1 /* 2 * Copyright (c) 1982, 1986 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)ut.c 7.5 (Berkeley) 02/08/90 7 */ 8 9 #include "tj.h" 10 #if NUT > 0 11 /* 12 * System Industries Model 9700 Tape Drive 13 * emulates a TU45 on the UNIBUS 14 * 15 * TODO: 16 * check out attention processing 17 * try reset code and dump code 18 */ 19 #include "param.h" 20 #include "systm.h" 21 #include "buf.h" 22 #include "conf.h" 23 #include "dir.h" 24 #include "file.h" 25 #include "user.h" 26 #include "map.h" 27 #include "ioctl.h" 28 #include "mtio.h" 29 #include "cmap.h" 30 #include "uio.h" 31 #include "kernel.h" 32 #include "tty.h" 33 #include "syslog.h" 34 #include "tsleep.h" 35 36 #include "machine/pte.h" 37 #include "../vax/cpu.h" 38 #include "ubareg.h" 39 #include "ubavar.h" 40 #include "utreg.h" 41 42 struct buf cutbuf[NUT]; /* bufs for control operations */ 43 struct buf tjutab[NTJ]; /* bufs for slave queue headers */ 44 45 struct uba_ctlr *utminfo[NUT]; 46 struct uba_device *tjdinfo[NTJ]; 47 int utprobe(), utslave(), utattach(), utdgo(), utintr(), uttimer(); 48 u_short utstd[] = { 0772440, 0 }; 49 struct uba_driver utdriver = 50 { utprobe, utslave, utattach, utdgo, utstd, "tj", tjdinfo, "ut", utminfo, 0 }; 51 52 #define MASKREG(reg) ((reg)&0xffff) 53 54 /* bits in minor device */ 55 #define TJUNIT(dev) (minor(dev)&03) 56 #define T_NOREWIND 04 57 #define T_1600BPI 010 58 #define T_6250BPI 020 59 short utdens[] = { UT_NRZI, UT_PE, UT_GCR, UT_NRZI }; 60 61 /* slave to controller mapping table */ 62 short tjtout[NTJ]; 63 #define UTUNIT(dev) (tjtout[TJUNIT(dev)]) 64 65 #define INF (daddr_t)1000000L /* a block number that wont exist */ 66 67 struct tj_softc { 68 char sc_openf; /* exclusive open */ 69 char sc_lastiow; /* last I/O operation was a write */ 70 daddr_t sc_blkno; /* next block to transfer */ 71 daddr_t sc_nxrec; /* next record on tape */ 72 u_short sc_erreg; /* image of uter */ 73 u_short sc_dsreg; /* image of utds */ 74 u_short sc_resid; /* residual from transfer */ 75 u_short sc_dens; /* sticky selected density */ 76 daddr_t sc_timo; /* time until timeout expires */ 77 short sc_tact; /* timeout is active flag */ 78 caddr_t sc_ctty; /* user's controlling tty (vnode) */ 79 int sc_blks; /* number of I/O operations since open */ 80 int sc_softerrs; /* number of soft I/O errors since open */ 81 } tj_softc[NTJ]; 82 83 /* 84 * Internal per/slave states found in sc_state 85 */ 86 #define SSEEK 1 /* seeking */ 87 #define SIO 2 /* doing sequential I/O */ 88 #define SCOM 3 /* sending a control command */ 89 #define SREW 4 /* doing a rewind op */ 90 #define SERASE 5 /* erase inter-record gap */ 91 #define SERASED 6 /* erased inter-record gap */ 92 93 /*ARGSUSED*/ 94 utprobe(reg) 95 caddr_t reg; 96 { 97 register int br, cvec; 98 #ifdef lint 99 br=0; cvec=br; br=cvec; 100 utintr(0); 101 #endif 102 /* 103 * The SI documentation says you must set the RDY bit 104 * (even though it's read-only) to force an interrupt. 105 */ 106 ((struct utdevice *) reg)->utcs1 = UT_IE|UT_NOP|UT_RDY; 107 DELAY(10000); 108 return (sizeof (struct utdevice)); 109 } 110 111 /*ARGSUSED*/ 112 utslave(ui, reg) 113 struct uba_device *ui; 114 caddr_t reg; 115 { 116 /* 117 * A real TU45 would support the slave present bit 118 * int the drive type register, but this thing doesn't, 119 * so there's no way to determine if a slave is present or not. 120 */ 121 return(1); 122 } 123 124 utattach(ui) 125 struct uba_device *ui; 126 { 127 tjtout[ui->ui_unit] = ui->ui_mi->um_ctlr; 128 } 129 130 /* 131 * Open the device with exclusive access. 132 */ 133 utopen(dev, flag) 134 dev_t dev; 135 int flag; 136 { 137 register int tjunit = TJUNIT(dev); 138 register struct uba_device *ui; 139 register struct tj_softc *sc; 140 int olddens, dens; 141 register int s; 142 143 if (tjunit >= NTJ || (ui = tjdinfo[tjunit]) == 0 || ui->ui_alive == 0) 144 return (ENXIO); 145 if ((sc = &tj_softc[tjunit])->sc_openf) 146 return (EBUSY); 147 sc->sc_openf = 1; 148 olddens = sc->sc_dens; 149 dens = sc->sc_dens = 150 utdens[(minor(dev)&(T_1600BPI|T_6250BPI))>>3]| 151 PDP11FMT|(ui->ui_slave&07); 152 get: 153 utcommand(dev, UT_SENSE, 1); 154 if (sc->sc_dsreg&UTDS_PIP) { 155 tsleep((caddr_t)&lbolt, PZERO+1, SLP_UT_OPN, 0); 156 goto get; 157 } 158 sc->sc_dens = olddens; 159 if ((sc->sc_dsreg&UTDS_MOL) == 0) { 160 sc->sc_openf = 0; 161 uprintf("tj%d: not online\n", tjunit); 162 return (EIO); 163 } 164 if ((flag&FWRITE) && (sc->sc_dsreg&UTDS_WRL)) { 165 sc->sc_openf = 0; 166 uprintf("tj%d: no write ring\n", tjunit); 167 return (EIO); 168 } 169 if ((sc->sc_dsreg&UTDS_BOT) == 0 && (flag&FWRITE) && 170 dens != sc->sc_dens) { 171 sc->sc_openf = 0; 172 uprintf("tj%d: can't change density in mid-tape\n", tjunit); 173 return (EIO); 174 } 175 sc->sc_blkno = (daddr_t)0; 176 sc->sc_nxrec = INF; 177 sc->sc_lastiow = 0; 178 sc->sc_blks = 0; 179 sc->sc_softerrs = 0; 180 sc->sc_dens = dens; 181 sc->sc_ctty = (caddr_t)(u.u_procp->p_flag&SCTTY ? 182 u.u_procp->p_session->s_ttyvp : 0); 183 /* 184 * For 6250 bpi take exclusive use of the UNIBUS. 185 */ 186 ui->ui_driver->ud_xclu = (dens&(T_1600BPI|T_6250BPI)) == T_6250BPI; 187 s = splclock(); 188 if (sc->sc_tact == 0) { 189 sc->sc_timo = INF; 190 sc->sc_tact = 1; 191 timeout(uttimer, (caddr_t)dev, 5*hz); 192 } 193 splx(s); 194 return (0); 195 } 196 197 utclose(dev, flag) 198 register dev_t dev; 199 register flag; 200 { 201 register struct tj_softc *sc = &tj_softc[TJUNIT(dev)]; 202 203 if (flag == FWRITE || ((flag&FWRITE) && sc->sc_lastiow)) { 204 utcommand(dev, UT_WEOF, 1); 205 utcommand(dev, UT_WEOF, 1); 206 utcommand(dev, UT_SREV, 1); 207 } 208 if ((minor(dev)&T_NOREWIND) == 0) 209 utcommand(dev, UT_REW, 0); 210 if (sc->sc_blks > 100 && sc->sc_softerrs > sc->sc_blks / 100) 211 log(LOG_INFO, "tj%d: %d soft errors in %d blocks\n", 212 TJUNIT(dev), sc->sc_softerrs, sc->sc_blks); 213 sc->sc_openf = 0; 214 } 215 216 utcommand(dev, com, count) 217 dev_t dev; 218 int com, count; 219 { 220 register struct buf *bp; 221 register int s; 222 223 bp = &cutbuf[UTUNIT(dev)]; 224 s = spl5(); 225 while (bp->b_flags&B_BUSY) { 226 if(bp->b_repcnt == 0 && (bp->b_flags&B_DONE)) 227 break; 228 bp->b_flags |= B_WANTED; 229 sleep((caddr_t)bp, PRIBIO); 230 } 231 bp->b_flags = B_BUSY|B_READ; 232 splx(s); 233 bp->b_dev = dev; 234 bp->b_command = com; 235 bp->b_repcnt = count; 236 bp->b_blkno = 0; 237 utstrategy(bp); 238 if (count == 0) 239 return; 240 iowait(bp); 241 if (bp->b_flags&B_WANTED) 242 wakeup((caddr_t)bp); 243 bp->b_flags &= B_ERROR; 244 } 245 246 /* 247 * Queue a tape operation. 248 */ 249 utstrategy(bp) 250 register struct buf *bp; 251 { 252 int tjunit = TJUNIT(bp->b_dev); 253 register struct uba_ctlr *um; 254 register struct buf *dp; 255 int s; 256 257 /* 258 * Put transfer at end of unit queue 259 */ 260 dp = &tjutab[tjunit]; 261 bp->av_forw = NULL; 262 um = tjdinfo[tjunit]->ui_mi; 263 s = spl5(); 264 if (dp->b_actf == NULL) { 265 dp->b_actf = bp; 266 /* 267 * Transport not active, so... 268 * put at end of controller queue 269 */ 270 dp->b_forw = NULL; 271 if (um->um_tab.b_actf == NULL) 272 um->um_tab.b_actf = dp; 273 else 274 um->um_tab.b_actl->b_forw = dp; 275 um->um_tab.b_actl = dp; 276 } else 277 dp->b_actl->av_forw = bp; 278 dp->b_actl = bp; 279 /* 280 * If the controller is not busy, set it going. 281 */ 282 if (um->um_tab.b_state == 0) 283 utstart(um); 284 splx(s); 285 } 286 287 utstart(um) 288 register struct uba_ctlr *um; 289 { 290 register struct utdevice *addr; 291 register struct buf *bp, *dp; 292 register struct tj_softc *sc; 293 struct uba_device *ui; 294 int tjunit; 295 daddr_t blkno; 296 297 loop: 298 /* 299 * Scan controller queue looking for units with 300 * transaction queues to dispatch 301 */ 302 if ((dp = um->um_tab.b_actf) == NULL) 303 return; 304 if ((bp = dp->b_actf) == NULL) { 305 um->um_tab.b_actf = dp->b_forw; 306 goto loop; 307 } 308 addr = (struct utdevice *)um->um_addr; 309 tjunit = TJUNIT(bp->b_dev); 310 ui = tjdinfo[tjunit]; 311 sc = &tj_softc[tjunit]; 312 /* note slave select, density, and format were merged on open */ 313 addr->uttc = sc->sc_dens; 314 sc->sc_dsreg = addr->utds; 315 sc->sc_erreg = addr->uter; 316 sc->sc_resid = MASKREG(addr->utfc); 317 /* 318 * Default is that last command was NOT a write command; 319 * if we do a write command we will notice this in utintr(). 320 */ 321 sc->sc_lastiow = 0; 322 if (sc->sc_openf < 0 || (addr->utds&UTDS_MOL) == 0) { 323 /* 324 * Have had a hard error on a non-raw tape 325 * or the tape unit is now unavailable 326 * (e.g. taken off line). 327 */ 328 bp->b_flags |= B_ERROR; 329 goto next; 330 } 331 if (bp == &cutbuf[UTUNIT(bp->b_dev)]) { 332 /* 333 * Execute a control operation with the specified 334 * count. 335 */ 336 if (bp->b_command == UT_SENSE) 337 goto next; 338 if (bp->b_command == UT_SFORW && (addr->utds & UTDS_EOT)) { 339 bp->b_resid = bp->b_bcount; 340 goto next; 341 } 342 /* 343 * Set next state; handle timeouts 344 */ 345 if (bp->b_command == UT_REW) { 346 um->um_tab.b_state = SREW; 347 sc->sc_timo = 5*60; 348 } else { 349 um->um_tab.b_state = SCOM; 350 sc->sc_timo = imin(imax(10*(int)-bp->b_repcnt,60),5*60); 351 } 352 /* NOTE: this depends on the ut command values */ 353 if (bp->b_command >= UT_SFORW && bp->b_command <= UT_SREVF) 354 addr->utfc = -bp->b_repcnt; 355 goto dobpcmd; 356 } 357 /* 358 * For raw I/O, save the current block 359 * number in case we have to retry. 360 */ 361 if (bp->b_flags & B_RAW) { 362 if (um->um_tab.b_errcnt == 0) { 363 sc->sc_blkno = bdbtofsb(bp->b_blkno); 364 sc->sc_nxrec = sc->sc_blkno + 1; 365 } 366 } 367 else { 368 /* 369 * Handle boundary cases for operation 370 * on non-raw tapes. 371 */ 372 if (bdbtofsb(bp->b_blkno) > sc->sc_nxrec) { 373 /* can't read past end of file */ 374 bp->b_flags |= B_ERROR; 375 bp->b_error = ENXIO; 376 goto next; 377 } 378 if (bdbtofsb(bp->b_blkno) == sc->sc_nxrec && 379 (bp->b_flags&B_READ)) { 380 /* 381 * Reading at end of file returns 0 bytes. 382 */ 383 bp->b_resid = bp->b_bcount; 384 clrbuf(bp); 385 goto next; 386 } 387 if ((bp->b_flags&B_READ) == 0) 388 sc->sc_nxrec = bdbtofsb(bp->b_blkno) + 1; 389 } 390 /* 391 * If the tape is correctly positioned, set up all the 392 * registers but the csr, and give control over to the 393 * UNIBUS adaptor routines, to wait for resources to 394 * start I/O. 395 */ 396 if ((blkno = sc->sc_blkno) == bdbtofsb(bp->b_blkno)) { 397 addr->utwc = -(((bp->b_bcount)+1)>>1); 398 addr->utfc = -bp->b_bcount; 399 if ((bp->b_flags&B_READ) == 0) { 400 /* 401 * On write error retries erase the 402 * inter-record gap before rewriting. 403 */ 404 if (um->um_tab.b_errcnt) { 405 if (um->um_tab.b_state != SERASED) { 406 um->um_tab.b_state = SERASE; 407 sc->sc_timo = 60; 408 addr->utcs1 = UT_ERASE|UT_IE|UT_GO; 409 return; 410 } 411 } 412 if (addr->utds & UTDS_EOT) { 413 bp->b_resid = bp->b_bcount; 414 um->um_tab.b_state = 0; 415 goto next; 416 } 417 um->um_cmd = UT_WCOM; 418 } else 419 um->um_cmd = UT_RCOM; 420 sc->sc_timo = 60; 421 um->um_tab.b_state = SIO; 422 (void) ubago(ui); 423 return; 424 } 425 /* 426 * Tape positioned incorrectly; seek forwards or 427 * backwards to the correct spot. This happens for 428 * raw tapes only on error retries. 429 */ 430 um->um_tab.b_state = SSEEK; 431 if (blkno < bdbtofsb(bp->b_blkno)) { 432 addr->utfc = blkno - bdbtofsb(bp->b_blkno); 433 bp->b_command = UT_SFORW; 434 } else { 435 addr->utfc = bdbtofsb(bp->b_blkno) - blkno; 436 bp->b_command = UT_SREV; 437 } 438 sc->sc_timo = imin(imax(10 * -addr->utfc, 60), 5*60); 439 440 dobpcmd: 441 /* 442 * Perform the command setup in bp. 443 */ 444 addr->utcs1 = bp->b_command|UT_IE|UT_GO; 445 return; 446 next: 447 /* 448 * Advance to the next command in the slave queue, 449 * posting notice and releasing resources as needed. 450 */ 451 if (um->um_ubinfo) 452 ubadone(um); 453 um->um_tab.b_errcnt = 0; 454 dp->b_actf = bp->av_forw; 455 iodone(bp); 456 goto loop; 457 } 458 459 /* 460 * Start operation on controller -- 461 * UNIBUS resources have been allocated. 462 */ 463 utdgo(um) 464 register struct uba_ctlr *um; 465 { 466 register struct utdevice *addr = (struct utdevice *)um->um_addr; 467 468 addr->utba = (u_short) um->um_ubinfo; 469 addr->utcs1 = um->um_cmd|((um->um_ubinfo>>8)&0x300)|UT_IE|UT_GO; 470 } 471 472 /* 473 * Ut interrupt handler 474 */ 475 /*ARGSUSED*/ 476 utintr(ut11) 477 int ut11; 478 { 479 struct buf *dp; 480 register struct buf *bp; 481 register struct uba_ctlr *um = utminfo[ut11]; 482 register struct utdevice *addr; 483 register struct tj_softc *sc; 484 u_short tjunit, cs2, cs1; 485 register state; 486 487 if ((dp = um->um_tab.b_actf) == NULL) 488 return; 489 bp = dp->b_actf; 490 tjunit = TJUNIT(bp->b_dev); 491 addr = (struct utdevice *)tjdinfo[tjunit]->ui_addr; 492 sc = &tj_softc[tjunit]; 493 /* 494 * Record status... 495 */ 496 sc->sc_timo = INF; 497 sc->sc_dsreg = addr->utds; 498 sc->sc_erreg = addr->uter; 499 sc->sc_resid = MASKREG(addr->utfc); 500 if ((bp->b_flags&B_READ) == 0) 501 sc->sc_lastiow = 1; 502 state = um->um_tab.b_state; 503 um->um_tab.b_state = 0; 504 /* 505 * Check for errors... 506 */ 507 if ((addr->utds&UTDS_ERR) || (addr->utcs1&UT_TRE)) { 508 /* 509 * To clear the ERR bit, we must issue a drive clear 510 * command, and to clear the TRE bit we must set the 511 * controller clear bit. 512 */ 513 cs2 = addr->utcs2; 514 if ((cs1 = addr->utcs1)&UT_TRE) 515 addr->utcs2 |= UTCS2_CLR; 516 /* is this dangerous ?? */ 517 while ((addr->utcs1&UT_RDY) == 0) 518 ; 519 addr->utcs1 = UT_CLEAR|UT_GO; 520 /* 521 * If we were reading at 1600 or 6250 bpi and the error 522 * was corrected, then don't consider this an error. 523 */ 524 if (sc->sc_erreg & UTER_COR && (bp->b_flags & B_READ) && 525 (addr->uttc & UTTC_DEN) != UT_NRZI) { 526 tprintf(sc->sc_ctty, 527 "ut%d: soft error bn%d cs1=%b er=%b cs2=%b ds=%b\n", 528 tjunit, bp->b_blkno, cs1, UT_BITS, sc->sc_erreg, 529 UTER_BITS, cs2, UTCS2_BITS, sc->sc_dsreg, UTDS_BITS); 530 sc->sc_erreg &= ~UTER_COR; 531 } 532 /* 533 * If we were reading from a raw tape and the only error 534 * was that the record was too long, then we don't consider 535 * this an error. 536 */ 537 if ((bp->b_flags & (B_READ|B_RAW)) == (B_READ|B_RAW) && 538 (sc->sc_erreg&UTER_FCE)) 539 sc->sc_erreg &= ~UTER_FCE; 540 if (sc->sc_erreg == 0) 541 goto ignoreerr; 542 /* 543 * Fix up errors which occur due to backspacing 544 * "over" the front of the tape. 545 */ 546 if ((sc->sc_dsreg & UTDS_BOT) && bp->b_command == UT_SREV && 547 ((sc->sc_erreg &= ~(UTER_NEF|UTER_FCE)) == 0)) 548 goto opdone; 549 /* 550 * Retry soft errors up to 8 times 551 */ 552 if ((sc->sc_erreg&UTER_HARD) == 0 && state == SIO) { 553 if (++um->um_tab.b_errcnt < 7) { 554 sc->sc_blkno++; 555 ubadone(um); 556 goto opcont; 557 } 558 } 559 /* 560 * Hard or non-I/O errors on non-raw tape 561 * cause it to close. 562 */ 563 if ((bp->b_flags&B_RAW) == 0 && sc->sc_openf > 0) 564 sc->sc_openf = -1; 565 /* 566 * Couldn't recover error. 567 */ 568 tprintf(sc->sc_ctty, 569 "ut%d: hard error bn%d cs1=%b er=%b cs2=%b ds=%b\n", 570 tjunit, bp->b_blkno, cs1, UT_BITS, sc->sc_erreg, 571 UTER_BITS, cs2, UTCS2_BITS, sc->sc_dsreg, UTDS_BITS); 572 bp->b_flags |= B_ERROR; 573 goto opdone; 574 } 575 576 ignoreerr: 577 /* 578 * If we hit a tape mark update our position. 579 */ 580 if (sc->sc_dsreg & UTDS_TM && bp->b_flags & B_READ) { 581 /* 582 * Set blkno and nxrec 583 */ 584 if (bp == &cutbuf[UTUNIT(bp->b_dev)]) { 585 if (sc->sc_blkno > bdbtofsb(bp->b_blkno)) { 586 sc->sc_nxrec = 587 bdbtofsb(bp->b_blkno) - addr->utfc; 588 sc->sc_blkno = sc->sc_nxrec; 589 } else { 590 sc->sc_blkno = 591 bdbtofsb(bp->b_blkno) + addr->utfc; 592 sc->sc_nxrec = sc->sc_blkno-1; 593 } 594 } else 595 sc->sc_nxrec = bdbtofsb(bp->b_blkno); 596 /* 597 * Note: if we get a tape mark on a read, the 598 * frame count register will be zero, so b_resid 599 * will be calculated correctly below. 600 */ 601 goto opdone; 602 } 603 /* 604 * Advance tape control FSM. 605 */ 606 switch (state) { 607 608 case SIO: /* read/write increments tape block # */ 609 sc->sc_blkno++; 610 sc->sc_blks++; 611 if (um->um_tab.b_errcnt) 612 sc->sc_softerrs++; 613 break; 614 615 case SCOM: /* motion commands update current position */ 616 if (bp == &cutbuf[UTUNIT(bp->b_dev)]) 617 switch ((int)bp->b_command) { 618 619 case UT_SFORW: 620 sc->sc_blkno -= bp->b_repcnt; 621 break; 622 623 case UT_SREV: 624 sc->sc_blkno += bp->b_repcnt; 625 break; 626 627 case UT_REWOFFL: 628 addr->utcs1 = UT_CLEAR|UT_GO; 629 break; 630 } 631 break; 632 633 case SSEEK: 634 sc->sc_blkno = bdbtofsb(bp->b_blkno); 635 goto opcont; 636 637 case SERASE: 638 /* 639 * Completed erase of the inter-record gap due to a 640 * write error; now retry the write operation. 641 */ 642 um->um_tab.b_state = SERASED; 643 goto opcont; 644 645 case SREW: /* clear attention bit */ 646 addr->utcs1 = UT_CLEAR|UT_GO; 647 break; 648 649 default: 650 printf("bad state %d\n", state); 651 panic("utintr"); 652 } 653 654 opdone: 655 /* 656 * Reset error count and remove 657 * from device queue 658 */ 659 um->um_tab.b_errcnt = 0; 660 dp->b_actf = bp->av_forw; 661 /* 662 * For read command, frame count register contains 663 * actual length of tape record. Otherwise, it 664 * holds negative residual count. 665 */ 666 if (state == SIO && um->um_cmd == UT_RCOM) { 667 bp->b_resid = 0; 668 if (bp->b_bcount > MASKREG(addr->utfc)) 669 bp->b_resid = bp->b_bcount - MASKREG(addr->utfc); 670 } else 671 bp->b_resid = MASKREG(-addr->utfc); 672 ubadone(um); 673 iodone(bp); 674 /* 675 * Circulate slave to end of controller queue 676 * to give other slaves a chance 677 */ 678 um->um_tab.b_actf = dp->b_forw; 679 if (dp->b_actf) { 680 dp->b_forw = NULL; 681 if (um->um_tab.b_actf == NULL) 682 um->um_tab.b_actf = dp; 683 else 684 um->um_tab.b_actl->b_forw = dp; 685 um->um_tab.b_actl = dp; 686 } 687 if (um->um_tab.b_actf == 0) 688 return; 689 opcont: 690 utstart(um); 691 } 692 693 /* 694 * Watchdog timer routine. 695 */ 696 uttimer(dev) 697 int dev; 698 { 699 register struct tj_softc *sc = &tj_softc[TJUNIT(dev)]; 700 register short x; 701 702 if (sc->sc_timo != INF && (sc->sc_timo -= 5) < 0) { 703 printf("tj%d: lost interrupt\n", TJUNIT(dev)); 704 sc->sc_timo = INF; 705 x = spl5(); 706 utintr(UTUNIT(dev)); 707 (void) splx(x); 708 } 709 timeout(uttimer, (caddr_t)dev, 5*hz); 710 } 711 712 /*ARGSUSED*/ 713 utioctl(dev, cmd, data, flag) 714 dev_t dev; 715 caddr_t data; 716 { 717 register struct tj_softc *sc = &tj_softc[TJUNIT(dev)]; 718 register struct buf *bp = &cutbuf[UTUNIT(dev)]; 719 register callcount; 720 int fcount; 721 struct mtop *mtop; 722 struct mtget *mtget; 723 /* we depend of the values and order of the MT codes here */ 724 static utops[] = 725 {UT_WEOF,UT_SFORWF,UT_SREVF,UT_SFORW,UT_SREV,UT_REW,UT_REWOFFL,UT_SENSE}; 726 727 switch (cmd) { 728 729 case MTIOCTOP: 730 mtop = (struct mtop *)data; 731 switch(mtop->mt_op) { 732 733 case MTWEOF: 734 case MTFSF: case MTBSF: 735 case MTFSR: case MTBSR: 736 callcount = mtop->mt_count; 737 fcount = 1; 738 break; 739 740 case MTREW: case MTOFFL: case MTNOP: 741 callcount = 1; 742 fcount = 1; 743 break; 744 745 default: 746 return (ENXIO); 747 } 748 if (callcount <= 0 || fcount <= 0) 749 return (EINVAL); 750 while (--callcount >= 0) { 751 utcommand(dev, utops[mtop->mt_op], fcount); 752 if ((bp->b_flags&B_ERROR) || (sc->sc_dsreg&UTDS_BOT)) 753 break; 754 } 755 return (geterror(bp)); 756 757 case MTIOCGET: 758 mtget = (struct mtget *)data; 759 mtget->mt_dsreg = sc->sc_dsreg; 760 mtget->mt_erreg = sc->sc_erreg; 761 mtget->mt_resid = sc->sc_resid; 762 mtget->mt_type = MT_ISUT; 763 break; 764 765 default: 766 return (ENXIO); 767 } 768 return (0); 769 } 770 771 utreset(uban) 772 int uban; 773 { 774 register struct uba_ctlr *um; 775 register ut11, tjunit; 776 register struct uba_device *ui; 777 register struct buf *dp; 778 779 for (ut11 = 0; ut11 < NUT; ut11++) { 780 if ((um = utminfo[ut11]) == 0 || um->um_alive == 0 || 781 um->um_ubanum != uban) 782 continue; 783 printf(" ut%d", ut11); 784 um->um_tab.b_state = 0; 785 um->um_tab.b_actf = um->um_tab.b_actl = 0; 786 if (um->um_ubinfo) { 787 printf("<%d>", (um->um_ubinfo>>28)&0xf); 788 um->um_ubinfo = 0; 789 } 790 ((struct utdevice *)(um->um_addr))->utcs1 = UT_CLEAR|UT_GO; 791 ((struct utdevice *)(um->um_addr))->utcs2 |= UTCS2_CLR; 792 for (tjunit = 0; tjunit < NTJ; tjunit++) { 793 if ((ui = tjdinfo[tjunit]) == 0 || ui->ui_mi != um || 794 ui->ui_alive == 0) 795 continue; 796 dp = &tjutab[tjunit]; 797 dp->b_state = 0; 798 dp->b_forw = 0; 799 if (um->um_tab.b_actf == NULL) 800 um->um_tab.b_actf = dp; 801 else 802 um->um_tab.b_actl->b_forw = dp; 803 um->um_tab.b_actl = dp; 804 if (tj_softc[tjunit].sc_openf > 0) 805 tj_softc[tjunit].sc_openf = -1; 806 } 807 utstart(um); 808 } 809 } 810 811 /* 812 * Do a stand-alone core dump to tape -- 813 * from here down, routines are used only in dump context 814 */ 815 #define DBSIZE 20 816 817 utdump() 818 { 819 register struct uba_device *ui; 820 register struct uba_regs *up; 821 register struct utdevice *addr; 822 int blk, num = maxfree; 823 int start = 0; 824 825 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 826 if (tjdinfo[0] == 0) 827 return (ENXIO); 828 ui = phys(tjdinfo[0], struct uba_device *); 829 up = phys(ui->ui_hd, struct uba_hd *)->uh_physuba; 830 ubainit(up); 831 DELAY(1000000); 832 addr = (struct utdevice *)ui->ui_physaddr; 833 utwait(addr); 834 /* 835 * Be sure to set the appropriate density here. We use 836 * 6250, but maybe it should be done at 1600 to insure the 837 * tape can be read by most any other tape drive available. 838 */ 839 addr->uttc = UT_GCR|PDP11FMT; /* implicit slave 0 or-ed in */ 840 addr->utcs1 = UT_CLEAR|UT_GO; 841 while (num > 0) { 842 blk = num > DBSIZE ? DBSIZE : num; 843 utdwrite(start, blk, addr, up); 844 if ((addr->utds&UTDS_ERR) || (addr->utcs1&UT_TRE)) 845 return(EIO); 846 start += blk; 847 num -= blk; 848 } 849 uteof(addr); 850 uteof(addr); 851 utwait(addr); 852 if ((addr->utds&UTDS_ERR) || (addr->utcs1&UT_TRE)) 853 return(EIO); 854 addr->utcs1 = UT_REW|UT_GO; 855 return (0); 856 } 857 858 utdwrite(dbuf, num, addr, up) 859 register dbuf, num; 860 register struct utdevice *addr; 861 struct uba_regs *up; 862 { 863 register struct pte *io; 864 register int npf; 865 866 utwait(addr); 867 io = up->uba_map; 868 npf = num + 1; 869 while (--npf != 0) 870 *(int *)io++ = (dbuf++ | (1<<UBAMR_DPSHIFT) | UBAMR_MRV); 871 *(int *)io = 0; 872 addr->utwc = -((num*NBPG)>>1); 873 addr->utfc = -(num*NBPG); 874 addr->utba = 0; 875 addr->utcs1 = UT_WCOM|UT_GO; 876 } 877 878 utwait(addr) 879 struct utdevice *addr; 880 { 881 register s; 882 883 do 884 s = addr->utds; 885 while ((s&UTDS_DRY) == 0); 886 } 887 888 uteof(addr) 889 struct utdevice *addr; 890 { 891 892 utwait(addr); 893 addr->utcs1 = UT_WEOF|UT_GO; 894 } 895 #endif 896