xref: /dflybsd-src/contrib/gcc-4.7/libstdc++-v3/include/tr1/ell_integral.tcc (revision 04febcfb30580676d3e95f58a16c5137ee478b32)
1*e4b17023SJohn Marino // Special functions -*- C++ -*-
2*e4b17023SJohn Marino 
3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010
4*e4b17023SJohn Marino // Free Software Foundation, Inc.
5*e4b17023SJohn Marino //
6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library.  This library is free
7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the
8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the
9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option)
10*e4b17023SJohn Marino // any later version.
11*e4b17023SJohn Marino //
12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful,
13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of
14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15*e4b17023SJohn Marino // GNU General Public License for more details.
16*e4b17023SJohn Marino //
17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional
18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version
19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation.
20*e4b17023SJohn Marino 
21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and
22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program;
23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>.
25*e4b17023SJohn Marino 
26*e4b17023SJohn Marino /** @file tr1/ell_integral.tcc
27*e4b17023SJohn Marino  *  This is an internal header file, included by other library headers.
28*e4b17023SJohn Marino  *  Do not attempt to use it directly. @headername{tr1/cmath}
29*e4b17023SJohn Marino  */
30*e4b17023SJohn Marino 
31*e4b17023SJohn Marino //
32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2  Special functions
33*e4b17023SJohn Marino //
34*e4b17023SJohn Marino 
35*e4b17023SJohn Marino // Written by Edward Smith-Rowland based on:
36*e4b17023SJohn Marino //   (1)  B. C. Carlson Numer. Math. 33, 1 (1979)
37*e4b17023SJohn Marino //   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977)
38*e4b17023SJohn Marino //   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl
39*e4b17023SJohn Marino //   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
40*e4b17023SJohn Marino //        W. T. Vetterling, B. P. Flannery, Cambridge University Press
41*e4b17023SJohn Marino //        (1992), pp. 261-269
42*e4b17023SJohn Marino 
43*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
44*e4b17023SJohn Marino #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
45*e4b17023SJohn Marino 
46*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default)
47*e4b17023SJohn Marino {
48*e4b17023SJohn Marino namespace tr1
49*e4b17023SJohn Marino {
50*e4b17023SJohn Marino   // [5.2] Special functions
51*e4b17023SJohn Marino 
52*e4b17023SJohn Marino   // Implementation-space details.
53*e4b17023SJohn Marino   namespace __detail
54*e4b17023SJohn Marino   {
55*e4b17023SJohn Marino   _GLIBCXX_BEGIN_NAMESPACE_VERSION
56*e4b17023SJohn Marino 
57*e4b17023SJohn Marino     /**
58*e4b17023SJohn Marino      *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
59*e4b17023SJohn Marino      *          of the first kind.
60*e4b17023SJohn Marino      *
61*e4b17023SJohn Marino      *   The Carlson elliptic function of the first kind is defined by:
62*e4b17023SJohn Marino      *   @f[
63*e4b17023SJohn Marino      *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty
64*e4b17023SJohn Marino      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
65*e4b17023SJohn Marino      *   @f]
66*e4b17023SJohn Marino      *
67*e4b17023SJohn Marino      *   @param  __x  The first of three symmetric arguments.
68*e4b17023SJohn Marino      *   @param  __y  The second of three symmetric arguments.
69*e4b17023SJohn Marino      *   @param  __z  The third of three symmetric arguments.
70*e4b17023SJohn Marino      *   @return  The Carlson elliptic function of the first kind.
71*e4b17023SJohn Marino      */
72*e4b17023SJohn Marino     template<typename _Tp>
73*e4b17023SJohn Marino     _Tp
__ellint_rf(const _Tp __x,const _Tp __y,const _Tp __z)74*e4b17023SJohn Marino     __ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z)
75*e4b17023SJohn Marino     {
76*e4b17023SJohn Marino       const _Tp __min = std::numeric_limits<_Tp>::min();
77*e4b17023SJohn Marino       const _Tp __max = std::numeric_limits<_Tp>::max();
78*e4b17023SJohn Marino       const _Tp __lolim = _Tp(5) * __min;
79*e4b17023SJohn Marino       const _Tp __uplim = __max / _Tp(5);
80*e4b17023SJohn Marino 
81*e4b17023SJohn Marino       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
82*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument less than zero "
83*e4b17023SJohn Marino                                       "in __ellint_rf."));
84*e4b17023SJohn Marino       else if (__x + __y < __lolim || __x + __z < __lolim
85*e4b17023SJohn Marino             || __y + __z < __lolim)
86*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
87*e4b17023SJohn Marino       else
88*e4b17023SJohn Marino         {
89*e4b17023SJohn Marino           const _Tp __c0 = _Tp(1) / _Tp(4);
90*e4b17023SJohn Marino           const _Tp __c1 = _Tp(1) / _Tp(24);
91*e4b17023SJohn Marino           const _Tp __c2 = _Tp(1) / _Tp(10);
92*e4b17023SJohn Marino           const _Tp __c3 = _Tp(3) / _Tp(44);
93*e4b17023SJohn Marino           const _Tp __c4 = _Tp(1) / _Tp(14);
94*e4b17023SJohn Marino 
95*e4b17023SJohn Marino           _Tp __xn = __x;
96*e4b17023SJohn Marino           _Tp __yn = __y;
97*e4b17023SJohn Marino           _Tp __zn = __z;
98*e4b17023SJohn Marino 
99*e4b17023SJohn Marino           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
100*e4b17023SJohn Marino           const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
101*e4b17023SJohn Marino           _Tp __mu;
102*e4b17023SJohn Marino           _Tp __xndev, __yndev, __zndev;
103*e4b17023SJohn Marino 
104*e4b17023SJohn Marino           const unsigned int __max_iter = 100;
105*e4b17023SJohn Marino           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
106*e4b17023SJohn Marino             {
107*e4b17023SJohn Marino               __mu = (__xn + __yn + __zn) / _Tp(3);
108*e4b17023SJohn Marino               __xndev = 2 - (__mu + __xn) / __mu;
109*e4b17023SJohn Marino               __yndev = 2 - (__mu + __yn) / __mu;
110*e4b17023SJohn Marino               __zndev = 2 - (__mu + __zn) / __mu;
111*e4b17023SJohn Marino               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
112*e4b17023SJohn Marino               __epsilon = std::max(__epsilon, std::abs(__zndev));
113*e4b17023SJohn Marino               if (__epsilon < __errtol)
114*e4b17023SJohn Marino                 break;
115*e4b17023SJohn Marino               const _Tp __xnroot = std::sqrt(__xn);
116*e4b17023SJohn Marino               const _Tp __ynroot = std::sqrt(__yn);
117*e4b17023SJohn Marino               const _Tp __znroot = std::sqrt(__zn);
118*e4b17023SJohn Marino               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
119*e4b17023SJohn Marino                                  + __ynroot * __znroot;
120*e4b17023SJohn Marino               __xn = __c0 * (__xn + __lambda);
121*e4b17023SJohn Marino               __yn = __c0 * (__yn + __lambda);
122*e4b17023SJohn Marino               __zn = __c0 * (__zn + __lambda);
123*e4b17023SJohn Marino             }
124*e4b17023SJohn Marino 
125*e4b17023SJohn Marino           const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
126*e4b17023SJohn Marino           const _Tp __e3 = __xndev * __yndev * __zndev;
127*e4b17023SJohn Marino           const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
128*e4b17023SJohn Marino                    + __c4 * __e3;
129*e4b17023SJohn Marino 
130*e4b17023SJohn Marino           return __s / std::sqrt(__mu);
131*e4b17023SJohn Marino         }
132*e4b17023SJohn Marino     }
133*e4b17023SJohn Marino 
134*e4b17023SJohn Marino 
135*e4b17023SJohn Marino     /**
136*e4b17023SJohn Marino      *   @brief Return the complete elliptic integral of the first kind
137*e4b17023SJohn Marino      *          @f$ K(k) @f$ by series expansion.
138*e4b17023SJohn Marino      *
139*e4b17023SJohn Marino      *   The complete elliptic integral of the first kind is defined as
140*e4b17023SJohn Marino      *   @f[
141*e4b17023SJohn Marino      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
142*e4b17023SJohn Marino      *                              {\sqrt{1 - k^2sin^2\theta}}
143*e4b17023SJohn Marino      *   @f]
144*e4b17023SJohn Marino      *
145*e4b17023SJohn Marino      *   This routine is not bad as long as |k| is somewhat smaller than 1
146*e4b17023SJohn Marino      *   but is not is good as the Carlson elliptic integral formulation.
147*e4b17023SJohn Marino      *
148*e4b17023SJohn Marino      *   @param  __k  The argument of the complete elliptic function.
149*e4b17023SJohn Marino      *   @return  The complete elliptic function of the first kind.
150*e4b17023SJohn Marino      */
151*e4b17023SJohn Marino     template<typename _Tp>
152*e4b17023SJohn Marino     _Tp
__comp_ellint_1_series(const _Tp __k)153*e4b17023SJohn Marino     __comp_ellint_1_series(const _Tp __k)
154*e4b17023SJohn Marino     {
155*e4b17023SJohn Marino 
156*e4b17023SJohn Marino       const _Tp __kk = __k * __k;
157*e4b17023SJohn Marino 
158*e4b17023SJohn Marino       _Tp __term = __kk / _Tp(4);
159*e4b17023SJohn Marino       _Tp __sum = _Tp(1) + __term;
160*e4b17023SJohn Marino 
161*e4b17023SJohn Marino       const unsigned int __max_iter = 1000;
162*e4b17023SJohn Marino       for (unsigned int __i = 2; __i < __max_iter; ++__i)
163*e4b17023SJohn Marino         {
164*e4b17023SJohn Marino           __term *= (2 * __i - 1) * __kk / (2 * __i);
165*e4b17023SJohn Marino           if (__term < std::numeric_limits<_Tp>::epsilon())
166*e4b17023SJohn Marino             break;
167*e4b17023SJohn Marino           __sum += __term;
168*e4b17023SJohn Marino         }
169*e4b17023SJohn Marino 
170*e4b17023SJohn Marino       return __numeric_constants<_Tp>::__pi_2() * __sum;
171*e4b17023SJohn Marino     }
172*e4b17023SJohn Marino 
173*e4b17023SJohn Marino 
174*e4b17023SJohn Marino     /**
175*e4b17023SJohn Marino      *   @brief  Return the complete elliptic integral of the first kind
176*e4b17023SJohn Marino      *           @f$ K(k) @f$ using the Carlson formulation.
177*e4b17023SJohn Marino      *
178*e4b17023SJohn Marino      *   The complete elliptic integral of the first kind is defined as
179*e4b17023SJohn Marino      *   @f[
180*e4b17023SJohn Marino      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
181*e4b17023SJohn Marino      *                                           {\sqrt{1 - k^2 sin^2\theta}}
182*e4b17023SJohn Marino      *   @f]
183*e4b17023SJohn Marino      *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
184*e4b17023SJohn Marino      *   first kind.
185*e4b17023SJohn Marino      *
186*e4b17023SJohn Marino      *   @param  __k  The argument of the complete elliptic function.
187*e4b17023SJohn Marino      *   @return  The complete elliptic function of the first kind.
188*e4b17023SJohn Marino      */
189*e4b17023SJohn Marino     template<typename _Tp>
190*e4b17023SJohn Marino     _Tp
__comp_ellint_1(const _Tp __k)191*e4b17023SJohn Marino     __comp_ellint_1(const _Tp __k)
192*e4b17023SJohn Marino     {
193*e4b17023SJohn Marino 
194*e4b17023SJohn Marino       if (__isnan(__k))
195*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
196*e4b17023SJohn Marino       else if (std::abs(__k) >= _Tp(1))
197*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
198*e4b17023SJohn Marino       else
199*e4b17023SJohn Marino         return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
200*e4b17023SJohn Marino     }
201*e4b17023SJohn Marino 
202*e4b17023SJohn Marino 
203*e4b17023SJohn Marino     /**
204*e4b17023SJohn Marino      *   @brief  Return the incomplete elliptic integral of the first kind
205*e4b17023SJohn Marino      *           @f$ F(k,\phi) @f$ using the Carlson formulation.
206*e4b17023SJohn Marino      *
207*e4b17023SJohn Marino      *   The incomplete elliptic integral of the first kind is defined as
208*e4b17023SJohn Marino      *   @f[
209*e4b17023SJohn Marino      *     F(k,\phi) = \int_0^{\phi}\frac{d\theta}
210*e4b17023SJohn Marino      *                                   {\sqrt{1 - k^2 sin^2\theta}}
211*e4b17023SJohn Marino      *   @f]
212*e4b17023SJohn Marino      *
213*e4b17023SJohn Marino      *   @param  __k  The argument of the elliptic function.
214*e4b17023SJohn Marino      *   @param  __phi  The integral limit argument of the elliptic function.
215*e4b17023SJohn Marino      *   @return  The elliptic function of the first kind.
216*e4b17023SJohn Marino      */
217*e4b17023SJohn Marino     template<typename _Tp>
218*e4b17023SJohn Marino     _Tp
__ellint_1(const _Tp __k,const _Tp __phi)219*e4b17023SJohn Marino     __ellint_1(const _Tp __k, const _Tp __phi)
220*e4b17023SJohn Marino     {
221*e4b17023SJohn Marino 
222*e4b17023SJohn Marino       if (__isnan(__k) || __isnan(__phi))
223*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
224*e4b17023SJohn Marino       else if (std::abs(__k) > _Tp(1))
225*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument in __ellint_1."));
226*e4b17023SJohn Marino       else
227*e4b17023SJohn Marino         {
228*e4b17023SJohn Marino           //  Reduce phi to -pi/2 < phi < +pi/2.
229*e4b17023SJohn Marino           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
230*e4b17023SJohn Marino                                    + _Tp(0.5L));
231*e4b17023SJohn Marino           const _Tp __phi_red = __phi
232*e4b17023SJohn Marino                               - __n * __numeric_constants<_Tp>::__pi();
233*e4b17023SJohn Marino 
234*e4b17023SJohn Marino           const _Tp __s = std::sin(__phi_red);
235*e4b17023SJohn Marino           const _Tp __c = std::cos(__phi_red);
236*e4b17023SJohn Marino 
237*e4b17023SJohn Marino           const _Tp __F = __s
238*e4b17023SJohn Marino                         * __ellint_rf(__c * __c,
239*e4b17023SJohn Marino                                 _Tp(1) - __k * __k * __s * __s, _Tp(1));
240*e4b17023SJohn Marino 
241*e4b17023SJohn Marino           if (__n == 0)
242*e4b17023SJohn Marino             return __F;
243*e4b17023SJohn Marino           else
244*e4b17023SJohn Marino             return __F + _Tp(2) * __n * __comp_ellint_1(__k);
245*e4b17023SJohn Marino         }
246*e4b17023SJohn Marino     }
247*e4b17023SJohn Marino 
248*e4b17023SJohn Marino 
249*e4b17023SJohn Marino     /**
250*e4b17023SJohn Marino      *   @brief Return the complete elliptic integral of the second kind
251*e4b17023SJohn Marino      *          @f$ E(k) @f$ by series expansion.
252*e4b17023SJohn Marino      *
253*e4b17023SJohn Marino      *   The complete elliptic integral of the second kind is defined as
254*e4b17023SJohn Marino      *   @f[
255*e4b17023SJohn Marino      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
256*e4b17023SJohn Marino      *   @f]
257*e4b17023SJohn Marino      *
258*e4b17023SJohn Marino      *   This routine is not bad as long as |k| is somewhat smaller than 1
259*e4b17023SJohn Marino      *   but is not is good as the Carlson elliptic integral formulation.
260*e4b17023SJohn Marino      *
261*e4b17023SJohn Marino      *   @param  __k  The argument of the complete elliptic function.
262*e4b17023SJohn Marino      *   @return  The complete elliptic function of the second kind.
263*e4b17023SJohn Marino      */
264*e4b17023SJohn Marino     template<typename _Tp>
265*e4b17023SJohn Marino     _Tp
__comp_ellint_2_series(const _Tp __k)266*e4b17023SJohn Marino     __comp_ellint_2_series(const _Tp __k)
267*e4b17023SJohn Marino     {
268*e4b17023SJohn Marino 
269*e4b17023SJohn Marino       const _Tp __kk = __k * __k;
270*e4b17023SJohn Marino 
271*e4b17023SJohn Marino       _Tp __term = __kk;
272*e4b17023SJohn Marino       _Tp __sum = __term;
273*e4b17023SJohn Marino 
274*e4b17023SJohn Marino       const unsigned int __max_iter = 1000;
275*e4b17023SJohn Marino       for (unsigned int __i = 2; __i < __max_iter; ++__i)
276*e4b17023SJohn Marino         {
277*e4b17023SJohn Marino           const _Tp __i2m = 2 * __i - 1;
278*e4b17023SJohn Marino           const _Tp __i2 = 2 * __i;
279*e4b17023SJohn Marino           __term *= __i2m * __i2m * __kk / (__i2 * __i2);
280*e4b17023SJohn Marino           if (__term < std::numeric_limits<_Tp>::epsilon())
281*e4b17023SJohn Marino             break;
282*e4b17023SJohn Marino           __sum += __term / __i2m;
283*e4b17023SJohn Marino         }
284*e4b17023SJohn Marino 
285*e4b17023SJohn Marino       return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
286*e4b17023SJohn Marino     }
287*e4b17023SJohn Marino 
288*e4b17023SJohn Marino 
289*e4b17023SJohn Marino     /**
290*e4b17023SJohn Marino      *   @brief  Return the Carlson elliptic function of the second kind
291*e4b17023SJohn Marino      *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
292*e4b17023SJohn Marino      *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
293*e4b17023SJohn Marino      *           of the third kind.
294*e4b17023SJohn Marino      *
295*e4b17023SJohn Marino      *   The Carlson elliptic function of the second kind is defined by:
296*e4b17023SJohn Marino      *   @f[
297*e4b17023SJohn Marino      *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty
298*e4b17023SJohn Marino      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
299*e4b17023SJohn Marino      *   @f]
300*e4b17023SJohn Marino      *
301*e4b17023SJohn Marino      *   Based on Carlson's algorithms:
302*e4b17023SJohn Marino      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
303*e4b17023SJohn Marino      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
304*e4b17023SJohn Marino      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
305*e4b17023SJohn Marino      *      by Press, Teukolsky, Vetterling, Flannery (1992)
306*e4b17023SJohn Marino      *
307*e4b17023SJohn Marino      *   @param  __x  The first of two symmetric arguments.
308*e4b17023SJohn Marino      *   @param  __y  The second of two symmetric arguments.
309*e4b17023SJohn Marino      *   @param  __z  The third argument.
310*e4b17023SJohn Marino      *   @return  The Carlson elliptic function of the second kind.
311*e4b17023SJohn Marino      */
312*e4b17023SJohn Marino     template<typename _Tp>
313*e4b17023SJohn Marino     _Tp
__ellint_rd(const _Tp __x,const _Tp __y,const _Tp __z)314*e4b17023SJohn Marino     __ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z)
315*e4b17023SJohn Marino     {
316*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
317*e4b17023SJohn Marino       const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
318*e4b17023SJohn Marino       const _Tp __min = std::numeric_limits<_Tp>::min();
319*e4b17023SJohn Marino       const _Tp __max = std::numeric_limits<_Tp>::max();
320*e4b17023SJohn Marino       const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
321*e4b17023SJohn Marino       const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
322*e4b17023SJohn Marino 
323*e4b17023SJohn Marino       if (__x < _Tp(0) || __y < _Tp(0))
324*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument less than zero "
325*e4b17023SJohn Marino                                       "in __ellint_rd."));
326*e4b17023SJohn Marino       else if (__x + __y < __lolim || __z < __lolim)
327*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument too small "
328*e4b17023SJohn Marino                                       "in __ellint_rd."));
329*e4b17023SJohn Marino       else
330*e4b17023SJohn Marino         {
331*e4b17023SJohn Marino           const _Tp __c0 = _Tp(1) / _Tp(4);
332*e4b17023SJohn Marino           const _Tp __c1 = _Tp(3) / _Tp(14);
333*e4b17023SJohn Marino           const _Tp __c2 = _Tp(1) / _Tp(6);
334*e4b17023SJohn Marino           const _Tp __c3 = _Tp(9) / _Tp(22);
335*e4b17023SJohn Marino           const _Tp __c4 = _Tp(3) / _Tp(26);
336*e4b17023SJohn Marino 
337*e4b17023SJohn Marino           _Tp __xn = __x;
338*e4b17023SJohn Marino           _Tp __yn = __y;
339*e4b17023SJohn Marino           _Tp __zn = __z;
340*e4b17023SJohn Marino           _Tp __sigma = _Tp(0);
341*e4b17023SJohn Marino           _Tp __power4 = _Tp(1);
342*e4b17023SJohn Marino 
343*e4b17023SJohn Marino           _Tp __mu;
344*e4b17023SJohn Marino           _Tp __xndev, __yndev, __zndev;
345*e4b17023SJohn Marino 
346*e4b17023SJohn Marino           const unsigned int __max_iter = 100;
347*e4b17023SJohn Marino           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
348*e4b17023SJohn Marino             {
349*e4b17023SJohn Marino               __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
350*e4b17023SJohn Marino               __xndev = (__mu - __xn) / __mu;
351*e4b17023SJohn Marino               __yndev = (__mu - __yn) / __mu;
352*e4b17023SJohn Marino               __zndev = (__mu - __zn) / __mu;
353*e4b17023SJohn Marino               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
354*e4b17023SJohn Marino               __epsilon = std::max(__epsilon, std::abs(__zndev));
355*e4b17023SJohn Marino               if (__epsilon < __errtol)
356*e4b17023SJohn Marino                 break;
357*e4b17023SJohn Marino               _Tp __xnroot = std::sqrt(__xn);
358*e4b17023SJohn Marino               _Tp __ynroot = std::sqrt(__yn);
359*e4b17023SJohn Marino               _Tp __znroot = std::sqrt(__zn);
360*e4b17023SJohn Marino               _Tp __lambda = __xnroot * (__ynroot + __znroot)
361*e4b17023SJohn Marino                            + __ynroot * __znroot;
362*e4b17023SJohn Marino               __sigma += __power4 / (__znroot * (__zn + __lambda));
363*e4b17023SJohn Marino               __power4 *= __c0;
364*e4b17023SJohn Marino               __xn = __c0 * (__xn + __lambda);
365*e4b17023SJohn Marino               __yn = __c0 * (__yn + __lambda);
366*e4b17023SJohn Marino               __zn = __c0 * (__zn + __lambda);
367*e4b17023SJohn Marino             }
368*e4b17023SJohn Marino 
369*e4b17023SJohn Marino 	  // Note: __ea is an SPU badname.
370*e4b17023SJohn Marino           _Tp __eaa = __xndev * __yndev;
371*e4b17023SJohn Marino           _Tp __eb = __zndev * __zndev;
372*e4b17023SJohn Marino           _Tp __ec = __eaa - __eb;
373*e4b17023SJohn Marino           _Tp __ed = __eaa - _Tp(6) * __eb;
374*e4b17023SJohn Marino           _Tp __ef = __ed + __ec + __ec;
375*e4b17023SJohn Marino           _Tp __s1 = __ed * (-__c1 + __c3 * __ed
376*e4b17023SJohn Marino                                    / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
377*e4b17023SJohn Marino                                    / _Tp(2));
378*e4b17023SJohn Marino           _Tp __s2 = __zndev
379*e4b17023SJohn Marino                    * (__c2 * __ef
380*e4b17023SJohn Marino                     + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
381*e4b17023SJohn Marino 
382*e4b17023SJohn Marino           return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
383*e4b17023SJohn Marino                                         / (__mu * std::sqrt(__mu));
384*e4b17023SJohn Marino         }
385*e4b17023SJohn Marino     }
386*e4b17023SJohn Marino 
387*e4b17023SJohn Marino 
388*e4b17023SJohn Marino     /**
389*e4b17023SJohn Marino      *   @brief  Return the complete elliptic integral of the second kind
390*e4b17023SJohn Marino      *           @f$ E(k) @f$ using the Carlson formulation.
391*e4b17023SJohn Marino      *
392*e4b17023SJohn Marino      *   The complete elliptic integral of the second kind is defined as
393*e4b17023SJohn Marino      *   @f[
394*e4b17023SJohn Marino      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
395*e4b17023SJohn Marino      *   @f]
396*e4b17023SJohn Marino      *
397*e4b17023SJohn Marino      *   @param  __k  The argument of the complete elliptic function.
398*e4b17023SJohn Marino      *   @return  The complete elliptic function of the second kind.
399*e4b17023SJohn Marino      */
400*e4b17023SJohn Marino     template<typename _Tp>
401*e4b17023SJohn Marino     _Tp
__comp_ellint_2(const _Tp __k)402*e4b17023SJohn Marino     __comp_ellint_2(const _Tp __k)
403*e4b17023SJohn Marino     {
404*e4b17023SJohn Marino 
405*e4b17023SJohn Marino       if (__isnan(__k))
406*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
407*e4b17023SJohn Marino       else if (std::abs(__k) == 1)
408*e4b17023SJohn Marino         return _Tp(1);
409*e4b17023SJohn Marino       else if (std::abs(__k) > _Tp(1))
410*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
411*e4b17023SJohn Marino       else
412*e4b17023SJohn Marino         {
413*e4b17023SJohn Marino           const _Tp __kk = __k * __k;
414*e4b17023SJohn Marino 
415*e4b17023SJohn Marino           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
416*e4b17023SJohn Marino                - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
417*e4b17023SJohn Marino         }
418*e4b17023SJohn Marino     }
419*e4b17023SJohn Marino 
420*e4b17023SJohn Marino 
421*e4b17023SJohn Marino     /**
422*e4b17023SJohn Marino      *   @brief  Return the incomplete elliptic integral of the second kind
423*e4b17023SJohn Marino      *           @f$ E(k,\phi) @f$ using the Carlson formulation.
424*e4b17023SJohn Marino      *
425*e4b17023SJohn Marino      *   The incomplete elliptic integral of the second kind is defined as
426*e4b17023SJohn Marino      *   @f[
427*e4b17023SJohn Marino      *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
428*e4b17023SJohn Marino      *   @f]
429*e4b17023SJohn Marino      *
430*e4b17023SJohn Marino      *   @param  __k  The argument of the elliptic function.
431*e4b17023SJohn Marino      *   @param  __phi  The integral limit argument of the elliptic function.
432*e4b17023SJohn Marino      *   @return  The elliptic function of the second kind.
433*e4b17023SJohn Marino      */
434*e4b17023SJohn Marino     template<typename _Tp>
435*e4b17023SJohn Marino     _Tp
__ellint_2(const _Tp __k,const _Tp __phi)436*e4b17023SJohn Marino     __ellint_2(const _Tp __k, const _Tp __phi)
437*e4b17023SJohn Marino     {
438*e4b17023SJohn Marino 
439*e4b17023SJohn Marino       if (__isnan(__k) || __isnan(__phi))
440*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
441*e4b17023SJohn Marino       else if (std::abs(__k) > _Tp(1))
442*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument in __ellint_2."));
443*e4b17023SJohn Marino       else
444*e4b17023SJohn Marino         {
445*e4b17023SJohn Marino           //  Reduce phi to -pi/2 < phi < +pi/2.
446*e4b17023SJohn Marino           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
447*e4b17023SJohn Marino                                    + _Tp(0.5L));
448*e4b17023SJohn Marino           const _Tp __phi_red = __phi
449*e4b17023SJohn Marino                               - __n * __numeric_constants<_Tp>::__pi();
450*e4b17023SJohn Marino 
451*e4b17023SJohn Marino           const _Tp __kk = __k * __k;
452*e4b17023SJohn Marino           const _Tp __s = std::sin(__phi_red);
453*e4b17023SJohn Marino           const _Tp __ss = __s * __s;
454*e4b17023SJohn Marino           const _Tp __sss = __ss * __s;
455*e4b17023SJohn Marino           const _Tp __c = std::cos(__phi_red);
456*e4b17023SJohn Marino           const _Tp __cc = __c * __c;
457*e4b17023SJohn Marino 
458*e4b17023SJohn Marino           const _Tp __E = __s
459*e4b17023SJohn Marino                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
460*e4b17023SJohn Marino                         - __kk * __sss
461*e4b17023SJohn Marino                         * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
462*e4b17023SJohn Marino                         / _Tp(3);
463*e4b17023SJohn Marino 
464*e4b17023SJohn Marino           if (__n == 0)
465*e4b17023SJohn Marino             return __E;
466*e4b17023SJohn Marino           else
467*e4b17023SJohn Marino             return __E + _Tp(2) * __n * __comp_ellint_2(__k);
468*e4b17023SJohn Marino         }
469*e4b17023SJohn Marino     }
470*e4b17023SJohn Marino 
471*e4b17023SJohn Marino 
472*e4b17023SJohn Marino     /**
473*e4b17023SJohn Marino      *   @brief  Return the Carlson elliptic function
474*e4b17023SJohn Marino      *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
475*e4b17023SJohn Marino      *           is the Carlson elliptic function of the first kind.
476*e4b17023SJohn Marino      *
477*e4b17023SJohn Marino      *   The Carlson elliptic function is defined by:
478*e4b17023SJohn Marino      *   @f[
479*e4b17023SJohn Marino      *       R_C(x,y) = \frac{1}{2} \int_0^\infty
480*e4b17023SJohn Marino      *                 \frac{dt}{(t + x)^{1/2}(t + y)}
481*e4b17023SJohn Marino      *   @f]
482*e4b17023SJohn Marino      *
483*e4b17023SJohn Marino      *   Based on Carlson's algorithms:
484*e4b17023SJohn Marino      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
485*e4b17023SJohn Marino      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
486*e4b17023SJohn Marino      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
487*e4b17023SJohn Marino      *      by Press, Teukolsky, Vetterling, Flannery (1992)
488*e4b17023SJohn Marino      *
489*e4b17023SJohn Marino      *   @param  __x  The first argument.
490*e4b17023SJohn Marino      *   @param  __y  The second argument.
491*e4b17023SJohn Marino      *   @return  The Carlson elliptic function.
492*e4b17023SJohn Marino      */
493*e4b17023SJohn Marino     template<typename _Tp>
494*e4b17023SJohn Marino     _Tp
__ellint_rc(const _Tp __x,const _Tp __y)495*e4b17023SJohn Marino     __ellint_rc(const _Tp __x, const _Tp __y)
496*e4b17023SJohn Marino     {
497*e4b17023SJohn Marino       const _Tp __min = std::numeric_limits<_Tp>::min();
498*e4b17023SJohn Marino       const _Tp __max = std::numeric_limits<_Tp>::max();
499*e4b17023SJohn Marino       const _Tp __lolim = _Tp(5) * __min;
500*e4b17023SJohn Marino       const _Tp __uplim = __max / _Tp(5);
501*e4b17023SJohn Marino 
502*e4b17023SJohn Marino       if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
503*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument less than zero "
504*e4b17023SJohn Marino                                       "in __ellint_rc."));
505*e4b17023SJohn Marino       else
506*e4b17023SJohn Marino         {
507*e4b17023SJohn Marino           const _Tp __c0 = _Tp(1) / _Tp(4);
508*e4b17023SJohn Marino           const _Tp __c1 = _Tp(1) / _Tp(7);
509*e4b17023SJohn Marino           const _Tp __c2 = _Tp(9) / _Tp(22);
510*e4b17023SJohn Marino           const _Tp __c3 = _Tp(3) / _Tp(10);
511*e4b17023SJohn Marino           const _Tp __c4 = _Tp(3) / _Tp(8);
512*e4b17023SJohn Marino 
513*e4b17023SJohn Marino           _Tp __xn = __x;
514*e4b17023SJohn Marino           _Tp __yn = __y;
515*e4b17023SJohn Marino 
516*e4b17023SJohn Marino           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
517*e4b17023SJohn Marino           const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
518*e4b17023SJohn Marino           _Tp __mu;
519*e4b17023SJohn Marino           _Tp __sn;
520*e4b17023SJohn Marino 
521*e4b17023SJohn Marino           const unsigned int __max_iter = 100;
522*e4b17023SJohn Marino           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
523*e4b17023SJohn Marino             {
524*e4b17023SJohn Marino               __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
525*e4b17023SJohn Marino               __sn = (__yn + __mu) / __mu - _Tp(2);
526*e4b17023SJohn Marino               if (std::abs(__sn) < __errtol)
527*e4b17023SJohn Marino                 break;
528*e4b17023SJohn Marino               const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
529*e4b17023SJohn Marino                              + __yn;
530*e4b17023SJohn Marino               __xn = __c0 * (__xn + __lambda);
531*e4b17023SJohn Marino               __yn = __c0 * (__yn + __lambda);
532*e4b17023SJohn Marino             }
533*e4b17023SJohn Marino 
534*e4b17023SJohn Marino           _Tp __s = __sn * __sn
535*e4b17023SJohn Marino                   * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
536*e4b17023SJohn Marino 
537*e4b17023SJohn Marino           return (_Tp(1) + __s) / std::sqrt(__mu);
538*e4b17023SJohn Marino         }
539*e4b17023SJohn Marino     }
540*e4b17023SJohn Marino 
541*e4b17023SJohn Marino 
542*e4b17023SJohn Marino     /**
543*e4b17023SJohn Marino      *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
544*e4b17023SJohn Marino      *           of the third kind.
545*e4b17023SJohn Marino      *
546*e4b17023SJohn Marino      *   The Carlson elliptic function of the third kind is defined by:
547*e4b17023SJohn Marino      *   @f[
548*e4b17023SJohn Marino      *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
549*e4b17023SJohn Marino      *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
550*e4b17023SJohn Marino      *   @f]
551*e4b17023SJohn Marino      *
552*e4b17023SJohn Marino      *   Based on Carlson's algorithms:
553*e4b17023SJohn Marino      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
554*e4b17023SJohn Marino      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
555*e4b17023SJohn Marino      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
556*e4b17023SJohn Marino      *      by Press, Teukolsky, Vetterling, Flannery (1992)
557*e4b17023SJohn Marino      *
558*e4b17023SJohn Marino      *   @param  __x  The first of three symmetric arguments.
559*e4b17023SJohn Marino      *   @param  __y  The second of three symmetric arguments.
560*e4b17023SJohn Marino      *   @param  __z  The third of three symmetric arguments.
561*e4b17023SJohn Marino      *   @param  __p  The fourth argument.
562*e4b17023SJohn Marino      *   @return  The Carlson elliptic function of the fourth kind.
563*e4b17023SJohn Marino      */
564*e4b17023SJohn Marino     template<typename _Tp>
565*e4b17023SJohn Marino     _Tp
__ellint_rj(const _Tp __x,const _Tp __y,const _Tp __z,const _Tp __p)566*e4b17023SJohn Marino     __ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p)
567*e4b17023SJohn Marino     {
568*e4b17023SJohn Marino       const _Tp __min = std::numeric_limits<_Tp>::min();
569*e4b17023SJohn Marino       const _Tp __max = std::numeric_limits<_Tp>::max();
570*e4b17023SJohn Marino       const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
571*e4b17023SJohn Marino       const _Tp __uplim = _Tp(0.3L)
572*e4b17023SJohn Marino                         * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
573*e4b17023SJohn Marino 
574*e4b17023SJohn Marino       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
575*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument less than zero "
576*e4b17023SJohn Marino                                       "in __ellint_rj."));
577*e4b17023SJohn Marino       else if (__x + __y < __lolim || __x + __z < __lolim
578*e4b17023SJohn Marino             || __y + __z < __lolim || __p < __lolim)
579*e4b17023SJohn Marino         std::__throw_domain_error(__N("Argument too small "
580*e4b17023SJohn Marino                                       "in __ellint_rj"));
581*e4b17023SJohn Marino       else
582*e4b17023SJohn Marino         {
583*e4b17023SJohn Marino           const _Tp __c0 = _Tp(1) / _Tp(4);
584*e4b17023SJohn Marino           const _Tp __c1 = _Tp(3) / _Tp(14);
585*e4b17023SJohn Marino           const _Tp __c2 = _Tp(1) / _Tp(3);
586*e4b17023SJohn Marino           const _Tp __c3 = _Tp(3) / _Tp(22);
587*e4b17023SJohn Marino           const _Tp __c4 = _Tp(3) / _Tp(26);
588*e4b17023SJohn Marino 
589*e4b17023SJohn Marino           _Tp __xn = __x;
590*e4b17023SJohn Marino           _Tp __yn = __y;
591*e4b17023SJohn Marino           _Tp __zn = __z;
592*e4b17023SJohn Marino           _Tp __pn = __p;
593*e4b17023SJohn Marino           _Tp __sigma = _Tp(0);
594*e4b17023SJohn Marino           _Tp __power4 = _Tp(1);
595*e4b17023SJohn Marino 
596*e4b17023SJohn Marino           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
597*e4b17023SJohn Marino           const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
598*e4b17023SJohn Marino 
599*e4b17023SJohn Marino           _Tp __lambda, __mu;
600*e4b17023SJohn Marino           _Tp __xndev, __yndev, __zndev, __pndev;
601*e4b17023SJohn Marino 
602*e4b17023SJohn Marino           const unsigned int __max_iter = 100;
603*e4b17023SJohn Marino           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
604*e4b17023SJohn Marino             {
605*e4b17023SJohn Marino               __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
606*e4b17023SJohn Marino               __xndev = (__mu - __xn) / __mu;
607*e4b17023SJohn Marino               __yndev = (__mu - __yn) / __mu;
608*e4b17023SJohn Marino               __zndev = (__mu - __zn) / __mu;
609*e4b17023SJohn Marino               __pndev = (__mu - __pn) / __mu;
610*e4b17023SJohn Marino               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
611*e4b17023SJohn Marino               __epsilon = std::max(__epsilon, std::abs(__zndev));
612*e4b17023SJohn Marino               __epsilon = std::max(__epsilon, std::abs(__pndev));
613*e4b17023SJohn Marino               if (__epsilon < __errtol)
614*e4b17023SJohn Marino                 break;
615*e4b17023SJohn Marino               const _Tp __xnroot = std::sqrt(__xn);
616*e4b17023SJohn Marino               const _Tp __ynroot = std::sqrt(__yn);
617*e4b17023SJohn Marino               const _Tp __znroot = std::sqrt(__zn);
618*e4b17023SJohn Marino               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
619*e4b17023SJohn Marino                                  + __ynroot * __znroot;
620*e4b17023SJohn Marino               const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
621*e4b17023SJohn Marino                                 + __xnroot * __ynroot * __znroot;
622*e4b17023SJohn Marino               const _Tp __alpha2 = __alpha1 * __alpha1;
623*e4b17023SJohn Marino               const _Tp __beta = __pn * (__pn + __lambda)
624*e4b17023SJohn Marino                                       * (__pn + __lambda);
625*e4b17023SJohn Marino               __sigma += __power4 * __ellint_rc(__alpha2, __beta);
626*e4b17023SJohn Marino               __power4 *= __c0;
627*e4b17023SJohn Marino               __xn = __c0 * (__xn + __lambda);
628*e4b17023SJohn Marino               __yn = __c0 * (__yn + __lambda);
629*e4b17023SJohn Marino               __zn = __c0 * (__zn + __lambda);
630*e4b17023SJohn Marino               __pn = __c0 * (__pn + __lambda);
631*e4b17023SJohn Marino             }
632*e4b17023SJohn Marino 
633*e4b17023SJohn Marino 	  // Note: __ea is an SPU badname.
634*e4b17023SJohn Marino           _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
635*e4b17023SJohn Marino           _Tp __eb = __xndev * __yndev * __zndev;
636*e4b17023SJohn Marino           _Tp __ec = __pndev * __pndev;
637*e4b17023SJohn Marino           _Tp __e2 = __eaa - _Tp(3) * __ec;
638*e4b17023SJohn Marino           _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
639*e4b17023SJohn Marino           _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
640*e4b17023SJohn Marino                             - _Tp(3) * __c4 * __e3 / _Tp(2));
641*e4b17023SJohn Marino           _Tp __s2 = __eb * (__c2 / _Tp(2)
642*e4b17023SJohn Marino                    + __pndev * (-__c3 - __c3 + __pndev * __c4));
643*e4b17023SJohn Marino           _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
644*e4b17023SJohn Marino                    - __c2 * __pndev * __ec;
645*e4b17023SJohn Marino 
646*e4b17023SJohn Marino           return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
647*e4b17023SJohn Marino                                              / (__mu * std::sqrt(__mu));
648*e4b17023SJohn Marino         }
649*e4b17023SJohn Marino     }
650*e4b17023SJohn Marino 
651*e4b17023SJohn Marino 
652*e4b17023SJohn Marino     /**
653*e4b17023SJohn Marino      *   @brief Return the complete elliptic integral of the third kind
654*e4b17023SJohn Marino      *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
655*e4b17023SJohn Marino      *          Carlson formulation.
656*e4b17023SJohn Marino      *
657*e4b17023SJohn Marino      *   The complete elliptic integral of the third kind is defined as
658*e4b17023SJohn Marino      *   @f[
659*e4b17023SJohn Marino      *     \Pi(k,\nu) = \int_0^{\pi/2}
660*e4b17023SJohn Marino      *                   \frac{d\theta}
661*e4b17023SJohn Marino      *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
662*e4b17023SJohn Marino      *   @f]
663*e4b17023SJohn Marino      *
664*e4b17023SJohn Marino      *   @param  __k  The argument of the elliptic function.
665*e4b17023SJohn Marino      *   @param  __nu  The second argument of the elliptic function.
666*e4b17023SJohn Marino      *   @return  The complete elliptic function of the third kind.
667*e4b17023SJohn Marino      */
668*e4b17023SJohn Marino     template<typename _Tp>
669*e4b17023SJohn Marino     _Tp
__comp_ellint_3(const _Tp __k,const _Tp __nu)670*e4b17023SJohn Marino     __comp_ellint_3(const _Tp __k, const _Tp __nu)
671*e4b17023SJohn Marino     {
672*e4b17023SJohn Marino 
673*e4b17023SJohn Marino       if (__isnan(__k) || __isnan(__nu))
674*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
675*e4b17023SJohn Marino       else if (__nu == _Tp(1))
676*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::infinity();
677*e4b17023SJohn Marino       else if (std::abs(__k) > _Tp(1))
678*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
679*e4b17023SJohn Marino       else
680*e4b17023SJohn Marino         {
681*e4b17023SJohn Marino           const _Tp __kk = __k * __k;
682*e4b17023SJohn Marino 
683*e4b17023SJohn Marino           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
684*e4b17023SJohn Marino                - __nu
685*e4b17023SJohn Marino                * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
686*e4b17023SJohn Marino                / _Tp(3);
687*e4b17023SJohn Marino         }
688*e4b17023SJohn Marino     }
689*e4b17023SJohn Marino 
690*e4b17023SJohn Marino 
691*e4b17023SJohn Marino     /**
692*e4b17023SJohn Marino      *   @brief Return the incomplete elliptic integral of the third kind
693*e4b17023SJohn Marino      *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
694*e4b17023SJohn Marino      *
695*e4b17023SJohn Marino      *   The incomplete elliptic integral of the third kind is defined as
696*e4b17023SJohn Marino      *   @f[
697*e4b17023SJohn Marino      *     \Pi(k,\nu,\phi) = \int_0^{\phi}
698*e4b17023SJohn Marino      *                       \frac{d\theta}
699*e4b17023SJohn Marino      *                            {(1 - \nu \sin^2\theta)
700*e4b17023SJohn Marino      *                             \sqrt{1 - k^2 \sin^2\theta}}
701*e4b17023SJohn Marino      *   @f]
702*e4b17023SJohn Marino      *
703*e4b17023SJohn Marino      *   @param  __k  The argument of the elliptic function.
704*e4b17023SJohn Marino      *   @param  __nu  The second argument of the elliptic function.
705*e4b17023SJohn Marino      *   @param  __phi  The integral limit argument of the elliptic function.
706*e4b17023SJohn Marino      *   @return  The elliptic function of the third kind.
707*e4b17023SJohn Marino      */
708*e4b17023SJohn Marino     template<typename _Tp>
709*e4b17023SJohn Marino     _Tp
__ellint_3(const _Tp __k,const _Tp __nu,const _Tp __phi)710*e4b17023SJohn Marino     __ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi)
711*e4b17023SJohn Marino     {
712*e4b17023SJohn Marino 
713*e4b17023SJohn Marino       if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
714*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
715*e4b17023SJohn Marino       else if (std::abs(__k) > _Tp(1))
716*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument in __ellint_3."));
717*e4b17023SJohn Marino       else
718*e4b17023SJohn Marino         {
719*e4b17023SJohn Marino           //  Reduce phi to -pi/2 < phi < +pi/2.
720*e4b17023SJohn Marino           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
721*e4b17023SJohn Marino                                    + _Tp(0.5L));
722*e4b17023SJohn Marino           const _Tp __phi_red = __phi
723*e4b17023SJohn Marino                               - __n * __numeric_constants<_Tp>::__pi();
724*e4b17023SJohn Marino 
725*e4b17023SJohn Marino           const _Tp __kk = __k * __k;
726*e4b17023SJohn Marino           const _Tp __s = std::sin(__phi_red);
727*e4b17023SJohn Marino           const _Tp __ss = __s * __s;
728*e4b17023SJohn Marino           const _Tp __sss = __ss * __s;
729*e4b17023SJohn Marino           const _Tp __c = std::cos(__phi_red);
730*e4b17023SJohn Marino           const _Tp __cc = __c * __c;
731*e4b17023SJohn Marino 
732*e4b17023SJohn Marino           const _Tp __Pi = __s
733*e4b17023SJohn Marino                          * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
734*e4b17023SJohn Marino                          - __nu * __sss
735*e4b17023SJohn Marino                          * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
736*e4b17023SJohn Marino                                        _Tp(1) + __nu * __ss) / _Tp(3);
737*e4b17023SJohn Marino 
738*e4b17023SJohn Marino           if (__n == 0)
739*e4b17023SJohn Marino             return __Pi;
740*e4b17023SJohn Marino           else
741*e4b17023SJohn Marino             return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
742*e4b17023SJohn Marino         }
743*e4b17023SJohn Marino     }
744*e4b17023SJohn Marino 
745*e4b17023SJohn Marino   _GLIBCXX_END_NAMESPACE_VERSION
746*e4b17023SJohn Marino   } // namespace std::tr1::__detail
747*e4b17023SJohn Marino }
748*e4b17023SJohn Marino }
749*e4b17023SJohn Marino 
750*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
751*e4b17023SJohn Marino 
752