1*e4b17023SJohn Marino // Special functions -*- C++ -*- 2*e4b17023SJohn Marino 3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010 4*e4b17023SJohn Marino // Free Software Foundation, Inc. 5*e4b17023SJohn Marino // 6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library. This library is free 7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the 8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the 9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option) 10*e4b17023SJohn Marino // any later version. 11*e4b17023SJohn Marino // 12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful, 13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of 14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15*e4b17023SJohn Marino // GNU General Public License for more details. 16*e4b17023SJohn Marino // 17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional 18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version 19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation. 20*e4b17023SJohn Marino 21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and 22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program; 23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>. 25*e4b17023SJohn Marino 26*e4b17023SJohn Marino /** @file tr1/poly_laguerre.tcc 27*e4b17023SJohn Marino * This is an internal header file, included by other library headers. 28*e4b17023SJohn Marino * Do not attempt to use it directly. @headername{tr1/cmath} 29*e4b17023SJohn Marino */ 30*e4b17023SJohn Marino 31*e4b17023SJohn Marino // 32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2 Special functions 33*e4b17023SJohn Marino // 34*e4b17023SJohn Marino 35*e4b17023SJohn Marino // Written by Edward Smith-Rowland based on: 36*e4b17023SJohn Marino // (1) Handbook of Mathematical Functions, 37*e4b17023SJohn Marino // Ed. Milton Abramowitz and Irene A. Stegun, 38*e4b17023SJohn Marino // Dover Publications, 39*e4b17023SJohn Marino // Section 13, pp. 509-510, Section 22 pp. 773-802 40*e4b17023SJohn Marino // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 41*e4b17023SJohn Marino 42*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC 43*e4b17023SJohn Marino #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 44*e4b17023SJohn Marino 45*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default) 46*e4b17023SJohn Marino { 47*e4b17023SJohn Marino namespace tr1 48*e4b17023SJohn Marino { 49*e4b17023SJohn Marino // [5.2] Special functions 50*e4b17023SJohn Marino 51*e4b17023SJohn Marino // Implementation-space details. 52*e4b17023SJohn Marino namespace __detail 53*e4b17023SJohn Marino { 54*e4b17023SJohn Marino _GLIBCXX_BEGIN_NAMESPACE_VERSION 55*e4b17023SJohn Marino 56*e4b17023SJohn Marino /** 57*e4b17023SJohn Marino * @brief This routine returns the associated Laguerre polynomial 58*e4b17023SJohn Marino * of order @f$ n @f$, degree @f$ \alpha @f$ for large n. 59*e4b17023SJohn Marino * Abramowitz & Stegun, 13.5.21 60*e4b17023SJohn Marino * 61*e4b17023SJohn Marino * @param __n The order of the Laguerre function. 62*e4b17023SJohn Marino * @param __alpha The degree of the Laguerre function. 63*e4b17023SJohn Marino * @param __x The argument of the Laguerre function. 64*e4b17023SJohn Marino * @return The value of the Laguerre function of order n, 65*e4b17023SJohn Marino * degree @f$ \alpha @f$, and argument x. 66*e4b17023SJohn Marino * 67*e4b17023SJohn Marino * This is from the GNU Scientific Library. 68*e4b17023SJohn Marino */ 69*e4b17023SJohn Marino template<typename _Tpa, typename _Tp> 70*e4b17023SJohn Marino _Tp __poly_laguerre_large_n(const unsigned __n,const _Tpa __alpha1,const _Tp __x)71*e4b17023SJohn Marino __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1, 72*e4b17023SJohn Marino const _Tp __x) 73*e4b17023SJohn Marino { 74*e4b17023SJohn Marino const _Tp __a = -_Tp(__n); 75*e4b17023SJohn Marino const _Tp __b = _Tp(__alpha1) + _Tp(1); 76*e4b17023SJohn Marino const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; 77*e4b17023SJohn Marino const _Tp __cos2th = __x / __eta; 78*e4b17023SJohn Marino const _Tp __sin2th = _Tp(1) - __cos2th; 79*e4b17023SJohn Marino const _Tp __th = std::acos(std::sqrt(__cos2th)); 80*e4b17023SJohn Marino const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() 81*e4b17023SJohn Marino * __numeric_constants<_Tp>::__pi_2() 82*e4b17023SJohn Marino * __eta * __eta * __cos2th * __sin2th; 83*e4b17023SJohn Marino 84*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 85*e4b17023SJohn Marino const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b); 86*e4b17023SJohn Marino const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1)); 87*e4b17023SJohn Marino #else 88*e4b17023SJohn Marino const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); 89*e4b17023SJohn Marino const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); 90*e4b17023SJohn Marino #endif 91*e4b17023SJohn Marino 92*e4b17023SJohn Marino _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) 93*e4b17023SJohn Marino * std::log(_Tp(0.25L) * __x * __eta); 94*e4b17023SJohn Marino _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); 95*e4b17023SJohn Marino _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x 96*e4b17023SJohn Marino + __pre_term1 - __pre_term2; 97*e4b17023SJohn Marino _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); 98*e4b17023SJohn Marino _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta 99*e4b17023SJohn Marino * (_Tp(2) * __th 100*e4b17023SJohn Marino - std::sin(_Tp(2) * __th)) 101*e4b17023SJohn Marino + __numeric_constants<_Tp>::__pi_4()); 102*e4b17023SJohn Marino _Tp __ser = __ser_term1 + __ser_term2; 103*e4b17023SJohn Marino 104*e4b17023SJohn Marino return std::exp(__lnpre) * __ser; 105*e4b17023SJohn Marino } 106*e4b17023SJohn Marino 107*e4b17023SJohn Marino 108*e4b17023SJohn Marino /** 109*e4b17023SJohn Marino * @brief Evaluate the polynomial based on the confluent hypergeometric 110*e4b17023SJohn Marino * function in a safe way, with no restriction on the arguments. 111*e4b17023SJohn Marino * 112*e4b17023SJohn Marino * The associated Laguerre function is defined by 113*e4b17023SJohn Marino * @f[ 114*e4b17023SJohn Marino * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 115*e4b17023SJohn Marino * _1F_1(-n; \alpha + 1; x) 116*e4b17023SJohn Marino * @f] 117*e4b17023SJohn Marino * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 118*e4b17023SJohn Marino * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 119*e4b17023SJohn Marino * 120*e4b17023SJohn Marino * This function assumes x != 0. 121*e4b17023SJohn Marino * 122*e4b17023SJohn Marino * This is from the GNU Scientific Library. 123*e4b17023SJohn Marino */ 124*e4b17023SJohn Marino template<typename _Tpa, typename _Tp> 125*e4b17023SJohn Marino _Tp __poly_laguerre_hyperg(const unsigned int __n,const _Tpa __alpha1,const _Tp __x)126*e4b17023SJohn Marino __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1, 127*e4b17023SJohn Marino const _Tp __x) 128*e4b17023SJohn Marino { 129*e4b17023SJohn Marino const _Tp __b = _Tp(__alpha1) + _Tp(1); 130*e4b17023SJohn Marino const _Tp __mx = -__x; 131*e4b17023SJohn Marino const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) 132*e4b17023SJohn Marino : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); 133*e4b17023SJohn Marino // Get |x|^n/n! 134*e4b17023SJohn Marino _Tp __tc = _Tp(1); 135*e4b17023SJohn Marino const _Tp __ax = std::abs(__x); 136*e4b17023SJohn Marino for (unsigned int __k = 1; __k <= __n; ++__k) 137*e4b17023SJohn Marino __tc *= (__ax / __k); 138*e4b17023SJohn Marino 139*e4b17023SJohn Marino _Tp __term = __tc * __tc_sgn; 140*e4b17023SJohn Marino _Tp __sum = __term; 141*e4b17023SJohn Marino for (int __k = int(__n) - 1; __k >= 0; --__k) 142*e4b17023SJohn Marino { 143*e4b17023SJohn Marino __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) 144*e4b17023SJohn Marino * _Tp(__k + 1) / __mx; 145*e4b17023SJohn Marino __sum += __term; 146*e4b17023SJohn Marino } 147*e4b17023SJohn Marino 148*e4b17023SJohn Marino return __sum; 149*e4b17023SJohn Marino } 150*e4b17023SJohn Marino 151*e4b17023SJohn Marino 152*e4b17023SJohn Marino /** 153*e4b17023SJohn Marino * @brief This routine returns the associated Laguerre polynomial 154*e4b17023SJohn Marino * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ 155*e4b17023SJohn Marino * by recursion. 156*e4b17023SJohn Marino * 157*e4b17023SJohn Marino * The associated Laguerre function is defined by 158*e4b17023SJohn Marino * @f[ 159*e4b17023SJohn Marino * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 160*e4b17023SJohn Marino * _1F_1(-n; \alpha + 1; x) 161*e4b17023SJohn Marino * @f] 162*e4b17023SJohn Marino * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 163*e4b17023SJohn Marino * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 164*e4b17023SJohn Marino * 165*e4b17023SJohn Marino * The associated Laguerre polynomial is defined for integral 166*e4b17023SJohn Marino * @f$ \alpha = m @f$ by: 167*e4b17023SJohn Marino * @f[ 168*e4b17023SJohn Marino * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 169*e4b17023SJohn Marino * @f] 170*e4b17023SJohn Marino * where the Laguerre polynomial is defined by: 171*e4b17023SJohn Marino * @f[ 172*e4b17023SJohn Marino * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 173*e4b17023SJohn Marino * @f] 174*e4b17023SJohn Marino * 175*e4b17023SJohn Marino * @param __n The order of the Laguerre function. 176*e4b17023SJohn Marino * @param __alpha The degree of the Laguerre function. 177*e4b17023SJohn Marino * @param __x The argument of the Laguerre function. 178*e4b17023SJohn Marino * @return The value of the Laguerre function of order n, 179*e4b17023SJohn Marino * degree @f$ \alpha @f$, and argument x. 180*e4b17023SJohn Marino */ 181*e4b17023SJohn Marino template<typename _Tpa, typename _Tp> 182*e4b17023SJohn Marino _Tp __poly_laguerre_recursion(const unsigned int __n,const _Tpa __alpha1,const _Tp __x)183*e4b17023SJohn Marino __poly_laguerre_recursion(const unsigned int __n, 184*e4b17023SJohn Marino const _Tpa __alpha1, const _Tp __x) 185*e4b17023SJohn Marino { 186*e4b17023SJohn Marino // Compute l_0. 187*e4b17023SJohn Marino _Tp __l_0 = _Tp(1); 188*e4b17023SJohn Marino if (__n == 0) 189*e4b17023SJohn Marino return __l_0; 190*e4b17023SJohn Marino 191*e4b17023SJohn Marino // Compute l_1^alpha. 192*e4b17023SJohn Marino _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); 193*e4b17023SJohn Marino if (__n == 1) 194*e4b17023SJohn Marino return __l_1; 195*e4b17023SJohn Marino 196*e4b17023SJohn Marino // Compute l_n^alpha by recursion on n. 197*e4b17023SJohn Marino _Tp __l_n2 = __l_0; 198*e4b17023SJohn Marino _Tp __l_n1 = __l_1; 199*e4b17023SJohn Marino _Tp __l_n = _Tp(0); 200*e4b17023SJohn Marino for (unsigned int __nn = 2; __nn <= __n; ++__nn) 201*e4b17023SJohn Marino { 202*e4b17023SJohn Marino __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) 203*e4b17023SJohn Marino * __l_n1 / _Tp(__nn) 204*e4b17023SJohn Marino - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); 205*e4b17023SJohn Marino __l_n2 = __l_n1; 206*e4b17023SJohn Marino __l_n1 = __l_n; 207*e4b17023SJohn Marino } 208*e4b17023SJohn Marino 209*e4b17023SJohn Marino return __l_n; 210*e4b17023SJohn Marino } 211*e4b17023SJohn Marino 212*e4b17023SJohn Marino 213*e4b17023SJohn Marino /** 214*e4b17023SJohn Marino * @brief This routine returns the associated Laguerre polynomial 215*e4b17023SJohn Marino * of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. 216*e4b17023SJohn Marino * 217*e4b17023SJohn Marino * The associated Laguerre function is defined by 218*e4b17023SJohn Marino * @f[ 219*e4b17023SJohn Marino * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} 220*e4b17023SJohn Marino * _1F_1(-n; \alpha + 1; x) 221*e4b17023SJohn Marino * @f] 222*e4b17023SJohn Marino * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and 223*e4b17023SJohn Marino * @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. 224*e4b17023SJohn Marino * 225*e4b17023SJohn Marino * The associated Laguerre polynomial is defined for integral 226*e4b17023SJohn Marino * @f$ \alpha = m @f$ by: 227*e4b17023SJohn Marino * @f[ 228*e4b17023SJohn Marino * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 229*e4b17023SJohn Marino * @f] 230*e4b17023SJohn Marino * where the Laguerre polynomial is defined by: 231*e4b17023SJohn Marino * @f[ 232*e4b17023SJohn Marino * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 233*e4b17023SJohn Marino * @f] 234*e4b17023SJohn Marino * 235*e4b17023SJohn Marino * @param __n The order of the Laguerre function. 236*e4b17023SJohn Marino * @param __alpha The degree of the Laguerre function. 237*e4b17023SJohn Marino * @param __x The argument of the Laguerre function. 238*e4b17023SJohn Marino * @return The value of the Laguerre function of order n, 239*e4b17023SJohn Marino * degree @f$ \alpha @f$, and argument x. 240*e4b17023SJohn Marino */ 241*e4b17023SJohn Marino template<typename _Tpa, typename _Tp> 242*e4b17023SJohn Marino inline _Tp __poly_laguerre(const unsigned int __n,const _Tpa __alpha1,const _Tp __x)243*e4b17023SJohn Marino __poly_laguerre(const unsigned int __n, const _Tpa __alpha1, 244*e4b17023SJohn Marino const _Tp __x) 245*e4b17023SJohn Marino { 246*e4b17023SJohn Marino if (__x < _Tp(0)) 247*e4b17023SJohn Marino std::__throw_domain_error(__N("Negative argument " 248*e4b17023SJohn Marino "in __poly_laguerre.")); 249*e4b17023SJohn Marino // Return NaN on NaN input. 250*e4b17023SJohn Marino else if (__isnan(__x)) 251*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 252*e4b17023SJohn Marino else if (__n == 0) 253*e4b17023SJohn Marino return _Tp(1); 254*e4b17023SJohn Marino else if (__n == 1) 255*e4b17023SJohn Marino return _Tp(1) + _Tp(__alpha1) - __x; 256*e4b17023SJohn Marino else if (__x == _Tp(0)) 257*e4b17023SJohn Marino { 258*e4b17023SJohn Marino _Tp __prod = _Tp(__alpha1) + _Tp(1); 259*e4b17023SJohn Marino for (unsigned int __k = 2; __k <= __n; ++__k) 260*e4b17023SJohn Marino __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); 261*e4b17023SJohn Marino return __prod; 262*e4b17023SJohn Marino } 263*e4b17023SJohn Marino else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) 264*e4b17023SJohn Marino && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) 265*e4b17023SJohn Marino return __poly_laguerre_large_n(__n, __alpha1, __x); 266*e4b17023SJohn Marino else if (_Tp(__alpha1) >= _Tp(0) 267*e4b17023SJohn Marino || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) 268*e4b17023SJohn Marino return __poly_laguerre_recursion(__n, __alpha1, __x); 269*e4b17023SJohn Marino else 270*e4b17023SJohn Marino return __poly_laguerre_hyperg(__n, __alpha1, __x); 271*e4b17023SJohn Marino } 272*e4b17023SJohn Marino 273*e4b17023SJohn Marino 274*e4b17023SJohn Marino /** 275*e4b17023SJohn Marino * @brief This routine returns the associated Laguerre polynomial 276*e4b17023SJohn Marino * of order n, degree m: @f$ L_n^m(x) @f$. 277*e4b17023SJohn Marino * 278*e4b17023SJohn Marino * The associated Laguerre polynomial is defined for integral 279*e4b17023SJohn Marino * @f$ \alpha = m @f$ by: 280*e4b17023SJohn Marino * @f[ 281*e4b17023SJohn Marino * L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) 282*e4b17023SJohn Marino * @f] 283*e4b17023SJohn Marino * where the Laguerre polynomial is defined by: 284*e4b17023SJohn Marino * @f[ 285*e4b17023SJohn Marino * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 286*e4b17023SJohn Marino * @f] 287*e4b17023SJohn Marino * 288*e4b17023SJohn Marino * @param __n The order of the Laguerre polynomial. 289*e4b17023SJohn Marino * @param __m The degree of the Laguerre polynomial. 290*e4b17023SJohn Marino * @param __x The argument of the Laguerre polynomial. 291*e4b17023SJohn Marino * @return The value of the associated Laguerre polynomial of order n, 292*e4b17023SJohn Marino * degree m, and argument x. 293*e4b17023SJohn Marino */ 294*e4b17023SJohn Marino template<typename _Tp> 295*e4b17023SJohn Marino inline _Tp __assoc_laguerre(const unsigned int __n,const unsigned int __m,const _Tp __x)296*e4b17023SJohn Marino __assoc_laguerre(const unsigned int __n, const unsigned int __m, 297*e4b17023SJohn Marino const _Tp __x) 298*e4b17023SJohn Marino { 299*e4b17023SJohn Marino return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); 300*e4b17023SJohn Marino } 301*e4b17023SJohn Marino 302*e4b17023SJohn Marino 303*e4b17023SJohn Marino /** 304*e4b17023SJohn Marino * @brief This routine returns the Laguerre polynomial 305*e4b17023SJohn Marino * of order n: @f$ L_n(x) @f$. 306*e4b17023SJohn Marino * 307*e4b17023SJohn Marino * The Laguerre polynomial is defined by: 308*e4b17023SJohn Marino * @f[ 309*e4b17023SJohn Marino * L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) 310*e4b17023SJohn Marino * @f] 311*e4b17023SJohn Marino * 312*e4b17023SJohn Marino * @param __n The order of the Laguerre polynomial. 313*e4b17023SJohn Marino * @param __x The argument of the Laguerre polynomial. 314*e4b17023SJohn Marino * @return The value of the Laguerre polynomial of order n 315*e4b17023SJohn Marino * and argument x. 316*e4b17023SJohn Marino */ 317*e4b17023SJohn Marino template<typename _Tp> 318*e4b17023SJohn Marino inline _Tp __laguerre(const unsigned int __n,const _Tp __x)319*e4b17023SJohn Marino __laguerre(const unsigned int __n, const _Tp __x) 320*e4b17023SJohn Marino { 321*e4b17023SJohn Marino return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); 322*e4b17023SJohn Marino } 323*e4b17023SJohn Marino 324*e4b17023SJohn Marino _GLIBCXX_END_NAMESPACE_VERSION 325*e4b17023SJohn Marino } // namespace std::tr1::__detail 326*e4b17023SJohn Marino } 327*e4b17023SJohn Marino } 328*e4b17023SJohn Marino 329*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC 330