1*e4b17023SJohn Marino // Special functions -*- C++ -*- 2*e4b17023SJohn Marino 3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010 4*e4b17023SJohn Marino // Free Software Foundation, Inc. 5*e4b17023SJohn Marino // 6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library. This library is free 7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the 8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the 9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option) 10*e4b17023SJohn Marino // any later version. 11*e4b17023SJohn Marino // 12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful, 13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of 14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15*e4b17023SJohn Marino // GNU General Public License for more details. 16*e4b17023SJohn Marino // 17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional 18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version 19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation. 20*e4b17023SJohn Marino 21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and 22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program; 23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>. 25*e4b17023SJohn Marino 26*e4b17023SJohn Marino /** @file tr1/bessel_function.tcc 27*e4b17023SJohn Marino * This is an internal header file, included by other library headers. 28*e4b17023SJohn Marino * Do not attempt to use it directly. @headername{tr1/cmath} 29*e4b17023SJohn Marino */ 30*e4b17023SJohn Marino 31*e4b17023SJohn Marino // 32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2 Special functions 33*e4b17023SJohn Marino // 34*e4b17023SJohn Marino 35*e4b17023SJohn Marino // Written by Edward Smith-Rowland. 36*e4b17023SJohn Marino // 37*e4b17023SJohn Marino // References: 38*e4b17023SJohn Marino // (1) Handbook of Mathematical Functions, 39*e4b17023SJohn Marino // ed. Milton Abramowitz and Irene A. Stegun, 40*e4b17023SJohn Marino // Dover Publications, 41*e4b17023SJohn Marino // Section 9, pp. 355-434, Section 10 pp. 435-478 42*e4b17023SJohn Marino // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 43*e4b17023SJohn Marino // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, 44*e4b17023SJohn Marino // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), 45*e4b17023SJohn Marino // 2nd ed, pp. 240-245 46*e4b17023SJohn Marino 47*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 48*e4b17023SJohn Marino #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1 49*e4b17023SJohn Marino 50*e4b17023SJohn Marino #include "special_function_util.h" 51*e4b17023SJohn Marino 52*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default) 53*e4b17023SJohn Marino { 54*e4b17023SJohn Marino namespace tr1 55*e4b17023SJohn Marino { 56*e4b17023SJohn Marino // [5.2] Special functions 57*e4b17023SJohn Marino 58*e4b17023SJohn Marino // Implementation-space details. 59*e4b17023SJohn Marino namespace __detail 60*e4b17023SJohn Marino { 61*e4b17023SJohn Marino _GLIBCXX_BEGIN_NAMESPACE_VERSION 62*e4b17023SJohn Marino 63*e4b17023SJohn Marino /** 64*e4b17023SJohn Marino * @brief Compute the gamma functions required by the Temme series 65*e4b17023SJohn Marino * expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$. 66*e4b17023SJohn Marino * @f[ 67*e4b17023SJohn Marino * \Gamma_1 = \frac{1}{2\mu} 68*e4b17023SJohn Marino * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 69*e4b17023SJohn Marino * @f] 70*e4b17023SJohn Marino * and 71*e4b17023SJohn Marino * @f[ 72*e4b17023SJohn Marino * \Gamma_2 = \frac{1}{2} 73*e4b17023SJohn Marino * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 74*e4b17023SJohn Marino * @f] 75*e4b17023SJohn Marino * where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$. 76*e4b17023SJohn Marino * is the nearest integer to @f$ \nu @f$. 77*e4b17023SJohn Marino * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 78*e4b17023SJohn Marino * are returned as well. 79*e4b17023SJohn Marino * 80*e4b17023SJohn Marino * The accuracy requirements on this are exquisite. 81*e4b17023SJohn Marino * 82*e4b17023SJohn Marino * @param __mu The input parameter of the gamma functions. 83*e4b17023SJohn Marino * @param __gam1 The output function \f$ \Gamma_1(\mu) \f$ 84*e4b17023SJohn Marino * @param __gam2 The output function \f$ \Gamma_2(\mu) \f$ 85*e4b17023SJohn Marino * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86*e4b17023SJohn Marino * @param __gammi The output function \f$ \Gamma(1 - \mu) \f$ 87*e4b17023SJohn Marino */ 88*e4b17023SJohn Marino template <typename _Tp> 89*e4b17023SJohn Marino void __gamma_temme(const _Tp __mu,_Tp & __gam1,_Tp & __gam2,_Tp & __gampl,_Tp & __gammi)90*e4b17023SJohn Marino __gamma_temme(const _Tp __mu, 91*e4b17023SJohn Marino _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi) 92*e4b17023SJohn Marino { 93*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 94*e4b17023SJohn Marino __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu); 95*e4b17023SJohn Marino __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu); 96*e4b17023SJohn Marino #else 97*e4b17023SJohn Marino __gampl = _Tp(1) / __gamma(_Tp(1) + __mu); 98*e4b17023SJohn Marino __gammi = _Tp(1) / __gamma(_Tp(1) - __mu); 99*e4b17023SJohn Marino #endif 100*e4b17023SJohn Marino 101*e4b17023SJohn Marino if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon()) 102*e4b17023SJohn Marino __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e()); 103*e4b17023SJohn Marino else 104*e4b17023SJohn Marino __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu); 105*e4b17023SJohn Marino 106*e4b17023SJohn Marino __gam2 = (__gammi + __gampl) / (_Tp(2)); 107*e4b17023SJohn Marino 108*e4b17023SJohn Marino return; 109*e4b17023SJohn Marino } 110*e4b17023SJohn Marino 111*e4b17023SJohn Marino 112*e4b17023SJohn Marino /** 113*e4b17023SJohn Marino * @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann 114*e4b17023SJohn Marino * @f$ N_\nu(x) @f$ functions and their first derivatives 115*e4b17023SJohn Marino * @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively. 116*e4b17023SJohn Marino * These four functions are computed together for numerical 117*e4b17023SJohn Marino * stability. 118*e4b17023SJohn Marino * 119*e4b17023SJohn Marino * @param __nu The order of the Bessel functions. 120*e4b17023SJohn Marino * @param __x The argument of the Bessel functions. 121*e4b17023SJohn Marino * @param __Jnu The output Bessel function of the first kind. 122*e4b17023SJohn Marino * @param __Nnu The output Neumann function (Bessel function of the second kind). 123*e4b17023SJohn Marino * @param __Jpnu The output derivative of the Bessel function of the first kind. 124*e4b17023SJohn Marino * @param __Npnu The output derivative of the Neumann function. 125*e4b17023SJohn Marino */ 126*e4b17023SJohn Marino template <typename _Tp> 127*e4b17023SJohn Marino void __bessel_jn(const _Tp __nu,const _Tp __x,_Tp & __Jnu,_Tp & __Nnu,_Tp & __Jpnu,_Tp & __Npnu)128*e4b17023SJohn Marino __bessel_jn(const _Tp __nu, const _Tp __x, 129*e4b17023SJohn Marino _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu) 130*e4b17023SJohn Marino { 131*e4b17023SJohn Marino if (__x == _Tp(0)) 132*e4b17023SJohn Marino { 133*e4b17023SJohn Marino if (__nu == _Tp(0)) 134*e4b17023SJohn Marino { 135*e4b17023SJohn Marino __Jnu = _Tp(1); 136*e4b17023SJohn Marino __Jpnu = _Tp(0); 137*e4b17023SJohn Marino } 138*e4b17023SJohn Marino else if (__nu == _Tp(1)) 139*e4b17023SJohn Marino { 140*e4b17023SJohn Marino __Jnu = _Tp(0); 141*e4b17023SJohn Marino __Jpnu = _Tp(0.5L); 142*e4b17023SJohn Marino } 143*e4b17023SJohn Marino else 144*e4b17023SJohn Marino { 145*e4b17023SJohn Marino __Jnu = _Tp(0); 146*e4b17023SJohn Marino __Jpnu = _Tp(0); 147*e4b17023SJohn Marino } 148*e4b17023SJohn Marino __Nnu = -std::numeric_limits<_Tp>::infinity(); 149*e4b17023SJohn Marino __Npnu = std::numeric_limits<_Tp>::infinity(); 150*e4b17023SJohn Marino return; 151*e4b17023SJohn Marino } 152*e4b17023SJohn Marino 153*e4b17023SJohn Marino const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); 154*e4b17023SJohn Marino // When the multiplier is N i.e. 155*e4b17023SJohn Marino // fp_min = N * min() 156*e4b17023SJohn Marino // Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)! 157*e4b17023SJohn Marino //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min(); 158*e4b17023SJohn Marino const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min()); 159*e4b17023SJohn Marino const int __max_iter = 15000; 160*e4b17023SJohn Marino const _Tp __x_min = _Tp(2); 161*e4b17023SJohn Marino 162*e4b17023SJohn Marino const int __nl = (__x < __x_min 163*e4b17023SJohn Marino ? static_cast<int>(__nu + _Tp(0.5L)) 164*e4b17023SJohn Marino : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L)))); 165*e4b17023SJohn Marino 166*e4b17023SJohn Marino const _Tp __mu = __nu - __nl; 167*e4b17023SJohn Marino const _Tp __mu2 = __mu * __mu; 168*e4b17023SJohn Marino const _Tp __xi = _Tp(1) / __x; 169*e4b17023SJohn Marino const _Tp __xi2 = _Tp(2) * __xi; 170*e4b17023SJohn Marino _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi(); 171*e4b17023SJohn Marino int __isign = 1; 172*e4b17023SJohn Marino _Tp __h = __nu * __xi; 173*e4b17023SJohn Marino if (__h < __fp_min) 174*e4b17023SJohn Marino __h = __fp_min; 175*e4b17023SJohn Marino _Tp __b = __xi2 * __nu; 176*e4b17023SJohn Marino _Tp __d = _Tp(0); 177*e4b17023SJohn Marino _Tp __c = __h; 178*e4b17023SJohn Marino int __i; 179*e4b17023SJohn Marino for (__i = 1; __i <= __max_iter; ++__i) 180*e4b17023SJohn Marino { 181*e4b17023SJohn Marino __b += __xi2; 182*e4b17023SJohn Marino __d = __b - __d; 183*e4b17023SJohn Marino if (std::abs(__d) < __fp_min) 184*e4b17023SJohn Marino __d = __fp_min; 185*e4b17023SJohn Marino __c = __b - _Tp(1) / __c; 186*e4b17023SJohn Marino if (std::abs(__c) < __fp_min) 187*e4b17023SJohn Marino __c = __fp_min; 188*e4b17023SJohn Marino __d = _Tp(1) / __d; 189*e4b17023SJohn Marino const _Tp __del = __c * __d; 190*e4b17023SJohn Marino __h *= __del; 191*e4b17023SJohn Marino if (__d < _Tp(0)) 192*e4b17023SJohn Marino __isign = -__isign; 193*e4b17023SJohn Marino if (std::abs(__del - _Tp(1)) < __eps) 194*e4b17023SJohn Marino break; 195*e4b17023SJohn Marino } 196*e4b17023SJohn Marino if (__i > __max_iter) 197*e4b17023SJohn Marino std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; " 198*e4b17023SJohn Marino "try asymptotic expansion.")); 199*e4b17023SJohn Marino _Tp __Jnul = __isign * __fp_min; 200*e4b17023SJohn Marino _Tp __Jpnul = __h * __Jnul; 201*e4b17023SJohn Marino _Tp __Jnul1 = __Jnul; 202*e4b17023SJohn Marino _Tp __Jpnu1 = __Jpnul; 203*e4b17023SJohn Marino _Tp __fact = __nu * __xi; 204*e4b17023SJohn Marino for ( int __l = __nl; __l >= 1; --__l ) 205*e4b17023SJohn Marino { 206*e4b17023SJohn Marino const _Tp __Jnutemp = __fact * __Jnul + __Jpnul; 207*e4b17023SJohn Marino __fact -= __xi; 208*e4b17023SJohn Marino __Jpnul = __fact * __Jnutemp - __Jnul; 209*e4b17023SJohn Marino __Jnul = __Jnutemp; 210*e4b17023SJohn Marino } 211*e4b17023SJohn Marino if (__Jnul == _Tp(0)) 212*e4b17023SJohn Marino __Jnul = __eps; 213*e4b17023SJohn Marino _Tp __f= __Jpnul / __Jnul; 214*e4b17023SJohn Marino _Tp __Nmu, __Nnu1, __Npmu, __Jmu; 215*e4b17023SJohn Marino if (__x < __x_min) 216*e4b17023SJohn Marino { 217*e4b17023SJohn Marino const _Tp __x2 = __x / _Tp(2); 218*e4b17023SJohn Marino const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; 219*e4b17023SJohn Marino _Tp __fact = (std::abs(__pimu) < __eps 220*e4b17023SJohn Marino ? _Tp(1) : __pimu / std::sin(__pimu)); 221*e4b17023SJohn Marino _Tp __d = -std::log(__x2); 222*e4b17023SJohn Marino _Tp __e = __mu * __d; 223*e4b17023SJohn Marino _Tp __fact2 = (std::abs(__e) < __eps 224*e4b17023SJohn Marino ? _Tp(1) : std::sinh(__e) / __e); 225*e4b17023SJohn Marino _Tp __gam1, __gam2, __gampl, __gammi; 226*e4b17023SJohn Marino __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); 227*e4b17023SJohn Marino _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi()) 228*e4b17023SJohn Marino * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); 229*e4b17023SJohn Marino __e = std::exp(__e); 230*e4b17023SJohn Marino _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl); 231*e4b17023SJohn Marino _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi); 232*e4b17023SJohn Marino const _Tp __pimu2 = __pimu / _Tp(2); 233*e4b17023SJohn Marino _Tp __fact3 = (std::abs(__pimu2) < __eps 234*e4b17023SJohn Marino ? _Tp(1) : std::sin(__pimu2) / __pimu2 ); 235*e4b17023SJohn Marino _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3; 236*e4b17023SJohn Marino _Tp __c = _Tp(1); 237*e4b17023SJohn Marino __d = -__x2 * __x2; 238*e4b17023SJohn Marino _Tp __sum = __ff + __r * __q; 239*e4b17023SJohn Marino _Tp __sum1 = __p; 240*e4b17023SJohn Marino for (__i = 1; __i <= __max_iter; ++__i) 241*e4b17023SJohn Marino { 242*e4b17023SJohn Marino __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); 243*e4b17023SJohn Marino __c *= __d / _Tp(__i); 244*e4b17023SJohn Marino __p /= _Tp(__i) - __mu; 245*e4b17023SJohn Marino __q /= _Tp(__i) + __mu; 246*e4b17023SJohn Marino const _Tp __del = __c * (__ff + __r * __q); 247*e4b17023SJohn Marino __sum += __del; 248*e4b17023SJohn Marino const _Tp __del1 = __c * __p - __i * __del; 249*e4b17023SJohn Marino __sum1 += __del1; 250*e4b17023SJohn Marino if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) ) 251*e4b17023SJohn Marino break; 252*e4b17023SJohn Marino } 253*e4b17023SJohn Marino if ( __i > __max_iter ) 254*e4b17023SJohn Marino std::__throw_runtime_error(__N("Bessel y series failed to converge " 255*e4b17023SJohn Marino "in __bessel_jn.")); 256*e4b17023SJohn Marino __Nmu = -__sum; 257*e4b17023SJohn Marino __Nnu1 = -__sum1 * __xi2; 258*e4b17023SJohn Marino __Npmu = __mu * __xi * __Nmu - __Nnu1; 259*e4b17023SJohn Marino __Jmu = __w / (__Npmu - __f * __Nmu); 260*e4b17023SJohn Marino } 261*e4b17023SJohn Marino else 262*e4b17023SJohn Marino { 263*e4b17023SJohn Marino _Tp __a = _Tp(0.25L) - __mu2; 264*e4b17023SJohn Marino _Tp __q = _Tp(1); 265*e4b17023SJohn Marino _Tp __p = -__xi / _Tp(2); 266*e4b17023SJohn Marino _Tp __br = _Tp(2) * __x; 267*e4b17023SJohn Marino _Tp __bi = _Tp(2); 268*e4b17023SJohn Marino _Tp __fact = __a * __xi / (__p * __p + __q * __q); 269*e4b17023SJohn Marino _Tp __cr = __br + __q * __fact; 270*e4b17023SJohn Marino _Tp __ci = __bi + __p * __fact; 271*e4b17023SJohn Marino _Tp __den = __br * __br + __bi * __bi; 272*e4b17023SJohn Marino _Tp __dr = __br / __den; 273*e4b17023SJohn Marino _Tp __di = -__bi / __den; 274*e4b17023SJohn Marino _Tp __dlr = __cr * __dr - __ci * __di; 275*e4b17023SJohn Marino _Tp __dli = __cr * __di + __ci * __dr; 276*e4b17023SJohn Marino _Tp __temp = __p * __dlr - __q * __dli; 277*e4b17023SJohn Marino __q = __p * __dli + __q * __dlr; 278*e4b17023SJohn Marino __p = __temp; 279*e4b17023SJohn Marino int __i; 280*e4b17023SJohn Marino for (__i = 2; __i <= __max_iter; ++__i) 281*e4b17023SJohn Marino { 282*e4b17023SJohn Marino __a += _Tp(2 * (__i - 1)); 283*e4b17023SJohn Marino __bi += _Tp(2); 284*e4b17023SJohn Marino __dr = __a * __dr + __br; 285*e4b17023SJohn Marino __di = __a * __di + __bi; 286*e4b17023SJohn Marino if (std::abs(__dr) + std::abs(__di) < __fp_min) 287*e4b17023SJohn Marino __dr = __fp_min; 288*e4b17023SJohn Marino __fact = __a / (__cr * __cr + __ci * __ci); 289*e4b17023SJohn Marino __cr = __br + __cr * __fact; 290*e4b17023SJohn Marino __ci = __bi - __ci * __fact; 291*e4b17023SJohn Marino if (std::abs(__cr) + std::abs(__ci) < __fp_min) 292*e4b17023SJohn Marino __cr = __fp_min; 293*e4b17023SJohn Marino __den = __dr * __dr + __di * __di; 294*e4b17023SJohn Marino __dr /= __den; 295*e4b17023SJohn Marino __di /= -__den; 296*e4b17023SJohn Marino __dlr = __cr * __dr - __ci * __di; 297*e4b17023SJohn Marino __dli = __cr * __di + __ci * __dr; 298*e4b17023SJohn Marino __temp = __p * __dlr - __q * __dli; 299*e4b17023SJohn Marino __q = __p * __dli + __q * __dlr; 300*e4b17023SJohn Marino __p = __temp; 301*e4b17023SJohn Marino if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps) 302*e4b17023SJohn Marino break; 303*e4b17023SJohn Marino } 304*e4b17023SJohn Marino if (__i > __max_iter) 305*e4b17023SJohn Marino std::__throw_runtime_error(__N("Lentz's method failed " 306*e4b17023SJohn Marino "in __bessel_jn.")); 307*e4b17023SJohn Marino const _Tp __gam = (__p - __f) / __q; 308*e4b17023SJohn Marino __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q)); 309*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 310*e4b17023SJohn Marino __Jmu = std::tr1::copysign(__Jmu, __Jnul); 311*e4b17023SJohn Marino #else 312*e4b17023SJohn Marino if (__Jmu * __Jnul < _Tp(0)) 313*e4b17023SJohn Marino __Jmu = -__Jmu; 314*e4b17023SJohn Marino #endif 315*e4b17023SJohn Marino __Nmu = __gam * __Jmu; 316*e4b17023SJohn Marino __Npmu = (__p + __q / __gam) * __Nmu; 317*e4b17023SJohn Marino __Nnu1 = __mu * __xi * __Nmu - __Npmu; 318*e4b17023SJohn Marino } 319*e4b17023SJohn Marino __fact = __Jmu / __Jnul; 320*e4b17023SJohn Marino __Jnu = __fact * __Jnul1; 321*e4b17023SJohn Marino __Jpnu = __fact * __Jpnu1; 322*e4b17023SJohn Marino for (__i = 1; __i <= __nl; ++__i) 323*e4b17023SJohn Marino { 324*e4b17023SJohn Marino const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu; 325*e4b17023SJohn Marino __Nmu = __Nnu1; 326*e4b17023SJohn Marino __Nnu1 = __Nnutemp; 327*e4b17023SJohn Marino } 328*e4b17023SJohn Marino __Nnu = __Nmu; 329*e4b17023SJohn Marino __Npnu = __nu * __xi * __Nmu - __Nnu1; 330*e4b17023SJohn Marino 331*e4b17023SJohn Marino return; 332*e4b17023SJohn Marino } 333*e4b17023SJohn Marino 334*e4b17023SJohn Marino 335*e4b17023SJohn Marino /** 336*e4b17023SJohn Marino * @brief This routine computes the asymptotic cylindrical Bessel 337*e4b17023SJohn Marino * and Neumann functions of order nu: \f$ J_{\nu} \f$, 338*e4b17023SJohn Marino * \f$ N_{\nu} \f$. 339*e4b17023SJohn Marino * 340*e4b17023SJohn Marino * References: 341*e4b17023SJohn Marino * (1) Handbook of Mathematical Functions, 342*e4b17023SJohn Marino * ed. Milton Abramowitz and Irene A. Stegun, 343*e4b17023SJohn Marino * Dover Publications, 344*e4b17023SJohn Marino * Section 9 p. 364, Equations 9.2.5-9.2.10 345*e4b17023SJohn Marino * 346*e4b17023SJohn Marino * @param __nu The order of the Bessel functions. 347*e4b17023SJohn Marino * @param __x The argument of the Bessel functions. 348*e4b17023SJohn Marino * @param __Jnu The output Bessel function of the first kind. 349*e4b17023SJohn Marino * @param __Nnu The output Neumann function (Bessel function of the second kind). 350*e4b17023SJohn Marino */ 351*e4b17023SJohn Marino template <typename _Tp> 352*e4b17023SJohn Marino void __cyl_bessel_jn_asymp(const _Tp __nu,const _Tp __x,_Tp & __Jnu,_Tp & __Nnu)353*e4b17023SJohn Marino __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x, 354*e4b17023SJohn Marino _Tp & __Jnu, _Tp & __Nnu) 355*e4b17023SJohn Marino { 356*e4b17023SJohn Marino const _Tp __coef = std::sqrt(_Tp(2) 357*e4b17023SJohn Marino / (__numeric_constants<_Tp>::__pi() * __x)); 358*e4b17023SJohn Marino const _Tp __mu = _Tp(4) * __nu * __nu; 359*e4b17023SJohn Marino const _Tp __mum1 = __mu - _Tp(1); 360*e4b17023SJohn Marino const _Tp __mum9 = __mu - _Tp(9); 361*e4b17023SJohn Marino const _Tp __mum25 = __mu - _Tp(25); 362*e4b17023SJohn Marino const _Tp __mum49 = __mu - _Tp(49); 363*e4b17023SJohn Marino const _Tp __xx = _Tp(64) * __x * __x; 364*e4b17023SJohn Marino const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx) 365*e4b17023SJohn Marino * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx)); 366*e4b17023SJohn Marino const _Tp __Q = __mum1 / (_Tp(8) * __x) 367*e4b17023SJohn Marino * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx)); 368*e4b17023SJohn Marino 369*e4b17023SJohn Marino const _Tp __chi = __x - (__nu + _Tp(0.5L)) 370*e4b17023SJohn Marino * __numeric_constants<_Tp>::__pi_2(); 371*e4b17023SJohn Marino const _Tp __c = std::cos(__chi); 372*e4b17023SJohn Marino const _Tp __s = std::sin(__chi); 373*e4b17023SJohn Marino 374*e4b17023SJohn Marino __Jnu = __coef * (__c * __P - __s * __Q); 375*e4b17023SJohn Marino __Nnu = __coef * (__s * __P + __c * __Q); 376*e4b17023SJohn Marino 377*e4b17023SJohn Marino return; 378*e4b17023SJohn Marino } 379*e4b17023SJohn Marino 380*e4b17023SJohn Marino 381*e4b17023SJohn Marino /** 382*e4b17023SJohn Marino * @brief This routine returns the cylindrical Bessel functions 383*e4b17023SJohn Marino * of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$ 384*e4b17023SJohn Marino * by series expansion. 385*e4b17023SJohn Marino * 386*e4b17023SJohn Marino * The modified cylindrical Bessel function is: 387*e4b17023SJohn Marino * @f[ 388*e4b17023SJohn Marino * Z_{\nu}(x) = \sum_{k=0}^{\infty} 389*e4b17023SJohn Marino * \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} 390*e4b17023SJohn Marino * @f] 391*e4b17023SJohn Marino * where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for 392*e4b17023SJohn Marino * \f$ Z = I \f$ or \f$ J \f$ respectively. 393*e4b17023SJohn Marino * 394*e4b17023SJohn Marino * See Abramowitz & Stegun, 9.1.10 395*e4b17023SJohn Marino * Abramowitz & Stegun, 9.6.7 396*e4b17023SJohn Marino * (1) Handbook of Mathematical Functions, 397*e4b17023SJohn Marino * ed. Milton Abramowitz and Irene A. Stegun, 398*e4b17023SJohn Marino * Dover Publications, 399*e4b17023SJohn Marino * Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375 400*e4b17023SJohn Marino * 401*e4b17023SJohn Marino * @param __nu The order of the Bessel function. 402*e4b17023SJohn Marino * @param __x The argument of the Bessel function. 403*e4b17023SJohn Marino * @param __sgn The sign of the alternate terms 404*e4b17023SJohn Marino * -1 for the Bessel function of the first kind. 405*e4b17023SJohn Marino * +1 for the modified Bessel function of the first kind. 406*e4b17023SJohn Marino * @return The output Bessel function. 407*e4b17023SJohn Marino */ 408*e4b17023SJohn Marino template <typename _Tp> 409*e4b17023SJohn Marino _Tp __cyl_bessel_ij_series(const _Tp __nu,const _Tp __x,const _Tp __sgn,const unsigned int __max_iter)410*e4b17023SJohn Marino __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn, 411*e4b17023SJohn Marino const unsigned int __max_iter) 412*e4b17023SJohn Marino { 413*e4b17023SJohn Marino 414*e4b17023SJohn Marino const _Tp __x2 = __x / _Tp(2); 415*e4b17023SJohn Marino _Tp __fact = __nu * std::log(__x2); 416*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1 417*e4b17023SJohn Marino __fact -= std::tr1::lgamma(__nu + _Tp(1)); 418*e4b17023SJohn Marino #else 419*e4b17023SJohn Marino __fact -= __log_gamma(__nu + _Tp(1)); 420*e4b17023SJohn Marino #endif 421*e4b17023SJohn Marino __fact = std::exp(__fact); 422*e4b17023SJohn Marino const _Tp __xx4 = __sgn * __x2 * __x2; 423*e4b17023SJohn Marino _Tp __Jn = _Tp(1); 424*e4b17023SJohn Marino _Tp __term = _Tp(1); 425*e4b17023SJohn Marino 426*e4b17023SJohn Marino for (unsigned int __i = 1; __i < __max_iter; ++__i) 427*e4b17023SJohn Marino { 428*e4b17023SJohn Marino __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i))); 429*e4b17023SJohn Marino __Jn += __term; 430*e4b17023SJohn Marino if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon()) 431*e4b17023SJohn Marino break; 432*e4b17023SJohn Marino } 433*e4b17023SJohn Marino 434*e4b17023SJohn Marino return __fact * __Jn; 435*e4b17023SJohn Marino } 436*e4b17023SJohn Marino 437*e4b17023SJohn Marino 438*e4b17023SJohn Marino /** 439*e4b17023SJohn Marino * @brief Return the Bessel function of order \f$ \nu \f$: 440*e4b17023SJohn Marino * \f$ J_{\nu}(x) \f$. 441*e4b17023SJohn Marino * 442*e4b17023SJohn Marino * The cylindrical Bessel function is: 443*e4b17023SJohn Marino * @f[ 444*e4b17023SJohn Marino * J_{\nu}(x) = \sum_{k=0}^{\infty} 445*e4b17023SJohn Marino * \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} 446*e4b17023SJohn Marino * @f] 447*e4b17023SJohn Marino * 448*e4b17023SJohn Marino * @param __nu The order of the Bessel function. 449*e4b17023SJohn Marino * @param __x The argument of the Bessel function. 450*e4b17023SJohn Marino * @return The output Bessel function. 451*e4b17023SJohn Marino */ 452*e4b17023SJohn Marino template<typename _Tp> 453*e4b17023SJohn Marino _Tp __cyl_bessel_j(const _Tp __nu,const _Tp __x)454*e4b17023SJohn Marino __cyl_bessel_j(const _Tp __nu, const _Tp __x) 455*e4b17023SJohn Marino { 456*e4b17023SJohn Marino if (__nu < _Tp(0) || __x < _Tp(0)) 457*e4b17023SJohn Marino std::__throw_domain_error(__N("Bad argument " 458*e4b17023SJohn Marino "in __cyl_bessel_j.")); 459*e4b17023SJohn Marino else if (__isnan(__nu) || __isnan(__x)) 460*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 461*e4b17023SJohn Marino else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) 462*e4b17023SJohn Marino return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200); 463*e4b17023SJohn Marino else if (__x > _Tp(1000)) 464*e4b17023SJohn Marino { 465*e4b17023SJohn Marino _Tp __J_nu, __N_nu; 466*e4b17023SJohn Marino __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); 467*e4b17023SJohn Marino return __J_nu; 468*e4b17023SJohn Marino } 469*e4b17023SJohn Marino else 470*e4b17023SJohn Marino { 471*e4b17023SJohn Marino _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 472*e4b17023SJohn Marino __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 473*e4b17023SJohn Marino return __J_nu; 474*e4b17023SJohn Marino } 475*e4b17023SJohn Marino } 476*e4b17023SJohn Marino 477*e4b17023SJohn Marino 478*e4b17023SJohn Marino /** 479*e4b17023SJohn Marino * @brief Return the Neumann function of order \f$ \nu \f$: 480*e4b17023SJohn Marino * \f$ N_{\nu}(x) \f$. 481*e4b17023SJohn Marino * 482*e4b17023SJohn Marino * The Neumann function is defined by: 483*e4b17023SJohn Marino * @f[ 484*e4b17023SJohn Marino * N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} 485*e4b17023SJohn Marino * {\sin \nu\pi} 486*e4b17023SJohn Marino * @f] 487*e4b17023SJohn Marino * where for integral \f$ \nu = n \f$ a limit is taken: 488*e4b17023SJohn Marino * \f$ lim_{\nu \to n} \f$. 489*e4b17023SJohn Marino * 490*e4b17023SJohn Marino * @param __nu The order of the Neumann function. 491*e4b17023SJohn Marino * @param __x The argument of the Neumann function. 492*e4b17023SJohn Marino * @return The output Neumann function. 493*e4b17023SJohn Marino */ 494*e4b17023SJohn Marino template<typename _Tp> 495*e4b17023SJohn Marino _Tp __cyl_neumann_n(const _Tp __nu,const _Tp __x)496*e4b17023SJohn Marino __cyl_neumann_n(const _Tp __nu, const _Tp __x) 497*e4b17023SJohn Marino { 498*e4b17023SJohn Marino if (__nu < _Tp(0) || __x < _Tp(0)) 499*e4b17023SJohn Marino std::__throw_domain_error(__N("Bad argument " 500*e4b17023SJohn Marino "in __cyl_neumann_n.")); 501*e4b17023SJohn Marino else if (__isnan(__nu) || __isnan(__x)) 502*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 503*e4b17023SJohn Marino else if (__x > _Tp(1000)) 504*e4b17023SJohn Marino { 505*e4b17023SJohn Marino _Tp __J_nu, __N_nu; 506*e4b17023SJohn Marino __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); 507*e4b17023SJohn Marino return __N_nu; 508*e4b17023SJohn Marino } 509*e4b17023SJohn Marino else 510*e4b17023SJohn Marino { 511*e4b17023SJohn Marino _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 512*e4b17023SJohn Marino __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 513*e4b17023SJohn Marino return __N_nu; 514*e4b17023SJohn Marino } 515*e4b17023SJohn Marino } 516*e4b17023SJohn Marino 517*e4b17023SJohn Marino 518*e4b17023SJohn Marino /** 519*e4b17023SJohn Marino * @brief Compute the spherical Bessel @f$ j_n(x) @f$ 520*e4b17023SJohn Marino * and Neumann @f$ n_n(x) @f$ functions and their first 521*e4b17023SJohn Marino * derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$ 522*e4b17023SJohn Marino * respectively. 523*e4b17023SJohn Marino * 524*e4b17023SJohn Marino * @param __n The order of the spherical Bessel function. 525*e4b17023SJohn Marino * @param __x The argument of the spherical Bessel function. 526*e4b17023SJohn Marino * @param __j_n The output spherical Bessel function. 527*e4b17023SJohn Marino * @param __n_n The output spherical Neumann function. 528*e4b17023SJohn Marino * @param __jp_n The output derivative of the spherical Bessel function. 529*e4b17023SJohn Marino * @param __np_n The output derivative of the spherical Neumann function. 530*e4b17023SJohn Marino */ 531*e4b17023SJohn Marino template <typename _Tp> 532*e4b17023SJohn Marino void __sph_bessel_jn(const unsigned int __n,const _Tp __x,_Tp & __j_n,_Tp & __n_n,_Tp & __jp_n,_Tp & __np_n)533*e4b17023SJohn Marino __sph_bessel_jn(const unsigned int __n, const _Tp __x, 534*e4b17023SJohn Marino _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n) 535*e4b17023SJohn Marino { 536*e4b17023SJohn Marino const _Tp __nu = _Tp(__n) + _Tp(0.5L); 537*e4b17023SJohn Marino 538*e4b17023SJohn Marino _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; 539*e4b17023SJohn Marino __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); 540*e4b17023SJohn Marino 541*e4b17023SJohn Marino const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() 542*e4b17023SJohn Marino / std::sqrt(__x); 543*e4b17023SJohn Marino 544*e4b17023SJohn Marino __j_n = __factor * __J_nu; 545*e4b17023SJohn Marino __n_n = __factor * __N_nu; 546*e4b17023SJohn Marino __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x); 547*e4b17023SJohn Marino __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x); 548*e4b17023SJohn Marino 549*e4b17023SJohn Marino return; 550*e4b17023SJohn Marino } 551*e4b17023SJohn Marino 552*e4b17023SJohn Marino 553*e4b17023SJohn Marino /** 554*e4b17023SJohn Marino * @brief Return the spherical Bessel function 555*e4b17023SJohn Marino * @f$ j_n(x) @f$ of order n. 556*e4b17023SJohn Marino * 557*e4b17023SJohn Marino * The spherical Bessel function is defined by: 558*e4b17023SJohn Marino * @f[ 559*e4b17023SJohn Marino * j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) 560*e4b17023SJohn Marino * @f] 561*e4b17023SJohn Marino * 562*e4b17023SJohn Marino * @param __n The order of the spherical Bessel function. 563*e4b17023SJohn Marino * @param __x The argument of the spherical Bessel function. 564*e4b17023SJohn Marino * @return The output spherical Bessel function. 565*e4b17023SJohn Marino */ 566*e4b17023SJohn Marino template <typename _Tp> 567*e4b17023SJohn Marino _Tp __sph_bessel(const unsigned int __n,const _Tp __x)568*e4b17023SJohn Marino __sph_bessel(const unsigned int __n, const _Tp __x) 569*e4b17023SJohn Marino { 570*e4b17023SJohn Marino if (__x < _Tp(0)) 571*e4b17023SJohn Marino std::__throw_domain_error(__N("Bad argument " 572*e4b17023SJohn Marino "in __sph_bessel.")); 573*e4b17023SJohn Marino else if (__isnan(__x)) 574*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 575*e4b17023SJohn Marino else if (__x == _Tp(0)) 576*e4b17023SJohn Marino { 577*e4b17023SJohn Marino if (__n == 0) 578*e4b17023SJohn Marino return _Tp(1); 579*e4b17023SJohn Marino else 580*e4b17023SJohn Marino return _Tp(0); 581*e4b17023SJohn Marino } 582*e4b17023SJohn Marino else 583*e4b17023SJohn Marino { 584*e4b17023SJohn Marino _Tp __j_n, __n_n, __jp_n, __np_n; 585*e4b17023SJohn Marino __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); 586*e4b17023SJohn Marino return __j_n; 587*e4b17023SJohn Marino } 588*e4b17023SJohn Marino } 589*e4b17023SJohn Marino 590*e4b17023SJohn Marino 591*e4b17023SJohn Marino /** 592*e4b17023SJohn Marino * @brief Return the spherical Neumann function 593*e4b17023SJohn Marino * @f$ n_n(x) @f$. 594*e4b17023SJohn Marino * 595*e4b17023SJohn Marino * The spherical Neumann function is defined by: 596*e4b17023SJohn Marino * @f[ 597*e4b17023SJohn Marino * n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) 598*e4b17023SJohn Marino * @f] 599*e4b17023SJohn Marino * 600*e4b17023SJohn Marino * @param __n The order of the spherical Neumann function. 601*e4b17023SJohn Marino * @param __x The argument of the spherical Neumann function. 602*e4b17023SJohn Marino * @return The output spherical Neumann function. 603*e4b17023SJohn Marino */ 604*e4b17023SJohn Marino template <typename _Tp> 605*e4b17023SJohn Marino _Tp __sph_neumann(const unsigned int __n,const _Tp __x)606*e4b17023SJohn Marino __sph_neumann(const unsigned int __n, const _Tp __x) 607*e4b17023SJohn Marino { 608*e4b17023SJohn Marino if (__x < _Tp(0)) 609*e4b17023SJohn Marino std::__throw_domain_error(__N("Bad argument " 610*e4b17023SJohn Marino "in __sph_neumann.")); 611*e4b17023SJohn Marino else if (__isnan(__x)) 612*e4b17023SJohn Marino return std::numeric_limits<_Tp>::quiet_NaN(); 613*e4b17023SJohn Marino else if (__x == _Tp(0)) 614*e4b17023SJohn Marino return -std::numeric_limits<_Tp>::infinity(); 615*e4b17023SJohn Marino else 616*e4b17023SJohn Marino { 617*e4b17023SJohn Marino _Tp __j_n, __n_n, __jp_n, __np_n; 618*e4b17023SJohn Marino __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); 619*e4b17023SJohn Marino return __n_n; 620*e4b17023SJohn Marino } 621*e4b17023SJohn Marino } 622*e4b17023SJohn Marino 623*e4b17023SJohn Marino _GLIBCXX_END_NAMESPACE_VERSION 624*e4b17023SJohn Marino } // namespace std::tr1::__detail 625*e4b17023SJohn Marino } 626*e4b17023SJohn Marino } 627*e4b17023SJohn Marino 628*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 629