1*1099Sbill static char *sccsid = "@(#)spline.c 4.1 (Berkeley) 10/01/80"; 2*1099Sbill #include <stdio.h> 3*1099Sbill 4*1099Sbill #define NP 1000 5*1099Sbill #define INF 1.e37 6*1099Sbill 7*1099Sbill struct proj { int lbf,ubf; float a,b,lb,ub,quant,mult,val[NP]; } x,y; 8*1099Sbill float *diag, *r; 9*1099Sbill float dx = 1.; 10*1099Sbill float ni = 100.; 11*1099Sbill int n; 12*1099Sbill int auta; 13*1099Sbill int periodic; 14*1099Sbill float konst = 0.0; 15*1099Sbill float zero = 0.; 16*1099Sbill 17*1099Sbill /* Spline fit technique 18*1099Sbill let x,y be vectors of abscissas and ordinates 19*1099Sbill h be vector of differences h9i8=x9i8-x9i-1988 20*1099Sbill y" be vector of 2nd derivs of approx function 21*1099Sbill If the points are numbered 0,1,2,...,n+1 then y" satisfies 22*1099Sbill (R W Hamming, Numerical Methods for Engineers and Scientists, 23*1099Sbill 2nd Ed, p349ff) 24*1099Sbill h9i8y"9i-1988+2(h9i8+h9i+18)y"9i8+h9i+18y"9i+18 25*1099Sbill 26*1099Sbill = 6[(y9i+18-y9i8)/h9i+18-(y9i8-y9i-18)/h9i8] i=1,2,...,n 27*1099Sbill 28*1099Sbill where y"908 = y"9n+18 = 0 29*1099Sbill This is a symmetric tridiagonal system of the form 30*1099Sbill 31*1099Sbill | a918 h928 | |y"918| |b918| 32*1099Sbill | h928 a928 h938 | |y"928| |b928| 33*1099Sbill | h938 a938 h948 | |y"938| = |b938| 34*1099Sbill | . | | .| | .| 35*1099Sbill | . | | .| | .| 36*1099Sbill It can be triangularized into 37*1099Sbill | d918 h928 | |y"918| |r918| 38*1099Sbill | d928 h938 | |y"928| |r928| 39*1099Sbill | d938 h948 | |y"938| = |r938| 40*1099Sbill | . | | .| | .| 41*1099Sbill | . | | .| | .| 42*1099Sbill where 43*1099Sbill d918 = a918 44*1099Sbill 45*1099Sbill r908 = 0 46*1099Sbill 47*1099Sbill d9i8 = a9i8 - h9i8829/d9i-18 1<i<_n 48*1099Sbill 49*1099Sbill r9i8 = b9i8 - h9i8r9i-18/d9i-1i8 1<_i<_n 50*1099Sbill 51*1099Sbill the back solution is 52*1099Sbill y"9n8 = r9n8/d9n8 53*1099Sbill 54*1099Sbill y"9i8 = (r9i8-h9i+18y"9i+18)/d9i8 1<_i<n 55*1099Sbill 56*1099Sbill superficially, d9i8 and r9i8 don't have to be stored for they can be 57*1099Sbill recalculated backward by the formulas 58*1099Sbill 59*1099Sbill d9i-18 = h9i8829/(a9i8-d9i8) 1<i<_n 60*1099Sbill 61*1099Sbill r9i-18 = (b9i8-r9i8)d9i-18/h9i8 1<i<_n 62*1099Sbill 63*1099Sbill unhappily it turns out that the recursion forward for d 64*1099Sbill is quite strongly geometrically convergent--and is wildly 65*1099Sbill unstable going backward. 66*1099Sbill There's similar trouble with r, so the intermediate 67*1099Sbill results must be kept. 68*1099Sbill 69*1099Sbill Note that n-1 in the program below plays the role of n+1 in the theory 70*1099Sbill 71*1099Sbill Other boundary conditions_________________________ 72*1099Sbill 73*1099Sbill The boundary conditions are easily generalized to handle 74*1099Sbill 75*1099Sbill y908" = ky918", y9n+18" = ky9n8" 76*1099Sbill 77*1099Sbill for some constant k. The above analysis was for k = 0; 78*1099Sbill k = 1 fits parabolas perfectly as well as stright lines; 79*1099Sbill k = 1/2 has been recommended as somehow pleasant. 80*1099Sbill 81*1099Sbill All that is necessary is to add h918 to a918 and h9n+18 to a9n8. 82*1099Sbill 83*1099Sbill 84*1099Sbill Periodic case_____________ 85*1099Sbill 86*1099Sbill To do this, add 1 more row and column thus 87*1099Sbill 88*1099Sbill | a918 h928 h918 | |y918"| |b918| 89*1099Sbill | h928 a928 h938 | |y928"| |b928| 90*1099Sbill | h938 a948 h948 | |y938"| |b938| 91*1099Sbill | | | .| = | .| 92*1099Sbill | . | | .| | .| 93*1099Sbill | h918 h908 a908 | | .| | .| 94*1099Sbill 95*1099Sbill where h908=_ h9n+18 96*1099Sbill 97*1099Sbill The same diagonalization procedure works, except for 98*1099Sbill the effect of the 2 corner elements. Let s9i8 be the part 99*1099Sbill of the last element in the i8th9 "diagonalized" row that 100*1099Sbill arises from the extra top corner element. 101*1099Sbill 102*1099Sbill s918 = h918 103*1099Sbill 104*1099Sbill s9i8 = -s9i-18h9i8/d9i-18 2<_i<_n+1 105*1099Sbill 106*1099Sbill After "diagonalizing", the lower corner element remains. 107*1099Sbill Call t9i8 the bottom element that appears in the i8th9 colomn 108*1099Sbill as the bottom element to its left is eliminated 109*1099Sbill 110*1099Sbill t918 = h918 111*1099Sbill 112*1099Sbill t9i8 = -t9i-18h9i8/d9i-18 113*1099Sbill 114*1099Sbill Evidently t9i8 = s9i8. 115*1099Sbill Elimination along the bottom row 116*1099Sbill introduces further corrections to the bottom right element 117*1099Sbill and to the last element of the right hand side. 118*1099Sbill Call these corrections u and v. 119*1099Sbill 120*1099Sbill u918 = v918 = 0 121*1099Sbill 122*1099Sbill u9i8 = u9i-18-s9i-18*t9i-18/d9i-18 123*1099Sbill 124*1099Sbill v9i8 = v9i-18-r9i-18*t9i-18/d9i-18 2<_i<_n+1 125*1099Sbill 126*1099Sbill The back solution is now obtained as follows 127*1099Sbill 128*1099Sbill y"9n+18 = (r9n+18+v9n+18)/(d9n+18+s9n+18+t9n+18+u9n+18) 129*1099Sbill 130*1099Sbill y"9i8 = (r9i8-h9i+18*y9i+18-s9i8*y9n+18)/d9i8 1<_i<_n 131*1099Sbill 132*1099Sbill Interpolation in the interval x9i8<_x<_x9i+18 is by the formula 133*1099Sbill 134*1099Sbill y = y9i8x9+8 + y9i+18x9-8 -(h8299i+18/6)[y"9i8(x9+8-x9+8839)+y"9i+18(x9-8-x9-8839)] 135*1099Sbill where 136*1099Sbill x9+8 = x9i+18-x 137*1099Sbill 138*1099Sbill x9-8 = x-x9i8 139*1099Sbill */ 140*1099Sbill 141*1099Sbill float 142*1099Sbill rhs(i){ 143*1099Sbill int i_; 144*1099Sbill double zz; 145*1099Sbill i_ = i==n-1?0:i; 146*1099Sbill zz = (y.val[i]-y.val[i-1])/(x.val[i]-x.val[i-1]); 147*1099Sbill return(6*((y.val[i_+1]-y.val[i_])/(x.val[i+1]-x.val[i]) - zz)); 148*1099Sbill } 149*1099Sbill 150*1099Sbill spline(){ 151*1099Sbill float d,s,u,v,hi,hi1; 152*1099Sbill float h; 153*1099Sbill float D2yi,D2yi1,D2yn1,x0,x1,yy,a; 154*1099Sbill int end; 155*1099Sbill float corr; 156*1099Sbill int i,j,m; 157*1099Sbill if(n<3) return(0); 158*1099Sbill if(periodic) konst = 0; 159*1099Sbill d = 1; 160*1099Sbill r[0] = 0; 161*1099Sbill s = periodic?-1:0; 162*1099Sbill for(i=0;++i<n-!periodic;){ /* triangularize */ 163*1099Sbill hi = x.val[i]-x.val[i-1]; 164*1099Sbill hi1 = i==n-1?x.val[1]-x.val[0]: 165*1099Sbill x.val[i+1]-x.val[i]; 166*1099Sbill if(hi1*hi<=0) return(0); 167*1099Sbill u = i==1?zero:u-s*s/d; 168*1099Sbill v = i==1?zero:v-s*r[i-1]/d; 169*1099Sbill r[i] = rhs(i)-hi*r[i-1]/d; 170*1099Sbill s = -hi*s/d; 171*1099Sbill a = 2*(hi+hi1); 172*1099Sbill if(i==1) a += konst*hi; 173*1099Sbill if(i==n-2) a += konst*hi1; 174*1099Sbill diag[i] = d = i==1? a: 175*1099Sbill a - hi*hi/d; 176*1099Sbill } 177*1099Sbill D2yi = D2yn1 = 0; 178*1099Sbill for(i=n-!periodic;--i>=0;){ /* back substitute */ 179*1099Sbill end = i==n-1; 180*1099Sbill hi1 = end?x.val[1]-x.val[0]: 181*1099Sbill x.val[i+1]-x.val[i]; 182*1099Sbill D2yi1 = D2yi; 183*1099Sbill if(i>0){ 184*1099Sbill hi = x.val[i]-x.val[i-1]; 185*1099Sbill corr = end?2*s+u:zero; 186*1099Sbill D2yi = (end*v+r[i]-hi1*D2yi1-s*D2yn1)/ 187*1099Sbill (diag[i]+corr); 188*1099Sbill if(end) D2yn1 = D2yi; 189*1099Sbill if(i>1){ 190*1099Sbill a = 2*(hi+hi1); 191*1099Sbill if(i==1) a += konst*hi; 192*1099Sbill if(i==n-2) a += konst*hi1; 193*1099Sbill d = diag[i-1]; 194*1099Sbill s = -s*d/hi; 195*1099Sbill }} 196*1099Sbill else D2yi = D2yn1; 197*1099Sbill if(!periodic) { 198*1099Sbill if(i==0) D2yi = konst*D2yi1; 199*1099Sbill if(i==n-2) D2yi1 = konst*D2yi; 200*1099Sbill } 201*1099Sbill if(end) continue; 202*1099Sbill m = hi1>0?ni:-ni; 203*1099Sbill m = 1.001*m*hi1/(x.ub-x.lb); 204*1099Sbill if(m<=0) m = 1; 205*1099Sbill h = hi1/m; 206*1099Sbill for(j=m;j>0||i==0&&j==0;j--){ /* interpolate */ 207*1099Sbill x0 = (m-j)*h/hi1; 208*1099Sbill x1 = j*h/hi1; 209*1099Sbill yy = D2yi*(x0-x0*x0*x0)+D2yi1*(x1-x1*x1*x1); 210*1099Sbill yy = y.val[i]*x0+y.val[i+1]*x1 -hi1*hi1*yy/6; 211*1099Sbill printf("%f ",x.val[i]+j*h); 212*1099Sbill printf("%f\n",yy); 213*1099Sbill } 214*1099Sbill } 215*1099Sbill return(1); 216*1099Sbill } 217*1099Sbill readin() { 218*1099Sbill for(n=0;n<NP;n++){ 219*1099Sbill if(auta) x.val[n] = n*dx+x.lb; 220*1099Sbill else if(!getfloat(&x.val[n])) break; 221*1099Sbill if(!getfloat(&y.val[n])) break; } } 222*1099Sbill 223*1099Sbill getfloat(p) 224*1099Sbill float *p;{ 225*1099Sbill char buf[30]; 226*1099Sbill register c; 227*1099Sbill int i; 228*1099Sbill extern double atof(); 229*1099Sbill for(;;){ 230*1099Sbill c = getchar(); 231*1099Sbill if (c==EOF) { 232*1099Sbill *buf = '\0'; 233*1099Sbill return(0); 234*1099Sbill } 235*1099Sbill *buf = c; 236*1099Sbill switch(*buf){ 237*1099Sbill case ' ': 238*1099Sbill case '\t': 239*1099Sbill case '\n': 240*1099Sbill continue;} 241*1099Sbill break;} 242*1099Sbill for(i=1;i<30;i++){ 243*1099Sbill c = getchar(); 244*1099Sbill if (c==EOF) { 245*1099Sbill buf[i] = '\0'; 246*1099Sbill break; 247*1099Sbill } 248*1099Sbill buf[i] = c; 249*1099Sbill if('0'<=c && c<='9') continue; 250*1099Sbill switch(c) { 251*1099Sbill case '.': 252*1099Sbill case '+': 253*1099Sbill case '-': 254*1099Sbill case 'E': 255*1099Sbill case 'e': 256*1099Sbill continue;} 257*1099Sbill break; } 258*1099Sbill buf[i] = ' '; 259*1099Sbill *p = atof(buf); 260*1099Sbill return(1); } 261*1099Sbill 262*1099Sbill getlim(p) 263*1099Sbill struct proj *p; { 264*1099Sbill int i; 265*1099Sbill for(i=0;i<n;i++) { 266*1099Sbill if(!p->lbf && p->lb>(p->val[i])) p->lb = p->val[i]; 267*1099Sbill if(!p->ubf && p->ub<(p->val[i])) p->ub = p->val[i]; } 268*1099Sbill } 269*1099Sbill 270*1099Sbill 271*1099Sbill main(argc,argv) 272*1099Sbill char *argv[];{ 273*1099Sbill extern char *malloc(); 274*1099Sbill int i; 275*1099Sbill x.lbf = x.ubf = y.lbf = y.ubf = 0; 276*1099Sbill x.lb = INF; 277*1099Sbill x.ub = -INF; 278*1099Sbill y.lb = INF; 279*1099Sbill y.ub = -INF; 280*1099Sbill while(--argc > 0) { 281*1099Sbill argv++; 282*1099Sbill again: switch(argv[0][0]) { 283*1099Sbill case '-': 284*1099Sbill argv[0]++; 285*1099Sbill goto again; 286*1099Sbill case 'a': 287*1099Sbill auta = 1; 288*1099Sbill numb(&dx,&argc,&argv); 289*1099Sbill break; 290*1099Sbill case 'k': 291*1099Sbill numb(&konst,&argc,&argv); 292*1099Sbill break; 293*1099Sbill case 'n': 294*1099Sbill numb(&ni,&argc,&argv); 295*1099Sbill break; 296*1099Sbill case 'p': 297*1099Sbill periodic = 1; 298*1099Sbill break; 299*1099Sbill case 'x': 300*1099Sbill if(!numb(&x.lb,&argc,&argv)) break; 301*1099Sbill x.lbf = 1; 302*1099Sbill if(!numb(&x.ub,&argc,&argv)) break; 303*1099Sbill x.ubf = 1; 304*1099Sbill break; 305*1099Sbill default: 306*1099Sbill fprintf(stderr, "Bad agrument\n"); 307*1099Sbill exit(1); 308*1099Sbill } 309*1099Sbill } 310*1099Sbill if(auta&&!x.lbf) x.lb = 0; 311*1099Sbill readin(); 312*1099Sbill getlim(&x); 313*1099Sbill getlim(&y); 314*1099Sbill i = (n+1)*sizeof(dx); 315*1099Sbill diag = (float *)malloc((unsigned)i); 316*1099Sbill r = (float *)malloc((unsigned)i); 317*1099Sbill if(r==NULL||!spline()) for(i=0;i<n;i++){ 318*1099Sbill printf("%f ",x.val[i]); 319*1099Sbill printf("%f\n",y.val[i]); } 320*1099Sbill } 321*1099Sbill numb(np,argcp,argvp) 322*1099Sbill int *argcp; 323*1099Sbill float *np; 324*1099Sbill char ***argvp;{ 325*1099Sbill double atof(); 326*1099Sbill char c; 327*1099Sbill if(*argcp<=1) return(0); 328*1099Sbill c = (*argvp)[1][0]; 329*1099Sbill if(!('0'<=c&&c<='9' || c=='-' || c== '.' )) return(0); 330*1099Sbill *np = atof((*argvp)[1]); 331*1099Sbill (*argcp)--; 332*1099Sbill (*argvp)++; 333*1099Sbill return(1); } 334*1099Sbill 335