xref: /dflybsd-src/contrib/gcc-4.7/libstdc++-v3/include/tr1/bessel_function.tcc (revision 04febcfb30580676d3e95f58a16c5137ee478b32)
1*e4b17023SJohn Marino // Special functions -*- C++ -*-
2*e4b17023SJohn Marino 
3*e4b17023SJohn Marino // Copyright (C) 2006, 2007, 2008, 2009, 2010
4*e4b17023SJohn Marino // Free Software Foundation, Inc.
5*e4b17023SJohn Marino //
6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library.  This library is free
7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the
8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the
9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option)
10*e4b17023SJohn Marino // any later version.
11*e4b17023SJohn Marino //
12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful,
13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of
14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15*e4b17023SJohn Marino // GNU General Public License for more details.
16*e4b17023SJohn Marino //
17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional
18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version
19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation.
20*e4b17023SJohn Marino 
21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and
22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program;
23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>.
25*e4b17023SJohn Marino 
26*e4b17023SJohn Marino /** @file tr1/bessel_function.tcc
27*e4b17023SJohn Marino  *  This is an internal header file, included by other library headers.
28*e4b17023SJohn Marino  *  Do not attempt to use it directly. @headername{tr1/cmath}
29*e4b17023SJohn Marino  */
30*e4b17023SJohn Marino 
31*e4b17023SJohn Marino //
32*e4b17023SJohn Marino // ISO C++ 14882 TR1: 5.2  Special functions
33*e4b17023SJohn Marino //
34*e4b17023SJohn Marino 
35*e4b17023SJohn Marino // Written by Edward Smith-Rowland.
36*e4b17023SJohn Marino //
37*e4b17023SJohn Marino // References:
38*e4b17023SJohn Marino //   (1) Handbook of Mathematical Functions,
39*e4b17023SJohn Marino //       ed. Milton Abramowitz and Irene A. Stegun,
40*e4b17023SJohn Marino //       Dover Publications,
41*e4b17023SJohn Marino //       Section 9, pp. 355-434, Section 10 pp. 435-478
42*e4b17023SJohn Marino //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
43*e4b17023SJohn Marino //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
44*e4b17023SJohn Marino //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
45*e4b17023SJohn Marino //       2nd ed, pp. 240-245
46*e4b17023SJohn Marino 
47*e4b17023SJohn Marino #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
48*e4b17023SJohn Marino #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
49*e4b17023SJohn Marino 
50*e4b17023SJohn Marino #include "special_function_util.h"
51*e4b17023SJohn Marino 
52*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default)
53*e4b17023SJohn Marino {
54*e4b17023SJohn Marino namespace tr1
55*e4b17023SJohn Marino {
56*e4b17023SJohn Marino   // [5.2] Special functions
57*e4b17023SJohn Marino 
58*e4b17023SJohn Marino   // Implementation-space details.
59*e4b17023SJohn Marino   namespace __detail
60*e4b17023SJohn Marino   {
61*e4b17023SJohn Marino   _GLIBCXX_BEGIN_NAMESPACE_VERSION
62*e4b17023SJohn Marino 
63*e4b17023SJohn Marino     /**
64*e4b17023SJohn Marino      *   @brief Compute the gamma functions required by the Temme series
65*e4b17023SJohn Marino      *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
66*e4b17023SJohn Marino      *   @f[
67*e4b17023SJohn Marino      *     \Gamma_1 = \frac{1}{2\mu}
68*e4b17023SJohn Marino      *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
69*e4b17023SJohn Marino      *   @f]
70*e4b17023SJohn Marino      *   and
71*e4b17023SJohn Marino      *   @f[
72*e4b17023SJohn Marino      *     \Gamma_2 = \frac{1}{2}
73*e4b17023SJohn Marino      *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
74*e4b17023SJohn Marino      *   @f]
75*e4b17023SJohn Marino      *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
76*e4b17023SJohn Marino      *   is the nearest integer to @f$ \nu @f$.
77*e4b17023SJohn Marino      *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
78*e4b17023SJohn Marino      *   are returned as well.
79*e4b17023SJohn Marino      *
80*e4b17023SJohn Marino      *   The accuracy requirements on this are exquisite.
81*e4b17023SJohn Marino      *
82*e4b17023SJohn Marino      *   @param __mu     The input parameter of the gamma functions.
83*e4b17023SJohn Marino      *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
84*e4b17023SJohn Marino      *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
85*e4b17023SJohn Marino      *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
86*e4b17023SJohn Marino      *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
87*e4b17023SJohn Marino      */
88*e4b17023SJohn Marino     template <typename _Tp>
89*e4b17023SJohn Marino     void
__gamma_temme(const _Tp __mu,_Tp & __gam1,_Tp & __gam2,_Tp & __gampl,_Tp & __gammi)90*e4b17023SJohn Marino     __gamma_temme(const _Tp __mu,
91*e4b17023SJohn Marino                    _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
92*e4b17023SJohn Marino     {
93*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
94*e4b17023SJohn Marino       __gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
95*e4b17023SJohn Marino       __gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
96*e4b17023SJohn Marino #else
97*e4b17023SJohn Marino       __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
98*e4b17023SJohn Marino       __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
99*e4b17023SJohn Marino #endif
100*e4b17023SJohn Marino 
101*e4b17023SJohn Marino       if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
102*e4b17023SJohn Marino         __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
103*e4b17023SJohn Marino       else
104*e4b17023SJohn Marino         __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
105*e4b17023SJohn Marino 
106*e4b17023SJohn Marino       __gam2 = (__gammi + __gampl) / (_Tp(2));
107*e4b17023SJohn Marino 
108*e4b17023SJohn Marino       return;
109*e4b17023SJohn Marino     }
110*e4b17023SJohn Marino 
111*e4b17023SJohn Marino 
112*e4b17023SJohn Marino     /**
113*e4b17023SJohn Marino      *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
114*e4b17023SJohn Marino      *           @f$ N_\nu(x) @f$ functions and their first derivatives
115*e4b17023SJohn Marino      *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
116*e4b17023SJohn Marino      *           These four functions are computed together for numerical
117*e4b17023SJohn Marino      *           stability.
118*e4b17023SJohn Marino      *
119*e4b17023SJohn Marino      *   @param  __nu  The order of the Bessel functions.
120*e4b17023SJohn Marino      *   @param  __x   The argument of the Bessel functions.
121*e4b17023SJohn Marino      *   @param  __Jnu  The output Bessel function of the first kind.
122*e4b17023SJohn Marino      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
123*e4b17023SJohn Marino      *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
124*e4b17023SJohn Marino      *   @param  __Npnu  The output derivative of the Neumann function.
125*e4b17023SJohn Marino      */
126*e4b17023SJohn Marino     template <typename _Tp>
127*e4b17023SJohn Marino     void
__bessel_jn(const _Tp __nu,const _Tp __x,_Tp & __Jnu,_Tp & __Nnu,_Tp & __Jpnu,_Tp & __Npnu)128*e4b17023SJohn Marino     __bessel_jn(const _Tp __nu, const _Tp __x,
129*e4b17023SJohn Marino                 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
130*e4b17023SJohn Marino     {
131*e4b17023SJohn Marino       if (__x == _Tp(0))
132*e4b17023SJohn Marino         {
133*e4b17023SJohn Marino           if (__nu == _Tp(0))
134*e4b17023SJohn Marino             {
135*e4b17023SJohn Marino               __Jnu = _Tp(1);
136*e4b17023SJohn Marino               __Jpnu = _Tp(0);
137*e4b17023SJohn Marino             }
138*e4b17023SJohn Marino           else if (__nu == _Tp(1))
139*e4b17023SJohn Marino             {
140*e4b17023SJohn Marino               __Jnu = _Tp(0);
141*e4b17023SJohn Marino               __Jpnu = _Tp(0.5L);
142*e4b17023SJohn Marino             }
143*e4b17023SJohn Marino           else
144*e4b17023SJohn Marino             {
145*e4b17023SJohn Marino               __Jnu = _Tp(0);
146*e4b17023SJohn Marino               __Jpnu = _Tp(0);
147*e4b17023SJohn Marino             }
148*e4b17023SJohn Marino           __Nnu = -std::numeric_limits<_Tp>::infinity();
149*e4b17023SJohn Marino           __Npnu = std::numeric_limits<_Tp>::infinity();
150*e4b17023SJohn Marino           return;
151*e4b17023SJohn Marino         }
152*e4b17023SJohn Marino 
153*e4b17023SJohn Marino       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
154*e4b17023SJohn Marino       //  When the multiplier is N i.e.
155*e4b17023SJohn Marino       //  fp_min = N * min()
156*e4b17023SJohn Marino       //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
157*e4b17023SJohn Marino       //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
158*e4b17023SJohn Marino       const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
159*e4b17023SJohn Marino       const int __max_iter = 15000;
160*e4b17023SJohn Marino       const _Tp __x_min = _Tp(2);
161*e4b17023SJohn Marino 
162*e4b17023SJohn Marino       const int __nl = (__x < __x_min
163*e4b17023SJohn Marino                     ? static_cast<int>(__nu + _Tp(0.5L))
164*e4b17023SJohn Marino                     : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
165*e4b17023SJohn Marino 
166*e4b17023SJohn Marino       const _Tp __mu = __nu - __nl;
167*e4b17023SJohn Marino       const _Tp __mu2 = __mu * __mu;
168*e4b17023SJohn Marino       const _Tp __xi = _Tp(1) / __x;
169*e4b17023SJohn Marino       const _Tp __xi2 = _Tp(2) * __xi;
170*e4b17023SJohn Marino       _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
171*e4b17023SJohn Marino       int __isign = 1;
172*e4b17023SJohn Marino       _Tp __h = __nu * __xi;
173*e4b17023SJohn Marino       if (__h < __fp_min)
174*e4b17023SJohn Marino         __h = __fp_min;
175*e4b17023SJohn Marino       _Tp __b = __xi2 * __nu;
176*e4b17023SJohn Marino       _Tp __d = _Tp(0);
177*e4b17023SJohn Marino       _Tp __c = __h;
178*e4b17023SJohn Marino       int __i;
179*e4b17023SJohn Marino       for (__i = 1; __i <= __max_iter; ++__i)
180*e4b17023SJohn Marino         {
181*e4b17023SJohn Marino           __b += __xi2;
182*e4b17023SJohn Marino           __d = __b - __d;
183*e4b17023SJohn Marino           if (std::abs(__d) < __fp_min)
184*e4b17023SJohn Marino             __d = __fp_min;
185*e4b17023SJohn Marino           __c = __b - _Tp(1) / __c;
186*e4b17023SJohn Marino           if (std::abs(__c) < __fp_min)
187*e4b17023SJohn Marino             __c = __fp_min;
188*e4b17023SJohn Marino           __d = _Tp(1) / __d;
189*e4b17023SJohn Marino           const _Tp __del = __c * __d;
190*e4b17023SJohn Marino           __h *= __del;
191*e4b17023SJohn Marino           if (__d < _Tp(0))
192*e4b17023SJohn Marino             __isign = -__isign;
193*e4b17023SJohn Marino           if (std::abs(__del - _Tp(1)) < __eps)
194*e4b17023SJohn Marino             break;
195*e4b17023SJohn Marino         }
196*e4b17023SJohn Marino       if (__i > __max_iter)
197*e4b17023SJohn Marino         std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
198*e4b17023SJohn Marino                                        "try asymptotic expansion."));
199*e4b17023SJohn Marino       _Tp __Jnul = __isign * __fp_min;
200*e4b17023SJohn Marino       _Tp __Jpnul = __h * __Jnul;
201*e4b17023SJohn Marino       _Tp __Jnul1 = __Jnul;
202*e4b17023SJohn Marino       _Tp __Jpnu1 = __Jpnul;
203*e4b17023SJohn Marino       _Tp __fact = __nu * __xi;
204*e4b17023SJohn Marino       for ( int __l = __nl; __l >= 1; --__l )
205*e4b17023SJohn Marino         {
206*e4b17023SJohn Marino           const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
207*e4b17023SJohn Marino           __fact -= __xi;
208*e4b17023SJohn Marino           __Jpnul = __fact * __Jnutemp - __Jnul;
209*e4b17023SJohn Marino           __Jnul = __Jnutemp;
210*e4b17023SJohn Marino         }
211*e4b17023SJohn Marino       if (__Jnul == _Tp(0))
212*e4b17023SJohn Marino         __Jnul = __eps;
213*e4b17023SJohn Marino       _Tp __f= __Jpnul / __Jnul;
214*e4b17023SJohn Marino       _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
215*e4b17023SJohn Marino       if (__x < __x_min)
216*e4b17023SJohn Marino         {
217*e4b17023SJohn Marino           const _Tp __x2 = __x / _Tp(2);
218*e4b17023SJohn Marino           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
219*e4b17023SJohn Marino           _Tp __fact = (std::abs(__pimu) < __eps
220*e4b17023SJohn Marino                       ? _Tp(1) : __pimu / std::sin(__pimu));
221*e4b17023SJohn Marino           _Tp __d = -std::log(__x2);
222*e4b17023SJohn Marino           _Tp __e = __mu * __d;
223*e4b17023SJohn Marino           _Tp __fact2 = (std::abs(__e) < __eps
224*e4b17023SJohn Marino                        ? _Tp(1) : std::sinh(__e) / __e);
225*e4b17023SJohn Marino           _Tp __gam1, __gam2, __gampl, __gammi;
226*e4b17023SJohn Marino           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
227*e4b17023SJohn Marino           _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
228*e4b17023SJohn Marino                    * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
229*e4b17023SJohn Marino           __e = std::exp(__e);
230*e4b17023SJohn Marino           _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
231*e4b17023SJohn Marino           _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
232*e4b17023SJohn Marino           const _Tp __pimu2 = __pimu / _Tp(2);
233*e4b17023SJohn Marino           _Tp __fact3 = (std::abs(__pimu2) < __eps
234*e4b17023SJohn Marino                        ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
235*e4b17023SJohn Marino           _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
236*e4b17023SJohn Marino           _Tp __c = _Tp(1);
237*e4b17023SJohn Marino           __d = -__x2 * __x2;
238*e4b17023SJohn Marino           _Tp __sum = __ff + __r * __q;
239*e4b17023SJohn Marino           _Tp __sum1 = __p;
240*e4b17023SJohn Marino           for (__i = 1; __i <= __max_iter; ++__i)
241*e4b17023SJohn Marino             {
242*e4b17023SJohn Marino               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
243*e4b17023SJohn Marino               __c *= __d / _Tp(__i);
244*e4b17023SJohn Marino               __p /= _Tp(__i) - __mu;
245*e4b17023SJohn Marino               __q /= _Tp(__i) + __mu;
246*e4b17023SJohn Marino               const _Tp __del = __c * (__ff + __r * __q);
247*e4b17023SJohn Marino               __sum += __del;
248*e4b17023SJohn Marino               const _Tp __del1 = __c * __p - __i * __del;
249*e4b17023SJohn Marino               __sum1 += __del1;
250*e4b17023SJohn Marino               if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
251*e4b17023SJohn Marino                 break;
252*e4b17023SJohn Marino             }
253*e4b17023SJohn Marino           if ( __i > __max_iter )
254*e4b17023SJohn Marino             std::__throw_runtime_error(__N("Bessel y series failed to converge "
255*e4b17023SJohn Marino                                            "in __bessel_jn."));
256*e4b17023SJohn Marino           __Nmu = -__sum;
257*e4b17023SJohn Marino           __Nnu1 = -__sum1 * __xi2;
258*e4b17023SJohn Marino           __Npmu = __mu * __xi * __Nmu - __Nnu1;
259*e4b17023SJohn Marino           __Jmu = __w / (__Npmu - __f * __Nmu);
260*e4b17023SJohn Marino         }
261*e4b17023SJohn Marino       else
262*e4b17023SJohn Marino         {
263*e4b17023SJohn Marino           _Tp __a = _Tp(0.25L) - __mu2;
264*e4b17023SJohn Marino           _Tp __q = _Tp(1);
265*e4b17023SJohn Marino           _Tp __p = -__xi / _Tp(2);
266*e4b17023SJohn Marino           _Tp __br = _Tp(2) * __x;
267*e4b17023SJohn Marino           _Tp __bi = _Tp(2);
268*e4b17023SJohn Marino           _Tp __fact = __a * __xi / (__p * __p + __q * __q);
269*e4b17023SJohn Marino           _Tp __cr = __br + __q * __fact;
270*e4b17023SJohn Marino           _Tp __ci = __bi + __p * __fact;
271*e4b17023SJohn Marino           _Tp __den = __br * __br + __bi * __bi;
272*e4b17023SJohn Marino           _Tp __dr = __br / __den;
273*e4b17023SJohn Marino           _Tp __di = -__bi / __den;
274*e4b17023SJohn Marino           _Tp __dlr = __cr * __dr - __ci * __di;
275*e4b17023SJohn Marino           _Tp __dli = __cr * __di + __ci * __dr;
276*e4b17023SJohn Marino           _Tp __temp = __p * __dlr - __q * __dli;
277*e4b17023SJohn Marino           __q = __p * __dli + __q * __dlr;
278*e4b17023SJohn Marino           __p = __temp;
279*e4b17023SJohn Marino           int __i;
280*e4b17023SJohn Marino           for (__i = 2; __i <= __max_iter; ++__i)
281*e4b17023SJohn Marino             {
282*e4b17023SJohn Marino               __a += _Tp(2 * (__i - 1));
283*e4b17023SJohn Marino               __bi += _Tp(2);
284*e4b17023SJohn Marino               __dr = __a * __dr + __br;
285*e4b17023SJohn Marino               __di = __a * __di + __bi;
286*e4b17023SJohn Marino               if (std::abs(__dr) + std::abs(__di) < __fp_min)
287*e4b17023SJohn Marino                 __dr = __fp_min;
288*e4b17023SJohn Marino               __fact = __a / (__cr * __cr + __ci * __ci);
289*e4b17023SJohn Marino               __cr = __br + __cr * __fact;
290*e4b17023SJohn Marino               __ci = __bi - __ci * __fact;
291*e4b17023SJohn Marino               if (std::abs(__cr) + std::abs(__ci) < __fp_min)
292*e4b17023SJohn Marino                 __cr = __fp_min;
293*e4b17023SJohn Marino               __den = __dr * __dr + __di * __di;
294*e4b17023SJohn Marino               __dr /= __den;
295*e4b17023SJohn Marino               __di /= -__den;
296*e4b17023SJohn Marino               __dlr = __cr * __dr - __ci * __di;
297*e4b17023SJohn Marino               __dli = __cr * __di + __ci * __dr;
298*e4b17023SJohn Marino               __temp = __p * __dlr - __q * __dli;
299*e4b17023SJohn Marino               __q = __p * __dli + __q * __dlr;
300*e4b17023SJohn Marino               __p = __temp;
301*e4b17023SJohn Marino               if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
302*e4b17023SJohn Marino                 break;
303*e4b17023SJohn Marino           }
304*e4b17023SJohn Marino           if (__i > __max_iter)
305*e4b17023SJohn Marino             std::__throw_runtime_error(__N("Lentz's method failed "
306*e4b17023SJohn Marino                                            "in __bessel_jn."));
307*e4b17023SJohn Marino           const _Tp __gam = (__p - __f) / __q;
308*e4b17023SJohn Marino           __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
309*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
310*e4b17023SJohn Marino           __Jmu = std::tr1::copysign(__Jmu, __Jnul);
311*e4b17023SJohn Marino #else
312*e4b17023SJohn Marino           if (__Jmu * __Jnul < _Tp(0))
313*e4b17023SJohn Marino             __Jmu = -__Jmu;
314*e4b17023SJohn Marino #endif
315*e4b17023SJohn Marino           __Nmu = __gam * __Jmu;
316*e4b17023SJohn Marino           __Npmu = (__p + __q / __gam) * __Nmu;
317*e4b17023SJohn Marino           __Nnu1 = __mu * __xi * __Nmu - __Npmu;
318*e4b17023SJohn Marino       }
319*e4b17023SJohn Marino       __fact = __Jmu / __Jnul;
320*e4b17023SJohn Marino       __Jnu = __fact * __Jnul1;
321*e4b17023SJohn Marino       __Jpnu = __fact * __Jpnu1;
322*e4b17023SJohn Marino       for (__i = 1; __i <= __nl; ++__i)
323*e4b17023SJohn Marino         {
324*e4b17023SJohn Marino           const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
325*e4b17023SJohn Marino           __Nmu = __Nnu1;
326*e4b17023SJohn Marino           __Nnu1 = __Nnutemp;
327*e4b17023SJohn Marino         }
328*e4b17023SJohn Marino       __Nnu = __Nmu;
329*e4b17023SJohn Marino       __Npnu = __nu * __xi * __Nmu - __Nnu1;
330*e4b17023SJohn Marino 
331*e4b17023SJohn Marino       return;
332*e4b17023SJohn Marino     }
333*e4b17023SJohn Marino 
334*e4b17023SJohn Marino 
335*e4b17023SJohn Marino     /**
336*e4b17023SJohn Marino      *   @brief This routine computes the asymptotic cylindrical Bessel
337*e4b17023SJohn Marino      *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
338*e4b17023SJohn Marino      *          \f$ N_{\nu} \f$.
339*e4b17023SJohn Marino      *
340*e4b17023SJohn Marino      *   References:
341*e4b17023SJohn Marino      *    (1) Handbook of Mathematical Functions,
342*e4b17023SJohn Marino      *        ed. Milton Abramowitz and Irene A. Stegun,
343*e4b17023SJohn Marino      *        Dover Publications,
344*e4b17023SJohn Marino      *        Section 9 p. 364, Equations 9.2.5-9.2.10
345*e4b17023SJohn Marino      *
346*e4b17023SJohn Marino      *   @param  __nu  The order of the Bessel functions.
347*e4b17023SJohn Marino      *   @param  __x   The argument of the Bessel functions.
348*e4b17023SJohn Marino      *   @param  __Jnu  The output Bessel function of the first kind.
349*e4b17023SJohn Marino      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
350*e4b17023SJohn Marino      */
351*e4b17023SJohn Marino     template <typename _Tp>
352*e4b17023SJohn Marino     void
__cyl_bessel_jn_asymp(const _Tp __nu,const _Tp __x,_Tp & __Jnu,_Tp & __Nnu)353*e4b17023SJohn Marino     __cyl_bessel_jn_asymp(const _Tp __nu, const _Tp __x,
354*e4b17023SJohn Marino                           _Tp & __Jnu, _Tp & __Nnu)
355*e4b17023SJohn Marino     {
356*e4b17023SJohn Marino       const _Tp __coef = std::sqrt(_Tp(2)
357*e4b17023SJohn Marino                              / (__numeric_constants<_Tp>::__pi() * __x));
358*e4b17023SJohn Marino       const _Tp __mu   = _Tp(4) * __nu * __nu;
359*e4b17023SJohn Marino       const _Tp __mum1 = __mu - _Tp(1);
360*e4b17023SJohn Marino       const _Tp __mum9 = __mu - _Tp(9);
361*e4b17023SJohn Marino       const _Tp __mum25 = __mu - _Tp(25);
362*e4b17023SJohn Marino       const _Tp __mum49 = __mu - _Tp(49);
363*e4b17023SJohn Marino       const _Tp __xx = _Tp(64) * __x * __x;
364*e4b17023SJohn Marino       const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
365*e4b17023SJohn Marino                     * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
366*e4b17023SJohn Marino       const _Tp __Q = __mum1 / (_Tp(8) * __x)
367*e4b17023SJohn Marino                     * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
368*e4b17023SJohn Marino 
369*e4b17023SJohn Marino       const _Tp __chi = __x - (__nu + _Tp(0.5L))
370*e4b17023SJohn Marino                             * __numeric_constants<_Tp>::__pi_2();
371*e4b17023SJohn Marino       const _Tp __c = std::cos(__chi);
372*e4b17023SJohn Marino       const _Tp __s = std::sin(__chi);
373*e4b17023SJohn Marino 
374*e4b17023SJohn Marino       __Jnu = __coef * (__c * __P - __s * __Q);
375*e4b17023SJohn Marino       __Nnu = __coef * (__s * __P + __c * __Q);
376*e4b17023SJohn Marino 
377*e4b17023SJohn Marino       return;
378*e4b17023SJohn Marino     }
379*e4b17023SJohn Marino 
380*e4b17023SJohn Marino 
381*e4b17023SJohn Marino     /**
382*e4b17023SJohn Marino      *   @brief This routine returns the cylindrical Bessel functions
383*e4b17023SJohn Marino      *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
384*e4b17023SJohn Marino      *          by series expansion.
385*e4b17023SJohn Marino      *
386*e4b17023SJohn Marino      *   The modified cylindrical Bessel function is:
387*e4b17023SJohn Marino      *   @f[
388*e4b17023SJohn Marino      *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
389*e4b17023SJohn Marino      *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
390*e4b17023SJohn Marino      *   @f]
391*e4b17023SJohn Marino      *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
392*e4b17023SJohn Marino      *   \f$ Z = I \f$ or \f$ J \f$ respectively.
393*e4b17023SJohn Marino      *
394*e4b17023SJohn Marino      *   See Abramowitz & Stegun, 9.1.10
395*e4b17023SJohn Marino      *       Abramowitz & Stegun, 9.6.7
396*e4b17023SJohn Marino      *    (1) Handbook of Mathematical Functions,
397*e4b17023SJohn Marino      *        ed. Milton Abramowitz and Irene A. Stegun,
398*e4b17023SJohn Marino      *        Dover Publications,
399*e4b17023SJohn Marino      *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
400*e4b17023SJohn Marino      *
401*e4b17023SJohn Marino      *   @param  __nu  The order of the Bessel function.
402*e4b17023SJohn Marino      *   @param  __x   The argument of the Bessel function.
403*e4b17023SJohn Marino      *   @param  __sgn  The sign of the alternate terms
404*e4b17023SJohn Marino      *                  -1 for the Bessel function of the first kind.
405*e4b17023SJohn Marino      *                  +1 for the modified Bessel function of the first kind.
406*e4b17023SJohn Marino      *   @return  The output Bessel function.
407*e4b17023SJohn Marino      */
408*e4b17023SJohn Marino     template <typename _Tp>
409*e4b17023SJohn Marino     _Tp
__cyl_bessel_ij_series(const _Tp __nu,const _Tp __x,const _Tp __sgn,const unsigned int __max_iter)410*e4b17023SJohn Marino     __cyl_bessel_ij_series(const _Tp __nu, const _Tp __x, const _Tp __sgn,
411*e4b17023SJohn Marino                            const unsigned int __max_iter)
412*e4b17023SJohn Marino     {
413*e4b17023SJohn Marino 
414*e4b17023SJohn Marino       const _Tp __x2 = __x / _Tp(2);
415*e4b17023SJohn Marino       _Tp __fact = __nu * std::log(__x2);
416*e4b17023SJohn Marino #if _GLIBCXX_USE_C99_MATH_TR1
417*e4b17023SJohn Marino       __fact -= std::tr1::lgamma(__nu + _Tp(1));
418*e4b17023SJohn Marino #else
419*e4b17023SJohn Marino       __fact -= __log_gamma(__nu + _Tp(1));
420*e4b17023SJohn Marino #endif
421*e4b17023SJohn Marino       __fact = std::exp(__fact);
422*e4b17023SJohn Marino       const _Tp __xx4 = __sgn * __x2 * __x2;
423*e4b17023SJohn Marino       _Tp __Jn = _Tp(1);
424*e4b17023SJohn Marino       _Tp __term = _Tp(1);
425*e4b17023SJohn Marino 
426*e4b17023SJohn Marino       for (unsigned int __i = 1; __i < __max_iter; ++__i)
427*e4b17023SJohn Marino         {
428*e4b17023SJohn Marino           __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
429*e4b17023SJohn Marino           __Jn += __term;
430*e4b17023SJohn Marino           if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
431*e4b17023SJohn Marino             break;
432*e4b17023SJohn Marino         }
433*e4b17023SJohn Marino 
434*e4b17023SJohn Marino       return __fact * __Jn;
435*e4b17023SJohn Marino     }
436*e4b17023SJohn Marino 
437*e4b17023SJohn Marino 
438*e4b17023SJohn Marino     /**
439*e4b17023SJohn Marino      *   @brief  Return the Bessel function of order \f$ \nu \f$:
440*e4b17023SJohn Marino      *           \f$ J_{\nu}(x) \f$.
441*e4b17023SJohn Marino      *
442*e4b17023SJohn Marino      *   The cylindrical Bessel function is:
443*e4b17023SJohn Marino      *   @f[
444*e4b17023SJohn Marino      *    J_{\nu}(x) = \sum_{k=0}^{\infty}
445*e4b17023SJohn Marino      *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
446*e4b17023SJohn Marino      *   @f]
447*e4b17023SJohn Marino      *
448*e4b17023SJohn Marino      *   @param  __nu  The order of the Bessel function.
449*e4b17023SJohn Marino      *   @param  __x   The argument of the Bessel function.
450*e4b17023SJohn Marino      *   @return  The output Bessel function.
451*e4b17023SJohn Marino      */
452*e4b17023SJohn Marino     template<typename _Tp>
453*e4b17023SJohn Marino     _Tp
__cyl_bessel_j(const _Tp __nu,const _Tp __x)454*e4b17023SJohn Marino     __cyl_bessel_j(const _Tp __nu, const _Tp __x)
455*e4b17023SJohn Marino     {
456*e4b17023SJohn Marino       if (__nu < _Tp(0) || __x < _Tp(0))
457*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument "
458*e4b17023SJohn Marino                                       "in __cyl_bessel_j."));
459*e4b17023SJohn Marino       else if (__isnan(__nu) || __isnan(__x))
460*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
461*e4b17023SJohn Marino       else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
462*e4b17023SJohn Marino         return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
463*e4b17023SJohn Marino       else if (__x > _Tp(1000))
464*e4b17023SJohn Marino         {
465*e4b17023SJohn Marino           _Tp __J_nu, __N_nu;
466*e4b17023SJohn Marino           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
467*e4b17023SJohn Marino           return __J_nu;
468*e4b17023SJohn Marino         }
469*e4b17023SJohn Marino       else
470*e4b17023SJohn Marino         {
471*e4b17023SJohn Marino           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
472*e4b17023SJohn Marino           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
473*e4b17023SJohn Marino           return __J_nu;
474*e4b17023SJohn Marino         }
475*e4b17023SJohn Marino     }
476*e4b17023SJohn Marino 
477*e4b17023SJohn Marino 
478*e4b17023SJohn Marino     /**
479*e4b17023SJohn Marino      *   @brief  Return the Neumann function of order \f$ \nu \f$:
480*e4b17023SJohn Marino      *           \f$ N_{\nu}(x) \f$.
481*e4b17023SJohn Marino      *
482*e4b17023SJohn Marino      *   The Neumann function is defined by:
483*e4b17023SJohn Marino      *   @f[
484*e4b17023SJohn Marino      *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
485*e4b17023SJohn Marino      *                        {\sin \nu\pi}
486*e4b17023SJohn Marino      *   @f]
487*e4b17023SJohn Marino      *   where for integral \f$ \nu = n \f$ a limit is taken:
488*e4b17023SJohn Marino      *   \f$ lim_{\nu \to n} \f$.
489*e4b17023SJohn Marino      *
490*e4b17023SJohn Marino      *   @param  __nu  The order of the Neumann function.
491*e4b17023SJohn Marino      *   @param  __x   The argument of the Neumann function.
492*e4b17023SJohn Marino      *   @return  The output Neumann function.
493*e4b17023SJohn Marino      */
494*e4b17023SJohn Marino     template<typename _Tp>
495*e4b17023SJohn Marino     _Tp
__cyl_neumann_n(const _Tp __nu,const _Tp __x)496*e4b17023SJohn Marino     __cyl_neumann_n(const _Tp __nu, const _Tp __x)
497*e4b17023SJohn Marino     {
498*e4b17023SJohn Marino       if (__nu < _Tp(0) || __x < _Tp(0))
499*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument "
500*e4b17023SJohn Marino                                       "in __cyl_neumann_n."));
501*e4b17023SJohn Marino       else if (__isnan(__nu) || __isnan(__x))
502*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
503*e4b17023SJohn Marino       else if (__x > _Tp(1000))
504*e4b17023SJohn Marino         {
505*e4b17023SJohn Marino           _Tp __J_nu, __N_nu;
506*e4b17023SJohn Marino           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
507*e4b17023SJohn Marino           return __N_nu;
508*e4b17023SJohn Marino         }
509*e4b17023SJohn Marino       else
510*e4b17023SJohn Marino         {
511*e4b17023SJohn Marino           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
512*e4b17023SJohn Marino           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
513*e4b17023SJohn Marino           return __N_nu;
514*e4b17023SJohn Marino         }
515*e4b17023SJohn Marino     }
516*e4b17023SJohn Marino 
517*e4b17023SJohn Marino 
518*e4b17023SJohn Marino     /**
519*e4b17023SJohn Marino      *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
520*e4b17023SJohn Marino      *           and Neumann @f$ n_n(x) @f$ functions and their first
521*e4b17023SJohn Marino      *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
522*e4b17023SJohn Marino      *           respectively.
523*e4b17023SJohn Marino      *
524*e4b17023SJohn Marino      *   @param  __n  The order of the spherical Bessel function.
525*e4b17023SJohn Marino      *   @param  __x  The argument of the spherical Bessel function.
526*e4b17023SJohn Marino      *   @param  __j_n  The output spherical Bessel function.
527*e4b17023SJohn Marino      *   @param  __n_n  The output spherical Neumann function.
528*e4b17023SJohn Marino      *   @param  __jp_n The output derivative of the spherical Bessel function.
529*e4b17023SJohn Marino      *   @param  __np_n The output derivative of the spherical Neumann function.
530*e4b17023SJohn Marino      */
531*e4b17023SJohn Marino     template <typename _Tp>
532*e4b17023SJohn Marino     void
__sph_bessel_jn(const unsigned int __n,const _Tp __x,_Tp & __j_n,_Tp & __n_n,_Tp & __jp_n,_Tp & __np_n)533*e4b17023SJohn Marino     __sph_bessel_jn(const unsigned int __n, const _Tp __x,
534*e4b17023SJohn Marino                     _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
535*e4b17023SJohn Marino     {
536*e4b17023SJohn Marino       const _Tp __nu = _Tp(__n) + _Tp(0.5L);
537*e4b17023SJohn Marino 
538*e4b17023SJohn Marino       _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
539*e4b17023SJohn Marino       __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
540*e4b17023SJohn Marino 
541*e4b17023SJohn Marino       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
542*e4b17023SJohn Marino                          / std::sqrt(__x);
543*e4b17023SJohn Marino 
544*e4b17023SJohn Marino       __j_n = __factor * __J_nu;
545*e4b17023SJohn Marino       __n_n = __factor * __N_nu;
546*e4b17023SJohn Marino       __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
547*e4b17023SJohn Marino       __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
548*e4b17023SJohn Marino 
549*e4b17023SJohn Marino       return;
550*e4b17023SJohn Marino     }
551*e4b17023SJohn Marino 
552*e4b17023SJohn Marino 
553*e4b17023SJohn Marino     /**
554*e4b17023SJohn Marino      *   @brief  Return the spherical Bessel function
555*e4b17023SJohn Marino      *           @f$ j_n(x) @f$ of order n.
556*e4b17023SJohn Marino      *
557*e4b17023SJohn Marino      *   The spherical Bessel function is defined by:
558*e4b17023SJohn Marino      *   @f[
559*e4b17023SJohn Marino      *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
560*e4b17023SJohn Marino      *   @f]
561*e4b17023SJohn Marino      *
562*e4b17023SJohn Marino      *   @param  __n  The order of the spherical Bessel function.
563*e4b17023SJohn Marino      *   @param  __x  The argument of the spherical Bessel function.
564*e4b17023SJohn Marino      *   @return  The output spherical Bessel function.
565*e4b17023SJohn Marino      */
566*e4b17023SJohn Marino     template <typename _Tp>
567*e4b17023SJohn Marino     _Tp
__sph_bessel(const unsigned int __n,const _Tp __x)568*e4b17023SJohn Marino     __sph_bessel(const unsigned int __n, const _Tp __x)
569*e4b17023SJohn Marino     {
570*e4b17023SJohn Marino       if (__x < _Tp(0))
571*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument "
572*e4b17023SJohn Marino                                       "in __sph_bessel."));
573*e4b17023SJohn Marino       else if (__isnan(__x))
574*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
575*e4b17023SJohn Marino       else if (__x == _Tp(0))
576*e4b17023SJohn Marino         {
577*e4b17023SJohn Marino           if (__n == 0)
578*e4b17023SJohn Marino             return _Tp(1);
579*e4b17023SJohn Marino           else
580*e4b17023SJohn Marino             return _Tp(0);
581*e4b17023SJohn Marino         }
582*e4b17023SJohn Marino       else
583*e4b17023SJohn Marino         {
584*e4b17023SJohn Marino           _Tp __j_n, __n_n, __jp_n, __np_n;
585*e4b17023SJohn Marino           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
586*e4b17023SJohn Marino           return __j_n;
587*e4b17023SJohn Marino         }
588*e4b17023SJohn Marino     }
589*e4b17023SJohn Marino 
590*e4b17023SJohn Marino 
591*e4b17023SJohn Marino     /**
592*e4b17023SJohn Marino      *   @brief  Return the spherical Neumann function
593*e4b17023SJohn Marino      *           @f$ n_n(x) @f$.
594*e4b17023SJohn Marino      *
595*e4b17023SJohn Marino      *   The spherical Neumann function is defined by:
596*e4b17023SJohn Marino      *   @f[
597*e4b17023SJohn Marino      *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
598*e4b17023SJohn Marino      *   @f]
599*e4b17023SJohn Marino      *
600*e4b17023SJohn Marino      *   @param  __n  The order of the spherical Neumann function.
601*e4b17023SJohn Marino      *   @param  __x  The argument of the spherical Neumann function.
602*e4b17023SJohn Marino      *   @return  The output spherical Neumann function.
603*e4b17023SJohn Marino      */
604*e4b17023SJohn Marino     template <typename _Tp>
605*e4b17023SJohn Marino     _Tp
__sph_neumann(const unsigned int __n,const _Tp __x)606*e4b17023SJohn Marino     __sph_neumann(const unsigned int __n, const _Tp __x)
607*e4b17023SJohn Marino     {
608*e4b17023SJohn Marino       if (__x < _Tp(0))
609*e4b17023SJohn Marino         std::__throw_domain_error(__N("Bad argument "
610*e4b17023SJohn Marino                                       "in __sph_neumann."));
611*e4b17023SJohn Marino       else if (__isnan(__x))
612*e4b17023SJohn Marino         return std::numeric_limits<_Tp>::quiet_NaN();
613*e4b17023SJohn Marino       else if (__x == _Tp(0))
614*e4b17023SJohn Marino         return -std::numeric_limits<_Tp>::infinity();
615*e4b17023SJohn Marino       else
616*e4b17023SJohn Marino         {
617*e4b17023SJohn Marino           _Tp __j_n, __n_n, __jp_n, __np_n;
618*e4b17023SJohn Marino           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
619*e4b17023SJohn Marino           return __n_n;
620*e4b17023SJohn Marino         }
621*e4b17023SJohn Marino     }
622*e4b17023SJohn Marino 
623*e4b17023SJohn Marino   _GLIBCXX_END_NAMESPACE_VERSION
624*e4b17023SJohn Marino   } // namespace std::tr1::__detail
625*e4b17023SJohn Marino }
626*e4b17023SJohn Marino }
627*e4b17023SJohn Marino 
628*e4b17023SJohn Marino #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
629