1498Szrj carry = 0; /* add divisor back in */
510*38fd1498Szrj for (j = 0; j <= den_hi_sig; j++)
511*38fd1498Szrj {
512*38fd1498Szrj work = num[i + j] + den[j] + carry;
513*38fd1498Szrj carry = HIGHPART (work);
514*38fd1498Szrj num[i + j] = LOWPART (work);
515*38fd1498Szrj }
516*38fd1498Szrj
517*38fd1498Szrj num [num_hi_sig] += carry;
518*38fd1498Szrj }
519*38fd1498Szrj
520*38fd1498Szrj /* Store the quotient digit. */
521*38fd1498Szrj quo[i] = quo_est;
522*38fd1498Szrj }
523*38fd1498Szrj }
524*38fd1498Szrj
525*38fd1498Szrj decode (quo, lquo, hquo);
526*38fd1498Szrj
527*38fd1498Szrj finish_up:
528*38fd1498Szrj /* If result is negative, make it so. */
529*38fd1498Szrj if (quo_neg)
530*38fd1498Szrj neg_double (*lquo, *hquo, lquo, hquo);
531*38fd1498Szrj
532*38fd1498Szrj /* Compute trial remainder: rem = num - (quo * den) */
533*38fd1498Szrj mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
534*38fd1498Szrj neg_double (*lrem, *hrem, lrem, hrem);
535*38fd1498Szrj add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
536*38fd1498Szrj
537*38fd1498Szrj switch (code)
538*38fd1498Szrj {
539*38fd1498Szrj case TRUNC_DIV_EXPR:
540*38fd1498Szrj case TRUNC_MOD_EXPR: /* round toward zero */
541*38fd1498Szrj case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
542*38fd1498Szrj return overflow;
543*38fd1498Szrj
544*38fd1498Szrj case FLOOR_DIV_EXPR:
545*38fd1498Szrj case FLOOR_MOD_EXPR: /* round toward negative infinity */
546*38fd1498Szrj if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
547*38fd1498Szrj {
548*38fd1498Szrj /* quo = quo - 1; */
549*38fd1498Szrj add_double (*lquo, *hquo, HOST_WIDE_INT_M1, HOST_WIDE_INT_M1,
550*38fd1498Szrj lquo, hquo);
551*38fd1498Szrj }
552*38fd1498Szrj else
553*38fd1498Szrj return overflow;
554*38fd1498Szrj break;
555*38fd1498Szrj
556*38fd1498Szrj case CEIL_DIV_EXPR:
557*38fd1498Szrj case CEIL_MOD_EXPR: /* round toward positive infinity */
558*38fd1498Szrj if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
559*38fd1498Szrj {
560*38fd1498Szrj add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
561*38fd1498Szrj lquo, hquo);
562*38fd1498Szrj }
563*38fd1498Szrj else
564*38fd1498Szrj return overflow;
565*38fd1498Szrj break;
566*38fd1498Szrj
567*38fd1498Szrj case ROUND_DIV_EXPR:
568*38fd1498Szrj case ROUND_MOD_EXPR: /* round to closest integer */
569*38fd1498Szrj {
570*38fd1498Szrj unsigned HOST_WIDE_INT labs_rem = *lrem;
571*38fd1498Szrj HOST_WIDE_INT habs_rem = *hrem;
572*38fd1498Szrj unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
573*38fd1498Szrj HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
574*38fd1498Szrj
575*38fd1498Szrj /* Get absolute values. */
576*38fd1498Szrj if (!uns && *hrem < 0)
577*38fd1498Szrj neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
578*38fd1498Szrj if (!uns && hden < 0)
579*38fd1498Szrj neg_double (lden, hden, &labs_den, &habs_den);
580*38fd1498Szrj
581*38fd1498Szrj /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
582*38fd1498Szrj neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
583*38fd1498Szrj add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
584*38fd1498Szrj &ldiff, &hdiff);
585*38fd1498Szrj
586*38fd1498Szrj if (((unsigned HOST_WIDE_INT) habs_rem
587*38fd1498Szrj > (unsigned HOST_WIDE_INT) hdiff)
588*38fd1498Szrj || (habs_rem == hdiff && labs_rem >= ldiff))
589*38fd1498Szrj {
590*38fd1498Szrj if (quo_neg)
591*38fd1498Szrj /* quo = quo - 1; */
592*38fd1498Szrj add_double (*lquo, *hquo,
593*38fd1498Szrj HOST_WIDE_INT_M1, HOST_WIDE_INT_M1, lquo, hquo);
594*38fd1498Szrj else
595*38fd1498Szrj /* quo = quo + 1; */
596*38fd1498Szrj add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
597*38fd1498Szrj lquo, hquo);
598*38fd1498Szrj }
599*38fd1498Szrj else
600*38fd1498Szrj return overflow;
601*38fd1498Szrj }
602*38fd1498Szrj break;
603*38fd1498Szrj
604*38fd1498Szrj default:
605*38fd1498Szrj gcc_unreachable ();
606*38fd1498Szrj }
607*38fd1498Szrj
608*38fd1498Szrj /* Compute true remainder: rem = num - (quo * den) */
609*38fd1498Szrj mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
610*38fd1498Szrj neg_double (*lrem, *hrem, lrem, hrem);
611*38fd1498Szrj add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
612*38fd1498Szrj return overflow;
613*38fd1498Szrj }
614*38fd1498Szrj
615*38fd1498Szrj
616*38fd1498Szrj /* Construct from a buffer of length LEN. BUFFER will be read according
617*38fd1498Szrj to byte endianness and word endianness. Only the lower LEN bytes
618*38fd1498Szrj of the result are set; the remaining high bytes are cleared. */
619*38fd1498Szrj
620*38fd1498Szrj double_int
from_buffer(const unsigned char * buffer,int len)621*38fd1498Szrj double_int::from_buffer (const unsigned char *buffer, int len)
622*38fd1498Szrj {
623*38fd1498Szrj double_int result = double_int_zero;
624*38fd1498Szrj int words = len / UNITS_PER_WORD;
625*38fd1498Szrj
626*38fd1498Szrj gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
627*38fd1498Szrj
628*38fd1498Szrj for (int byte = 0; byte < len; byte++)
629*38fd1498Szrj {
630*38fd1498Szrj int offset;
631*38fd1498Szrj int bitpos = byte * BITS_PER_UNIT;
632*38fd1498Szrj unsigned HOST_WIDE_INT value;
633*38fd1498Szrj
634*38fd1498Szrj if (len > UNITS_PER_WORD)
635*38fd1498Szrj {
636*38fd1498Szrj int word = byte / UNITS_PER_WORD;
637*38fd1498Szrj
638*38fd1498Szrj if (WORDS_BIG_ENDIAN)
639*38fd1498Szrj word = (words - 1) - word;
640*38fd1498Szrj
641*38fd1498Szrj offset = word * UNITS_PER_WORD;
642*38fd1498Szrj
643*38fd1498Szrj if (BYTES_BIG_ENDIAN)
644*38fd1498Szrj offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
645*38fd1498Szrj else
646*38fd1498Szrj offset += byte % UNITS_PER_WORD;
647*38fd1498Szrj }
648*38fd1498Szrj else
649*38fd1498Szrj offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
650*38fd1498Szrj
651*38fd1498Szrj value = (unsigned HOST_WIDE_INT) buffer[offset];
652*38fd1498Szrj
653*38fd1498Szrj if (bitpos < HOST_BITS_PER_WIDE_INT)
654*38fd1498Szrj result.low |= value << bitpos;
655*38fd1498Szrj else
656*38fd1498Szrj result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
657*38fd1498Szrj }
658*38fd1498Szrj
659*38fd1498Szrj return result;
660*38fd1498Szrj }
661*38fd1498Szrj
662*38fd1498Szrj
663*38fd1498Szrj /* Returns mask for PREC bits. */
664*38fd1498Szrj
665*38fd1498Szrj double_int
mask(unsigned prec)666*38fd1498Szrj double_int::mask (unsigned prec)
667*38fd1498Szrj {
668*38fd1498Szrj unsigned HOST_WIDE_INT m;
669*38fd1498Szrj double_int mask;
670*38fd1498Szrj
671*38fd1498Szrj if (prec > HOST_BITS_PER_WIDE_INT)
672*38fd1498Szrj {
673*38fd1498Szrj prec -= HOST_BITS_PER_WIDE_INT;
674*38fd1498Szrj m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
675*38fd1498Szrj mask.high = (HOST_WIDE_INT) m;
676*38fd1498Szrj mask.low = ALL_ONES;
677*38fd1498Szrj }
678*38fd1498Szrj else
679*38fd1498Szrj {
680*38fd1498Szrj mask.high = 0;
681*38fd1498Szrj mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
682*38fd1498Szrj }
683*38fd1498Szrj
684*38fd1498Szrj return mask;
685*38fd1498Szrj }
686*38fd1498Szrj
687*38fd1498Szrj /* Returns a maximum value for signed or unsigned integer
688*38fd1498Szrj of precision PREC. */
689*38fd1498Szrj
690*38fd1498Szrj double_int
max_value(unsigned int prec,bool uns)691*38fd1498Szrj double_int::max_value (unsigned int prec, bool uns)
692*38fd1498Szrj {
693*38fd1498Szrj return double_int::mask (prec - (uns ? 0 : 1));
694*38fd1498Szrj }
695*38fd1498Szrj
696*38fd1498Szrj /* Returns a minimum value for signed or unsigned integer
697*38fd1498Szrj of precision PREC. */
698*38fd1498Szrj
699*38fd1498Szrj double_int
min_value(unsigned int prec,bool uns)700*38fd1498Szrj double_int::min_value (unsigned int prec, bool uns)
701*38fd1498Szrj {
702*38fd1498Szrj if (uns)
703*38fd1498Szrj return double_int_zero;
704*38fd1498Szrj return double_int_one.lshift (prec - 1, prec, false);
705*38fd1498Szrj }
706*38fd1498Szrj
707*38fd1498Szrj /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
708*38fd1498Szrj outside of the precision are set to the sign bit (i.e., the PREC-th one),
709*38fd1498Szrj otherwise they are set to zero.
710*38fd1498Szrj
711*38fd1498Szrj This corresponds to returning the value represented by PREC lowermost bits
712*38fd1498Szrj of CST, with the given signedness. */
713*38fd1498Szrj
714*38fd1498Szrj double_int
ext(unsigned prec,bool uns)715*38fd1498Szrj double_int::ext (unsigned prec, bool uns) const
716*38fd1498Szrj {
717*38fd1498Szrj if (uns)
718*38fd1498Szrj return this->zext (prec);
719*38fd1498Szrj else
720*38fd1498Szrj return this->sext (prec);
721*38fd1498Szrj }
722*38fd1498Szrj
723*38fd1498Szrj /* The same as double_int::ext with UNS = true. */
724*38fd1498Szrj
725*38fd1498Szrj double_int
zext(unsigned prec)726*38fd1498Szrj double_int::zext (unsigned prec) const
727*38fd1498Szrj {
728*38fd1498Szrj const double_int &cst = *this;
729*38fd1498Szrj double_int mask = double_int::mask (prec);
730*38fd1498Szrj double_int r;
731*38fd1498Szrj
732*38fd1498Szrj r.low = cst.low & mask.low;
733*38fd1498Szrj r.high = cst.high & mask.high;
734*38fd1498Szrj
735*38fd1498Szrj return r;
736*38fd1498Szrj }
737*38fd1498Szrj
738*38fd1498Szrj /* The same as double_int::ext with UNS = false. */
739*38fd1498Szrj
740*38fd1498Szrj double_int
sext(unsigned prec)741*38fd1498Szrj double_int::sext (unsigned prec) const
742*38fd1498Szrj {
743*38fd1498Szrj const double_int &cst = *this;
744*38fd1498Szrj double_int mask = double_int::mask (prec);
745*38fd1498Szrj double_int r;
746*38fd1498Szrj unsigned HOST_WIDE_INT snum;
747*38fd1498Szrj
748*38fd1498Szrj if (prec <= HOST_BITS_PER_WIDE_INT)
749*38fd1498Szrj snum = cst.low;
750*38fd1498Szrj else
751*38fd1498Szrj {
752*38fd1498Szrj prec -= HOST_BITS_PER_WIDE_INT;
753*38fd1498Szrj snum = (unsigned HOST_WIDE_INT) cst.high;
754*38fd1498Szrj }
755*38fd1498Szrj if (((snum >> (prec - 1)) & 1) == 1)
756*38fd1498Szrj {
757*38fd1498Szrj r.low = cst.low | ~mask.low;
758*38fd1498Szrj r.high = cst.high | ~mask.high;
759*38fd1498Szrj }
760*38fd1498Szrj else
761*38fd1498Szrj {
762*38fd1498Szrj r.low = cst.low & mask.low;
763*38fd1498Szrj r.high = cst.high & mask.high;
764*38fd1498Szrj }
765*38fd1498Szrj
766*38fd1498Szrj return r;
767*38fd1498Szrj }
768*38fd1498Szrj
769*38fd1498Szrj /* Returns true if CST fits in signed HOST_WIDE_INT. */
770*38fd1498Szrj
771*38fd1498Szrj bool
fits_shwi()772*38fd1498Szrj double_int::fits_shwi () const
773*38fd1498Szrj {
774*38fd1498Szrj const double_int &cst = *this;
775*38fd1498Szrj if (cst.high == 0)
776*38fd1498Szrj return (HOST_WIDE_INT) cst.low >= 0;
777*38fd1498Szrj else if (cst.high == -1)
778*38fd1498Szrj return (HOST_WIDE_INT) cst.low < 0;
779*38fd1498Szrj else
780*38fd1498Szrj return false;
781*38fd1498Szrj }
782*38fd1498Szrj
783*38fd1498Szrj /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
784*38fd1498Szrj unsigned HOST_WIDE_INT if UNS is true. */
785*38fd1498Szrj
786*38fd1498Szrj bool
fits_hwi(bool uns)787*38fd1498Szrj double_int::fits_hwi (bool uns) const
788*38fd1498Szrj {
789*38fd1498Szrj if (uns)
790*38fd1498Szrj return this->fits_uhwi ();
791*38fd1498Szrj else
792*38fd1498Szrj return this->fits_shwi ();
793*38fd1498Szrj }
794*38fd1498Szrj
795*38fd1498Szrj /* Returns A * B. */
796*38fd1498Szrj
797*38fd1498Szrj double_int
798*38fd1498Szrj double_int::operator * (double_int b) const
799*38fd1498Szrj {
800*38fd1498Szrj const double_int &a = *this;
801*38fd1498Szrj double_int ret;
802*38fd1498Szrj mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
803*38fd1498Szrj return ret;
804*38fd1498Szrj }
805*38fd1498Szrj
806*38fd1498Szrj /* Multiplies *this with B and returns a reference to *this. */
807*38fd1498Szrj
808*38fd1498Szrj double_int &
809*38fd1498Szrj double_int::operator *= (double_int b)
810*38fd1498Szrj {
811*38fd1498Szrj mul_double (low, high, b.low, b.high, &low, &high);
812*38fd1498Szrj return *this;
813*38fd1498Szrj }
814*38fd1498Szrj
815*38fd1498Szrj /* Returns A * B. If the operation overflows according to UNSIGNED_P,
816*38fd1498Szrj *OVERFLOW is set to nonzero. */
817*38fd1498Szrj
818*38fd1498Szrj double_int
mul_with_sign(double_int b,bool unsigned_p,bool * overflow)819*38fd1498Szrj double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
820*38fd1498Szrj {
821*38fd1498Szrj const double_int &a = *this;
822*38fd1498Szrj double_int ret, tem;
823*38fd1498Szrj *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
824*38fd1498Szrj &ret.low, &ret.high,
825*38fd1498Szrj &tem.low, &tem.high, unsigned_p);
826*38fd1498Szrj return ret;
827*38fd1498Szrj }
828*38fd1498Szrj
829*38fd1498Szrj double_int
wide_mul_with_sign(double_int b,bool unsigned_p,double_int * higher,bool * overflow)830*38fd1498Szrj double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
831*38fd1498Szrj double_int *higher, bool *overflow) const
832*38fd1498Szrj
833*38fd1498Szrj {
834*38fd1498Szrj double_int lower;
835*38fd1498Szrj *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
836*38fd1498Szrj &lower.low, &lower.high,
837*38fd1498Szrj &higher->low, &higher->high,
838*38fd1498Szrj unsigned_p);
839*38fd1498Szrj return lower;
840*38fd1498Szrj }
841*38fd1498Szrj
842*38fd1498Szrj /* Returns A + B. */
843*38fd1498Szrj
844*38fd1498Szrj double_int
845*38fd1498Szrj double_int::operator + (double_int b) const
846*38fd1498Szrj {
847*38fd1498Szrj const double_int &a = *this;
848*38fd1498Szrj double_int ret;
849*38fd1498Szrj add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
850*38fd1498Szrj return ret;
851*38fd1498Szrj }
852*38fd1498Szrj
853*38fd1498Szrj /* Adds B to *this and returns a reference to *this. */
854*38fd1498Szrj
855*38fd1498Szrj double_int &
856*38fd1498Szrj double_int::operator += (double_int b)
857*38fd1498Szrj {
858*38fd1498Szrj add_double (low, high, b.low, b.high, &low, &high);
859*38fd1498Szrj return *this;
860*38fd1498Szrj }
861*38fd1498Szrj
862*38fd1498Szrj
863*38fd1498Szrj /* Returns A + B. If the operation overflows according to UNSIGNED_P,
864*38fd1498Szrj *OVERFLOW is set to nonzero. */
865*38fd1498Szrj
866*38fd1498Szrj double_int
add_with_sign(double_int b,bool unsigned_p,bool * overflow)867*38fd1498Szrj double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
868*38fd1498Szrj {
869*38fd1498Szrj const double_int &a = *this;
870*38fd1498Szrj double_int ret;
871*38fd1498Szrj *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
872*38fd1498Szrj &ret.low, &ret.high, unsigned_p);
873*38fd1498Szrj return ret;
874*38fd1498Szrj }
875*38fd1498Szrj
876*38fd1498Szrj /* Returns A - B. */
877*38fd1498Szrj
878*38fd1498Szrj double_int
879*38fd1498Szrj double_int::operator - (double_int b) const
880*38fd1498Szrj {
881*38fd1498Szrj const double_int &a = *this;
882*38fd1498Szrj double_int ret;
883*38fd1498Szrj neg_double (b.low, b.high, &b.low, &b.high);
884*38fd1498Szrj add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
885*38fd1498Szrj return ret;
886*38fd1498Szrj }
887*38fd1498Szrj
888*38fd1498Szrj /* Subtracts B from *this and returns a reference to *this. */
889*38fd1498Szrj
890*38fd1498Szrj double_int &
891*38fd1498Szrj double_int::operator -= (double_int b)
892*38fd1498Szrj {
893*38fd1498Szrj neg_double (b.low, b.high, &b.low, &b.high);
894*38fd1498Szrj add_double (low, high, b.low, b.high, &low, &high);
895*38fd1498Szrj return *this;
896*38fd1498Szrj }
897*38fd1498Szrj
898*38fd1498Szrj
899*38fd1498Szrj /* Returns A - B. If the operation overflows via inconsistent sign bits,
900*38fd1498Szrj *OVERFLOW is set to nonzero. */
901*38fd1498Szrj
902*38fd1498Szrj double_int
sub_with_overflow(double_int b,bool * overflow)903*38fd1498Szrj double_int::sub_with_overflow (double_int b, bool *overflow) const
904*38fd1498Szrj {
905*38fd1498Szrj double_int ret;
906*38fd1498Szrj neg_double (b.low, b.high, &ret.low, &ret.high);
907*38fd1498Szrj add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
908*38fd1498Szrj *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
909*38fd1498Szrj return ret;
910*38fd1498Szrj }
911*38fd1498Szrj
912*38fd1498Szrj /* Returns -A. */
913*38fd1498Szrj
914*38fd1498Szrj double_int
915*38fd1498Szrj double_int::operator - () const
916*38fd1498Szrj {
917*38fd1498Szrj const double_int &a = *this;
918*38fd1498Szrj double_int ret;
919*38fd1498Szrj neg_double (a.low, a.high, &ret.low, &ret.high);
920*38fd1498Szrj return ret;
921*38fd1498Szrj }
922*38fd1498Szrj
923*38fd1498Szrj double_int
neg_with_overflow(bool * overflow)924*38fd1498Szrj double_int::neg_with_overflow (bool *overflow) const
925*38fd1498Szrj {
926*38fd1498Szrj double_int ret;
927*38fd1498Szrj *overflow = neg_double (low, high, &ret.low, &ret.high);
928*38fd1498Szrj return ret;
929*38fd1498Szrj }
930*38fd1498Szrj
931*38fd1498Szrj /* Returns A / B (computed as unsigned depending on UNS, and rounded as
932*38fd1498Szrj specified by CODE). CODE is enum tree_code in fact, but double_int.h
933*38fd1498Szrj must be included before tree.h. The remainder after the division is
934*38fd1498Szrj stored to MOD. */
935*38fd1498Szrj
936*38fd1498Szrj double_int
divmod_with_overflow(double_int b,bool uns,unsigned code,double_int * mod,bool * overflow)937*38fd1498Szrj double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
938*38fd1498Szrj double_int *mod, bool *overflow) const
939*38fd1498Szrj {
940*38fd1498Szrj const double_int &a = *this;
941*38fd1498Szrj double_int ret;
942*38fd1498Szrj
943*38fd1498Szrj *overflow = div_and_round_double (code, uns, a.low, a.high,
944*38fd1498Szrj b.low, b.high, &ret.low, &ret.high,
945*38fd1498Szrj &mod->low, &mod->high);
946*38fd1498Szrj return ret;
947*38fd1498Szrj }
948*38fd1498Szrj
949*38fd1498Szrj double_int
divmod(double_int b,bool uns,unsigned code,double_int * mod)950*38fd1498Szrj double_int::divmod (double_int b, bool uns, unsigned code,
951*38fd1498Szrj double_int *mod) const
952*38fd1498Szrj {
953*38fd1498Szrj const double_int &a = *this;
954*38fd1498Szrj double_int ret;
955*38fd1498Szrj
956*38fd1498Szrj div_and_round_double (code, uns, a.low, a.high,
957*38fd1498Szrj b.low, b.high, &ret.low, &ret.high,
958*38fd1498Szrj &mod->low, &mod->high);
959*38fd1498Szrj return ret;
960*38fd1498Szrj }
961*38fd1498Szrj
962*38fd1498Szrj /* The same as double_int::divmod with UNS = false. */
963*38fd1498Szrj
964*38fd1498Szrj double_int
sdivmod(double_int b,unsigned code,double_int * mod)965*38fd1498Szrj double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
966*38fd1498Szrj {
967*38fd1498Szrj return this->divmod (b, false, code, mod);
968*38fd1498Szrj }
969*38fd1498Szrj
970*38fd1498Szrj /* The same as double_int::divmod with UNS = true. */
971*38fd1498Szrj
972*38fd1498Szrj double_int
udivmod(double_int b,unsigned code,double_int * mod)973*38fd1498Szrj double_int::udivmod (double_int b, unsigned code, double_int *mod) const
974*38fd1498Szrj {
975*38fd1498Szrj return this->divmod (b, true, code, mod);
976*38fd1498Szrj }
977*38fd1498Szrj
978*38fd1498Szrj /* Returns A / B (computed as unsigned depending on UNS, and rounded as
979*38fd1498Szrj specified by CODE). CODE is enum tree_code in fact, but double_int.h
980*38fd1498Szrj must be included before tree.h. */
981*38fd1498Szrj
982*38fd1498Szrj double_int
div(double_int b,bool uns,unsigned code)983*38fd1498Szrj double_int::div (double_int b, bool uns, unsigned code) const
984*38fd1498Szrj {
985*38fd1498Szrj double_int mod;
986*38fd1498Szrj
987*38fd1498Szrj return this->divmod (b, uns, code, &mod);
988*38fd1498Szrj }
989*38fd1498Szrj
990*38fd1498Szrj /* The same as double_int::div with UNS = false. */
991*38fd1498Szrj
992*38fd1498Szrj double_int
sdiv(double_int b,unsigned code)993*38fd1498Szrj double_int::sdiv (double_int b, unsigned code) const
994*38fd1498Szrj {
995*38fd1498Szrj return this->div (b, false, code);
996*38fd1498Szrj }
997*38fd1498Szrj
998*38fd1498Szrj /* The same as double_int::div with UNS = true. */
999*38fd1498Szrj
1000*38fd1498Szrj double_int
udiv(double_int b,unsigned code)1001*38fd1498Szrj double_int::udiv (double_int b, unsigned code) const
1002*38fd1498Szrj {
1003*38fd1498Szrj return this->div (b, true, code);
1004*38fd1498Szrj }
1005*38fd1498Szrj
1006*38fd1498Szrj /* Returns A % B (computed as unsigned depending on UNS, and rounded as
1007*38fd1498Szrj specified by CODE). CODE is enum tree_code in fact, but double_int.h
1008*38fd1498Szrj must be included before tree.h. */
1009*38fd1498Szrj
1010*38fd1498Szrj double_int
mod(double_int b,bool uns,unsigned code)1011*38fd1498Szrj double_int::mod (double_int b, bool uns, unsigned code) const
1012*38fd1498Szrj {
1013*38fd1498Szrj double_int mod;
1014*38fd1498Szrj
1015*38fd1498Szrj this->divmod (b, uns, code, &mod);
1016*38fd1498Szrj return mod;
1017*38fd1498Szrj }
1018*38fd1498Szrj
1019*38fd1498Szrj /* The same as double_int::mod with UNS = false. */
1020*38fd1498Szrj
1021*38fd1498Szrj double_int
smod(double_int b,unsigned code)1022*38fd1498Szrj double_int::smod (double_int b, unsigned code) const
1023*38fd1498Szrj {
1024*38fd1498Szrj return this->mod (b, false, code);
1025*38fd1498Szrj }
1026*38fd1498Szrj
1027*38fd1498Szrj /* The same as double_int::mod with UNS = true. */
1028*38fd1498Szrj
1029*38fd1498Szrj double_int
umod(double_int b,unsigned code)1030*38fd1498Szrj double_int::umod (double_int b, unsigned code) const
1031*38fd1498Szrj {
1032*38fd1498Szrj return this->mod (b, true, code);
1033*38fd1498Szrj }
1034*38fd1498Szrj
1035*38fd1498Szrj /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1036*38fd1498Szrj the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1037*38fd1498Szrj unchanged. */
1038*38fd1498Szrj
1039*38fd1498Szrj bool
multiple_of(double_int factor,bool unsigned_p,double_int * multiple)1040*38fd1498Szrj double_int::multiple_of (double_int factor,
1041*38fd1498Szrj bool unsigned_p, double_int *multiple) const
1042*38fd1498Szrj {
1043*38fd1498Szrj double_int remainder;
1044*38fd1498Szrj double_int quotient = this->divmod (factor, unsigned_p,
1045*38fd1498Szrj TRUNC_DIV_EXPR, &remainder);
1046*38fd1498Szrj if (remainder.is_zero ())
1047*38fd1498Szrj {
1048*38fd1498Szrj *multiple = quotient;
1049*38fd1498Szrj return true;
1050*38fd1498Szrj }
1051*38fd1498Szrj
1052*38fd1498Szrj return false;
1053*38fd1498Szrj }
1054*38fd1498Szrj
1055*38fd1498Szrj /* Set BITPOS bit in A. */
1056*38fd1498Szrj double_int
set_bit(unsigned bitpos)1057*38fd1498Szrj double_int::set_bit (unsigned bitpos) const
1058*38fd1498Szrj {
1059*38fd1498Szrj double_int a = *this;
1060*38fd1498Szrj if (bitpos < HOST_BITS_PER_WIDE_INT)
1061*38fd1498Szrj a.low |= HOST_WIDE_INT_1U << bitpos;
1062*38fd1498Szrj else
1063*38fd1498Szrj a.high |= HOST_WIDE_INT_1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1064*38fd1498Szrj
1065*38fd1498Szrj return a;
1066*38fd1498Szrj }
1067*38fd1498Szrj
1068*38fd1498Szrj /* Count trailing zeros in A. */
1069*38fd1498Szrj int
trailing_zeros()1070*38fd1498Szrj double_int::trailing_zeros () const
1071*38fd1498Szrj {
1072*38fd1498Szrj const double_int &a = *this;
1073*38fd1498Szrj unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1074*38fd1498Szrj unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1075*38fd1498Szrj if (!w)
1076*38fd1498Szrj return HOST_BITS_PER_DOUBLE_INT;
1077*38fd1498Szrj bits += ctz_hwi (w);
1078*38fd1498Szrj return bits;
1079*38fd1498Szrj }
1080*38fd1498Szrj
1081*38fd1498Szrj /* Shift A left by COUNT places. */
1082*38fd1498Szrj
1083*38fd1498Szrj double_int
lshift(HOST_WIDE_INT count)1084*38fd1498Szrj double_int::lshift (HOST_WIDE_INT count) const
1085*38fd1498Szrj {
1086*38fd1498Szrj double_int ret;
1087*38fd1498Szrj
1088*38fd1498Szrj gcc_checking_assert (count >= 0);
1089*38fd1498Szrj
1090*38fd1498Szrj if (count >= HOST_BITS_PER_DOUBLE_INT)
1091*38fd1498Szrj {
1092*38fd1498Szrj /* Shifting by the host word size is undefined according to the
1093*38fd1498Szrj ANSI standard, so we must handle this as a special case. */
1094*38fd1498Szrj ret.high = 0;
1095*38fd1498Szrj ret.low = 0;
1096*38fd1498Szrj }
1097*38fd1498Szrj else if (count >= HOST_BITS_PER_WIDE_INT)
1098*38fd1498Szrj {
1099*38fd1498Szrj ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1100*38fd1498Szrj ret.low = 0;
1101*38fd1498Szrj }
1102*38fd1498Szrj else
1103*38fd1498Szrj {
1104*38fd1498Szrj ret.high = (((unsigned HOST_WIDE_INT) high << count)
1105*38fd1498Szrj | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1106*38fd1498Szrj ret.low = low << count;
1107*38fd1498Szrj }
1108*38fd1498Szrj
1109*38fd1498Szrj return ret;
1110*38fd1498Szrj }
1111*38fd1498Szrj
1112*38fd1498Szrj /* Shift A right by COUNT places. */
1113*38fd1498Szrj
1114*38fd1498Szrj double_int
rshift(HOST_WIDE_INT count)1115*38fd1498Szrj double_int::rshift (HOST_WIDE_INT count) const
1116*38fd1498Szrj {
1117*38fd1498Szrj double_int ret;
1118*38fd1498Szrj
1119*38fd1498Szrj gcc_checking_assert (count >= 0);
1120*38fd1498Szrj
1121*38fd1498Szrj if (count >= HOST_BITS_PER_DOUBLE_INT)
1122*38fd1498Szrj {
1123*38fd1498Szrj /* Shifting by the host word size is undefined according to the
1124*38fd1498Szrj ANSI standard, so we must handle this as a special case. */
1125*38fd1498Szrj ret.high = 0;
1126*38fd1498Szrj ret.low = 0;
1127*38fd1498Szrj }
1128*38fd1498Szrj else if (count >= HOST_BITS_PER_WIDE_INT)
1129*38fd1498Szrj {
1130*38fd1498Szrj ret.high = 0;
1131*38fd1498Szrj ret.low
1132*38fd1498Szrj = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1133*38fd1498Szrj }
1134*38fd1498Szrj else
1135*38fd1498Szrj {
1136*38fd1498Szrj ret.high = high >> count;
1137*38fd1498Szrj ret.low = ((low >> count)
1138*38fd1498Szrj | ((unsigned HOST_WIDE_INT) high
1139*38fd1498Szrj << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1140*38fd1498Szrj }
1141*38fd1498Szrj
1142*38fd1498Szrj return ret;
1143*38fd1498Szrj }
1144*38fd1498Szrj
1145*38fd1498Szrj /* Shift A left by COUNT places keeping only PREC bits of result. Shift
1146*38fd1498Szrj right if COUNT is negative. ARITH true specifies arithmetic shifting;
1147*38fd1498Szrj otherwise use logical shift. */
1148*38fd1498Szrj
1149*38fd1498Szrj double_int
lshift(HOST_WIDE_INT count,unsigned int prec,bool arith)1150*38fd1498Szrj double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1151*38fd1498Szrj {
1152*38fd1498Szrj double_int ret;
1153*38fd1498Szrj if (count > 0)
1154*38fd1498Szrj lshift_double (low, high, count, prec, &ret.low, &ret.high);
1155*38fd1498Szrj else
1156*38fd1498Szrj rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
1157*38fd1498Szrj return ret;
1158*38fd1498Szrj }
1159*38fd1498Szrj
1160*38fd1498Szrj /* Shift A right by COUNT places keeping only PREC bits of result. Shift
1161*38fd1498Szrj left if COUNT is negative. ARITH true specifies arithmetic shifting;
1162*38fd1498Szrj otherwise use logical shift. */
1163*38fd1498Szrj
1164*38fd1498Szrj double_int
rshift(HOST_WIDE_INT count,unsigned int prec,bool arith)1165*38fd1498Szrj double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1166*38fd1498Szrj {
1167*38fd1498Szrj double_int ret;
1168*38fd1498Szrj if (count > 0)
1169*38fd1498Szrj rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
1170*38fd1498Szrj else
1171*38fd1498Szrj lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
1172*38fd1498Szrj return ret;
1173*38fd1498Szrj }
1174*38fd1498Szrj
1175*38fd1498Szrj /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1176*38fd1498Szrj Shift right if COUNT is negative. */
1177*38fd1498Szrj
1178*38fd1498Szrj double_int
alshift(HOST_WIDE_INT count,unsigned int prec)1179*38fd1498Szrj double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1180*38fd1498Szrj {
1181*38fd1498Szrj double_int r;
1182*38fd1498Szrj if (count > 0)
1183*38fd1498Szrj lshift_double (low, high, count, prec, &r.low, &r.high);
1184*38fd1498Szrj else
1185*38fd1498Szrj rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
1186*38fd1498Szrj return r;
1187*38fd1498Szrj }
1188*38fd1498Szrj
1189*38fd1498Szrj /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1190*38fd1498Szrj Shift left if COUNT is negative. */
1191*38fd1498Szrj
1192*38fd1498Szrj double_int
arshift(HOST_WIDE_INT count,unsigned int prec)1193*38fd1498Szrj double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1194*38fd1498Szrj {
1195*38fd1498Szrj double_int r;
1196*38fd1498Szrj if (count > 0)
1197*38fd1498Szrj rshift_double (low, high, count, prec, &r.low, &r.high, true);
1198*38fd1498Szrj else
1199*38fd1498Szrj lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1200*38fd1498Szrj return r;
1201*38fd1498Szrj }
1202*38fd1498Szrj
1203*38fd1498Szrj /* Logical shift A left by COUNT places keeping only PREC bits of result.
1204*38fd1498Szrj Shift right if COUNT is negative. */
1205*38fd1498Szrj
1206*38fd1498Szrj double_int
llshift(HOST_WIDE_INT count,unsigned int prec)1207*38fd1498Szrj double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1208*38fd1498Szrj {
1209*38fd1498Szrj double_int r;
1210*38fd1498Szrj if (count > 0)
1211*38fd1498Szrj lshift_double (low, high, count, prec, &r.low, &r.high);
1212*38fd1498Szrj else
1213*38fd1498Szrj rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
1214*38fd1498Szrj return r;
1215*38fd1498Szrj }
1216*38fd1498Szrj
1217*38fd1498Szrj /* Logical shift A right by COUNT places keeping only PREC bits of result.
1218*38fd1498Szrj Shift left if COUNT is negative. */
1219*38fd1498Szrj
1220*38fd1498Szrj double_int
lrshift(HOST_WIDE_INT count,unsigned int prec)1221*38fd1498Szrj double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1222*38fd1498Szrj {
1223*38fd1498Szrj double_int r;
1224*38fd1498Szrj if (count > 0)
1225*38fd1498Szrj rshift_double (low, high, count, prec, &r.low, &r.high, false);
1226*38fd1498Szrj else
1227*38fd1498Szrj lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1228*38fd1498Szrj return r;
1229*38fd1498Szrj }
1230*38fd1498Szrj
1231*38fd1498Szrj /* Rotate A left by COUNT places keeping only PREC bits of result.
1232*38fd1498Szrj Rotate right if COUNT is negative. */
1233*38fd1498Szrj
1234*38fd1498Szrj double_int
lrotate(HOST_WIDE_INT count,unsigned int prec)1235*38fd1498Szrj double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1236*38fd1498Szrj {
1237*38fd1498Szrj double_int t1, t2;
1238*38fd1498Szrj
1239*38fd1498Szrj count %= prec;
1240*38fd1498Szrj if (count < 0)
1241*38fd1498Szrj count += prec;
1242*38fd1498Szrj
1243*38fd1498Szrj t1 = this->llshift (count, prec);
1244*38fd1498Szrj t2 = this->lrshift (prec - count, prec);
1245*38fd1498Szrj
1246*38fd1498Szrj return t1 | t2;
1247*38fd1498Szrj }
1248*38fd1498Szrj
1249*38fd1498Szrj /* Rotate A rigth by COUNT places keeping only PREC bits of result.
1250*38fd1498Szrj Rotate right if COUNT is negative. */
1251*38fd1498Szrj
1252*38fd1498Szrj double_int
rrotate(HOST_WIDE_INT count,unsigned int prec)1253*38fd1498Szrj double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1254*38fd1498Szrj {
1255*38fd1498Szrj double_int t1, t2;
1256*38fd1498Szrj
1257*38fd1498Szrj count %= prec;
1258*38fd1498Szrj if (count < 0)
1259*38fd1498Szrj count += prec;
1260*38fd1498Szrj
1261*38fd1498Szrj t1 = this->lrshift (count, prec);
1262*38fd1498Szrj t2 = this->llshift (prec - count, prec);
1263*38fd1498Szrj
1264*38fd1498Szrj return t1 | t2;
1265*38fd1498Szrj }
1266*38fd1498Szrj
1267*38fd1498Szrj /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1268*38fd1498Szrj comparison is given by UNS. */
1269*38fd1498Szrj
1270*38fd1498Szrj int
cmp(double_int b,bool uns)1271*38fd1498Szrj double_int::cmp (double_int b, bool uns) const
1272*38fd1498Szrj {
1273*38fd1498Szrj if (uns)
1274*38fd1498Szrj return this->ucmp (b);
1275*38fd1498Szrj else
1276*38fd1498Szrj return this->scmp (b);
1277*38fd1498Szrj }
1278*38fd1498Szrj
1279*38fd1498Szrj /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1280*38fd1498Szrj and 1 if A > B. */
1281*38fd1498Szrj
1282*38fd1498Szrj int
ucmp(double_int b)1283*38fd1498Szrj double_int::ucmp (double_int b) const
1284*38fd1498Szrj {
1285*38fd1498Szrj const double_int &a = *this;
1286*38fd1498Szrj if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1287*38fd1498Szrj return -1;
1288*38fd1498Szrj if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1289*38fd1498Szrj return 1;
1290*38fd1498Szrj if (a.low < b.low)
1291*38fd1498Szrj return -1;
1292*38fd1498Szrj if (a.low > b.low)
1293*38fd1498Szrj return 1;
1294*38fd1498Szrj
1295*38fd1498Szrj return 0;
1296*38fd1498Szrj }
1297*38fd1498Szrj
1298*38fd1498Szrj /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1299*38fd1498Szrj and 1 if A > B. */
1300*38fd1498Szrj
1301*38fd1498Szrj int
scmp(double_int b)1302*38fd1498Szrj double_int::scmp (double_int b) const
1303*38fd1498Szrj {
1304*38fd1498Szrj const double_int &a = *this;
1305*38fd1498Szrj if (a.high < b.high)
1306*38fd1498Szrj return -1;
1307*38fd1498Szrj if (a.high > b.high)
1308*38fd1498Szrj return 1;
1309*38fd1498Szrj if (a.low < b.low)
1310*38fd1498Szrj return -1;
1311*38fd1498Szrj if (a.low > b.low)
1312*38fd1498Szrj return 1;
1313*38fd1498Szrj
1314*38fd1498Szrj return 0;
1315*38fd1498Szrj }
1316*38fd1498Szrj
1317*38fd1498Szrj /* Compares two unsigned values A and B for less-than. */
1318*38fd1498Szrj
1319*38fd1498Szrj bool
ult(double_int b)1320*38fd1498Szrj double_int::ult (double_int b) const
1321*38fd1498Szrj {
1322*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1323*38fd1498Szrj return true;
1324*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1325*38fd1498Szrj return false;
1326*38fd1498Szrj if (low < b.low)
1327*38fd1498Szrj return true;
1328*38fd1498Szrj return false;
1329*38fd1498Szrj }
1330*38fd1498Szrj
1331*38fd1498Szrj /* Compares two unsigned values A and B for less-than or equal-to. */
1332*38fd1498Szrj
1333*38fd1498Szrj bool
ule(double_int b)1334*38fd1498Szrj double_int::ule (double_int b) const
1335*38fd1498Szrj {
1336*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1337*38fd1498Szrj return true;
1338*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1339*38fd1498Szrj return false;
1340*38fd1498Szrj if (low <= b.low)
1341*38fd1498Szrj return true;
1342*38fd1498Szrj return false;
1343*38fd1498Szrj }
1344*38fd1498Szrj
1345*38fd1498Szrj /* Compares two unsigned values A and B for greater-than. */
1346*38fd1498Szrj
1347*38fd1498Szrj bool
ugt(double_int b)1348*38fd1498Szrj double_int::ugt (double_int b) const
1349*38fd1498Szrj {
1350*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1351*38fd1498Szrj return true;
1352*38fd1498Szrj if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1353*38fd1498Szrj return false;
1354*38fd1498Szrj if (low > b.low)
1355*38fd1498Szrj return true;
1356*38fd1498Szrj return false;
1357*38fd1498Szrj }
1358*38fd1498Szrj
1359*38fd1498Szrj /* Compares two signed values A and B for less-than. */
1360*38fd1498Szrj
1361*38fd1498Szrj bool
slt(double_int b)1362*38fd1498Szrj double_int::slt (double_int b) const
1363*38fd1498Szrj {
1364*38fd1498Szrj if (high < b.high)
1365*38fd1498Szrj return true;
1366*38fd1498Szrj if (high > b.high)
1367*38fd1498Szrj return false;
1368*38fd1498Szrj if (low < b.low)
1369*38fd1498Szrj return true;
1370*38fd1498Szrj return false;
1371*38fd1498Szrj }
1372*38fd1498Szrj
1373*38fd1498Szrj /* Compares two signed values A and B for less-than or equal-to. */
1374*38fd1498Szrj
1375*38fd1498Szrj bool
sle(double_int b)1376*38fd1498Szrj double_int::sle (double_int b) const
1377*38fd1498Szrj {
1378*38fd1498Szrj if (high < b.high)
1379*38fd1498Szrj return true;
1380*38fd1498Szrj if (high > b.high)
1381*38fd1498Szrj return false;
1382*38fd1498Szrj if (low <= b.low)
1383*38fd1498Szrj return true;
1384*38fd1498Szrj return false;
1385*38fd1498Szrj }
1386*38fd1498Szrj
1387*38fd1498Szrj /* Compares two signed values A and B for greater-than. */
1388*38fd1498Szrj
1389*38fd1498Szrj bool
sgt(double_int b)1390*38fd1498Szrj double_int::sgt (double_int b) const
1391*38fd1498Szrj {
1392*38fd1498Szrj if (high > b.high)
1393*38fd1498Szrj return true;
1394*38fd1498Szrj if (high < b.high)
1395*38fd1498Szrj return false;
1396*38fd1498Szrj if (low > b.low)
1397*38fd1498Szrj return true;
1398*38fd1498Szrj return false;
1399*38fd1498Szrj }
1400*38fd1498Szrj
1401*38fd1498Szrj
1402*38fd1498Szrj /* Compares two values A and B. Returns max value. Signedness of the
1403*38fd1498Szrj comparison is given by UNS. */
1404*38fd1498Szrj
1405*38fd1498Szrj double_int
max(double_int b,bool uns)1406*38fd1498Szrj double_int::max (double_int b, bool uns)
1407*38fd1498Szrj {
1408*38fd1498Szrj return (this->cmp (b, uns) == 1) ? *this : b;
1409*38fd1498Szrj }
1410*38fd1498Szrj
1411*38fd1498Szrj /* Compares two signed values A and B. Returns max value. */
1412*38fd1498Szrj
1413*38fd1498Szrj double_int
smax(double_int b)1414*38fd1498Szrj double_int::smax (double_int b)
1415*38fd1498Szrj {
1416*38fd1498Szrj return (this->scmp (b) == 1) ? *this : b;
1417*38fd1498Szrj }
1418*38fd1498Szrj
1419*38fd1498Szrj /* Compares two unsigned values A and B. Returns max value. */
1420*38fd1498Szrj
1421*38fd1498Szrj double_int
umax(double_int b)1422*38fd1498Szrj double_int::umax (double_int b)
1423*38fd1498Szrj {
1424*38fd1498Szrj return (this->ucmp (b) == 1) ? *this : b;
1425*38fd1498Szrj }
1426*38fd1498Szrj
1427*38fd1498Szrj /* Compares two values A and B. Returns mix value. Signedness of the
1428*38fd1498Szrj comparison is given by UNS. */
1429*38fd1498Szrj
1430*38fd1498Szrj double_int
min(double_int b,bool uns)1431*38fd1498Szrj double_int::min (double_int b, bool uns)
1432*38fd1498Szrj {
1433*38fd1498Szrj return (this->cmp (b, uns) == -1) ? *this : b;
1434*38fd1498Szrj }
1435*38fd1498Szrj
1436*38fd1498Szrj /* Compares two signed values A and B. Returns min value. */
1437*38fd1498Szrj
1438*38fd1498Szrj double_int
smin(double_int b)1439*38fd1498Szrj double_int::smin (double_int b)
1440*38fd1498Szrj {
1441*38fd1498Szrj return (this->scmp (b) == -1) ? *this : b;
1442*38fd1498Szrj }
1443*38fd1498Szrj
1444*38fd1498Szrj /* Compares two unsigned values A and B. Returns min value. */
1445*38fd1498Szrj
1446*38fd1498Szrj double_int
umin(double_int b)1447*38fd1498Szrj double_int::umin (double_int b)
1448*38fd1498Szrj {
1449*38fd1498Szrj return (this->ucmp (b) == -1) ? *this : b;
1450*38fd1498Szrj }
1451*38fd1498Szrj
1452*38fd1498Szrj /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1453*38fd1498Szrj
1454*38fd1498Szrj static unsigned
double_int_split_digit(double_int * cst,unsigned base)1455*38fd1498Szrj double_int_split_digit (double_int *cst, unsigned base)
1456*38fd1498Szrj {
1457*38fd1498Szrj unsigned HOST_WIDE_INT resl, reml;
1458*38fd1498Szrj HOST_WIDE_INT resh, remh;
1459*38fd1498Szrj
1460*38fd1498Szrj div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
1461*38fd1498Szrj &resl, &resh, &reml, &remh);
1462*38fd1498Szrj cst->high = resh;
1463*38fd1498Szrj cst->low = resl;
1464*38fd1498Szrj
1465*38fd1498Szrj return reml;
1466*38fd1498Szrj }
1467*38fd1498Szrj
1468*38fd1498Szrj /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1469*38fd1498Szrj otherwise it is signed. */
1470*38fd1498Szrj
1471*38fd1498Szrj void
dump_double_int(FILE * file,double_int cst,bool uns)1472*38fd1498Szrj dump_double_int (FILE *file, double_int cst, bool uns)
1473*38fd1498Szrj {
1474*38fd1498Szrj unsigned digits[100], n;
1475*38fd1498Szrj int i;
1476*38fd1498Szrj
1477*38fd1498Szrj if (cst.is_zero ())
1478*38fd1498Szrj {
1479*38fd1498Szrj fprintf (file, "0");
1480*38fd1498Szrj return;
1481*38fd1498Szrj }
1482*38fd1498Szrj
1483*38fd1498Szrj if (!uns && cst.is_negative ())
1484*38fd1498Szrj {
1485*38fd1498Szrj fprintf (file, "-");
1486*38fd1498Szrj cst = -cst;
1487*38fd1498Szrj }
1488*38fd1498Szrj
1489*38fd1498Szrj for (n = 0; !cst.is_zero (); n++)
1490*38fd1498Szrj digits[n] = double_int_split_digit (&cst, 10);
1491*38fd1498Szrj for (i = n - 1; i >= 0; i--)
1492*38fd1498Szrj fprintf (file, "%u", digits[i]);
1493*38fd1498Szrj }
1494*38fd1498Szrj
1495*38fd1498Szrj
1496*38fd1498Szrj /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1497*38fd1498Szrj otherwise. */
1498*38fd1498Szrj
1499*38fd1498Szrj void
mpz_set_double_int(mpz_t result,double_int val,bool uns)1500*38fd1498Szrj mpz_set_double_int (mpz_t result, double_int val, bool uns)
1501*38fd1498Szrj {
1502*38fd1498Szrj bool negate = false;
1503*38fd1498Szrj unsigned HOST_WIDE_INT vp[2];
1504*38fd1498Szrj
1505*38fd1498Szrj if (!uns && val.is_negative ())
1506*38fd1498Szrj {
1507*38fd1498Szrj negate = true;
1508*38fd1498Szrj val = -val;
1509*38fd1498Szrj }
1510*38fd1498Szrj
1511*38fd1498Szrj vp[0] = val.low;
1512*38fd1498Szrj vp[1] = (unsigned HOST_WIDE_INT) val.high;
1513*38fd1498Szrj mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1514*38fd1498Szrj
1515*38fd1498Szrj if (negate)
1516*38fd1498Szrj mpz_neg (result, result);
1517*38fd1498Szrj }
1518*38fd1498Szrj
1519*38fd1498Szrj /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1520*38fd1498Szrj values of VAL will be wrapped; otherwise, they will be set to the
1521*38fd1498Szrj appropriate minimum or maximum TYPE bound. */
1522*38fd1498Szrj
1523*38fd1498Szrj double_int
mpz_get_double_int(const_tree type,mpz_t val,bool wrap)1524*38fd1498Szrj mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1525*38fd1498Szrj {
1526*38fd1498Szrj unsigned HOST_WIDE_INT *vp;
1527*38fd1498Szrj size_t count, numb;
1528*38fd1498Szrj double_int res;
1529*38fd1498Szrj
1530*38fd1498Szrj if (!wrap)
1531*38fd1498Szrj {
1532*38fd1498Szrj mpz_t min, max;
1533*38fd1498Szrj
1534*38fd1498Szrj mpz_init (min);
1535*38fd1498Szrj mpz_init (max);
1536*38fd1498Szrj get_type_static_bounds (type, min, max);
1537*38fd1498Szrj
1538*38fd1498Szrj if (mpz_cmp (val, min) < 0)
1539*38fd1498Szrj mpz_set (val, min);
1540*38fd1498Szrj else if (mpz_cmp (val, max) > 0)
1541*38fd1498Szrj mpz_set (val, max);
1542*38fd1498Szrj
1543*38fd1498Szrj mpz_clear (min);
1544*38fd1498Szrj mpz_clear (max);
1545*38fd1498Szrj }
1546*38fd1498Szrj
1547*38fd1498Szrj /* Determine the number of unsigned HOST_WIDE_INT that are required
1548*38fd1498Szrj for representing the value. The code to calculate count is
1549*38fd1498Szrj extracted from the GMP manual, section "Integer Import and Export":
1550*38fd1498Szrj http://gmplib.org/manual/Integer-Import-and-Export.html */
1551*38fd1498Szrj numb = 8 * sizeof (HOST_WIDE_INT);
1552*38fd1498Szrj count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1553*38fd1498Szrj if (count < 2)
1554*38fd1498Szrj count = 2;
1555*38fd1498Szrj vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
1556*38fd1498Szrj
1557*38fd1498Szrj vp[0] = 0;
1558*38fd1498Szrj vp[1] = 0;
1559*38fd1498Szrj mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1560*38fd1498Szrj
1561*38fd1498Szrj gcc_assert (wrap || count <= 2);
1562*38fd1498Szrj
1563*38fd1498Szrj res.low = vp[0];
1564*38fd1498Szrj res.high = (HOST_WIDE_INT) vp[1];
1565*38fd1498Szrj
1566*38fd1498Szrj res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1567*38fd1498Szrj if (mpz_sgn (val) < 0)
1568*38fd1498Szrj res = -res;
1569*38fd1498Szrj
1570*38fd1498Szrj return res;
1571*38fd1498Szrj }
1572