1*e4b17023SJohn Marino // Vector implementation -*- C++ -*-
2*e4b17023SJohn Marino
3*e4b17023SJohn Marino // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4*e4b17023SJohn Marino // 2011 Free Software Foundation, Inc.
5*e4b17023SJohn Marino //
6*e4b17023SJohn Marino // This file is part of the GNU ISO C++ Library. This library is free
7*e4b17023SJohn Marino // software; you can redistribute it and/or modify it under the
8*e4b17023SJohn Marino // terms of the GNU General Public License as published by the
9*e4b17023SJohn Marino // Free Software Foundation; either version 3, or (at your option)
10*e4b17023SJohn Marino // any later version.
11*e4b17023SJohn Marino
12*e4b17023SJohn Marino // This library is distributed in the hope that it will be useful,
13*e4b17023SJohn Marino // but WITHOUT ANY WARRANTY; without even the implied warranty of
14*e4b17023SJohn Marino // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15*e4b17023SJohn Marino // GNU General Public License for more details.
16*e4b17023SJohn Marino
17*e4b17023SJohn Marino // Under Section 7 of GPL version 3, you are granted additional
18*e4b17023SJohn Marino // permissions described in the GCC Runtime Library Exception, version
19*e4b17023SJohn Marino // 3.1, as published by the Free Software Foundation.
20*e4b17023SJohn Marino
21*e4b17023SJohn Marino // You should have received a copy of the GNU General Public License and
22*e4b17023SJohn Marino // a copy of the GCC Runtime Library Exception along with this program;
23*e4b17023SJohn Marino // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24*e4b17023SJohn Marino // <http://www.gnu.org/licenses/>.
25*e4b17023SJohn Marino
26*e4b17023SJohn Marino /*
27*e4b17023SJohn Marino *
28*e4b17023SJohn Marino * Copyright (c) 1994
29*e4b17023SJohn Marino * Hewlett-Packard Company
30*e4b17023SJohn Marino *
31*e4b17023SJohn Marino * Permission to use, copy, modify, distribute and sell this software
32*e4b17023SJohn Marino * and its documentation for any purpose is hereby granted without fee,
33*e4b17023SJohn Marino * provided that the above copyright notice appear in all copies and
34*e4b17023SJohn Marino * that both that copyright notice and this permission notice appear
35*e4b17023SJohn Marino * in supporting documentation. Hewlett-Packard Company makes no
36*e4b17023SJohn Marino * representations about the suitability of this software for any
37*e4b17023SJohn Marino * purpose. It is provided "as is" without express or implied warranty.
38*e4b17023SJohn Marino *
39*e4b17023SJohn Marino *
40*e4b17023SJohn Marino * Copyright (c) 1996
41*e4b17023SJohn Marino * Silicon Graphics Computer Systems, Inc.
42*e4b17023SJohn Marino *
43*e4b17023SJohn Marino * Permission to use, copy, modify, distribute and sell this software
44*e4b17023SJohn Marino * and its documentation for any purpose is hereby granted without fee,
45*e4b17023SJohn Marino * provided that the above copyright notice appear in all copies and
46*e4b17023SJohn Marino * that both that copyright notice and this permission notice appear
47*e4b17023SJohn Marino * in supporting documentation. Silicon Graphics makes no
48*e4b17023SJohn Marino * representations about the suitability of this software for any
49*e4b17023SJohn Marino * purpose. It is provided "as is" without express or implied warranty.
50*e4b17023SJohn Marino */
51*e4b17023SJohn Marino
52*e4b17023SJohn Marino /** @file bits/stl_vector.h
53*e4b17023SJohn Marino * This is an internal header file, included by other library headers.
54*e4b17023SJohn Marino * Do not attempt to use it directly. @headername{vector}
55*e4b17023SJohn Marino */
56*e4b17023SJohn Marino
57*e4b17023SJohn Marino #ifndef _STL_VECTOR_H
58*e4b17023SJohn Marino #define _STL_VECTOR_H 1
59*e4b17023SJohn Marino
60*e4b17023SJohn Marino #include <bits/stl_iterator_base_funcs.h>
61*e4b17023SJohn Marino #include <bits/functexcept.h>
62*e4b17023SJohn Marino #include <bits/concept_check.h>
63*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
64*e4b17023SJohn Marino #include <initializer_list>
65*e4b17023SJohn Marino #endif
66*e4b17023SJohn Marino
_GLIBCXX_VISIBILITY(default)67*e4b17023SJohn Marino namespace std _GLIBCXX_VISIBILITY(default)
68*e4b17023SJohn Marino {
69*e4b17023SJohn Marino _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
70*e4b17023SJohn Marino
71*e4b17023SJohn Marino /// See bits/stl_deque.h's _Deque_base for an explanation.
72*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
73*e4b17023SJohn Marino struct _Vector_base
74*e4b17023SJohn Marino {
75*e4b17023SJohn Marino typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
76*e4b17023SJohn Marino rebind<_Tp>::other _Tp_alloc_type;
77*e4b17023SJohn Marino typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
78*e4b17023SJohn Marino pointer;
79*e4b17023SJohn Marino
80*e4b17023SJohn Marino struct _Vector_impl
81*e4b17023SJohn Marino : public _Tp_alloc_type
82*e4b17023SJohn Marino {
83*e4b17023SJohn Marino pointer _M_start;
84*e4b17023SJohn Marino pointer _M_finish;
85*e4b17023SJohn Marino pointer _M_end_of_storage;
86*e4b17023SJohn Marino
87*e4b17023SJohn Marino _Vector_impl()
88*e4b17023SJohn Marino : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
89*e4b17023SJohn Marino { }
90*e4b17023SJohn Marino
91*e4b17023SJohn Marino _Vector_impl(_Tp_alloc_type const& __a)
92*e4b17023SJohn Marino : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
93*e4b17023SJohn Marino { }
94*e4b17023SJohn Marino
95*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
96*e4b17023SJohn Marino _Vector_impl(_Tp_alloc_type&& __a)
97*e4b17023SJohn Marino : _Tp_alloc_type(std::move(__a)),
98*e4b17023SJohn Marino _M_start(0), _M_finish(0), _M_end_of_storage(0)
99*e4b17023SJohn Marino { }
100*e4b17023SJohn Marino #endif
101*e4b17023SJohn Marino
102*e4b17023SJohn Marino void _M_swap_data(_Vector_impl& __x)
103*e4b17023SJohn Marino {
104*e4b17023SJohn Marino std::swap(_M_start, __x._M_start);
105*e4b17023SJohn Marino std::swap(_M_finish, __x._M_finish);
106*e4b17023SJohn Marino std::swap(_M_end_of_storage, __x._M_end_of_storage);
107*e4b17023SJohn Marino }
108*e4b17023SJohn Marino };
109*e4b17023SJohn Marino
110*e4b17023SJohn Marino public:
111*e4b17023SJohn Marino typedef _Alloc allocator_type;
112*e4b17023SJohn Marino
113*e4b17023SJohn Marino _Tp_alloc_type&
114*e4b17023SJohn Marino _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
115*e4b17023SJohn Marino { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
116*e4b17023SJohn Marino
117*e4b17023SJohn Marino const _Tp_alloc_type&
118*e4b17023SJohn Marino _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
119*e4b17023SJohn Marino { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
120*e4b17023SJohn Marino
121*e4b17023SJohn Marino allocator_type
122*e4b17023SJohn Marino get_allocator() const _GLIBCXX_NOEXCEPT
123*e4b17023SJohn Marino { return allocator_type(_M_get_Tp_allocator()); }
124*e4b17023SJohn Marino
125*e4b17023SJohn Marino _Vector_base()
126*e4b17023SJohn Marino : _M_impl() { }
127*e4b17023SJohn Marino
128*e4b17023SJohn Marino _Vector_base(const allocator_type& __a)
129*e4b17023SJohn Marino : _M_impl(__a) { }
130*e4b17023SJohn Marino
131*e4b17023SJohn Marino _Vector_base(size_t __n)
132*e4b17023SJohn Marino : _M_impl()
133*e4b17023SJohn Marino { _M_create_storage(__n); }
134*e4b17023SJohn Marino
135*e4b17023SJohn Marino _Vector_base(size_t __n, const allocator_type& __a)
136*e4b17023SJohn Marino : _M_impl(__a)
137*e4b17023SJohn Marino { _M_create_storage(__n); }
138*e4b17023SJohn Marino
139*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
140*e4b17023SJohn Marino _Vector_base(_Tp_alloc_type&& __a)
141*e4b17023SJohn Marino : _M_impl(std::move(__a)) { }
142*e4b17023SJohn Marino
143*e4b17023SJohn Marino _Vector_base(_Vector_base&& __x)
144*e4b17023SJohn Marino : _M_impl(std::move(__x._M_get_Tp_allocator()))
145*e4b17023SJohn Marino { this->_M_impl._M_swap_data(__x._M_impl); }
146*e4b17023SJohn Marino
147*e4b17023SJohn Marino _Vector_base(_Vector_base&& __x, const allocator_type& __a)
148*e4b17023SJohn Marino : _M_impl(__a)
149*e4b17023SJohn Marino {
150*e4b17023SJohn Marino if (__x.get_allocator() == __a)
151*e4b17023SJohn Marino this->_M_impl._M_swap_data(__x._M_impl);
152*e4b17023SJohn Marino else
153*e4b17023SJohn Marino {
154*e4b17023SJohn Marino size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
155*e4b17023SJohn Marino _M_create_storage(__n);
156*e4b17023SJohn Marino }
157*e4b17023SJohn Marino }
158*e4b17023SJohn Marino #endif
159*e4b17023SJohn Marino
160*e4b17023SJohn Marino ~_Vector_base()
161*e4b17023SJohn Marino { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
162*e4b17023SJohn Marino - this->_M_impl._M_start); }
163*e4b17023SJohn Marino
164*e4b17023SJohn Marino public:
165*e4b17023SJohn Marino _Vector_impl _M_impl;
166*e4b17023SJohn Marino
167*e4b17023SJohn Marino pointer
168*e4b17023SJohn Marino _M_allocate(size_t __n)
169*e4b17023SJohn Marino { return __n != 0 ? _M_impl.allocate(__n) : 0; }
170*e4b17023SJohn Marino
171*e4b17023SJohn Marino void
172*e4b17023SJohn Marino _M_deallocate(pointer __p, size_t __n)
173*e4b17023SJohn Marino {
174*e4b17023SJohn Marino if (__p)
175*e4b17023SJohn Marino _M_impl.deallocate(__p, __n);
176*e4b17023SJohn Marino }
177*e4b17023SJohn Marino
178*e4b17023SJohn Marino private:
179*e4b17023SJohn Marino void
180*e4b17023SJohn Marino _M_create_storage(size_t __n)
181*e4b17023SJohn Marino {
182*e4b17023SJohn Marino this->_M_impl._M_start = this->_M_allocate(__n);
183*e4b17023SJohn Marino this->_M_impl._M_finish = this->_M_impl._M_start;
184*e4b17023SJohn Marino this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
185*e4b17023SJohn Marino }
186*e4b17023SJohn Marino };
187*e4b17023SJohn Marino
188*e4b17023SJohn Marino
189*e4b17023SJohn Marino /**
190*e4b17023SJohn Marino * @brief A standard container which offers fixed time access to
191*e4b17023SJohn Marino * individual elements in any order.
192*e4b17023SJohn Marino *
193*e4b17023SJohn Marino * @ingroup sequences
194*e4b17023SJohn Marino *
195*e4b17023SJohn Marino * Meets the requirements of a <a href="tables.html#65">container</a>, a
196*e4b17023SJohn Marino * <a href="tables.html#66">reversible container</a>, and a
197*e4b17023SJohn Marino * <a href="tables.html#67">sequence</a>, including the
198*e4b17023SJohn Marino * <a href="tables.html#68">optional sequence requirements</a> with the
199*e4b17023SJohn Marino * %exception of @c push_front and @c pop_front.
200*e4b17023SJohn Marino *
201*e4b17023SJohn Marino * In some terminology a %vector can be described as a dynamic
202*e4b17023SJohn Marino * C-style array, it offers fast and efficient access to individual
203*e4b17023SJohn Marino * elements in any order and saves the user from worrying about
204*e4b17023SJohn Marino * memory and size allocation. Subscripting ( @c [] ) access is
205*e4b17023SJohn Marino * also provided as with C-style arrays.
206*e4b17023SJohn Marino */
207*e4b17023SJohn Marino template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
208*e4b17023SJohn Marino class vector : protected _Vector_base<_Tp, _Alloc>
209*e4b17023SJohn Marino {
210*e4b17023SJohn Marino // Concept requirements.
211*e4b17023SJohn Marino typedef typename _Alloc::value_type _Alloc_value_type;
212*e4b17023SJohn Marino __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
213*e4b17023SJohn Marino __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
214*e4b17023SJohn Marino
215*e4b17023SJohn Marino typedef _Vector_base<_Tp, _Alloc> _Base;
216*e4b17023SJohn Marino typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
217*e4b17023SJohn Marino typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits;
218*e4b17023SJohn Marino
219*e4b17023SJohn Marino public:
220*e4b17023SJohn Marino typedef _Tp value_type;
221*e4b17023SJohn Marino typedef typename _Base::pointer pointer;
222*e4b17023SJohn Marino typedef typename _Alloc_traits::const_pointer const_pointer;
223*e4b17023SJohn Marino typedef typename _Alloc_traits::reference reference;
224*e4b17023SJohn Marino typedef typename _Alloc_traits::const_reference const_reference;
225*e4b17023SJohn Marino typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
226*e4b17023SJohn Marino typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
227*e4b17023SJohn Marino const_iterator;
228*e4b17023SJohn Marino typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
229*e4b17023SJohn Marino typedef std::reverse_iterator<iterator> reverse_iterator;
230*e4b17023SJohn Marino typedef size_t size_type;
231*e4b17023SJohn Marino typedef ptrdiff_t difference_type;
232*e4b17023SJohn Marino typedef _Alloc allocator_type;
233*e4b17023SJohn Marino
234*e4b17023SJohn Marino protected:
235*e4b17023SJohn Marino using _Base::_M_allocate;
236*e4b17023SJohn Marino using _Base::_M_deallocate;
237*e4b17023SJohn Marino using _Base::_M_impl;
238*e4b17023SJohn Marino using _Base::_M_get_Tp_allocator;
239*e4b17023SJohn Marino
240*e4b17023SJohn Marino public:
241*e4b17023SJohn Marino // [23.2.4.1] construct/copy/destroy
242*e4b17023SJohn Marino // (assign() and get_allocator() are also listed in this section)
243*e4b17023SJohn Marino /**
244*e4b17023SJohn Marino * @brief Default constructor creates no elements.
245*e4b17023SJohn Marino */
246*e4b17023SJohn Marino vector()
247*e4b17023SJohn Marino : _Base() { }
248*e4b17023SJohn Marino
249*e4b17023SJohn Marino /**
250*e4b17023SJohn Marino * @brief Creates a %vector with no elements.
251*e4b17023SJohn Marino * @param __a An allocator object.
252*e4b17023SJohn Marino */
253*e4b17023SJohn Marino explicit
254*e4b17023SJohn Marino vector(const allocator_type& __a)
255*e4b17023SJohn Marino : _Base(__a) { }
256*e4b17023SJohn Marino
257*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
258*e4b17023SJohn Marino /**
259*e4b17023SJohn Marino * @brief Creates a %vector with default constructed elements.
260*e4b17023SJohn Marino * @param __n The number of elements to initially create.
261*e4b17023SJohn Marino *
262*e4b17023SJohn Marino * This constructor fills the %vector with @a __n default
263*e4b17023SJohn Marino * constructed elements.
264*e4b17023SJohn Marino */
265*e4b17023SJohn Marino explicit
266*e4b17023SJohn Marino vector(size_type __n)
267*e4b17023SJohn Marino : _Base(__n)
268*e4b17023SJohn Marino { _M_default_initialize(__n); }
269*e4b17023SJohn Marino
270*e4b17023SJohn Marino /**
271*e4b17023SJohn Marino * @brief Creates a %vector with copies of an exemplar element.
272*e4b17023SJohn Marino * @param __n The number of elements to initially create.
273*e4b17023SJohn Marino * @param __value An element to copy.
274*e4b17023SJohn Marino * @param __a An allocator.
275*e4b17023SJohn Marino *
276*e4b17023SJohn Marino * This constructor fills the %vector with @a __n copies of @a __value.
277*e4b17023SJohn Marino */
278*e4b17023SJohn Marino vector(size_type __n, const value_type& __value,
279*e4b17023SJohn Marino const allocator_type& __a = allocator_type())
280*e4b17023SJohn Marino : _Base(__n, __a)
281*e4b17023SJohn Marino { _M_fill_initialize(__n, __value); }
282*e4b17023SJohn Marino #else
283*e4b17023SJohn Marino /**
284*e4b17023SJohn Marino * @brief Creates a %vector with copies of an exemplar element.
285*e4b17023SJohn Marino * @param __n The number of elements to initially create.
286*e4b17023SJohn Marino * @param __value An element to copy.
287*e4b17023SJohn Marino * @param __a An allocator.
288*e4b17023SJohn Marino *
289*e4b17023SJohn Marino * This constructor fills the %vector with @a __n copies of @a __value.
290*e4b17023SJohn Marino */
291*e4b17023SJohn Marino explicit
292*e4b17023SJohn Marino vector(size_type __n, const value_type& __value = value_type(),
293*e4b17023SJohn Marino const allocator_type& __a = allocator_type())
294*e4b17023SJohn Marino : _Base(__n, __a)
295*e4b17023SJohn Marino { _M_fill_initialize(__n, __value); }
296*e4b17023SJohn Marino #endif
297*e4b17023SJohn Marino
298*e4b17023SJohn Marino /**
299*e4b17023SJohn Marino * @brief %Vector copy constructor.
300*e4b17023SJohn Marino * @param __x A %vector of identical element and allocator types.
301*e4b17023SJohn Marino *
302*e4b17023SJohn Marino * The newly-created %vector uses a copy of the allocation
303*e4b17023SJohn Marino * object used by @a __x. All the elements of @a __x are copied,
304*e4b17023SJohn Marino * but any extra memory in
305*e4b17023SJohn Marino * @a __x (for fast expansion) will not be copied.
306*e4b17023SJohn Marino */
307*e4b17023SJohn Marino vector(const vector& __x)
308*e4b17023SJohn Marino : _Base(__x.size(),
309*e4b17023SJohn Marino _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
310*e4b17023SJohn Marino { this->_M_impl._M_finish =
311*e4b17023SJohn Marino std::__uninitialized_copy_a(__x.begin(), __x.end(),
312*e4b17023SJohn Marino this->_M_impl._M_start,
313*e4b17023SJohn Marino _M_get_Tp_allocator());
314*e4b17023SJohn Marino }
315*e4b17023SJohn Marino
316*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
317*e4b17023SJohn Marino /**
318*e4b17023SJohn Marino * @brief %Vector move constructor.
319*e4b17023SJohn Marino * @param __x A %vector of identical element and allocator types.
320*e4b17023SJohn Marino *
321*e4b17023SJohn Marino * The newly-created %vector contains the exact contents of @a __x.
322*e4b17023SJohn Marino * The contents of @a __x are a valid, but unspecified %vector.
323*e4b17023SJohn Marino */
324*e4b17023SJohn Marino vector(vector&& __x) noexcept
325*e4b17023SJohn Marino : _Base(std::move(__x)) { }
326*e4b17023SJohn Marino
327*e4b17023SJohn Marino /// Copy constructor with alternative allocator
328*e4b17023SJohn Marino vector(const vector& __x, const allocator_type& __a)
329*e4b17023SJohn Marino : _Base(__x.size(), __a)
330*e4b17023SJohn Marino { this->_M_impl._M_finish =
331*e4b17023SJohn Marino std::__uninitialized_copy_a(__x.begin(), __x.end(),
332*e4b17023SJohn Marino this->_M_impl._M_start,
333*e4b17023SJohn Marino _M_get_Tp_allocator());
334*e4b17023SJohn Marino }
335*e4b17023SJohn Marino
336*e4b17023SJohn Marino /// Move constructor with alternative allocator
337*e4b17023SJohn Marino vector(vector&& __rv, const allocator_type& __m)
338*e4b17023SJohn Marino : _Base(std::move(__rv), __m)
339*e4b17023SJohn Marino {
340*e4b17023SJohn Marino if (__rv.get_allocator() != __m)
341*e4b17023SJohn Marino {
342*e4b17023SJohn Marino this->_M_impl._M_finish =
343*e4b17023SJohn Marino std::__uninitialized_move_a(__rv.begin(), __rv.end(),
344*e4b17023SJohn Marino this->_M_impl._M_start,
345*e4b17023SJohn Marino _M_get_Tp_allocator());
346*e4b17023SJohn Marino __rv.clear();
347*e4b17023SJohn Marino }
348*e4b17023SJohn Marino }
349*e4b17023SJohn Marino
350*e4b17023SJohn Marino /**
351*e4b17023SJohn Marino * @brief Builds a %vector from an initializer list.
352*e4b17023SJohn Marino * @param __l An initializer_list.
353*e4b17023SJohn Marino * @param __a An allocator.
354*e4b17023SJohn Marino *
355*e4b17023SJohn Marino * Create a %vector consisting of copies of the elements in the
356*e4b17023SJohn Marino * initializer_list @a __l.
357*e4b17023SJohn Marino *
358*e4b17023SJohn Marino * This will call the element type's copy constructor N times
359*e4b17023SJohn Marino * (where N is @a __l.size()) and do no memory reallocation.
360*e4b17023SJohn Marino */
361*e4b17023SJohn Marino vector(initializer_list<value_type> __l,
362*e4b17023SJohn Marino const allocator_type& __a = allocator_type())
363*e4b17023SJohn Marino : _Base(__a)
364*e4b17023SJohn Marino {
365*e4b17023SJohn Marino _M_range_initialize(__l.begin(), __l.end(),
366*e4b17023SJohn Marino random_access_iterator_tag());
367*e4b17023SJohn Marino }
368*e4b17023SJohn Marino #endif
369*e4b17023SJohn Marino
370*e4b17023SJohn Marino /**
371*e4b17023SJohn Marino * @brief Builds a %vector from a range.
372*e4b17023SJohn Marino * @param __first An input iterator.
373*e4b17023SJohn Marino * @param __last An input iterator.
374*e4b17023SJohn Marino * @param __a An allocator.
375*e4b17023SJohn Marino *
376*e4b17023SJohn Marino * Create a %vector consisting of copies of the elements from
377*e4b17023SJohn Marino * [first,last).
378*e4b17023SJohn Marino *
379*e4b17023SJohn Marino * If the iterators are forward, bidirectional, or
380*e4b17023SJohn Marino * random-access, then this will call the elements' copy
381*e4b17023SJohn Marino * constructor N times (where N is distance(first,last)) and do
382*e4b17023SJohn Marino * no memory reallocation. But if only input iterators are
383*e4b17023SJohn Marino * used, then this will do at most 2N calls to the copy
384*e4b17023SJohn Marino * constructor, and logN memory reallocations.
385*e4b17023SJohn Marino */
386*e4b17023SJohn Marino template<typename _InputIterator>
387*e4b17023SJohn Marino vector(_InputIterator __first, _InputIterator __last,
388*e4b17023SJohn Marino const allocator_type& __a = allocator_type())
389*e4b17023SJohn Marino : _Base(__a)
390*e4b17023SJohn Marino {
391*e4b17023SJohn Marino // Check whether it's an integral type. If so, it's not an iterator.
392*e4b17023SJohn Marino typedef typename std::__is_integer<_InputIterator>::__type _Integral;
393*e4b17023SJohn Marino _M_initialize_dispatch(__first, __last, _Integral());
394*e4b17023SJohn Marino }
395*e4b17023SJohn Marino
396*e4b17023SJohn Marino /**
397*e4b17023SJohn Marino * The dtor only erases the elements, and note that if the
398*e4b17023SJohn Marino * elements themselves are pointers, the pointed-to memory is
399*e4b17023SJohn Marino * not touched in any way. Managing the pointer is the user's
400*e4b17023SJohn Marino * responsibility.
401*e4b17023SJohn Marino */
402*e4b17023SJohn Marino ~vector() _GLIBCXX_NOEXCEPT
403*e4b17023SJohn Marino { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
404*e4b17023SJohn Marino _M_get_Tp_allocator()); }
405*e4b17023SJohn Marino
406*e4b17023SJohn Marino /**
407*e4b17023SJohn Marino * @brief %Vector assignment operator.
408*e4b17023SJohn Marino * @param __x A %vector of identical element and allocator types.
409*e4b17023SJohn Marino *
410*e4b17023SJohn Marino * All the elements of @a __x are copied, but any extra memory in
411*e4b17023SJohn Marino * @a __x (for fast expansion) will not be copied. Unlike the
412*e4b17023SJohn Marino * copy constructor, the allocator object is not copied.
413*e4b17023SJohn Marino */
414*e4b17023SJohn Marino vector&
415*e4b17023SJohn Marino operator=(const vector& __x);
416*e4b17023SJohn Marino
417*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
418*e4b17023SJohn Marino /**
419*e4b17023SJohn Marino * @brief %Vector move assignment operator.
420*e4b17023SJohn Marino * @param __x A %vector of identical element and allocator types.
421*e4b17023SJohn Marino *
422*e4b17023SJohn Marino * The contents of @a __x are moved into this %vector (without copying,
423*e4b17023SJohn Marino * if the allocators permit it).
424*e4b17023SJohn Marino * @a __x is a valid, but unspecified %vector.
425*e4b17023SJohn Marino */
426*e4b17023SJohn Marino vector&
427*e4b17023SJohn Marino operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
428*e4b17023SJohn Marino {
429*e4b17023SJohn Marino constexpr bool __move_storage =
430*e4b17023SJohn Marino _Alloc_traits::_S_propagate_on_move_assign()
431*e4b17023SJohn Marino || _Alloc_traits::_S_always_equal();
432*e4b17023SJohn Marino _M_move_assign(std::move(__x),
433*e4b17023SJohn Marino integral_constant<bool, __move_storage>());
434*e4b17023SJohn Marino return *this;
435*e4b17023SJohn Marino }
436*e4b17023SJohn Marino
437*e4b17023SJohn Marino /**
438*e4b17023SJohn Marino * @brief %Vector list assignment operator.
439*e4b17023SJohn Marino * @param __l An initializer_list.
440*e4b17023SJohn Marino *
441*e4b17023SJohn Marino * This function fills a %vector with copies of the elements in the
442*e4b17023SJohn Marino * initializer list @a __l.
443*e4b17023SJohn Marino *
444*e4b17023SJohn Marino * Note that the assignment completely changes the %vector and
445*e4b17023SJohn Marino * that the resulting %vector's size is the same as the number
446*e4b17023SJohn Marino * of elements assigned. Old data may be lost.
447*e4b17023SJohn Marino */
448*e4b17023SJohn Marino vector&
449*e4b17023SJohn Marino operator=(initializer_list<value_type> __l)
450*e4b17023SJohn Marino {
451*e4b17023SJohn Marino this->assign(__l.begin(), __l.end());
452*e4b17023SJohn Marino return *this;
453*e4b17023SJohn Marino }
454*e4b17023SJohn Marino #endif
455*e4b17023SJohn Marino
456*e4b17023SJohn Marino /**
457*e4b17023SJohn Marino * @brief Assigns a given value to a %vector.
458*e4b17023SJohn Marino * @param __n Number of elements to be assigned.
459*e4b17023SJohn Marino * @param __val Value to be assigned.
460*e4b17023SJohn Marino *
461*e4b17023SJohn Marino * This function fills a %vector with @a __n copies of the given
462*e4b17023SJohn Marino * value. Note that the assignment completely changes the
463*e4b17023SJohn Marino * %vector and that the resulting %vector's size is the same as
464*e4b17023SJohn Marino * the number of elements assigned. Old data may be lost.
465*e4b17023SJohn Marino */
466*e4b17023SJohn Marino void
467*e4b17023SJohn Marino assign(size_type __n, const value_type& __val)
468*e4b17023SJohn Marino { _M_fill_assign(__n, __val); }
469*e4b17023SJohn Marino
470*e4b17023SJohn Marino /**
471*e4b17023SJohn Marino * @brief Assigns a range to a %vector.
472*e4b17023SJohn Marino * @param __first An input iterator.
473*e4b17023SJohn Marino * @param __last An input iterator.
474*e4b17023SJohn Marino *
475*e4b17023SJohn Marino * This function fills a %vector with copies of the elements in the
476*e4b17023SJohn Marino * range [__first,__last).
477*e4b17023SJohn Marino *
478*e4b17023SJohn Marino * Note that the assignment completely changes the %vector and
479*e4b17023SJohn Marino * that the resulting %vector's size is the same as the number
480*e4b17023SJohn Marino * of elements assigned. Old data may be lost.
481*e4b17023SJohn Marino */
482*e4b17023SJohn Marino template<typename _InputIterator>
483*e4b17023SJohn Marino void
484*e4b17023SJohn Marino assign(_InputIterator __first, _InputIterator __last)
485*e4b17023SJohn Marino {
486*e4b17023SJohn Marino // Check whether it's an integral type. If so, it's not an iterator.
487*e4b17023SJohn Marino typedef typename std::__is_integer<_InputIterator>::__type _Integral;
488*e4b17023SJohn Marino _M_assign_dispatch(__first, __last, _Integral());
489*e4b17023SJohn Marino }
490*e4b17023SJohn Marino
491*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
492*e4b17023SJohn Marino /**
493*e4b17023SJohn Marino * @brief Assigns an initializer list to a %vector.
494*e4b17023SJohn Marino * @param __l An initializer_list.
495*e4b17023SJohn Marino *
496*e4b17023SJohn Marino * This function fills a %vector with copies of the elements in the
497*e4b17023SJohn Marino * initializer list @a __l.
498*e4b17023SJohn Marino *
499*e4b17023SJohn Marino * Note that the assignment completely changes the %vector and
500*e4b17023SJohn Marino * that the resulting %vector's size is the same as the number
501*e4b17023SJohn Marino * of elements assigned. Old data may be lost.
502*e4b17023SJohn Marino */
503*e4b17023SJohn Marino void
504*e4b17023SJohn Marino assign(initializer_list<value_type> __l)
505*e4b17023SJohn Marino { this->assign(__l.begin(), __l.end()); }
506*e4b17023SJohn Marino #endif
507*e4b17023SJohn Marino
508*e4b17023SJohn Marino /// Get a copy of the memory allocation object.
509*e4b17023SJohn Marino using _Base::get_allocator;
510*e4b17023SJohn Marino
511*e4b17023SJohn Marino // iterators
512*e4b17023SJohn Marino /**
513*e4b17023SJohn Marino * Returns a read/write iterator that points to the first
514*e4b17023SJohn Marino * element in the %vector. Iteration is done in ordinary
515*e4b17023SJohn Marino * element order.
516*e4b17023SJohn Marino */
517*e4b17023SJohn Marino iterator
518*e4b17023SJohn Marino begin() _GLIBCXX_NOEXCEPT
519*e4b17023SJohn Marino { return iterator(this->_M_impl._M_start); }
520*e4b17023SJohn Marino
521*e4b17023SJohn Marino /**
522*e4b17023SJohn Marino * Returns a read-only (constant) iterator that points to the
523*e4b17023SJohn Marino * first element in the %vector. Iteration is done in ordinary
524*e4b17023SJohn Marino * element order.
525*e4b17023SJohn Marino */
526*e4b17023SJohn Marino const_iterator
527*e4b17023SJohn Marino begin() const _GLIBCXX_NOEXCEPT
528*e4b17023SJohn Marino { return const_iterator(this->_M_impl._M_start); }
529*e4b17023SJohn Marino
530*e4b17023SJohn Marino /**
531*e4b17023SJohn Marino * Returns a read/write iterator that points one past the last
532*e4b17023SJohn Marino * element in the %vector. Iteration is done in ordinary
533*e4b17023SJohn Marino * element order.
534*e4b17023SJohn Marino */
535*e4b17023SJohn Marino iterator
536*e4b17023SJohn Marino end() _GLIBCXX_NOEXCEPT
537*e4b17023SJohn Marino { return iterator(this->_M_impl._M_finish); }
538*e4b17023SJohn Marino
539*e4b17023SJohn Marino /**
540*e4b17023SJohn Marino * Returns a read-only (constant) iterator that points one past
541*e4b17023SJohn Marino * the last element in the %vector. Iteration is done in
542*e4b17023SJohn Marino * ordinary element order.
543*e4b17023SJohn Marino */
544*e4b17023SJohn Marino const_iterator
545*e4b17023SJohn Marino end() const _GLIBCXX_NOEXCEPT
546*e4b17023SJohn Marino { return const_iterator(this->_M_impl._M_finish); }
547*e4b17023SJohn Marino
548*e4b17023SJohn Marino /**
549*e4b17023SJohn Marino * Returns a read/write reverse iterator that points to the
550*e4b17023SJohn Marino * last element in the %vector. Iteration is done in reverse
551*e4b17023SJohn Marino * element order.
552*e4b17023SJohn Marino */
553*e4b17023SJohn Marino reverse_iterator
554*e4b17023SJohn Marino rbegin() _GLIBCXX_NOEXCEPT
555*e4b17023SJohn Marino { return reverse_iterator(end()); }
556*e4b17023SJohn Marino
557*e4b17023SJohn Marino /**
558*e4b17023SJohn Marino * Returns a read-only (constant) reverse iterator that points
559*e4b17023SJohn Marino * to the last element in the %vector. Iteration is done in
560*e4b17023SJohn Marino * reverse element order.
561*e4b17023SJohn Marino */
562*e4b17023SJohn Marino const_reverse_iterator
563*e4b17023SJohn Marino rbegin() const _GLIBCXX_NOEXCEPT
564*e4b17023SJohn Marino { return const_reverse_iterator(end()); }
565*e4b17023SJohn Marino
566*e4b17023SJohn Marino /**
567*e4b17023SJohn Marino * Returns a read/write reverse iterator that points to one
568*e4b17023SJohn Marino * before the first element in the %vector. Iteration is done
569*e4b17023SJohn Marino * in reverse element order.
570*e4b17023SJohn Marino */
571*e4b17023SJohn Marino reverse_iterator
572*e4b17023SJohn Marino rend() _GLIBCXX_NOEXCEPT
573*e4b17023SJohn Marino { return reverse_iterator(begin()); }
574*e4b17023SJohn Marino
575*e4b17023SJohn Marino /**
576*e4b17023SJohn Marino * Returns a read-only (constant) reverse iterator that points
577*e4b17023SJohn Marino * to one before the first element in the %vector. Iteration
578*e4b17023SJohn Marino * is done in reverse element order.
579*e4b17023SJohn Marino */
580*e4b17023SJohn Marino const_reverse_iterator
581*e4b17023SJohn Marino rend() const _GLIBCXX_NOEXCEPT
582*e4b17023SJohn Marino { return const_reverse_iterator(begin()); }
583*e4b17023SJohn Marino
584*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
585*e4b17023SJohn Marino /**
586*e4b17023SJohn Marino * Returns a read-only (constant) iterator that points to the
587*e4b17023SJohn Marino * first element in the %vector. Iteration is done in ordinary
588*e4b17023SJohn Marino * element order.
589*e4b17023SJohn Marino */
590*e4b17023SJohn Marino const_iterator
591*e4b17023SJohn Marino cbegin() const noexcept
592*e4b17023SJohn Marino { return const_iterator(this->_M_impl._M_start); }
593*e4b17023SJohn Marino
594*e4b17023SJohn Marino /**
595*e4b17023SJohn Marino * Returns a read-only (constant) iterator that points one past
596*e4b17023SJohn Marino * the last element in the %vector. Iteration is done in
597*e4b17023SJohn Marino * ordinary element order.
598*e4b17023SJohn Marino */
599*e4b17023SJohn Marino const_iterator
600*e4b17023SJohn Marino cend() const noexcept
601*e4b17023SJohn Marino { return const_iterator(this->_M_impl._M_finish); }
602*e4b17023SJohn Marino
603*e4b17023SJohn Marino /**
604*e4b17023SJohn Marino * Returns a read-only (constant) reverse iterator that points
605*e4b17023SJohn Marino * to the last element in the %vector. Iteration is done in
606*e4b17023SJohn Marino * reverse element order.
607*e4b17023SJohn Marino */
608*e4b17023SJohn Marino const_reverse_iterator
609*e4b17023SJohn Marino crbegin() const noexcept
610*e4b17023SJohn Marino { return const_reverse_iterator(end()); }
611*e4b17023SJohn Marino
612*e4b17023SJohn Marino /**
613*e4b17023SJohn Marino * Returns a read-only (constant) reverse iterator that points
614*e4b17023SJohn Marino * to one before the first element in the %vector. Iteration
615*e4b17023SJohn Marino * is done in reverse element order.
616*e4b17023SJohn Marino */
617*e4b17023SJohn Marino const_reverse_iterator
618*e4b17023SJohn Marino crend() const noexcept
619*e4b17023SJohn Marino { return const_reverse_iterator(begin()); }
620*e4b17023SJohn Marino #endif
621*e4b17023SJohn Marino
622*e4b17023SJohn Marino // [23.2.4.2] capacity
623*e4b17023SJohn Marino /** Returns the number of elements in the %vector. */
624*e4b17023SJohn Marino size_type
625*e4b17023SJohn Marino size() const _GLIBCXX_NOEXCEPT
626*e4b17023SJohn Marino { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
627*e4b17023SJohn Marino
628*e4b17023SJohn Marino /** Returns the size() of the largest possible %vector. */
629*e4b17023SJohn Marino size_type
630*e4b17023SJohn Marino max_size() const _GLIBCXX_NOEXCEPT
631*e4b17023SJohn Marino { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
632*e4b17023SJohn Marino
633*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
634*e4b17023SJohn Marino /**
635*e4b17023SJohn Marino * @brief Resizes the %vector to the specified number of elements.
636*e4b17023SJohn Marino * @param __new_size Number of elements the %vector should contain.
637*e4b17023SJohn Marino *
638*e4b17023SJohn Marino * This function will %resize the %vector to the specified
639*e4b17023SJohn Marino * number of elements. If the number is smaller than the
640*e4b17023SJohn Marino * %vector's current size the %vector is truncated, otherwise
641*e4b17023SJohn Marino * default constructed elements are appended.
642*e4b17023SJohn Marino */
643*e4b17023SJohn Marino void
644*e4b17023SJohn Marino resize(size_type __new_size)
645*e4b17023SJohn Marino {
646*e4b17023SJohn Marino if (__new_size > size())
647*e4b17023SJohn Marino _M_default_append(__new_size - size());
648*e4b17023SJohn Marino else if (__new_size < size())
649*e4b17023SJohn Marino _M_erase_at_end(this->_M_impl._M_start + __new_size);
650*e4b17023SJohn Marino }
651*e4b17023SJohn Marino
652*e4b17023SJohn Marino /**
653*e4b17023SJohn Marino * @brief Resizes the %vector to the specified number of elements.
654*e4b17023SJohn Marino * @param __new_size Number of elements the %vector should contain.
655*e4b17023SJohn Marino * @param __x Data with which new elements should be populated.
656*e4b17023SJohn Marino *
657*e4b17023SJohn Marino * This function will %resize the %vector to the specified
658*e4b17023SJohn Marino * number of elements. If the number is smaller than the
659*e4b17023SJohn Marino * %vector's current size the %vector is truncated, otherwise
660*e4b17023SJohn Marino * the %vector is extended and new elements are populated with
661*e4b17023SJohn Marino * given data.
662*e4b17023SJohn Marino */
663*e4b17023SJohn Marino void
664*e4b17023SJohn Marino resize(size_type __new_size, const value_type& __x)
665*e4b17023SJohn Marino {
666*e4b17023SJohn Marino if (__new_size > size())
667*e4b17023SJohn Marino insert(end(), __new_size - size(), __x);
668*e4b17023SJohn Marino else if (__new_size < size())
669*e4b17023SJohn Marino _M_erase_at_end(this->_M_impl._M_start + __new_size);
670*e4b17023SJohn Marino }
671*e4b17023SJohn Marino #else
672*e4b17023SJohn Marino /**
673*e4b17023SJohn Marino * @brief Resizes the %vector to the specified number of elements.
674*e4b17023SJohn Marino * @param __new_size Number of elements the %vector should contain.
675*e4b17023SJohn Marino * @param __x Data with which new elements should be populated.
676*e4b17023SJohn Marino *
677*e4b17023SJohn Marino * This function will %resize the %vector to the specified
678*e4b17023SJohn Marino * number of elements. If the number is smaller than the
679*e4b17023SJohn Marino * %vector's current size the %vector is truncated, otherwise
680*e4b17023SJohn Marino * the %vector is extended and new elements are populated with
681*e4b17023SJohn Marino * given data.
682*e4b17023SJohn Marino */
683*e4b17023SJohn Marino void
684*e4b17023SJohn Marino resize(size_type __new_size, value_type __x = value_type())
685*e4b17023SJohn Marino {
686*e4b17023SJohn Marino if (__new_size > size())
687*e4b17023SJohn Marino insert(end(), __new_size - size(), __x);
688*e4b17023SJohn Marino else if (__new_size < size())
689*e4b17023SJohn Marino _M_erase_at_end(this->_M_impl._M_start + __new_size);
690*e4b17023SJohn Marino }
691*e4b17023SJohn Marino #endif
692*e4b17023SJohn Marino
693*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
694*e4b17023SJohn Marino /** A non-binding request to reduce capacity() to size(). */
695*e4b17023SJohn Marino void
696*e4b17023SJohn Marino shrink_to_fit()
697*e4b17023SJohn Marino { _M_shrink_to_fit(); }
698*e4b17023SJohn Marino #endif
699*e4b17023SJohn Marino
700*e4b17023SJohn Marino /**
701*e4b17023SJohn Marino * Returns the total number of elements that the %vector can
702*e4b17023SJohn Marino * hold before needing to allocate more memory.
703*e4b17023SJohn Marino */
704*e4b17023SJohn Marino size_type
705*e4b17023SJohn Marino capacity() const _GLIBCXX_NOEXCEPT
706*e4b17023SJohn Marino { return size_type(this->_M_impl._M_end_of_storage
707*e4b17023SJohn Marino - this->_M_impl._M_start); }
708*e4b17023SJohn Marino
709*e4b17023SJohn Marino /**
710*e4b17023SJohn Marino * Returns true if the %vector is empty. (Thus begin() would
711*e4b17023SJohn Marino * equal end().)
712*e4b17023SJohn Marino */
713*e4b17023SJohn Marino bool
714*e4b17023SJohn Marino empty() const _GLIBCXX_NOEXCEPT
715*e4b17023SJohn Marino { return begin() == end(); }
716*e4b17023SJohn Marino
717*e4b17023SJohn Marino /**
718*e4b17023SJohn Marino * @brief Attempt to preallocate enough memory for specified number of
719*e4b17023SJohn Marino * elements.
720*e4b17023SJohn Marino * @param __n Number of elements required.
721*e4b17023SJohn Marino * @throw std::length_error If @a n exceeds @c max_size().
722*e4b17023SJohn Marino *
723*e4b17023SJohn Marino * This function attempts to reserve enough memory for the
724*e4b17023SJohn Marino * %vector to hold the specified number of elements. If the
725*e4b17023SJohn Marino * number requested is more than max_size(), length_error is
726*e4b17023SJohn Marino * thrown.
727*e4b17023SJohn Marino *
728*e4b17023SJohn Marino * The advantage of this function is that if optimal code is a
729*e4b17023SJohn Marino * necessity and the user can determine the number of elements
730*e4b17023SJohn Marino * that will be required, the user can reserve the memory in
731*e4b17023SJohn Marino * %advance, and thus prevent a possible reallocation of memory
732*e4b17023SJohn Marino * and copying of %vector data.
733*e4b17023SJohn Marino */
734*e4b17023SJohn Marino void
735*e4b17023SJohn Marino reserve(size_type __n);
736*e4b17023SJohn Marino
737*e4b17023SJohn Marino // element access
738*e4b17023SJohn Marino /**
739*e4b17023SJohn Marino * @brief Subscript access to the data contained in the %vector.
740*e4b17023SJohn Marino * @param __n The index of the element for which data should be
741*e4b17023SJohn Marino * accessed.
742*e4b17023SJohn Marino * @return Read/write reference to data.
743*e4b17023SJohn Marino *
744*e4b17023SJohn Marino * This operator allows for easy, array-style, data access.
745*e4b17023SJohn Marino * Note that data access with this operator is unchecked and
746*e4b17023SJohn Marino * out_of_range lookups are not defined. (For checked lookups
747*e4b17023SJohn Marino * see at().)
748*e4b17023SJohn Marino */
749*e4b17023SJohn Marino reference
750*e4b17023SJohn Marino operator[](size_type __n)
751*e4b17023SJohn Marino { return *(this->_M_impl._M_start + __n); }
752*e4b17023SJohn Marino
753*e4b17023SJohn Marino /**
754*e4b17023SJohn Marino * @brief Subscript access to the data contained in the %vector.
755*e4b17023SJohn Marino * @param __n The index of the element for which data should be
756*e4b17023SJohn Marino * accessed.
757*e4b17023SJohn Marino * @return Read-only (constant) reference to data.
758*e4b17023SJohn Marino *
759*e4b17023SJohn Marino * This operator allows for easy, array-style, data access.
760*e4b17023SJohn Marino * Note that data access with this operator is unchecked and
761*e4b17023SJohn Marino * out_of_range lookups are not defined. (For checked lookups
762*e4b17023SJohn Marino * see at().)
763*e4b17023SJohn Marino */
764*e4b17023SJohn Marino const_reference
765*e4b17023SJohn Marino operator[](size_type __n) const
766*e4b17023SJohn Marino { return *(this->_M_impl._M_start + __n); }
767*e4b17023SJohn Marino
768*e4b17023SJohn Marino protected:
769*e4b17023SJohn Marino /// Safety check used only from at().
770*e4b17023SJohn Marino void
771*e4b17023SJohn Marino _M_range_check(size_type __n) const
772*e4b17023SJohn Marino {
773*e4b17023SJohn Marino if (__n >= this->size())
774*e4b17023SJohn Marino __throw_out_of_range(__N("vector::_M_range_check"));
775*e4b17023SJohn Marino }
776*e4b17023SJohn Marino
777*e4b17023SJohn Marino public:
778*e4b17023SJohn Marino /**
779*e4b17023SJohn Marino * @brief Provides access to the data contained in the %vector.
780*e4b17023SJohn Marino * @param __n The index of the element for which data should be
781*e4b17023SJohn Marino * accessed.
782*e4b17023SJohn Marino * @return Read/write reference to data.
783*e4b17023SJohn Marino * @throw std::out_of_range If @a __n is an invalid index.
784*e4b17023SJohn Marino *
785*e4b17023SJohn Marino * This function provides for safer data access. The parameter
786*e4b17023SJohn Marino * is first checked that it is in the range of the vector. The
787*e4b17023SJohn Marino * function throws out_of_range if the check fails.
788*e4b17023SJohn Marino */
789*e4b17023SJohn Marino reference
790*e4b17023SJohn Marino at(size_type __n)
791*e4b17023SJohn Marino {
792*e4b17023SJohn Marino _M_range_check(__n);
793*e4b17023SJohn Marino return (*this)[__n];
794*e4b17023SJohn Marino }
795*e4b17023SJohn Marino
796*e4b17023SJohn Marino /**
797*e4b17023SJohn Marino * @brief Provides access to the data contained in the %vector.
798*e4b17023SJohn Marino * @param __n The index of the element for which data should be
799*e4b17023SJohn Marino * accessed.
800*e4b17023SJohn Marino * @return Read-only (constant) reference to data.
801*e4b17023SJohn Marino * @throw std::out_of_range If @a __n is an invalid index.
802*e4b17023SJohn Marino *
803*e4b17023SJohn Marino * This function provides for safer data access. The parameter
804*e4b17023SJohn Marino * is first checked that it is in the range of the vector. The
805*e4b17023SJohn Marino * function throws out_of_range if the check fails.
806*e4b17023SJohn Marino */
807*e4b17023SJohn Marino const_reference
808*e4b17023SJohn Marino at(size_type __n) const
809*e4b17023SJohn Marino {
810*e4b17023SJohn Marino _M_range_check(__n);
811*e4b17023SJohn Marino return (*this)[__n];
812*e4b17023SJohn Marino }
813*e4b17023SJohn Marino
814*e4b17023SJohn Marino /**
815*e4b17023SJohn Marino * Returns a read/write reference to the data at the first
816*e4b17023SJohn Marino * element of the %vector.
817*e4b17023SJohn Marino */
818*e4b17023SJohn Marino reference
819*e4b17023SJohn Marino front()
820*e4b17023SJohn Marino { return *begin(); }
821*e4b17023SJohn Marino
822*e4b17023SJohn Marino /**
823*e4b17023SJohn Marino * Returns a read-only (constant) reference to the data at the first
824*e4b17023SJohn Marino * element of the %vector.
825*e4b17023SJohn Marino */
826*e4b17023SJohn Marino const_reference
827*e4b17023SJohn Marino front() const
828*e4b17023SJohn Marino { return *begin(); }
829*e4b17023SJohn Marino
830*e4b17023SJohn Marino /**
831*e4b17023SJohn Marino * Returns a read/write reference to the data at the last
832*e4b17023SJohn Marino * element of the %vector.
833*e4b17023SJohn Marino */
834*e4b17023SJohn Marino reference
835*e4b17023SJohn Marino back()
836*e4b17023SJohn Marino { return *(end() - 1); }
837*e4b17023SJohn Marino
838*e4b17023SJohn Marino /**
839*e4b17023SJohn Marino * Returns a read-only (constant) reference to the data at the
840*e4b17023SJohn Marino * last element of the %vector.
841*e4b17023SJohn Marino */
842*e4b17023SJohn Marino const_reference
843*e4b17023SJohn Marino back() const
844*e4b17023SJohn Marino { return *(end() - 1); }
845*e4b17023SJohn Marino
846*e4b17023SJohn Marino // _GLIBCXX_RESOLVE_LIB_DEFECTS
847*e4b17023SJohn Marino // DR 464. Suggestion for new member functions in standard containers.
848*e4b17023SJohn Marino // data access
849*e4b17023SJohn Marino /**
850*e4b17023SJohn Marino * Returns a pointer such that [data(), data() + size()) is a valid
851*e4b17023SJohn Marino * range. For a non-empty %vector, data() == &front().
852*e4b17023SJohn Marino */
853*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
854*e4b17023SJohn Marino _Tp*
855*e4b17023SJohn Marino #else
856*e4b17023SJohn Marino pointer
857*e4b17023SJohn Marino #endif
858*e4b17023SJohn Marino data() _GLIBCXX_NOEXCEPT
859*e4b17023SJohn Marino { return std::__addressof(front()); }
860*e4b17023SJohn Marino
861*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
862*e4b17023SJohn Marino const _Tp*
863*e4b17023SJohn Marino #else
864*e4b17023SJohn Marino const_pointer
865*e4b17023SJohn Marino #endif
866*e4b17023SJohn Marino data() const _GLIBCXX_NOEXCEPT
867*e4b17023SJohn Marino { return std::__addressof(front()); }
868*e4b17023SJohn Marino
869*e4b17023SJohn Marino // [23.2.4.3] modifiers
870*e4b17023SJohn Marino /**
871*e4b17023SJohn Marino * @brief Add data to the end of the %vector.
872*e4b17023SJohn Marino * @param __x Data to be added.
873*e4b17023SJohn Marino *
874*e4b17023SJohn Marino * This is a typical stack operation. The function creates an
875*e4b17023SJohn Marino * element at the end of the %vector and assigns the given data
876*e4b17023SJohn Marino * to it. Due to the nature of a %vector this operation can be
877*e4b17023SJohn Marino * done in constant time if the %vector has preallocated space
878*e4b17023SJohn Marino * available.
879*e4b17023SJohn Marino */
880*e4b17023SJohn Marino void
881*e4b17023SJohn Marino push_back(const value_type& __x)
882*e4b17023SJohn Marino {
883*e4b17023SJohn Marino if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
884*e4b17023SJohn Marino {
885*e4b17023SJohn Marino _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
886*e4b17023SJohn Marino __x);
887*e4b17023SJohn Marino ++this->_M_impl._M_finish;
888*e4b17023SJohn Marino }
889*e4b17023SJohn Marino else
890*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
891*e4b17023SJohn Marino _M_emplace_back_aux(__x);
892*e4b17023SJohn Marino #else
893*e4b17023SJohn Marino _M_insert_aux(end(), __x);
894*e4b17023SJohn Marino #endif
895*e4b17023SJohn Marino }
896*e4b17023SJohn Marino
897*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
898*e4b17023SJohn Marino void
899*e4b17023SJohn Marino push_back(value_type&& __x)
900*e4b17023SJohn Marino { emplace_back(std::move(__x)); }
901*e4b17023SJohn Marino
902*e4b17023SJohn Marino template<typename... _Args>
903*e4b17023SJohn Marino void
904*e4b17023SJohn Marino emplace_back(_Args&&... __args);
905*e4b17023SJohn Marino #endif
906*e4b17023SJohn Marino
907*e4b17023SJohn Marino /**
908*e4b17023SJohn Marino * @brief Removes last element.
909*e4b17023SJohn Marino *
910*e4b17023SJohn Marino * This is a typical stack operation. It shrinks the %vector by one.
911*e4b17023SJohn Marino *
912*e4b17023SJohn Marino * Note that no data is returned, and if the last element's
913*e4b17023SJohn Marino * data is needed, it should be retrieved before pop_back() is
914*e4b17023SJohn Marino * called.
915*e4b17023SJohn Marino */
916*e4b17023SJohn Marino void
917*e4b17023SJohn Marino pop_back()
918*e4b17023SJohn Marino {
919*e4b17023SJohn Marino --this->_M_impl._M_finish;
920*e4b17023SJohn Marino _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
921*e4b17023SJohn Marino }
922*e4b17023SJohn Marino
923*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
924*e4b17023SJohn Marino /**
925*e4b17023SJohn Marino * @brief Inserts an object in %vector before specified iterator.
926*e4b17023SJohn Marino * @param __position An iterator into the %vector.
927*e4b17023SJohn Marino * @param __args Arguments.
928*e4b17023SJohn Marino * @return An iterator that points to the inserted data.
929*e4b17023SJohn Marino *
930*e4b17023SJohn Marino * This function will insert an object of type T constructed
931*e4b17023SJohn Marino * with T(std::forward<Args>(args)...) before the specified location.
932*e4b17023SJohn Marino * Note that this kind of operation could be expensive for a %vector
933*e4b17023SJohn Marino * and if it is frequently used the user should consider using
934*e4b17023SJohn Marino * std::list.
935*e4b17023SJohn Marino */
936*e4b17023SJohn Marino template<typename... _Args>
937*e4b17023SJohn Marino iterator
938*e4b17023SJohn Marino emplace(iterator __position, _Args&&... __args);
939*e4b17023SJohn Marino #endif
940*e4b17023SJohn Marino
941*e4b17023SJohn Marino /**
942*e4b17023SJohn Marino * @brief Inserts given value into %vector before specified iterator.
943*e4b17023SJohn Marino * @param __position An iterator into the %vector.
944*e4b17023SJohn Marino * @param __x Data to be inserted.
945*e4b17023SJohn Marino * @return An iterator that points to the inserted data.
946*e4b17023SJohn Marino *
947*e4b17023SJohn Marino * This function will insert a copy of the given value before
948*e4b17023SJohn Marino * the specified location. Note that this kind of operation
949*e4b17023SJohn Marino * could be expensive for a %vector and if it is frequently
950*e4b17023SJohn Marino * used the user should consider using std::list.
951*e4b17023SJohn Marino */
952*e4b17023SJohn Marino iterator
953*e4b17023SJohn Marino insert(iterator __position, const value_type& __x);
954*e4b17023SJohn Marino
955*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
956*e4b17023SJohn Marino /**
957*e4b17023SJohn Marino * @brief Inserts given rvalue into %vector before specified iterator.
958*e4b17023SJohn Marino * @param __position An iterator into the %vector.
959*e4b17023SJohn Marino * @param __x Data to be inserted.
960*e4b17023SJohn Marino * @return An iterator that points to the inserted data.
961*e4b17023SJohn Marino *
962*e4b17023SJohn Marino * This function will insert a copy of the given rvalue before
963*e4b17023SJohn Marino * the specified location. Note that this kind of operation
964*e4b17023SJohn Marino * could be expensive for a %vector and if it is frequently
965*e4b17023SJohn Marino * used the user should consider using std::list.
966*e4b17023SJohn Marino */
967*e4b17023SJohn Marino iterator
968*e4b17023SJohn Marino insert(iterator __position, value_type&& __x)
969*e4b17023SJohn Marino { return emplace(__position, std::move(__x)); }
970*e4b17023SJohn Marino
971*e4b17023SJohn Marino /**
972*e4b17023SJohn Marino * @brief Inserts an initializer_list into the %vector.
973*e4b17023SJohn Marino * @param __position An iterator into the %vector.
974*e4b17023SJohn Marino * @param __l An initializer_list.
975*e4b17023SJohn Marino *
976*e4b17023SJohn Marino * This function will insert copies of the data in the
977*e4b17023SJohn Marino * initializer_list @a l into the %vector before the location
978*e4b17023SJohn Marino * specified by @a position.
979*e4b17023SJohn Marino *
980*e4b17023SJohn Marino * Note that this kind of operation could be expensive for a
981*e4b17023SJohn Marino * %vector and if it is frequently used the user should
982*e4b17023SJohn Marino * consider using std::list.
983*e4b17023SJohn Marino */
984*e4b17023SJohn Marino void
985*e4b17023SJohn Marino insert(iterator __position, initializer_list<value_type> __l)
986*e4b17023SJohn Marino { this->insert(__position, __l.begin(), __l.end()); }
987*e4b17023SJohn Marino #endif
988*e4b17023SJohn Marino
989*e4b17023SJohn Marino /**
990*e4b17023SJohn Marino * @brief Inserts a number of copies of given data into the %vector.
991*e4b17023SJohn Marino * @param __position An iterator into the %vector.
992*e4b17023SJohn Marino * @param __n Number of elements to be inserted.
993*e4b17023SJohn Marino * @param __x Data to be inserted.
994*e4b17023SJohn Marino *
995*e4b17023SJohn Marino * This function will insert a specified number of copies of
996*e4b17023SJohn Marino * the given data before the location specified by @a position.
997*e4b17023SJohn Marino *
998*e4b17023SJohn Marino * Note that this kind of operation could be expensive for a
999*e4b17023SJohn Marino * %vector and if it is frequently used the user should
1000*e4b17023SJohn Marino * consider using std::list.
1001*e4b17023SJohn Marino */
1002*e4b17023SJohn Marino void
1003*e4b17023SJohn Marino insert(iterator __position, size_type __n, const value_type& __x)
1004*e4b17023SJohn Marino { _M_fill_insert(__position, __n, __x); }
1005*e4b17023SJohn Marino
1006*e4b17023SJohn Marino /**
1007*e4b17023SJohn Marino * @brief Inserts a range into the %vector.
1008*e4b17023SJohn Marino * @param __position An iterator into the %vector.
1009*e4b17023SJohn Marino * @param __first An input iterator.
1010*e4b17023SJohn Marino * @param __last An input iterator.
1011*e4b17023SJohn Marino *
1012*e4b17023SJohn Marino * This function will insert copies of the data in the range
1013*e4b17023SJohn Marino * [__first,__last) into the %vector before the location specified
1014*e4b17023SJohn Marino * by @a pos.
1015*e4b17023SJohn Marino *
1016*e4b17023SJohn Marino * Note that this kind of operation could be expensive for a
1017*e4b17023SJohn Marino * %vector and if it is frequently used the user should
1018*e4b17023SJohn Marino * consider using std::list.
1019*e4b17023SJohn Marino */
1020*e4b17023SJohn Marino template<typename _InputIterator>
1021*e4b17023SJohn Marino void
1022*e4b17023SJohn Marino insert(iterator __position, _InputIterator __first,
1023*e4b17023SJohn Marino _InputIterator __last)
1024*e4b17023SJohn Marino {
1025*e4b17023SJohn Marino // Check whether it's an integral type. If so, it's not an iterator.
1026*e4b17023SJohn Marino typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1027*e4b17023SJohn Marino _M_insert_dispatch(__position, __first, __last, _Integral());
1028*e4b17023SJohn Marino }
1029*e4b17023SJohn Marino
1030*e4b17023SJohn Marino /**
1031*e4b17023SJohn Marino * @brief Remove element at given position.
1032*e4b17023SJohn Marino * @param __position Iterator pointing to element to be erased.
1033*e4b17023SJohn Marino * @return An iterator pointing to the next element (or end()).
1034*e4b17023SJohn Marino *
1035*e4b17023SJohn Marino * This function will erase the element at the given position and thus
1036*e4b17023SJohn Marino * shorten the %vector by one.
1037*e4b17023SJohn Marino *
1038*e4b17023SJohn Marino * Note This operation could be expensive and if it is
1039*e4b17023SJohn Marino * frequently used the user should consider using std::list.
1040*e4b17023SJohn Marino * The user is also cautioned that this function only erases
1041*e4b17023SJohn Marino * the element, and that if the element is itself a pointer,
1042*e4b17023SJohn Marino * the pointed-to memory is not touched in any way. Managing
1043*e4b17023SJohn Marino * the pointer is the user's responsibility.
1044*e4b17023SJohn Marino */
1045*e4b17023SJohn Marino iterator
1046*e4b17023SJohn Marino erase(iterator __position);
1047*e4b17023SJohn Marino
1048*e4b17023SJohn Marino /**
1049*e4b17023SJohn Marino * @brief Remove a range of elements.
1050*e4b17023SJohn Marino * @param __first Iterator pointing to the first element to be erased.
1051*e4b17023SJohn Marino * @param __last Iterator pointing to one past the last element to be
1052*e4b17023SJohn Marino * erased.
1053*e4b17023SJohn Marino * @return An iterator pointing to the element pointed to by @a __last
1054*e4b17023SJohn Marino * prior to erasing (or end()).
1055*e4b17023SJohn Marino *
1056*e4b17023SJohn Marino * This function will erase the elements in the range
1057*e4b17023SJohn Marino * [__first,__last) and shorten the %vector accordingly.
1058*e4b17023SJohn Marino *
1059*e4b17023SJohn Marino * Note This operation could be expensive and if it is
1060*e4b17023SJohn Marino * frequently used the user should consider using std::list.
1061*e4b17023SJohn Marino * The user is also cautioned that this function only erases
1062*e4b17023SJohn Marino * the elements, and that if the elements themselves are
1063*e4b17023SJohn Marino * pointers, the pointed-to memory is not touched in any way.
1064*e4b17023SJohn Marino * Managing the pointer is the user's responsibility.
1065*e4b17023SJohn Marino */
1066*e4b17023SJohn Marino iterator
1067*e4b17023SJohn Marino erase(iterator __first, iterator __last);
1068*e4b17023SJohn Marino
1069*e4b17023SJohn Marino /**
1070*e4b17023SJohn Marino * @brief Swaps data with another %vector.
1071*e4b17023SJohn Marino * @param __x A %vector of the same element and allocator types.
1072*e4b17023SJohn Marino *
1073*e4b17023SJohn Marino * This exchanges the elements between two vectors in constant time.
1074*e4b17023SJohn Marino * (Three pointers, so it should be quite fast.)
1075*e4b17023SJohn Marino * Note that the global std::swap() function is specialized such that
1076*e4b17023SJohn Marino * std::swap(v1,v2) will feed to this function.
1077*e4b17023SJohn Marino */
1078*e4b17023SJohn Marino void
1079*e4b17023SJohn Marino swap(vector& __x)
1080*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
1081*e4b17023SJohn Marino noexcept(_Alloc_traits::_S_nothrow_swap())
1082*e4b17023SJohn Marino #endif
1083*e4b17023SJohn Marino {
1084*e4b17023SJohn Marino this->_M_impl._M_swap_data(__x._M_impl);
1085*e4b17023SJohn Marino _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1086*e4b17023SJohn Marino __x._M_get_Tp_allocator());
1087*e4b17023SJohn Marino }
1088*e4b17023SJohn Marino
1089*e4b17023SJohn Marino /**
1090*e4b17023SJohn Marino * Erases all the elements. Note that this function only erases the
1091*e4b17023SJohn Marino * elements, and that if the elements themselves are pointers, the
1092*e4b17023SJohn Marino * pointed-to memory is not touched in any way. Managing the pointer is
1093*e4b17023SJohn Marino * the user's responsibility.
1094*e4b17023SJohn Marino */
1095*e4b17023SJohn Marino void
1096*e4b17023SJohn Marino clear() _GLIBCXX_NOEXCEPT
1097*e4b17023SJohn Marino { _M_erase_at_end(this->_M_impl._M_start); }
1098*e4b17023SJohn Marino
1099*e4b17023SJohn Marino protected:
1100*e4b17023SJohn Marino /**
1101*e4b17023SJohn Marino * Memory expansion handler. Uses the member allocation function to
1102*e4b17023SJohn Marino * obtain @a n bytes of memory, and then copies [first,last) into it.
1103*e4b17023SJohn Marino */
1104*e4b17023SJohn Marino template<typename _ForwardIterator>
1105*e4b17023SJohn Marino pointer
1106*e4b17023SJohn Marino _M_allocate_and_copy(size_type __n,
1107*e4b17023SJohn Marino _ForwardIterator __first, _ForwardIterator __last)
1108*e4b17023SJohn Marino {
1109*e4b17023SJohn Marino pointer __result = this->_M_allocate(__n);
1110*e4b17023SJohn Marino __try
1111*e4b17023SJohn Marino {
1112*e4b17023SJohn Marino std::__uninitialized_copy_a(__first, __last, __result,
1113*e4b17023SJohn Marino _M_get_Tp_allocator());
1114*e4b17023SJohn Marino return __result;
1115*e4b17023SJohn Marino }
1116*e4b17023SJohn Marino __catch(...)
1117*e4b17023SJohn Marino {
1118*e4b17023SJohn Marino _M_deallocate(__result, __n);
1119*e4b17023SJohn Marino __throw_exception_again;
1120*e4b17023SJohn Marino }
1121*e4b17023SJohn Marino }
1122*e4b17023SJohn Marino
1123*e4b17023SJohn Marino
1124*e4b17023SJohn Marino // Internal constructor functions follow.
1125*e4b17023SJohn Marino
1126*e4b17023SJohn Marino // Called by the range constructor to implement [23.1.1]/9
1127*e4b17023SJohn Marino
1128*e4b17023SJohn Marino // _GLIBCXX_RESOLVE_LIB_DEFECTS
1129*e4b17023SJohn Marino // 438. Ambiguity in the "do the right thing" clause
1130*e4b17023SJohn Marino template<typename _Integer>
1131*e4b17023SJohn Marino void
1132*e4b17023SJohn Marino _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1133*e4b17023SJohn Marino {
1134*e4b17023SJohn Marino this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1135*e4b17023SJohn Marino this->_M_impl._M_end_of_storage =
1136*e4b17023SJohn Marino this->_M_impl._M_start + static_cast<size_type>(__n);
1137*e4b17023SJohn Marino _M_fill_initialize(static_cast<size_type>(__n), __value);
1138*e4b17023SJohn Marino }
1139*e4b17023SJohn Marino
1140*e4b17023SJohn Marino // Called by the range constructor to implement [23.1.1]/9
1141*e4b17023SJohn Marino template<typename _InputIterator>
1142*e4b17023SJohn Marino void
1143*e4b17023SJohn Marino _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1144*e4b17023SJohn Marino __false_type)
1145*e4b17023SJohn Marino {
1146*e4b17023SJohn Marino typedef typename std::iterator_traits<_InputIterator>::
1147*e4b17023SJohn Marino iterator_category _IterCategory;
1148*e4b17023SJohn Marino _M_range_initialize(__first, __last, _IterCategory());
1149*e4b17023SJohn Marino }
1150*e4b17023SJohn Marino
1151*e4b17023SJohn Marino // Called by the second initialize_dispatch above
1152*e4b17023SJohn Marino template<typename _InputIterator>
1153*e4b17023SJohn Marino void
1154*e4b17023SJohn Marino _M_range_initialize(_InputIterator __first,
1155*e4b17023SJohn Marino _InputIterator __last, std::input_iterator_tag)
1156*e4b17023SJohn Marino {
1157*e4b17023SJohn Marino for (; __first != __last; ++__first)
1158*e4b17023SJohn Marino push_back(*__first);
1159*e4b17023SJohn Marino }
1160*e4b17023SJohn Marino
1161*e4b17023SJohn Marino // Called by the second initialize_dispatch above
1162*e4b17023SJohn Marino template<typename _ForwardIterator>
1163*e4b17023SJohn Marino void
1164*e4b17023SJohn Marino _M_range_initialize(_ForwardIterator __first,
1165*e4b17023SJohn Marino _ForwardIterator __last, std::forward_iterator_tag)
1166*e4b17023SJohn Marino {
1167*e4b17023SJohn Marino const size_type __n = std::distance(__first, __last);
1168*e4b17023SJohn Marino this->_M_impl._M_start = this->_M_allocate(__n);
1169*e4b17023SJohn Marino this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1170*e4b17023SJohn Marino this->_M_impl._M_finish =
1171*e4b17023SJohn Marino std::__uninitialized_copy_a(__first, __last,
1172*e4b17023SJohn Marino this->_M_impl._M_start,
1173*e4b17023SJohn Marino _M_get_Tp_allocator());
1174*e4b17023SJohn Marino }
1175*e4b17023SJohn Marino
1176*e4b17023SJohn Marino // Called by the first initialize_dispatch above and by the
1177*e4b17023SJohn Marino // vector(n,value,a) constructor.
1178*e4b17023SJohn Marino void
1179*e4b17023SJohn Marino _M_fill_initialize(size_type __n, const value_type& __value)
1180*e4b17023SJohn Marino {
1181*e4b17023SJohn Marino std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1182*e4b17023SJohn Marino _M_get_Tp_allocator());
1183*e4b17023SJohn Marino this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1184*e4b17023SJohn Marino }
1185*e4b17023SJohn Marino
1186*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
1187*e4b17023SJohn Marino // Called by the vector(n) constructor.
1188*e4b17023SJohn Marino void
1189*e4b17023SJohn Marino _M_default_initialize(size_type __n)
1190*e4b17023SJohn Marino {
1191*e4b17023SJohn Marino std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1192*e4b17023SJohn Marino _M_get_Tp_allocator());
1193*e4b17023SJohn Marino this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1194*e4b17023SJohn Marino }
1195*e4b17023SJohn Marino #endif
1196*e4b17023SJohn Marino
1197*e4b17023SJohn Marino // Internal assign functions follow. The *_aux functions do the actual
1198*e4b17023SJohn Marino // assignment work for the range versions.
1199*e4b17023SJohn Marino
1200*e4b17023SJohn Marino // Called by the range assign to implement [23.1.1]/9
1201*e4b17023SJohn Marino
1202*e4b17023SJohn Marino // _GLIBCXX_RESOLVE_LIB_DEFECTS
1203*e4b17023SJohn Marino // 438. Ambiguity in the "do the right thing" clause
1204*e4b17023SJohn Marino template<typename _Integer>
1205*e4b17023SJohn Marino void
1206*e4b17023SJohn Marino _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1207*e4b17023SJohn Marino { _M_fill_assign(__n, __val); }
1208*e4b17023SJohn Marino
1209*e4b17023SJohn Marino // Called by the range assign to implement [23.1.1]/9
1210*e4b17023SJohn Marino template<typename _InputIterator>
1211*e4b17023SJohn Marino void
1212*e4b17023SJohn Marino _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1213*e4b17023SJohn Marino __false_type)
1214*e4b17023SJohn Marino {
1215*e4b17023SJohn Marino typedef typename std::iterator_traits<_InputIterator>::
1216*e4b17023SJohn Marino iterator_category _IterCategory;
1217*e4b17023SJohn Marino _M_assign_aux(__first, __last, _IterCategory());
1218*e4b17023SJohn Marino }
1219*e4b17023SJohn Marino
1220*e4b17023SJohn Marino // Called by the second assign_dispatch above
1221*e4b17023SJohn Marino template<typename _InputIterator>
1222*e4b17023SJohn Marino void
1223*e4b17023SJohn Marino _M_assign_aux(_InputIterator __first, _InputIterator __last,
1224*e4b17023SJohn Marino std::input_iterator_tag);
1225*e4b17023SJohn Marino
1226*e4b17023SJohn Marino // Called by the second assign_dispatch above
1227*e4b17023SJohn Marino template<typename _ForwardIterator>
1228*e4b17023SJohn Marino void
1229*e4b17023SJohn Marino _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1230*e4b17023SJohn Marino std::forward_iterator_tag);
1231*e4b17023SJohn Marino
1232*e4b17023SJohn Marino // Called by assign(n,t), and the range assign when it turns out
1233*e4b17023SJohn Marino // to be the same thing.
1234*e4b17023SJohn Marino void
1235*e4b17023SJohn Marino _M_fill_assign(size_type __n, const value_type& __val);
1236*e4b17023SJohn Marino
1237*e4b17023SJohn Marino
1238*e4b17023SJohn Marino // Internal insert functions follow.
1239*e4b17023SJohn Marino
1240*e4b17023SJohn Marino // Called by the range insert to implement [23.1.1]/9
1241*e4b17023SJohn Marino
1242*e4b17023SJohn Marino // _GLIBCXX_RESOLVE_LIB_DEFECTS
1243*e4b17023SJohn Marino // 438. Ambiguity in the "do the right thing" clause
1244*e4b17023SJohn Marino template<typename _Integer>
1245*e4b17023SJohn Marino void
1246*e4b17023SJohn Marino _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1247*e4b17023SJohn Marino __true_type)
1248*e4b17023SJohn Marino { _M_fill_insert(__pos, __n, __val); }
1249*e4b17023SJohn Marino
1250*e4b17023SJohn Marino // Called by the range insert to implement [23.1.1]/9
1251*e4b17023SJohn Marino template<typename _InputIterator>
1252*e4b17023SJohn Marino void
1253*e4b17023SJohn Marino _M_insert_dispatch(iterator __pos, _InputIterator __first,
1254*e4b17023SJohn Marino _InputIterator __last, __false_type)
1255*e4b17023SJohn Marino {
1256*e4b17023SJohn Marino typedef typename std::iterator_traits<_InputIterator>::
1257*e4b17023SJohn Marino iterator_category _IterCategory;
1258*e4b17023SJohn Marino _M_range_insert(__pos, __first, __last, _IterCategory());
1259*e4b17023SJohn Marino }
1260*e4b17023SJohn Marino
1261*e4b17023SJohn Marino // Called by the second insert_dispatch above
1262*e4b17023SJohn Marino template<typename _InputIterator>
1263*e4b17023SJohn Marino void
1264*e4b17023SJohn Marino _M_range_insert(iterator __pos, _InputIterator __first,
1265*e4b17023SJohn Marino _InputIterator __last, std::input_iterator_tag);
1266*e4b17023SJohn Marino
1267*e4b17023SJohn Marino // Called by the second insert_dispatch above
1268*e4b17023SJohn Marino template<typename _ForwardIterator>
1269*e4b17023SJohn Marino void
1270*e4b17023SJohn Marino _M_range_insert(iterator __pos, _ForwardIterator __first,
1271*e4b17023SJohn Marino _ForwardIterator __last, std::forward_iterator_tag);
1272*e4b17023SJohn Marino
1273*e4b17023SJohn Marino // Called by insert(p,n,x), and the range insert when it turns out to be
1274*e4b17023SJohn Marino // the same thing.
1275*e4b17023SJohn Marino void
1276*e4b17023SJohn Marino _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1277*e4b17023SJohn Marino
1278*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
1279*e4b17023SJohn Marino // Called by resize(n).
1280*e4b17023SJohn Marino void
1281*e4b17023SJohn Marino _M_default_append(size_type __n);
1282*e4b17023SJohn Marino
1283*e4b17023SJohn Marino bool
1284*e4b17023SJohn Marino _M_shrink_to_fit();
1285*e4b17023SJohn Marino #endif
1286*e4b17023SJohn Marino
1287*e4b17023SJohn Marino // Called by insert(p,x)
1288*e4b17023SJohn Marino #ifndef __GXX_EXPERIMENTAL_CXX0X__
1289*e4b17023SJohn Marino void
1290*e4b17023SJohn Marino _M_insert_aux(iterator __position, const value_type& __x);
1291*e4b17023SJohn Marino #else
1292*e4b17023SJohn Marino template<typename... _Args>
1293*e4b17023SJohn Marino void
1294*e4b17023SJohn Marino _M_insert_aux(iterator __position, _Args&&... __args);
1295*e4b17023SJohn Marino
1296*e4b17023SJohn Marino template<typename... _Args>
1297*e4b17023SJohn Marino void
1298*e4b17023SJohn Marino _M_emplace_back_aux(_Args&&... __args);
1299*e4b17023SJohn Marino #endif
1300*e4b17023SJohn Marino
1301*e4b17023SJohn Marino // Called by the latter.
1302*e4b17023SJohn Marino size_type
1303*e4b17023SJohn Marino _M_check_len(size_type __n, const char* __s) const
1304*e4b17023SJohn Marino {
1305*e4b17023SJohn Marino if (max_size() - size() < __n)
1306*e4b17023SJohn Marino __throw_length_error(__N(__s));
1307*e4b17023SJohn Marino
1308*e4b17023SJohn Marino const size_type __len = size() + std::max(size(), __n);
1309*e4b17023SJohn Marino return (__len < size() || __len > max_size()) ? max_size() : __len;
1310*e4b17023SJohn Marino }
1311*e4b17023SJohn Marino
1312*e4b17023SJohn Marino // Internal erase functions follow.
1313*e4b17023SJohn Marino
1314*e4b17023SJohn Marino // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1315*e4b17023SJohn Marino // _M_assign_aux.
1316*e4b17023SJohn Marino void
1317*e4b17023SJohn Marino _M_erase_at_end(pointer __pos)
1318*e4b17023SJohn Marino {
1319*e4b17023SJohn Marino std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1320*e4b17023SJohn Marino this->_M_impl._M_finish = __pos;
1321*e4b17023SJohn Marino }
1322*e4b17023SJohn Marino
1323*e4b17023SJohn Marino #ifdef __GXX_EXPERIMENTAL_CXX0X__
1324*e4b17023SJohn Marino private:
1325*e4b17023SJohn Marino // Constant-time move assignment when source object's memory can be
1326*e4b17023SJohn Marino // moved, either because the source's allocator will move too
1327*e4b17023SJohn Marino // or because the allocators are equal.
1328*e4b17023SJohn Marino void
1329*e4b17023SJohn Marino _M_move_assign(vector&& __x, std::true_type) noexcept
1330*e4b17023SJohn Marino {
1331*e4b17023SJohn Marino const vector __tmp(std::move(*this));
1332*e4b17023SJohn Marino this->_M_impl._M_swap_data(__x._M_impl);
1333*e4b17023SJohn Marino if (_Alloc_traits::_S_propagate_on_move_assign())
1334*e4b17023SJohn Marino std::__alloc_on_move(_M_get_Tp_allocator(),
1335*e4b17023SJohn Marino __x._M_get_Tp_allocator());
1336*e4b17023SJohn Marino }
1337*e4b17023SJohn Marino
1338*e4b17023SJohn Marino // Do move assignment when it might not be possible to move source
1339*e4b17023SJohn Marino // object's memory, resulting in a linear-time operation.
1340*e4b17023SJohn Marino void
1341*e4b17023SJohn Marino _M_move_assign(vector&& __x, std::false_type)
1342*e4b17023SJohn Marino {
1343*e4b17023SJohn Marino if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1344*e4b17023SJohn Marino _M_move_assign(std::move(__x), std::true_type());
1345*e4b17023SJohn Marino else
1346*e4b17023SJohn Marino {
1347*e4b17023SJohn Marino // The rvalue's allocator cannot be moved and is not equal,
1348*e4b17023SJohn Marino // so we need to individually move each element.
1349*e4b17023SJohn Marino this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1350*e4b17023SJohn Marino std::__make_move_if_noexcept_iterator(__x.end()));
1351*e4b17023SJohn Marino __x.clear();
1352*e4b17023SJohn Marino }
1353*e4b17023SJohn Marino }
1354*e4b17023SJohn Marino #endif
1355*e4b17023SJohn Marino };
1356*e4b17023SJohn Marino
1357*e4b17023SJohn Marino
1358*e4b17023SJohn Marino /**
1359*e4b17023SJohn Marino * @brief Vector equality comparison.
1360*e4b17023SJohn Marino * @param __x A %vector.
1361*e4b17023SJohn Marino * @param __y A %vector of the same type as @a __x.
1362*e4b17023SJohn Marino * @return True iff the size and elements of the vectors are equal.
1363*e4b17023SJohn Marino *
1364*e4b17023SJohn Marino * This is an equivalence relation. It is linear in the size of the
1365*e4b17023SJohn Marino * vectors. Vectors are considered equivalent if their sizes are equal,
1366*e4b17023SJohn Marino * and if corresponding elements compare equal.
1367*e4b17023SJohn Marino */
1368*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1369*e4b17023SJohn Marino inline bool
1370*e4b17023SJohn Marino operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1371*e4b17023SJohn Marino { return (__x.size() == __y.size()
1372*e4b17023SJohn Marino && std::equal(__x.begin(), __x.end(), __y.begin())); }
1373*e4b17023SJohn Marino
1374*e4b17023SJohn Marino /**
1375*e4b17023SJohn Marino * @brief Vector ordering relation.
1376*e4b17023SJohn Marino * @param __x A %vector.
1377*e4b17023SJohn Marino * @param __y A %vector of the same type as @a __x.
1378*e4b17023SJohn Marino * @return True iff @a __x is lexicographically less than @a __y.
1379*e4b17023SJohn Marino *
1380*e4b17023SJohn Marino * This is a total ordering relation. It is linear in the size of the
1381*e4b17023SJohn Marino * vectors. The elements must be comparable with @c <.
1382*e4b17023SJohn Marino *
1383*e4b17023SJohn Marino * See std::lexicographical_compare() for how the determination is made.
1384*e4b17023SJohn Marino */
1385*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1386*e4b17023SJohn Marino inline bool
1387*e4b17023SJohn Marino operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1388*e4b17023SJohn Marino { return std::lexicographical_compare(__x.begin(), __x.end(),
1389*e4b17023SJohn Marino __y.begin(), __y.end()); }
1390*e4b17023SJohn Marino
1391*e4b17023SJohn Marino /// Based on operator==
1392*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1393*e4b17023SJohn Marino inline bool
1394*e4b17023SJohn Marino operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1395*e4b17023SJohn Marino { return !(__x == __y); }
1396*e4b17023SJohn Marino
1397*e4b17023SJohn Marino /// Based on operator<
1398*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1399*e4b17023SJohn Marino inline bool
1400*e4b17023SJohn Marino operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1401*e4b17023SJohn Marino { return __y < __x; }
1402*e4b17023SJohn Marino
1403*e4b17023SJohn Marino /// Based on operator<
1404*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1405*e4b17023SJohn Marino inline bool
1406*e4b17023SJohn Marino operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1407*e4b17023SJohn Marino { return !(__y < __x); }
1408*e4b17023SJohn Marino
1409*e4b17023SJohn Marino /// Based on operator<
1410*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1411*e4b17023SJohn Marino inline bool
1412*e4b17023SJohn Marino operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1413*e4b17023SJohn Marino { return !(__x < __y); }
1414*e4b17023SJohn Marino
1415*e4b17023SJohn Marino /// See std::vector::swap().
1416*e4b17023SJohn Marino template<typename _Tp, typename _Alloc>
1417*e4b17023SJohn Marino inline void
1418*e4b17023SJohn Marino swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1419*e4b17023SJohn Marino { __x.swap(__y); }
1420*e4b17023SJohn Marino
1421*e4b17023SJohn Marino _GLIBCXX_END_NAMESPACE_CONTAINER
1422*e4b17023SJohn Marino } // namespace std
1423*e4b17023SJohn Marino
1424*e4b17023SJohn Marino #endif /* _STL_VECTOR_H */
1425