xref: /dflybsd-src/contrib/gcc-4.7/libstdc++-v3/include/tr1/gamma.tcc (revision 04febcfb30580676d3e95f58a16c5137ee478b32)
1*e4b17023SJohn Marino // Special functions -*- C++ -*-
2*e4b17023SJohn Marino 
3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010
4*e4b17023SJohn Marino // Free Software Foundation, Inc.
5*e4b17023SJohn Marino //
6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library.  This library is free
7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the
8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the
9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option)
10*e4b17023SJohn Marino // any later version.
11*e4b17023SJohn Marino //
12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful,
13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of
14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15*e4b17023SJohn Marino // GNU General Public License for more details.
16*e4b17023SJohn Marino //
17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional
18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version
19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation.
20*e4b17023SJohn Marino 
21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and
22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program;
23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>.
25*e4b17023SJohn Marino 
26*e4b17023SJohn Marino /** @file tr1/gamma.tcc
27*e4b17023SJohn Marino  *  This is an internal header file, included by other library headers.
28*e4b17023SJohn Marino  *  Do not attempt to use it directly. @headername{tr1/cmath}
29*e4b17023SJohn Marino  */
30*e4b17023SJohn Marino 
31*e4b17023SJohn Marino //
32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2  Special functions
33*e4b17023SJohn Marino //
34*e4b17023SJohn Marino 
35*e4b17023SJohn Marino // Written by Edward Smith-Rowland based on:
36*e4b17023SJohn Marino //   (1) Handbook of Mathematical Functions,
37*e4b17023SJohn Marino //       ed. Milton Abramowitz and Irene A. Stegun,
38*e4b17023SJohn Marino //       Dover Publications,
39*e4b17023SJohn Marino //       Section 6, pp. 253-266
40*e4b17023SJohn Marino //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41*e4b17023SJohn Marino //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42*e4b17023SJohn Marino //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43*e4b17023SJohn Marino //       2nd ed, pp. 213-216
44*e4b17023SJohn Marino //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
45*e4b17023SJohn Marino //       Princeton, 2003.
46*e4b17023SJohn Marino 
47*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_GAMMA_TCC
48*e4b17023SJohn Marino #define _GLIBCXX_TR1_GAMMA_TCC 1
49*e4b17023SJohn Marino 
50*e4b17023SJohn Marino #include "special_function_util.h"
51*e4b17023SJohn Marino 
52*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default)
53*e4b17023SJohn Marino {
54*e4b17023SJohn Marino namespace tr1
55*e4b17023SJohn Marino {
56*e4b17023SJohn Marino   // Implementation-space details.
57*e4b17023SJohn Marino   namespace __detail
58*e4b17023SJohn Marino   {
59*e4b17023SJohn Marino   _GLIBCXX_BEGIN_NAMESPACE_VERSION
60*e4b17023SJohn Marino 
61*e4b17023SJohn Marino     /**
62*e4b17023SJohn Marino      *   @brief This returns Bernoulli numbers from a table or by summation
63*e4b17023SJohn Marino      *          for larger values.
64*e4b17023SJohn Marino      *
65*e4b17023SJohn Marino      *   Recursion is unstable.
66*e4b17023SJohn Marino      *
67*e4b17023SJohn Marino      *   @param __n the order n of the Bernoulli number.
68*e4b17023SJohn Marino      *   @return  The Bernoulli number of order n.
69*e4b17023SJohn Marino      */
70*e4b17023SJohn Marino     template <typename _Tp>
__bernoulli_series(unsigned int __n)71*e4b17023SJohn Marino     _Tp __bernoulli_series(unsigned int __n)
72*e4b17023SJohn Marino     {
73*e4b17023SJohn Marino 
74*e4b17023SJohn Marino       static const _Tp __num[28] = {
75*e4b17023SJohn Marino         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
76*e4b17023SJohn Marino         _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
77*e4b17023SJohn Marino         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
78*e4b17023SJohn Marino         _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
79*e4b17023SJohn Marino         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
80*e4b17023SJohn Marino         _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
81*e4b17023SJohn Marino         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
82*e4b17023SJohn Marino         _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
83*e4b17023SJohn Marino         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
84*e4b17023SJohn Marino         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
85*e4b17023SJohn Marino         -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
86*e4b17023SJohn Marino         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
87*e4b17023SJohn Marino         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
88*e4b17023SJohn Marino         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
89*e4b17023SJohn Marino       };
90*e4b17023SJohn Marino 
91*e4b17023SJohn Marino       if (__n == 0)
92*e4b17023SJohn Marino         return _Tp(1);
93*e4b17023SJohn Marino 
94*e4b17023SJohn Marino       if (__n == 1)
95*e4b17023SJohn Marino         return -_Tp(1) / _Tp(2);
96*e4b17023SJohn Marino 
97*e4b17023SJohn Marino       //  Take care of the rest of the odd ones.
98*e4b17023SJohn Marino       if (__n % 2 == 1)
99*e4b17023SJohn Marino         return _Tp(0);
100*e4b17023SJohn Marino 
101*e4b17023SJohn Marino       //  Take care of some small evens that are painful for the series.
102*e4b17023SJohn Marino       if (__n < 28)
103*e4b17023SJohn Marino         return __num[__n];
104*e4b17023SJohn Marino 
105*e4b17023SJohn Marino 
106*e4b17023SJohn Marino       _Tp __fact = _Tp(1);
107*e4b17023SJohn Marino       if ((__n / 2) % 2 == 0)
108*e4b17023SJohn Marino         __fact *= _Tp(-1);
109*e4b17023SJohn Marino       for (unsigned int __k = 1; __k <= __n; ++__k)
110*e4b17023SJohn Marino         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
111*e4b17023SJohn Marino       __fact *= _Tp(2);
112*e4b17023SJohn Marino 
113*e4b17023SJohn Marino       _Tp __sum = _Tp(0);
114*e4b17023SJohn Marino       for (unsigned int __i = 1; __i < 1000; ++__i)
115*e4b17023SJohn Marino         {
116*e4b17023SJohn Marino           _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
117*e4b17023SJohn Marino           if (__term < std::numeric_limits<_Tp>::epsilon())
118*e4b17023SJohn Marino             break;
119*e4b17023SJohn Marino           __sum += __term;
120*e4b17023SJohn Marino         }
121*e4b17023SJohn Marino 
122*e4b17023SJohn Marino       return __fact * __sum;
123*e4b17023SJohn Marino     }
124*e4b17023SJohn Marino 
125*e4b17023SJohn Marino 
126*e4b17023SJohn Marino     /**
127*e4b17023SJohn Marino      *   @brief This returns Bernoulli number \f$B_n\f$.
128*e4b17023SJohn Marino      *
129*e4b17023SJohn Marino      *   @param __n the order n of the Bernoulli number.
130*e4b17023SJohn Marino      *   @return  The Bernoulli number of order n.
131*e4b17023SJohn Marino      */
132*e4b17023SJohn Marino     template<typename _Tp>
133*e4b17023SJohn Marino     inline _Tp
__bernoulli(const int __n)134*e4b17023SJohn Marino     __bernoulli(const int __n)
135*e4b17023SJohn Marino     {
136*e4b17023SJohn Marino       return __bernoulli_series<_Tp>(__n);
137*e4b17023SJohn Marino     }
138*e4b17023SJohn Marino 
139*e4b17023SJohn Marino 
140*e4b17023SJohn Marino     /**
141*e4b17023SJohn Marino      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
142*e4b17023SJohn Marino      *          with Bernoulli number coefficients.  This is like
143*e4b17023SJohn Marino      *          Sterling's approximation.
144*e4b17023SJohn Marino      *
145*e4b17023SJohn Marino      *   @param __x The argument of the log of the gamma function.
146*e4b17023SJohn Marino      *   @return  The logarithm of the gamma function.
147*e4b17023SJohn Marino      */
148*e4b17023SJohn Marino     template<typename _Tp>
149*e4b17023SJohn Marino     _Tp
__log_gamma_bernoulli(const _Tp __x)150*e4b17023SJohn Marino     __log_gamma_bernoulli(const _Tp __x)
151*e4b17023SJohn Marino     {
152*e4b17023SJohn Marino       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
153*e4b17023SJohn Marino                + _Tp(0.5L) * std::log(_Tp(2)
154*e4b17023SJohn Marino                * __numeric_constants<_Tp>::__pi());
155*e4b17023SJohn Marino 
156*e4b17023SJohn Marino       const _Tp __xx = __x * __x;
157*e4b17023SJohn Marino       _Tp __help = _Tp(1) / __x;
158*e4b17023SJohn Marino       for ( unsigned int __i = 1; __i < 20; ++__i )
159*e4b17023SJohn Marino         {
160*e4b17023SJohn Marino           const _Tp __2i = _Tp(2 * __i);
161*e4b17023SJohn Marino           __help /= __2i * (__2i - _Tp(1)) * __xx;
162*e4b17023SJohn Marino           __lg += __bernoulli<_Tp>(2 * __i) * __help;
163*e4b17023SJohn Marino         }
164*e4b17023SJohn Marino 
165*e4b17023SJohn Marino       return __lg;
166*e4b17023SJohn Marino     }
167*e4b17023SJohn Marino 
168*e4b17023SJohn Marino 
169*e4b17023SJohn Marino     /**
170*e4b17023SJohn Marino      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
171*e4b17023SJohn Marino      *          This method dominates all others on the positive axis I think.
172*e4b17023SJohn Marino      *
173*e4b17023SJohn Marino      *   @param __x The argument of the log of the gamma function.
174*e4b17023SJohn Marino      *   @return  The logarithm of the gamma function.
175*e4b17023SJohn Marino      */
176*e4b17023SJohn Marino     template<typename _Tp>
177*e4b17023SJohn Marino     _Tp
__log_gamma_lanczos(const _Tp __x)178*e4b17023SJohn Marino     __log_gamma_lanczos(const _Tp __x)
179*e4b17023SJohn Marino     {
180*e4b17023SJohn Marino       const _Tp __xm1 = __x - _Tp(1);
181*e4b17023SJohn Marino 
182*e4b17023SJohn Marino       static const _Tp __lanczos_cheb_7[9] = {
183*e4b17023SJohn Marino        _Tp( 0.99999999999980993227684700473478L),
184*e4b17023SJohn Marino        _Tp( 676.520368121885098567009190444019L),
185*e4b17023SJohn Marino        _Tp(-1259.13921672240287047156078755283L),
186*e4b17023SJohn Marino        _Tp( 771.3234287776530788486528258894L),
187*e4b17023SJohn Marino        _Tp(-176.61502916214059906584551354L),
188*e4b17023SJohn Marino        _Tp( 12.507343278686904814458936853L),
189*e4b17023SJohn Marino        _Tp(-0.13857109526572011689554707L),
190*e4b17023SJohn Marino        _Tp( 9.984369578019570859563e-6L),
191*e4b17023SJohn Marino        _Tp( 1.50563273514931155834e-7L)
192*e4b17023SJohn Marino       };
193*e4b17023SJohn Marino 
194*e4b17023SJohn Marino       static const _Tp __LOGROOT2PI
195*e4b17023SJohn Marino           = _Tp(0.9189385332046727417803297364056176L);
196*e4b17023SJohn Marino 
197*e4b17023SJohn Marino       _Tp __sum = __lanczos_cheb_7[0];
198*e4b17023SJohn Marino       for(unsigned int __k = 1; __k < 9; ++__k)
199*e4b17023SJohn Marino         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
200*e4b17023SJohn Marino 
201*e4b17023SJohn Marino       const _Tp __term1 = (__xm1 + _Tp(0.5L))
202*e4b17023SJohn Marino                         * std::log((__xm1 + _Tp(7.5L))
203*e4b17023SJohn Marino                        / __numeric_constants<_Tp>::__euler());
204*e4b17023SJohn Marino       const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
205*e4b17023SJohn Marino       const _Tp __result = __term1 + (__term2 - _Tp(7));
206*e4b17023SJohn Marino 
207*e4b17023SJohn Marino       return __result;
208*e4b17023SJohn Marino     }
209*e4b17023SJohn Marino 
210*e4b17023SJohn Marino 
211*e4b17023SJohn Marino     /**
212*e4b17023SJohn Marino      *   @brief Return \f$ log(|\Gamma(x)|) \f$.
213*e4b17023SJohn Marino      *          This will return values even for \f$ x < 0 \f$.
214*e4b17023SJohn Marino      *          To recover the sign of \f$ \Gamma(x) \f$ for
215*e4b17023SJohn Marino      *          any argument use @a __log_gamma_sign.
216*e4b17023SJohn Marino      *
217*e4b17023SJohn Marino      *   @param __x The argument of the log of the gamma function.
218*e4b17023SJohn Marino      *   @return  The logarithm of the gamma function.
219*e4b17023SJohn Marino      */
220*e4b17023SJohn Marino     template<typename _Tp>
221*e4b17023SJohn Marino     _Tp
__log_gamma(const _Tp __x)222*e4b17023SJohn Marino     __log_gamma(const _Tp __x)
223*e4b17023SJohn Marino     {
224*e4b17023SJohn Marino       if (__x > _Tp(0.5L))
225*e4b17023SJohn Marino         return __log_gamma_lanczos(__x);
226*e4b17023SJohn Marino       else
227*e4b17023SJohn Marino         {
228*e4b17023SJohn Marino           const _Tp __sin_fact
229*e4b17023SJohn Marino                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
230*e4b17023SJohn Marino           if (__sin_fact == _Tp(0))
231*e4b17023SJohn Marino             std::__throw_domain_error(__N("Argument is nonpositive integer "
232*e4b17023SJohn Marino                                           "in __log_gamma"));
233*e4b17023SJohn Marino           return __numeric_constants<_Tp>::__lnpi()
234*e4b17023SJohn Marino                      - std::log(__sin_fact)
235*e4b17023SJohn Marino                      - __log_gamma_lanczos(_Tp(1) - __x);
236*e4b17023SJohn Marino         }
237*e4b17023SJohn Marino     }
238*e4b17023SJohn Marino 
239*e4b17023SJohn Marino 
240*e4b17023SJohn Marino     /**
241*e4b17023SJohn Marino      *   @brief Return the sign of \f$ \Gamma(x) \f$.
242*e4b17023SJohn Marino      *          At nonpositive integers zero is returned.
243*e4b17023SJohn Marino      *
244*e4b17023SJohn Marino      *   @param __x The argument of the gamma function.
245*e4b17023SJohn Marino      *   @return  The sign of the gamma function.
246*e4b17023SJohn Marino      */
247*e4b17023SJohn Marino     template<typename _Tp>
248*e4b17023SJohn Marino     _Tp
__log_gamma_sign(const _Tp __x)249*e4b17023SJohn Marino     __log_gamma_sign(const _Tp __x)
250*e4b17023SJohn Marino     {
251*e4b17023SJohn Marino       if (__x > _Tp(0))
252*e4b17023SJohn Marino         return _Tp(1);
253*e4b17023SJohn Marino       else
254*e4b17023SJohn Marino         {
255*e4b17023SJohn Marino           const _Tp __sin_fact
256*e4b17023SJohn Marino                   = std::sin(__numeric_constants<_Tp>::__pi() * __x);
257*e4b17023SJohn Marino           if (__sin_fact > _Tp(0))
258*e4b17023SJohn Marino             return (1);
259*e4b17023SJohn Marino           else if (__sin_fact < _Tp(0))
260*e4b17023SJohn Marino             return -_Tp(1);
261*e4b17023SJohn Marino           else
262*e4b17023SJohn Marino             return _Tp(0);
263*e4b17023SJohn Marino         }
264*e4b17023SJohn Marino     }
265*e4b17023SJohn Marino 
266*e4b17023SJohn Marino 
267*e4b17023SJohn Marino     /**
268*e4b17023SJohn Marino      *   @brief Return the logarithm of the binomial coefficient.
269*e4b17023SJohn Marino      *   The binomial coefficient is given by:
270*e4b17023SJohn Marino      *   @f[
271*e4b17023SJohn Marino      *   \left(  \right) = \frac{n!}{(n-k)! k!}
272*e4b17023SJohn Marino      *   @f]
273*e4b17023SJohn Marino      *
274*e4b17023SJohn Marino      *   @param __n The first argument of the binomial coefficient.
275*e4b17023SJohn Marino      *   @param __k The second argument of the binomial coefficient.
276*e4b17023SJohn Marino      *   @return  The binomial coefficient.
277*e4b17023SJohn Marino      */
278*e4b17023SJohn Marino     template<typename _Tp>
279*e4b17023SJohn Marino     _Tp
__log_bincoef(const unsigned int __n,const unsigned int __k)280*e4b17023SJohn Marino     __log_bincoef(const unsigned int __n, const unsigned int __k)
281*e4b17023SJohn Marino     {
282*e4b17023SJohn Marino       //  Max e exponent before overflow.
283*e4b17023SJohn Marino       static const _Tp __max_bincoeff
284*e4b17023SJohn Marino                       = std::numeric_limits<_Tp>::max_exponent10
285*e4b17023SJohn Marino                       * std::log(_Tp(10)) - _Tp(1);
286*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
287*e4b17023SJohn Marino       _Tp __coeff =  std::tr1::lgamma(_Tp(1 + __n))
288*e4b17023SJohn Marino                   - std::tr1::lgamma(_Tp(1 + __k))
289*e4b17023SJohn Marino                   - std::tr1::lgamma(_Tp(1 + __n - __k));
290*e4b17023SJohn Marino #else
291*e4b17023SJohn Marino       _Tp __coeff =  __log_gamma(_Tp(1 + __n))
292*e4b17023SJohn Marino                   - __log_gamma(_Tp(1 + __k))
293*e4b17023SJohn Marino                   - __log_gamma(_Tp(1 + __n - __k));
294*e4b17023SJohn Marino #endif
295*e4b17023SJohn Marino     }
296*e4b17023SJohn Marino 
297*e4b17023SJohn Marino 
298*e4b17023SJohn Marino     /**
299*e4b17023SJohn Marino      *   @brief Return the binomial coefficient.
300*e4b17023SJohn Marino      *   The binomial coefficient is given by:
301*e4b17023SJohn Marino      *   @f[
302*e4b17023SJohn Marino      *   \left(  \right) = \frac{n!}{(n-k)! k!}
303*e4b17023SJohn Marino      *   @f]
304*e4b17023SJohn Marino      *
305*e4b17023SJohn Marino      *   @param __n The first argument of the binomial coefficient.
306*e4b17023SJohn Marino      *   @param __k The second argument of the binomial coefficient.
307*e4b17023SJohn Marino      *   @return  The binomial coefficient.
308*e4b17023SJohn Marino      */
309*e4b17023SJohn Marino     template<typename _Tp>
310*e4b17023SJohn Marino     _Tp
__bincoef(const unsigned int __n,const unsigned int __k)311*e4b17023SJohn Marino     __bincoef(const unsigned int __n, const unsigned int __k)
312*e4b17023SJohn Marino     {
313*e4b17023SJohn Marino       //  Max e exponent before overflow.
314*e4b17023SJohn Marino       static const _Tp __max_bincoeff
315*e4b17023SJohn Marino                       = std::numeric_limits<_Tp>::max_exponent10
316*e4b17023SJohn Marino                       * std::log(_Tp(10)) - _Tp(1);
317*e4b17023SJohn Marino 
318*e4b17023SJohn Marino       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
319*e4b17023SJohn Marino       if (__log_coeff > __max_bincoeff)
320*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
321*e4b17023SJohn Marino       else
322*e4b17023SJohn Marino         return std::exp(__log_coeff);
323*e4b17023SJohn Marino     }
324*e4b17023SJohn Marino 
325*e4b17023SJohn Marino 
326*e4b17023SJohn Marino     /**
327*e4b17023SJohn Marino      *   @brief Return \f$ \Gamma(x) \f$.
328*e4b17023SJohn Marino      *
329*e4b17023SJohn Marino      *   @param __x The argument of the gamma function.
330*e4b17023SJohn Marino      *   @return  The gamma function.
331*e4b17023SJohn Marino      */
332*e4b17023SJohn Marino     template<typename _Tp>
333*e4b17023SJohn Marino     inline _Tp
__gamma(const _Tp __x)334*e4b17023SJohn Marino     __gamma(const _Tp __x)
335*e4b17023SJohn Marino     {
336*e4b17023SJohn Marino       return std::exp(__log_gamma(__x));
337*e4b17023SJohn Marino     }
338*e4b17023SJohn Marino 
339*e4b17023SJohn Marino 
340*e4b17023SJohn Marino     /**
341*e4b17023SJohn Marino      *   @brief  Return the digamma function by series expansion.
342*e4b17023SJohn Marino      *   The digamma or @f$ \psi(x) @f$ function is defined by
343*e4b17023SJohn Marino      *   @f[
344*e4b17023SJohn Marino      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
345*e4b17023SJohn Marino      *   @f]
346*e4b17023SJohn Marino      *
347*e4b17023SJohn Marino      *   The series is given by:
348*e4b17023SJohn Marino      *   @f[
349*e4b17023SJohn Marino      *     \psi(x) = -\gamma_E - \frac{1}{x}
350*e4b17023SJohn Marino      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
351*e4b17023SJohn Marino      *   @f]
352*e4b17023SJohn Marino      */
353*e4b17023SJohn Marino     template<typename _Tp>
354*e4b17023SJohn Marino     _Tp
__psi_series(const _Tp __x)355*e4b17023SJohn Marino     __psi_series(const _Tp __x)
356*e4b17023SJohn Marino     {
357*e4b17023SJohn Marino       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
358*e4b17023SJohn Marino       const unsigned int __max_iter = 100000;
359*e4b17023SJohn Marino       for (unsigned int __k = 1; __k < __max_iter; ++__k)
360*e4b17023SJohn Marino         {
361*e4b17023SJohn Marino           const _Tp __term = __x / (__k * (__k + __x));
362*e4b17023SJohn Marino           __sum += __term;
363*e4b17023SJohn Marino           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
364*e4b17023SJohn Marino             break;
365*e4b17023SJohn Marino         }
366*e4b17023SJohn Marino       return __sum;
367*e4b17023SJohn Marino     }
368*e4b17023SJohn Marino 
369*e4b17023SJohn Marino 
370*e4b17023SJohn Marino     /**
371*e4b17023SJohn Marino      *   @brief  Return the digamma function for large argument.
372*e4b17023SJohn Marino      *   The digamma or @f$ \psi(x) @f$ function is defined by
373*e4b17023SJohn Marino      *   @f[
374*e4b17023SJohn Marino      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
375*e4b17023SJohn Marino      *   @f]
376*e4b17023SJohn Marino      *
377*e4b17023SJohn Marino      *   The asymptotic series is given by:
378*e4b17023SJohn Marino      *   @f[
379*e4b17023SJohn Marino      *     \psi(x) = \ln(x) - \frac{1}{2x}
380*e4b17023SJohn Marino      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
381*e4b17023SJohn Marino      *   @f]
382*e4b17023SJohn Marino      */
383*e4b17023SJohn Marino     template<typename _Tp>
384*e4b17023SJohn Marino     _Tp
__psi_asymp(const _Tp __x)385*e4b17023SJohn Marino     __psi_asymp(const _Tp __x)
386*e4b17023SJohn Marino     {
387*e4b17023SJohn Marino       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
388*e4b17023SJohn Marino       const _Tp __xx = __x * __x;
389*e4b17023SJohn Marino       _Tp __xp = __xx;
390*e4b17023SJohn Marino       const unsigned int __max_iter = 100;
391*e4b17023SJohn Marino       for (unsigned int __k = 1; __k < __max_iter; ++__k)
392*e4b17023SJohn Marino         {
393*e4b17023SJohn Marino           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
394*e4b17023SJohn Marino           __sum -= __term;
395*e4b17023SJohn Marino           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
396*e4b17023SJohn Marino             break;
397*e4b17023SJohn Marino           __xp *= __xx;
398*e4b17023SJohn Marino         }
399*e4b17023SJohn Marino       return __sum;
400*e4b17023SJohn Marino     }
401*e4b17023SJohn Marino 
402*e4b17023SJohn Marino 
403*e4b17023SJohn Marino     /**
404*e4b17023SJohn Marino      *   @brief  Return the digamma function.
405*e4b17023SJohn Marino      *   The digamma or @f$ \psi(x) @f$ function is defined by
406*e4b17023SJohn Marino      *   @f[
407*e4b17023SJohn Marino      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
408*e4b17023SJohn Marino      *   @f]
409*e4b17023SJohn Marino      *   For negative argument the reflection formula is used:
410*e4b17023SJohn Marino      *   @f[
411*e4b17023SJohn Marino      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
412*e4b17023SJohn Marino      *   @f]
413*e4b17023SJohn Marino      */
414*e4b17023SJohn Marino     template<typename _Tp>
415*e4b17023SJohn Marino     _Tp
__psi(const _Tp __x)416*e4b17023SJohn Marino     __psi(const _Tp __x)
417*e4b17023SJohn Marino     {
418*e4b17023SJohn Marino       const int __n = static_cast<int>(__x + 0.5L);
419*e4b17023SJohn Marino       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
420*e4b17023SJohn Marino       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
421*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
422*e4b17023SJohn Marino       else if (__x < _Tp(0))
423*e4b17023SJohn Marino         {
424*e4b17023SJohn Marino           const _Tp __pi = __numeric_constants<_Tp>::__pi();
425*e4b17023SJohn Marino           return __psi(_Tp(1) - __x)
426*e4b17023SJohn Marino                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
427*e4b17023SJohn Marino         }
428*e4b17023SJohn Marino       else if (__x > _Tp(100))
429*e4b17023SJohn Marino         return __psi_asymp(__x);
430*e4b17023SJohn Marino       else
431*e4b17023SJohn Marino         return __psi_series(__x);
432*e4b17023SJohn Marino     }
433*e4b17023SJohn Marino 
434*e4b17023SJohn Marino 
435*e4b17023SJohn Marino     /**
436*e4b17023SJohn Marino      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
437*e4b17023SJohn Marino      *
438*e4b17023SJohn Marino      *   The polygamma function is related to the Hurwitz zeta function:
439*e4b17023SJohn Marino      *   @f[
440*e4b17023SJohn Marino      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
441*e4b17023SJohn Marino      *   @f]
442*e4b17023SJohn Marino      */
443*e4b17023SJohn Marino     template<typename _Tp>
444*e4b17023SJohn Marino     _Tp
__psi(const unsigned int __n,const _Tp __x)445*e4b17023SJohn Marino     __psi(const unsigned int __n, const _Tp __x)
446*e4b17023SJohn Marino     {
447*e4b17023SJohn Marino       if (__x <= _Tp(0))
448*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument out of range "
449*e4b17023SJohn Marino                                       "in __psi"));
450*e4b17023SJohn Marino       else if (__n == 0)
451*e4b17023SJohn Marino         return __psi(__x);
452*e4b17023SJohn Marino       else
453*e4b17023SJohn Marino         {
454*e4b17023SJohn Marino           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
455*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
456*e4b17023SJohn Marino           const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
457*e4b17023SJohn Marino #else
458*e4b17023SJohn Marino           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
459*e4b17023SJohn Marino #endif
460*e4b17023SJohn Marino           _Tp __result = std::exp(__ln_nfact) * __hzeta;
461*e4b17023SJohn Marino           if (__n % 2 == 1)
462*e4b17023SJohn Marino             __result = -__result;
463*e4b17023SJohn Marino           return __result;
464*e4b17023SJohn Marino         }
465*e4b17023SJohn Marino     }
466*e4b17023SJohn Marino 
467*e4b17023SJohn Marino   _GLIBCXX_END_NAMESPACE_VERSION
468*e4b17023SJohn Marino   } // namespace std::tr1::__detail
469*e4b17023SJohn Marino }
470*e4b17023SJohn Marino }
471*e4b17023SJohn Marino 
472*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_GAMMA_TCC
473*e4b17023SJohn Marino 
474