1 /* -*- buffer-read-only: t -*- vi: set ro: */ 2 /* DO NOT EDIT! GENERATED AUTOMATICALLY! */ 3 /* Convert a `struct tm' to a time_t value. 4 Copyright (C) 1993-1999, 2002-2007, 2009-2010 Free Software Foundation, Inc. 5 This file is part of the GNU C Library. 6 Contributed by Paul Eggert <eggert@twinsun.com>. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3, or (at your option) 11 any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License along 19 with this program; if not, write to the Free Software Foundation, 20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ 21 22 /* Define this to have a standalone program to test this implementation of 23 mktime. */ 24 /* #define DEBUG 1 */ 25 26 #ifndef _LIBC 27 # include <config.h> 28 #endif 29 30 /* Assume that leap seconds are possible, unless told otherwise. 31 If the host has a `zic' command with a `-L leapsecondfilename' option, 32 then it supports leap seconds; otherwise it probably doesn't. */ 33 #ifndef LEAP_SECONDS_POSSIBLE 34 # define LEAP_SECONDS_POSSIBLE 1 35 #endif 36 37 #include <time.h> 38 39 #include <limits.h> 40 41 #include <string.h> /* For the real memcpy prototype. */ 42 43 #if DEBUG 44 # include <stdio.h> 45 # include <stdlib.h> 46 /* Make it work even if the system's libc has its own mktime routine. */ 47 # define mktime my_mktime 48 #endif /* DEBUG */ 49 50 /* Shift A right by B bits portably, by dividing A by 2**B and 51 truncating towards minus infinity. A and B should be free of side 52 effects, and B should be in the range 0 <= B <= INT_BITS - 2, where 53 INT_BITS is the number of useful bits in an int. GNU code can 54 assume that INT_BITS is at least 32. 55 56 ISO C99 says that A >> B is implementation-defined if A < 0. Some 57 implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift 58 right in the usual way when A < 0, so SHR falls back on division if 59 ordinary A >> B doesn't seem to be the usual signed shift. */ 60 #define SHR(a, b) \ 61 (-1 >> 1 == -1 \ 62 ? (a) >> (b) \ 63 : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) 64 65 /* The extra casts in the following macros work around compiler bugs, 66 e.g., in Cray C 5.0.3.0. */ 67 68 /* True if the arithmetic type T is an integer type. bool counts as 69 an integer. */ 70 #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) 71 72 /* True if negative values of the signed integer type T use two's 73 complement, ones' complement, or signed magnitude representation, 74 respectively. Much GNU code assumes two's complement, but some 75 people like to be portable to all possible C hosts. */ 76 #define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) 77 #define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0) 78 #define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1) 79 80 /* True if the arithmetic type T is signed. */ 81 #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) 82 83 /* The maximum and minimum values for the integer type T. These 84 macros have undefined behavior if T is signed and has padding bits. 85 If this is a problem for you, please let us know how to fix it for 86 your host. */ 87 #define TYPE_MINIMUM(t) \ 88 ((t) (! TYPE_SIGNED (t) \ 89 ? (t) 0 \ 90 : TYPE_SIGNED_MAGNITUDE (t) \ 91 ? ~ (t) 0 \ 92 : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))) 93 #define TYPE_MAXIMUM(t) \ 94 ((t) (! TYPE_SIGNED (t) \ 95 ? (t) -1 \ 96 : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))) 97 98 #ifndef TIME_T_MIN 99 # define TIME_T_MIN TYPE_MINIMUM (time_t) 100 #endif 101 #ifndef TIME_T_MAX 102 # define TIME_T_MAX TYPE_MAXIMUM (time_t) 103 #endif 104 #define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1) 105 106 /* Verify a requirement at compile-time (unlike assert, which is runtime). */ 107 #define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; } 108 109 verify (time_t_is_integer, TYPE_IS_INTEGER (time_t)); 110 verify (twos_complement_arithmetic, TYPE_TWOS_COMPLEMENT (int)); 111 /* The code also assumes that signed integer overflow silently wraps 112 around, but this assumption can't be stated without causing a 113 diagnostic on some hosts. */ 114 115 #define EPOCH_YEAR 1970 116 #define TM_YEAR_BASE 1900 117 verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0); 118 119 /* Return 1 if YEAR + TM_YEAR_BASE is a leap year. */ 120 static inline int 121 leapyear (long int year) 122 { 123 /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. 124 Also, work even if YEAR is negative. */ 125 return 126 ((year & 3) == 0 127 && (year % 100 != 0 128 || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); 129 } 130 131 /* How many days come before each month (0-12). */ 132 #ifndef _LIBC 133 static 134 #endif 135 const unsigned short int __mon_yday[2][13] = 136 { 137 /* Normal years. */ 138 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, 139 /* Leap years. */ 140 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } 141 }; 142 143 144 #ifndef _LIBC 145 /* Portable standalone applications should supply a <time.h> that 146 declares a POSIX-compliant localtime_r, for the benefit of older 147 implementations that lack localtime_r or have a nonstandard one. 148 See the gnulib time_r module for one way to implement this. */ 149 # undef __localtime_r 150 # define __localtime_r localtime_r 151 # define __mktime_internal mktime_internal 152 # include "mktime-internal.h" 153 #endif 154 155 /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - 156 (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks 157 were not adjusted between the time stamps. 158 159 The YEAR values uses the same numbering as TP->tm_year. Values 160 need not be in the usual range. However, YEAR1 must not be less 161 than 2 * INT_MIN or greater than 2 * INT_MAX. 162 163 The result may overflow. It is the caller's responsibility to 164 detect overflow. */ 165 166 static inline time_t 167 ydhms_diff (long int year1, long int yday1, int hour1, int min1, int sec1, 168 int year0, int yday0, int hour0, int min0, int sec0) 169 { 170 verify (C99_integer_division, -1 / 2 == 0); 171 #if 0 /* This assertion fails on 32-bit systems with 64-bit time_t, such as 172 NetBSD 5 on i386. */ 173 verify (long_int_year_and_yday_are_wide_enough, 174 INT_MAX <= LONG_MAX / 2 || TIME_T_MAX <= UINT_MAX); 175 #endif 176 177 /* Compute intervening leap days correctly even if year is negative. 178 Take care to avoid integer overflow here. */ 179 int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3); 180 int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3); 181 int a100 = a4 / 25 - (a4 % 25 < 0); 182 int b100 = b4 / 25 - (b4 % 25 < 0); 183 int a400 = SHR (a100, 2); 184 int b400 = SHR (b100, 2); 185 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); 186 187 /* Compute the desired time in time_t precision. Overflow might 188 occur here. */ 189 time_t tyear1 = year1; 190 time_t years = tyear1 - year0; 191 time_t days = 365 * years + yday1 - yday0 + intervening_leap_days; 192 time_t hours = 24 * days + hour1 - hour0; 193 time_t minutes = 60 * hours + min1 - min0; 194 time_t seconds = 60 * minutes + sec1 - sec0; 195 return seconds; 196 } 197 198 199 /* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC), 200 assuming that *T corresponds to *TP and that no clock adjustments 201 occurred between *TP and the desired time. 202 If TP is null, return a value not equal to *T; this avoids false matches. 203 If overflow occurs, yield the minimal or maximal value, except do not 204 yield a value equal to *T. */ 205 static time_t 206 guess_time_tm (long int year, long int yday, int hour, int min, int sec, 207 const time_t *t, const struct tm *tp) 208 { 209 if (tp) 210 { 211 time_t d = ydhms_diff (year, yday, hour, min, sec, 212 tp->tm_year, tp->tm_yday, 213 tp->tm_hour, tp->tm_min, tp->tm_sec); 214 time_t t1 = *t + d; 215 if ((t1 < *t) == (TYPE_SIGNED (time_t) ? d < 0 : TIME_T_MAX / 2 < d)) 216 return t1; 217 } 218 219 /* Overflow occurred one way or another. Return the nearest result 220 that is actually in range, except don't report a zero difference 221 if the actual difference is nonzero, as that would cause a false 222 match; and don't oscillate between two values, as that would 223 confuse the spring-forward gap detector. */ 224 return (*t < TIME_T_MIDPOINT 225 ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN) 226 : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX)); 227 } 228 229 /* Use CONVERT to convert *T to a broken down time in *TP. 230 If *T is out of range for conversion, adjust it so that 231 it is the nearest in-range value and then convert that. */ 232 static struct tm * 233 ranged_convert (struct tm *(*convert) (const time_t *, struct tm *), 234 time_t *t, struct tm *tp) 235 { 236 struct tm *r = convert (t, tp); 237 238 if (!r && *t) 239 { 240 time_t bad = *t; 241 time_t ok = 0; 242 243 /* BAD is a known unconvertible time_t, and OK is a known good one. 244 Use binary search to narrow the range between BAD and OK until 245 they differ by 1. */ 246 while (bad != ok + (bad < 0 ? -1 : 1)) 247 { 248 time_t mid = *t = (bad < 0 249 ? bad + ((ok - bad) >> 1) 250 : ok + ((bad - ok) >> 1)); 251 r = convert (t, tp); 252 if (r) 253 ok = mid; 254 else 255 bad = mid; 256 } 257 258 if (!r && ok) 259 { 260 /* The last conversion attempt failed; 261 revert to the most recent successful attempt. */ 262 *t = ok; 263 r = convert (t, tp); 264 } 265 } 266 267 return r; 268 } 269 270 271 /* Convert *TP to a time_t value, inverting 272 the monotonic and mostly-unit-linear conversion function CONVERT. 273 Use *OFFSET to keep track of a guess at the offset of the result, 274 compared to what the result would be for UTC without leap seconds. 275 If *OFFSET's guess is correct, only one CONVERT call is needed. 276 This function is external because it is used also by timegm.c. */ 277 time_t 278 __mktime_internal (struct tm *tp, 279 struct tm *(*convert) (const time_t *, struct tm *), 280 time_t *offset) 281 { 282 time_t t, gt, t0, t1, t2; 283 struct tm tm; 284 285 /* The maximum number of probes (calls to CONVERT) should be enough 286 to handle any combinations of time zone rule changes, solar time, 287 leap seconds, and oscillations around a spring-forward gap. 288 POSIX.1 prohibits leap seconds, but some hosts have them anyway. */ 289 int remaining_probes = 6; 290 291 /* Time requested. Copy it in case CONVERT modifies *TP; this can 292 occur if TP is localtime's returned value and CONVERT is localtime. */ 293 int sec = tp->tm_sec; 294 int min = tp->tm_min; 295 int hour = tp->tm_hour; 296 int mday = tp->tm_mday; 297 int mon = tp->tm_mon; 298 int year_requested = tp->tm_year; 299 /* Normalize the value. */ 300 int isdst = ((tp->tm_isdst >> (8 * sizeof (tp->tm_isdst) - 1)) 301 | (tp->tm_isdst != 0)); 302 303 /* 1 if the previous probe was DST. */ 304 int dst2; 305 306 /* Ensure that mon is in range, and set year accordingly. */ 307 int mon_remainder = mon % 12; 308 int negative_mon_remainder = mon_remainder < 0; 309 int mon_years = mon / 12 - negative_mon_remainder; 310 long int lyear_requested = year_requested; 311 long int year = lyear_requested + mon_years; 312 313 /* The other values need not be in range: 314 the remaining code handles minor overflows correctly, 315 assuming int and time_t arithmetic wraps around. 316 Major overflows are caught at the end. */ 317 318 /* Calculate day of year from year, month, and day of month. 319 The result need not be in range. */ 320 int mon_yday = ((__mon_yday[leapyear (year)] 321 [mon_remainder + 12 * negative_mon_remainder]) 322 - 1); 323 long int lmday = mday; 324 long int yday = mon_yday + lmday; 325 326 time_t guessed_offset = *offset; 327 328 int sec_requested = sec; 329 330 if (LEAP_SECONDS_POSSIBLE) 331 { 332 /* Handle out-of-range seconds specially, 333 since ydhms_tm_diff assumes every minute has 60 seconds. */ 334 if (sec < 0) 335 sec = 0; 336 if (59 < sec) 337 sec = 59; 338 } 339 340 /* Invert CONVERT by probing. First assume the same offset as last 341 time. */ 342 343 t0 = ydhms_diff (year, yday, hour, min, sec, 344 EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset); 345 346 if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3) 347 { 348 /* time_t isn't large enough to rule out overflows, so check 349 for major overflows. A gross check suffices, since if t0 350 has overflowed, it is off by a multiple of TIME_T_MAX - 351 TIME_T_MIN + 1. So ignore any component of the difference 352 that is bounded by a small value. */ 353 354 /* Approximate log base 2 of the number of time units per 355 biennium. A biennium is 2 years; use this unit instead of 356 years to avoid integer overflow. For example, 2 average 357 Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds, 358 which is 63113904 seconds, and rint (log2 (63113904)) is 359 26. */ 360 int ALOG2_SECONDS_PER_BIENNIUM = 26; 361 int ALOG2_MINUTES_PER_BIENNIUM = 20; 362 int ALOG2_HOURS_PER_BIENNIUM = 14; 363 int ALOG2_DAYS_PER_BIENNIUM = 10; 364 int LOG2_YEARS_PER_BIENNIUM = 1; 365 366 int approx_requested_biennia = 367 (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM) 368 - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM) 369 + SHR (mday, ALOG2_DAYS_PER_BIENNIUM) 370 + SHR (hour, ALOG2_HOURS_PER_BIENNIUM) 371 + SHR (min, ALOG2_MINUTES_PER_BIENNIUM) 372 + (LEAP_SECONDS_POSSIBLE 373 ? 0 374 : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM))); 375 376 int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM); 377 int diff = approx_biennia - approx_requested_biennia; 378 int abs_diff = diff < 0 ? - diff : diff; 379 380 /* IRIX 4.0.5 cc miscaculates TIME_T_MIN / 3: it erroneously 381 gives a positive value of 715827882. Setting a variable 382 first then doing math on it seems to work. 383 (ghazi@caip.rutgers.edu) */ 384 time_t time_t_max = TIME_T_MAX; 385 time_t time_t_min = TIME_T_MIN; 386 time_t overflow_threshold = 387 (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM; 388 389 if (overflow_threshold < abs_diff) 390 { 391 /* Overflow occurred. Try repairing it; this might work if 392 the time zone offset is enough to undo the overflow. */ 393 time_t repaired_t0 = -1 - t0; 394 approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM); 395 diff = approx_biennia - approx_requested_biennia; 396 abs_diff = diff < 0 ? - diff : diff; 397 if (overflow_threshold < abs_diff) 398 return -1; 399 guessed_offset += repaired_t0 - t0; 400 t0 = repaired_t0; 401 } 402 } 403 404 /* Repeatedly use the error to improve the guess. */ 405 406 for (t = t1 = t2 = t0, dst2 = 0; 407 (gt = guess_time_tm (year, yday, hour, min, sec, &t, 408 ranged_convert (convert, &t, &tm)), 409 t != gt); 410 t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0) 411 if (t == t1 && t != t2 412 && (tm.tm_isdst < 0 413 || (isdst < 0 414 ? dst2 <= (tm.tm_isdst != 0) 415 : (isdst != 0) != (tm.tm_isdst != 0)))) 416 /* We can't possibly find a match, as we are oscillating 417 between two values. The requested time probably falls 418 within a spring-forward gap of size GT - T. Follow the common 419 practice in this case, which is to return a time that is GT - T 420 away from the requested time, preferring a time whose 421 tm_isdst differs from the requested value. (If no tm_isdst 422 was requested and only one of the two values has a nonzero 423 tm_isdst, prefer that value.) In practice, this is more 424 useful than returning -1. */ 425 goto offset_found; 426 else if (--remaining_probes == 0) 427 return -1; 428 429 /* We have a match. Check whether tm.tm_isdst has the requested 430 value, if any. */ 431 if (isdst != tm.tm_isdst && 0 <= isdst && 0 <= tm.tm_isdst) 432 { 433 /* tm.tm_isdst has the wrong value. Look for a neighboring 434 time with the right value, and use its UTC offset. 435 436 Heuristic: probe the adjacent timestamps in both directions, 437 looking for the desired isdst. This should work for all real 438 time zone histories in the tz database. */ 439 440 /* Distance between probes when looking for a DST boundary. In 441 tzdata2003a, the shortest period of DST is 601200 seconds 442 (e.g., America/Recife starting 2000-10-08 01:00), and the 443 shortest period of non-DST surrounded by DST is 694800 444 seconds (Africa/Tunis starting 1943-04-17 01:00). Use the 445 minimum of these two values, so we don't miss these short 446 periods when probing. */ 447 int stride = 601200; 448 449 /* The longest period of DST in tzdata2003a is 536454000 seconds 450 (e.g., America/Jujuy starting 1946-10-01 01:00). The longest 451 period of non-DST is much longer, but it makes no real sense 452 to search for more than a year of non-DST, so use the DST 453 max. */ 454 int duration_max = 536454000; 455 456 /* Search in both directions, so the maximum distance is half 457 the duration; add the stride to avoid off-by-1 problems. */ 458 int delta_bound = duration_max / 2 + stride; 459 460 int delta, direction; 461 462 for (delta = stride; delta < delta_bound; delta += stride) 463 for (direction = -1; direction <= 1; direction += 2) 464 { 465 time_t ot = t + delta * direction; 466 if ((ot < t) == (direction < 0)) 467 { 468 struct tm otm; 469 ranged_convert (convert, &ot, &otm); 470 if (otm.tm_isdst == isdst) 471 { 472 /* We found the desired tm_isdst. 473 Extrapolate back to the desired time. */ 474 t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm); 475 ranged_convert (convert, &t, &tm); 476 goto offset_found; 477 } 478 } 479 } 480 } 481 482 offset_found: 483 *offset = guessed_offset + t - t0; 484 485 if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) 486 { 487 /* Adjust time to reflect the tm_sec requested, not the normalized value. 488 Also, repair any damage from a false match due to a leap second. */ 489 int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec; 490 t1 = t + sec_requested; 491 t2 = t1 + sec_adjustment; 492 if (((t1 < t) != (sec_requested < 0)) 493 | ((t2 < t1) != (sec_adjustment < 0)) 494 | ! convert (&t2, &tm)) 495 return -1; 496 t = t2; 497 } 498 499 *tp = tm; 500 return t; 501 } 502 503 504 /* FIXME: This should use a signed type wide enough to hold any UTC 505 offset in seconds. 'int' should be good enough for GNU code. We 506 can't fix this unilaterally though, as other modules invoke 507 __mktime_internal. */ 508 static time_t localtime_offset; 509 510 /* Convert *TP to a time_t value. */ 511 time_t 512 mktime (struct tm *tp) 513 { 514 #ifdef _LIBC 515 /* POSIX.1 8.1.1 requires that whenever mktime() is called, the 516 time zone names contained in the external variable `tzname' shall 517 be set as if the tzset() function had been called. */ 518 __tzset (); 519 #endif 520 521 return __mktime_internal (tp, __localtime_r, &localtime_offset); 522 } 523 524 #ifdef weak_alias 525 weak_alias (mktime, timelocal) 526 #endif 527 528 #ifdef _LIBC 529 libc_hidden_def (mktime) 530 libc_hidden_weak (timelocal) 531 #endif 532 533 #if DEBUG 534 535 static int 536 not_equal_tm (const struct tm *a, const struct tm *b) 537 { 538 return ((a->tm_sec ^ b->tm_sec) 539 | (a->tm_min ^ b->tm_min) 540 | (a->tm_hour ^ b->tm_hour) 541 | (a->tm_mday ^ b->tm_mday) 542 | (a->tm_mon ^ b->tm_mon) 543 | (a->tm_year ^ b->tm_year) 544 | (a->tm_yday ^ b->tm_yday) 545 | (a->tm_isdst ^ b->tm_isdst)); 546 } 547 548 static void 549 print_tm (const struct tm *tp) 550 { 551 if (tp) 552 printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d", 553 tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday, 554 tp->tm_hour, tp->tm_min, tp->tm_sec, 555 tp->tm_yday, tp->tm_wday, tp->tm_isdst); 556 else 557 printf ("0"); 558 } 559 560 static int 561 check_result (time_t tk, struct tm tmk, time_t tl, const struct tm *lt) 562 { 563 if (tk != tl || !lt || not_equal_tm (&tmk, lt)) 564 { 565 printf ("mktime ("); 566 print_tm (lt); 567 printf (")\nyields ("); 568 print_tm (&tmk); 569 printf (") == %ld, should be %ld\n", (long int) tk, (long int) tl); 570 return 1; 571 } 572 573 return 0; 574 } 575 576 int 577 main (int argc, char **argv) 578 { 579 int status = 0; 580 struct tm tm, tmk, tml; 581 struct tm *lt; 582 time_t tk, tl, tl1; 583 char trailer; 584 585 if ((argc == 3 || argc == 4) 586 && (sscanf (argv[1], "%d-%d-%d%c", 587 &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer) 588 == 3) 589 && (sscanf (argv[2], "%d:%d:%d%c", 590 &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer) 591 == 3)) 592 { 593 tm.tm_year -= TM_YEAR_BASE; 594 tm.tm_mon--; 595 tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]); 596 tmk = tm; 597 tl = mktime (&tmk); 598 lt = localtime (&tl); 599 if (lt) 600 { 601 tml = *lt; 602 lt = &tml; 603 } 604 printf ("mktime returns %ld == ", (long int) tl); 605 print_tm (&tmk); 606 printf ("\n"); 607 status = check_result (tl, tmk, tl, lt); 608 } 609 else if (argc == 4 || (argc == 5 && strcmp (argv[4], "-") == 0)) 610 { 611 time_t from = atol (argv[1]); 612 time_t by = atol (argv[2]); 613 time_t to = atol (argv[3]); 614 615 if (argc == 4) 616 for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) 617 { 618 lt = localtime (&tl); 619 if (lt) 620 { 621 tmk = tml = *lt; 622 tk = mktime (&tmk); 623 status |= check_result (tk, tmk, tl, &tml); 624 } 625 else 626 { 627 printf ("localtime (%ld) yields 0\n", (long int) tl); 628 status = 1; 629 } 630 tl1 = tl + by; 631 if ((tl1 < tl) != (by < 0)) 632 break; 633 } 634 else 635 for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) 636 { 637 /* Null benchmark. */ 638 lt = localtime (&tl); 639 if (lt) 640 { 641 tmk = tml = *lt; 642 tk = tl; 643 status |= check_result (tk, tmk, tl, &tml); 644 } 645 else 646 { 647 printf ("localtime (%ld) yields 0\n", (long int) tl); 648 status = 1; 649 } 650 tl1 = tl + by; 651 if ((tl1 < tl) != (by < 0)) 652 break; 653 } 654 } 655 else 656 printf ("Usage:\ 657 \t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\ 658 \t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\ 659 \t%s FROM BY TO - # Do not test those values (for benchmark).\n", 660 argv[0], argv[0], argv[0]); 661 662 return status; 663 } 664 665 #endif /* DEBUG */ 666 667 /* 668 Local Variables: 669 compile-command: "gcc -DDEBUG -Wall -W -O -g mktime.c -o mktime" 670 End: 671 */ 672