1*e4b17023SJohn Marino // Special functions -*- C++ -*- 2*e4b17023SJohn Marino 3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010 4*e4b17023SJohn Marino // Free Software Foundation, Inc. 5*e4b17023SJohn Marino // 6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library. This library is free 7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the 8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the 9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option) 10*e4b17023SJohn Marino // any later version. 11*e4b17023SJohn Marino // 12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful, 13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of 14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15*e4b17023SJohn Marino // GNU General Public License for more details. 16*e4b17023SJohn Marino // 17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional 18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version 19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation. 20*e4b17023SJohn Marino 21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and 22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program; 23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>. 25*e4b17023SJohn Marino 26*e4b17023SJohn Marino /** @file tr1/gamma.tcc 27*e4b17023SJohn Marino * This is an internal header file, included by other library headers. 28*e4b17023SJohn Marino * Do not attempt to use it directly. @headername{tr1/cmath} 29*e4b17023SJohn Marino */ 30*e4b17023SJohn Marino 31*e4b17023SJohn Marino // 32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2 Special functions 33*e4b17023SJohn Marino // 34*e4b17023SJohn Marino 35*e4b17023SJohn Marino // Written by Edward Smith-Rowland based on: 36*e4b17023SJohn Marino // (1) Handbook of Mathematical Functions, 37*e4b17023SJohn Marino // ed. Milton Abramowitz and Irene A. Stegun, 38*e4b17023SJohn Marino // Dover Publications, 39*e4b17023SJohn Marino // Section 6, pp. 253-266 40*e4b17023SJohn Marino // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 41*e4b17023SJohn Marino // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, 42*e4b17023SJohn Marino // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), 43*e4b17023SJohn Marino // 2nd ed, pp. 213-216 44*e4b17023SJohn Marino // (4) Gamma, Exploring Euler's Constant, Julian Havil, 45*e4b17023SJohn Marino // Princeton, 2003. 46*e4b17023SJohn Marino 47*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_GAMMA_TCC 48*e4b17023SJohn Marino #define _GLIBCXX_TR1_GAMMA_TCC 1 49*e4b17023SJohn Marino 50*e4b17023SJohn Marino #include "special_function_util.h" 51*e4b17023SJohn Marino 52*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default) 53*e4b17023SJohn Marino { 54*e4b17023SJohn Marino namespace tr1 55*e4b17023SJohn Marino { 56*e4b17023SJohn Marino // Implementation-space details. 57*e4b17023SJohn Marino namespace __detail 58*e4b17023SJohn Marino { 59*e4b17023SJohn Marino _GLIBCXX_BEGIN_NAMESPACE_VERSION 60*e4b17023SJohn Marino 61*e4b17023SJohn Marino /** 62*e4b17023SJohn Marino * @brief This returns Bernoulli numbers from a table or by summation 63*e4b17023SJohn Marino * for larger values. 64*e4b17023SJohn Marino * 65*e4b17023SJohn Marino * Recursion is unstable. 66*e4b17023SJohn Marino * 67*e4b17023SJohn Marino * @param __n the order n of the Bernoulli number. 68*e4b17023SJohn Marino * @return The Bernoulli number of order n. 69*e4b17023SJohn Marino */ 70*e4b17023SJohn Marino template <typename _Tp> __bernoulli_series(unsigned int __n)71*e4b17023SJohn Marino _Tp __bernoulli_series(unsigned int __n) 72*e4b17023SJohn Marino { 73*e4b17023SJohn Marino 74*e4b17023SJohn Marino static const _Tp __num[28] = { 75*e4b17023SJohn Marino _Tp(1UL), -_Tp(1UL) / _Tp(2UL), 76*e4b17023SJohn Marino _Tp(1UL) / _Tp(6UL), _Tp(0UL), 77*e4b17023SJohn Marino -_Tp(1UL) / _Tp(30UL), _Tp(0UL), 78*e4b17023SJohn Marino _Tp(1UL) / _Tp(42UL), _Tp(0UL), 79*e4b17023SJohn Marino -_Tp(1UL) / _Tp(30UL), _Tp(0UL), 80*e4b17023SJohn Marino _Tp(5UL) / _Tp(66UL), _Tp(0UL), 81*e4b17023SJohn Marino -_Tp(691UL) / _Tp(2730UL), _Tp(0UL), 82*e4b17023SJohn Marino _Tp(7UL) / _Tp(6UL), _Tp(0UL), 83*e4b17023SJohn Marino -_Tp(3617UL) / _Tp(510UL), _Tp(0UL), 84*e4b17023SJohn Marino _Tp(43867UL) / _Tp(798UL), _Tp(0UL), 85*e4b17023SJohn Marino -_Tp(174611) / _Tp(330UL), _Tp(0UL), 86*e4b17023SJohn Marino _Tp(854513UL) / _Tp(138UL), _Tp(0UL), 87*e4b17023SJohn Marino -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), 88*e4b17023SJohn Marino _Tp(8553103UL) / _Tp(6UL), _Tp(0UL) 89*e4b17023SJohn Marino }; 90*e4b17023SJohn Marino 91*e4b17023SJohn Marino if (__n == 0) 92*e4b17023SJohn Marino return _Tp(1); 93*e4b17023SJohn Marino 94*e4b17023SJohn Marino if (__n == 1) 95*e4b17023SJohn Marino return -_Tp(1) / _Tp(2); 96*e4b17023SJohn Marino 97*e4b17023SJohn Marino // Take care of the rest of the odd ones. 98*e4b17023SJohn Marino if (__n % 2 == 1) 99*e4b17023SJohn Marino return _Tp(0); 100*e4b17023SJohn Marino 101*e4b17023SJohn Marino // Take care of some small evens that are painful for the series. 102*e4b17023SJohn Marino if (__n < 28) 103*e4b17023SJohn Marino return __num[__n]; 104*e4b17023SJohn Marino 105*e4b17023SJohn Marino 106*e4b17023SJohn Marino _Tp __fact = _Tp(1); 107*e4b17023SJohn Marino if ((__n / 2) % 2 == 0) 108*e4b17023SJohn Marino __fact *= _Tp(-1); 109*e4b17023SJohn Marino for (unsigned int __k = 1; __k <= __n; ++__k) 110*e4b17023SJohn Marino __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); 111*e4b17023SJohn Marino __fact *= _Tp(2); 112*e4b17023SJohn Marino 113*e4b17023SJohn Marino _Tp __sum = _Tp(0); 114*e4b17023SJohn Marino for (unsigned int __i = 1; __i < 1000; ++__i) 115*e4b17023SJohn Marino { 116*e4b17023SJohn Marino _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); 117*e4b17023SJohn Marino if (__term < std::numeric_limits<_Tp>::epsilon()) 118*e4b17023SJohn Marino break; 119*e4b17023SJohn Marino __sum += __term; 120*e4b17023SJohn Marino } 121*e4b17023SJohn Marino 122*e4b17023SJohn Marino return __fact * __sum; 123*e4b17023SJohn Marino } 124*e4b17023SJohn Marino 125*e4b17023SJohn Marino 126*e4b17023SJohn Marino /** 127*e4b17023SJohn Marino * @brief This returns Bernoulli number \f$B_n\f$. 128*e4b17023SJohn Marino * 129*e4b17023SJohn Marino * @param __n the order n of the Bernoulli number. 130*e4b17023SJohn Marino * @return The Bernoulli number of order n. 131*e4b17023SJohn Marino */ 132*e4b17023SJohn Marino template<typename _Tp> 133*e4b17023SJohn Marino inline _Tp __bernoulli(const int __n)134*e4b17023SJohn Marino __bernoulli(const int __n) 135*e4b17023SJohn Marino { 136*e4b17023SJohn Marino return __bernoulli_series<_Tp>(__n); 137*e4b17023SJohn Marino } 138*e4b17023SJohn Marino 139*e4b17023SJohn Marino 140*e4b17023SJohn Marino /** 141*e4b17023SJohn Marino * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion 142*e4b17023SJohn Marino * with Bernoulli number coefficients. This is like 143*e4b17023SJohn Marino * Sterling's approximation. 144*e4b17023SJohn Marino * 145*e4b17023SJohn Marino * @param __x The argument of the log of the gamma function. 146*e4b17023SJohn Marino * @return The logarithm of the gamma function. 147*e4b17023SJohn Marino */ 148*e4b17023SJohn Marino template<typename _Tp> 149*e4b17023SJohn Marino _Tp __log_gamma_bernoulli(const _Tp __x)150*e4b17023SJohn Marino __log_gamma_bernoulli(const _Tp __x) 151*e4b17023SJohn Marino { 152*e4b17023SJohn Marino _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x 153*e4b17023SJohn Marino + _Tp(0.5L) * std::log(_Tp(2) 154*e4b17023SJohn Marino * __numeric_constants<_Tp>::__pi()); 155*e4b17023SJohn Marino 156*e4b17023SJohn Marino const _Tp __xx = __x * __x; 157*e4b17023SJohn Marino _Tp __help = _Tp(1) / __x; 158*e4b17023SJohn Marino for ( unsigned int __i = 1; __i < 20; ++__i ) 159*e4b17023SJohn Marino { 160*e4b17023SJohn Marino const _Tp __2i = _Tp(2 * __i); 161*e4b17023SJohn Marino __help /= __2i * (__2i - _Tp(1)) * __xx; 162*e4b17023SJohn Marino __lg += __bernoulli<_Tp>(2 * __i) * __help; 163*e4b17023SJohn Marino } 164*e4b17023SJohn Marino 165*e4b17023SJohn Marino return __lg; 166*e4b17023SJohn Marino } 167*e4b17023SJohn Marino 168*e4b17023SJohn Marino 169*e4b17023SJohn Marino /** 170*e4b17023SJohn Marino * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. 171*e4b17023SJohn Marino * This method dominates all others on the positive axis I think. 172*e4b17023SJohn Marino * 173*e4b17023SJohn Marino * @param __x The argument of the log of the gamma function. 174*e4b17023SJohn Marino * @return The logarithm of the gamma function. 175*e4b17023SJohn Marino */ 176*e4b17023SJohn Marino template<typename _Tp> 177*e4b17023SJohn Marino _Tp __log_gamma_lanczos(const _Tp __x)178*e4b17023SJohn Marino __log_gamma_lanczos(const _Tp __x) 179*e4b17023SJohn Marino { 180*e4b17023SJohn Marino const _Tp __xm1 = __x - _Tp(1); 181*e4b17023SJohn Marino 182*e4b17023SJohn Marino static const _Tp __lanczos_cheb_7[9] = { 183*e4b17023SJohn Marino _Tp( 0.99999999999980993227684700473478L), 184*e4b17023SJohn Marino _Tp( 676.520368121885098567009190444019L), 185*e4b17023SJohn Marino _Tp(-1259.13921672240287047156078755283L), 186*e4b17023SJohn Marino _Tp( 771.3234287776530788486528258894L), 187*e4b17023SJohn Marino _Tp(-176.61502916214059906584551354L), 188*e4b17023SJohn Marino _Tp( 12.507343278686904814458936853L), 189*e4b17023SJohn Marino _Tp(-0.13857109526572011689554707L), 190*e4b17023SJohn Marino _Tp( 9.984369578019570859563e-6L), 191*e4b17023SJohn Marino _Tp( 1.50563273514931155834e-7L) 192*e4b17023SJohn Marino }; 193*e4b17023SJohn Marino 194*e4b17023SJohn Marino static const _Tp __LOGROOT2PI 195*e4b17023SJohn Marino = _Tp(0.9189385332046727417803297364056176L); 196*e4b17023SJohn Marino 197*e4b17023SJohn Marino _Tp __sum = __lanczos_cheb_7[0]; 198*e4b17023SJohn Marino for(unsigned int __k = 1; __k < 9; ++__k) 199*e4b17023SJohn Marino __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); 200*e4b17023SJohn Marino 201*e4b17023SJohn Marino const _Tp __term1 = (__xm1 + _Tp(0.5L)) 202*e4b17023SJohn Marino * std::log((__xm1 + _Tp(7.5L)) 203*e4b17023SJohn Marino / __numeric_constants<_Tp>::__euler()); 204*e4b17023SJohn Marino const _Tp __term2 = __LOGROOT2PI + std::log(__sum); 205*e4b17023SJohn Marino const _Tp __result = __term1 + (__term2 - _Tp(7)); 206*e4b17023SJohn Marino 207*e4b17023SJohn Marino return __result; 208*e4b17023SJohn Marino } 209*e4b17023SJohn Marino 210*e4b17023SJohn Marino 211*e4b17023SJohn Marino /** 212*e4b17023SJohn Marino * @brief Return \f$ log(|\Gamma(x)|) \f$. 213*e4b17023SJohn Marino * This will return values even for \f$ x < 0 \f$. 214*e4b17023SJohn Marino * To recover the sign of \f$ \Gamma(x) \f$ for 215*e4b17023SJohn Marino * any argument use @a __log_gamma_sign. 216*e4b17023SJohn Marino * 217*e4b17023SJohn Marino * @param __x The argument of the log of the gamma function. 218*e4b17023SJohn Marino * @return The logarithm of the gamma function. 219*e4b17023SJohn Marino */ 220*e4b17023SJohn Marino template<typename _Tp> 221*e4b17023SJohn Marino _Tp __log_gamma(const _Tp __x)222*e4b17023SJohn Marino __log_gamma(const _Tp __x) 223*e4b17023SJohn Marino { 224*e4b17023SJohn Marino if (__x > _Tp(0.5L)) 225*e4b17023SJohn Marino return __log_gamma_lanczos(__x); 226*e4b17023SJohn Marino else 227*e4b17023SJohn Marino { 228*e4b17023SJohn Marino const _Tp __sin_fact 229*e4b17023SJohn Marino = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); 230*e4b17023SJohn Marino if (__sin_fact == _Tp(0)) 231*e4b17023SJohn Marino std::__throw_domain_error(__N("Argument is nonpositive integer " 232*e4b17023SJohn Marino "in __log_gamma")); 233*e4b17023SJohn Marino return __numeric_constants<_Tp>::__lnpi() 234*e4b17023SJohn Marino - std::log(__sin_fact) 235*e4b17023SJohn Marino - __log_gamma_lanczos(_Tp(1) - __x); 236*e4b17023SJohn Marino } 237*e4b17023SJohn Marino } 238*e4b17023SJohn Marino 239*e4b17023SJohn Marino 240*e4b17023SJohn Marino /** 241*e4b17023SJohn Marino * @brief Return the sign of \f$ \Gamma(x) \f$. 242*e4b17023SJohn Marino * At nonpositive integers zero is returned. 243*e4b17023SJohn Marino * 244*e4b17023SJohn Marino * @param __x The argument of the gamma function. 245*e4b17023SJohn Marino * @return The sign of the gamma function. 246*e4b17023SJohn Marino */ 247*e4b17023SJohn Marino template<typename _Tp> 248*e4b17023SJohn Marino _Tp __log_gamma_sign(const _Tp __x)249*e4b17023SJohn Marino __log_gamma_sign(const _Tp __x) 250*e4b17023SJohn Marino { 251*e4b17023SJohn Marino if (__x > _Tp(0)) 252*e4b17023SJohn Marino return _Tp(1); 253*e4b17023SJohn Marino else 254*e4b17023SJohn Marino { 255*e4b17023SJohn Marino const _Tp __sin_fact 256*e4b17023SJohn Marino = std::sin(__numeric_constants<_Tp>::__pi() * __x); 257*e4b17023SJohn Marino if (__sin_fact > _Tp(0)) 258*e4b17023SJohn Marino return (1); 259*e4b17023SJohn Marino else if (__sin_fact < _Tp(0)) 260*e4b17023SJohn Marino return -_Tp(1); 261*e4b17023SJohn Marino else 262*e4b17023SJohn Marino return _Tp(0); 263*e4b17023SJohn Marino } 264*e4b17023SJohn Marino } 265*e4b17023SJohn Marino 266*e4b17023SJohn Marino 267*e4b17023SJohn Marino /** 268*e4b17023SJohn Marino * @brief Return the logarithm of the binomial coefficient. 269*e4b17023SJohn Marino * The binomial coefficient is given by: 270*e4b17023SJohn Marino * @f[ 271*e4b17023SJohn Marino * \left( \right) = \frac{n!}{(n-k)! k!} 272*e4b17023SJohn Marino * @f] 273*e4b17023SJohn Marino * 274*e4b17023SJohn Marino * @param __n The first argument of the binomial coefficient. 275*e4b17023SJohn Marino * @param __k The second argument of the binomial coefficient. 276*e4b17023SJohn Marino * @return The binomial coefficient. 277*e4b17023SJohn Marino */ 278*e4b17023SJohn Marino template<typename _Tp> 279*e4b17023SJohn Marino _Tp __log_bincoef(const unsigned int __n,const unsigned int __k)280*e4b17023SJohn Marino __log_bincoef(const unsigned int __n, const unsigned int __k) 281*e4b17023SJohn Marino { 282*e4b17023SJohn Marino // Max e exponent before overflow. 283*e4b17023SJohn Marino static const _Tp __max_bincoeff 284*e4b17023SJohn Marino = std::numeric_limits<_Tp>::max_exponent10 285*e4b17023SJohn Marino * std::log(_Tp(10)) - _Tp(1); 286*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 287*e4b17023SJohn Marino _Tp __coeff = std::tr1::lgamma(_Tp(1 + __n)) 288*e4b17023SJohn Marino - std::tr1::lgamma(_Tp(1 + __k)) 289*e4b17023SJohn Marino - std::tr1::lgamma(_Tp(1 + __n - __k)); 290*e4b17023SJohn Marino #else 291*e4b17023SJohn Marino _Tp __coeff = __log_gamma(_Tp(1 + __n)) 292*e4b17023SJohn Marino - __log_gamma(_Tp(1 + __k)) 293*e4b17023SJohn Marino - __log_gamma(_Tp(1 + __n - __k)); 294*e4b17023SJohn Marino #endif 295*e4b17023SJohn Marino } 296*e4b17023SJohn Marino 297*e4b17023SJohn Marino 298*e4b17023SJohn Marino /** 299*e4b17023SJohn Marino * @brief Return the binomial coefficient. 300*e4b17023SJohn Marino * The binomial coefficient is given by: 301*e4b17023SJohn Marino * @f[ 302*e4b17023SJohn Marino * \left( \right) = \frac{n!}{(n-k)! k!} 303*e4b17023SJohn Marino * @f] 304*e4b17023SJohn Marino * 305*e4b17023SJohn Marino * @param __n The first argument of the binomial coefficient. 306*e4b17023SJohn Marino * @param __k The second argument of the binomial coefficient. 307*e4b17023SJohn Marino * @return The binomial coefficient. 308*e4b17023SJohn Marino */ 309*e4b17023SJohn Marino template<typename _Tp> 310*e4b17023SJohn Marino _Tp __bincoef(const unsigned int __n,const unsigned int __k)311*e4b17023SJohn Marino __bincoef(const unsigned int __n, const unsigned int __k) 312*e4b17023SJohn Marino { 313*e4b17023SJohn Marino // Max e exponent before overflow. 314*e4b17023SJohn Marino static const _Tp __max_bincoeff 315*e4b17023SJohn Marino = std::numeric_limits<_Tp>::max_exponent10 316*e4b17023SJohn Marino * std::log(_Tp(10)) - _Tp(1); 317*e4b17023SJohn Marino 318*e4b17023SJohn Marino const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); 319*e4b17023SJohn Marino if (__log_coeff > __max_bincoeff) 320*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 321*e4b17023SJohn Marino else 322*e4b17023SJohn Marino return std::exp(__log_coeff); 323*e4b17023SJohn Marino } 324*e4b17023SJohn Marino 325*e4b17023SJohn Marino 326*e4b17023SJohn Marino /** 327*e4b17023SJohn Marino * @brief Return \f$ \Gamma(x) \f$. 328*e4b17023SJohn Marino * 329*e4b17023SJohn Marino * @param __x The argument of the gamma function. 330*e4b17023SJohn Marino * @return The gamma function. 331*e4b17023SJohn Marino */ 332*e4b17023SJohn Marino template<typename _Tp> 333*e4b17023SJohn Marino inline _Tp __gamma(const _Tp __x)334*e4b17023SJohn Marino __gamma(const _Tp __x) 335*e4b17023SJohn Marino { 336*e4b17023SJohn Marino return std::exp(__log_gamma(__x)); 337*e4b17023SJohn Marino } 338*e4b17023SJohn Marino 339*e4b17023SJohn Marino 340*e4b17023SJohn Marino /** 341*e4b17023SJohn Marino * @brief Return the digamma function by series expansion. 342*e4b17023SJohn Marino * The digamma or @f$ \psi(x) @f$ function is defined by 343*e4b17023SJohn Marino * @f[ 344*e4b17023SJohn Marino * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} 345*e4b17023SJohn Marino * @f] 346*e4b17023SJohn Marino * 347*e4b17023SJohn Marino * The series is given by: 348*e4b17023SJohn Marino * @f[ 349*e4b17023SJohn Marino * \psi(x) = -\gamma_E - \frac{1}{x} 350*e4b17023SJohn Marino * \sum_{k=1}^{\infty} \frac{x}{k(x + k)} 351*e4b17023SJohn Marino * @f] 352*e4b17023SJohn Marino */ 353*e4b17023SJohn Marino template<typename _Tp> 354*e4b17023SJohn Marino _Tp __psi_series(const _Tp __x)355*e4b17023SJohn Marino __psi_series(const _Tp __x) 356*e4b17023SJohn Marino { 357*e4b17023SJohn Marino _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; 358*e4b17023SJohn Marino const unsigned int __max_iter = 100000; 359*e4b17023SJohn Marino for (unsigned int __k = 1; __k < __max_iter; ++__k) 360*e4b17023SJohn Marino { 361*e4b17023SJohn Marino const _Tp __term = __x / (__k * (__k + __x)); 362*e4b17023SJohn Marino __sum += __term; 363*e4b17023SJohn Marino if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) 364*e4b17023SJohn Marino break; 365*e4b17023SJohn Marino } 366*e4b17023SJohn Marino return __sum; 367*e4b17023SJohn Marino } 368*e4b17023SJohn Marino 369*e4b17023SJohn Marino 370*e4b17023SJohn Marino /** 371*e4b17023SJohn Marino * @brief Return the digamma function for large argument. 372*e4b17023SJohn Marino * The digamma or @f$ \psi(x) @f$ function is defined by 373*e4b17023SJohn Marino * @f[ 374*e4b17023SJohn Marino * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} 375*e4b17023SJohn Marino * @f] 376*e4b17023SJohn Marino * 377*e4b17023SJohn Marino * The asymptotic series is given by: 378*e4b17023SJohn Marino * @f[ 379*e4b17023SJohn Marino * \psi(x) = \ln(x) - \frac{1}{2x} 380*e4b17023SJohn Marino * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} 381*e4b17023SJohn Marino * @f] 382*e4b17023SJohn Marino */ 383*e4b17023SJohn Marino template<typename _Tp> 384*e4b17023SJohn Marino _Tp __psi_asymp(const _Tp __x)385*e4b17023SJohn Marino __psi_asymp(const _Tp __x) 386*e4b17023SJohn Marino { 387*e4b17023SJohn Marino _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; 388*e4b17023SJohn Marino const _Tp __xx = __x * __x; 389*e4b17023SJohn Marino _Tp __xp = __xx; 390*e4b17023SJohn Marino const unsigned int __max_iter = 100; 391*e4b17023SJohn Marino for (unsigned int __k = 1; __k < __max_iter; ++__k) 392*e4b17023SJohn Marino { 393*e4b17023SJohn Marino const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); 394*e4b17023SJohn Marino __sum -= __term; 395*e4b17023SJohn Marino if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) 396*e4b17023SJohn Marino break; 397*e4b17023SJohn Marino __xp *= __xx; 398*e4b17023SJohn Marino } 399*e4b17023SJohn Marino return __sum; 400*e4b17023SJohn Marino } 401*e4b17023SJohn Marino 402*e4b17023SJohn Marino 403*e4b17023SJohn Marino /** 404*e4b17023SJohn Marino * @brief Return the digamma function. 405*e4b17023SJohn Marino * The digamma or @f$ \psi(x) @f$ function is defined by 406*e4b17023SJohn Marino * @f[ 407*e4b17023SJohn Marino * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} 408*e4b17023SJohn Marino * @f] 409*e4b17023SJohn Marino * For negative argument the reflection formula is used: 410*e4b17023SJohn Marino * @f[ 411*e4b17023SJohn Marino * \psi(x) = \psi(1-x) - \pi \cot(\pi x) 412*e4b17023SJohn Marino * @f] 413*e4b17023SJohn Marino */ 414*e4b17023SJohn Marino template<typename _Tp> 415*e4b17023SJohn Marino _Tp __psi(const _Tp __x)416*e4b17023SJohn Marino __psi(const _Tp __x) 417*e4b17023SJohn Marino { 418*e4b17023SJohn Marino const int __n = static_cast<int>(__x + 0.5L); 419*e4b17023SJohn Marino const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); 420*e4b17023SJohn Marino if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) 421*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 422*e4b17023SJohn Marino else if (__x < _Tp(0)) 423*e4b17023SJohn Marino { 424*e4b17023SJohn Marino const _Tp __pi = __numeric_constants<_Tp>::__pi(); 425*e4b17023SJohn Marino return __psi(_Tp(1) - __x) 426*e4b17023SJohn Marino - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); 427*e4b17023SJohn Marino } 428*e4b17023SJohn Marino else if (__x > _Tp(100)) 429*e4b17023SJohn Marino return __psi_asymp(__x); 430*e4b17023SJohn Marino else 431*e4b17023SJohn Marino return __psi_series(__x); 432*e4b17023SJohn Marino } 433*e4b17023SJohn Marino 434*e4b17023SJohn Marino 435*e4b17023SJohn Marino /** 436*e4b17023SJohn Marino * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$. 437*e4b17023SJohn Marino * 438*e4b17023SJohn Marino * The polygamma function is related to the Hurwitz zeta function: 439*e4b17023SJohn Marino * @f[ 440*e4b17023SJohn Marino * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) 441*e4b17023SJohn Marino * @f] 442*e4b17023SJohn Marino */ 443*e4b17023SJohn Marino template<typename _Tp> 444*e4b17023SJohn Marino _Tp __psi(const unsigned int __n,const _Tp __x)445*e4b17023SJohn Marino __psi(const unsigned int __n, const _Tp __x) 446*e4b17023SJohn Marino { 447*e4b17023SJohn Marino if (__x <= _Tp(0)) 448*e4b17023SJohn Marino std::__throw_domain_error(__N("Argument out of range " 449*e4b17023SJohn Marino "in __psi")); 450*e4b17023SJohn Marino else if (__n == 0) 451*e4b17023SJohn Marino return __psi(__x); 452*e4b17023SJohn Marino else 453*e4b17023SJohn Marino { 454*e4b17023SJohn Marino const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); 455*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 456*e4b17023SJohn Marino const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1)); 457*e4b17023SJohn Marino #else 458*e4b17023SJohn Marino const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); 459*e4b17023SJohn Marino #endif 460*e4b17023SJohn Marino _Tp __result = std::exp(__ln_nfact) * __hzeta; 461*e4b17023SJohn Marino if (__n % 2 == 1) 462*e4b17023SJohn Marino __result = -__result; 463*e4b17023SJohn Marino return __result; 464*e4b17023SJohn Marino } 465*e4b17023SJohn Marino } 466*e4b17023SJohn Marino 467*e4b17023SJohn Marino _GLIBCXX_END_NAMESPACE_VERSION 468*e4b17023SJohn Marino } // namespace std::tr1::__detail 469*e4b17023SJohn Marino } 470*e4b17023SJohn Marino } 471*e4b17023SJohn Marino 472*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_GAMMA_TCC 473*e4b17023SJohn Marino 474