1 /* 2 * Copyright (c) 1987 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)uda.c 7.16 (Berkeley) 05/27/88 7 * 8 */ 9 10 /* 11 * UDA50/MSCP device driver 12 */ 13 14 #define POLLSTATS 15 16 /* 17 * TODO 18 * write bad block forwarding code 19 */ 20 21 #include "ra.h" 22 23 #if NUDA > 0 24 25 /* 26 * CONFIGURATION OPTIONS. The next three defines are tunable -- tune away! 27 * 28 * COMPAT_42 enables 4.2/4.3 compatibility (label mapping) 29 * 30 * NRSPL2 and NCMDL2 control the number of response and command 31 * packets respectively. They may be any value from 0 to 7, though 32 * setting them higher than 5 is unlikely to be of any value. 33 * If you get warnings about your command ring being too small, 34 * try increasing the values by one. 35 * 36 * MAXUNIT controls the maximum unit number (number of drives per 37 * controller) we are prepared to handle. 38 * 39 * DEFAULT_BURST must be at least 1. 40 */ 41 #define COMPAT_42 42 43 #define NRSPL2 5 /* log2 number of response packets */ 44 #define NCMDL2 5 /* log2 number of command packets */ 45 #define MAXUNIT 8 /* maximum allowed unit number */ 46 #define DEFAULT_BURST 4 /* default DMA burst size */ 47 48 #include "param.h" 49 #include "systm.h" 50 #include "buf.h" 51 #include "conf.h" 52 #include "dir.h" 53 #include "file.h" 54 #include "ioctl.h" 55 #include "user.h" 56 #include "map.h" 57 #include "vm.h" 58 #include "dkstat.h" 59 #include "cmap.h" 60 #include "disklabel.h" 61 #include "syslog.h" 62 #include "stat.h" 63 64 #include "../machine/pte.h" 65 66 #include "../vax/cpu.h" 67 #include "ubareg.h" 68 #include "ubavar.h" 69 70 #define NRSP (1 << NRSPL2) 71 #define NCMD (1 << NCMDL2) 72 73 #include "udareg.h" 74 #include "../vax/mscp.h" 75 #include "../vax/mscpvar.h" 76 #include "../vax/mtpr.h" 77 78 /* 79 * UDA communications area and MSCP packet pools, per controller. 80 */ 81 struct uda { 82 struct udaca uda_ca; /* communications area */ 83 struct mscp uda_rsp[NRSP]; /* response packets */ 84 struct mscp uda_cmd[NCMD]; /* command packets */ 85 } uda[NUDA]; 86 87 /* 88 * Software status, per controller. 89 */ 90 struct uda_softc { 91 struct uda *sc_uda; /* Unibus address of uda struct */ 92 short sc_state; /* UDA50 state; see below */ 93 short sc_flags; /* flags; see below */ 94 int sc_micro; /* microcode revision */ 95 int sc_ivec; /* interrupt vector address */ 96 struct mscp_info sc_mi;/* MSCP info (per mscpvar.h) */ 97 #ifndef POLLSTATS 98 int sc_wticks; /* watchdog timer ticks */ 99 #else 100 short sc_wticks; 101 short sc_ncmd; 102 #endif 103 } uda_softc[NUDA]; 104 105 #ifdef POLLSTATS 106 struct udastats { 107 int ncmd; 108 int cmd[NCMD + 1]; 109 } udastats = { NCMD + 1 }; 110 #endif 111 112 /* 113 * Controller states 114 */ 115 #define ST_IDLE 0 /* uninitialised */ 116 #define ST_STEP1 1 /* in `STEP 1' */ 117 #define ST_STEP2 2 /* in `STEP 2' */ 118 #define ST_STEP3 3 /* in `STEP 3' */ 119 #define ST_SETCHAR 4 /* in `Set Controller Characteristics' */ 120 #define ST_RUN 5 /* up and running */ 121 122 /* 123 * Flags 124 */ 125 #define SC_MAPPED 0x01 /* mapped in Unibus I/O space */ 126 #define SC_INSTART 0x02 /* inside udastart() */ 127 #define SC_GRIPED 0x04 /* griped about cmd ring too small */ 128 #define SC_INSLAVE 0x08 /* inside udaslave() */ 129 #define SC_DOWAKE 0x10 /* wakeup when ctlr init done */ 130 #define SC_STARTPOLL 0x20 /* need to initiate polling */ 131 132 /* 133 * Device to unit number and partition and back 134 */ 135 #define UNITSHIFT 3 136 #define UNITMASK 7 137 #define udaunit(dev) (minor(dev) >> UNITSHIFT) 138 #define udapart(dev) (minor(dev) & UNITMASK) 139 #define udaminor(u, p) (((u) << UNITSHIFT) | (p)) 140 141 /* 142 * Drive status, per drive 143 */ 144 struct ra_info { 145 daddr_t ra_dsize; /* size in sectors */ 146 /* u_long ra_type; /* drive type */ 147 #define RA_TYPE_RX50 7 /* special: see udaopen */ 148 u_long ra_mediaid; /* media id */ 149 int ra_state; /* open/closed state */ 150 struct ra_geom { /* geometry information */ 151 u_short rg_nsectors; /* sectors/track */ 152 u_short rg_ngroups; /* track groups */ 153 u_short rg_ngpc; /* groups/cylinder */ 154 u_short rg_ntracks; /* ngroups*ngpc */ 155 u_short rg_ncyl; /* ra_dsize/ntracks/nsectors */ 156 #ifdef notyet 157 u_short rg_rctsize; /* size of rct */ 158 u_short rg_rbns; /* replacement blocks per track */ 159 u_short rg_nrct; /* number of rct copies */ 160 #endif 161 } ra_geom; 162 int ra_wlabel; /* label sector is currently writable */ 163 u_long ra_openpart; /* partitions open */ 164 u_long ra_bopenpart; /* block partitions open */ 165 u_long ra_copenpart; /* character partitions open */ 166 } ra_info[NRA]; 167 168 /* 169 * Software state, per drive 170 */ 171 #define CLOSED 0 172 #define WANTOPEN 1 173 #define RDLABEL 2 174 #define OPEN 3 175 #define OPENRAW 4 176 177 /* 178 * Definition of the driver for autoconf. 179 */ 180 int udaprobe(), udaslave(), udaattach(), udadgo(), udaintr(); 181 struct uba_ctlr *udaminfo[NUDA]; 182 struct uba_device *udadinfo[NRA]; 183 struct disklabel udalabel[NRA]; 184 185 u_short udastd[] = { 0772150, 0772550, 0777550, 0 }; 186 struct uba_driver udadriver = 187 { udaprobe, udaslave, udaattach, udadgo, udastd, "ra", udadinfo, "uda", 188 udaminfo }; 189 190 /* 191 * More driver definitions, for generic MSCP code. 192 */ 193 int udadgram(), udactlrdone(), udaunconf(), udaiodone(); 194 int udaonline(), udagotstatus(), udaioerror(), udareplace(), udabb(); 195 196 struct buf udautab[NRA]; /* per drive transfer queue */ 197 198 struct mscp_driver udamscpdriver = 199 { MAXUNIT, NRA, UNITSHIFT, udautab, udalabel, udadinfo, 200 udadgram, udactlrdone, udaunconf, udaiodone, 201 udaonline, udagotstatus, udareplace, udaioerror, udabb, 202 "uda", "ra" }; 203 204 /* 205 * Miscellaneous private variables. 206 */ 207 char udasr_bits[] = UDASR_BITS; 208 209 struct uba_device *udaip[NUDA][MAXUNIT]; 210 /* inverting pointers: ctlr & unit => Unibus 211 device pointer */ 212 213 int udaburst[NUDA] = { 0 }; /* burst size, per UDA50, zero => default; 214 in data space so patchable via adb */ 215 216 struct mscp udaslavereply; /* get unit status response packet, set 217 for udaslave by udaunconf, via udaintr */ 218 219 static struct uba_ctlr *probeum;/* this is a hack---autoconf should pass ctlr 220 info to slave routine; instead, we remember 221 the last ctlr argument to probe */ 222 223 int udawstart, udawatch(); /* watchdog timer */ 224 225 /* 226 * Externals 227 */ 228 int wakeup(); 229 int hz; 230 231 /* 232 * Poke at a supposed UDA50 to see if it is there. 233 * This routine duplicates some of the code in udainit() only 234 * because autoconf has not set up the right information yet. 235 * We have to do everything `by hand'. 236 */ 237 udaprobe(reg, ctlr, um) 238 caddr_t reg; 239 int ctlr; 240 struct uba_ctlr *um; 241 { 242 register int br, cvec; 243 register struct uda_softc *sc; 244 register struct udadevice *udaddr; 245 register struct mscp_info *mi; 246 int timeout, tries; 247 248 #ifdef VAX750 249 /* 250 * The UDA50 wants to share BDPs on 750s, but not on 780s or 251 * 8600s. (730s have no BDPs anyway.) Toward this end, we 252 * here set the `keep bdp' flag in the per-driver information 253 * if this is a 750. (We just need to do it once, but it is 254 * easiest to do it now, for each UDA50.) 255 */ 256 if (cpu == VAX_750) 257 udadriver.ud_keepbdp = 1; 258 #endif 259 260 probeum = um; /* remember for udaslave() */ 261 #ifdef lint 262 br = 0; cvec = br; br = cvec; udaintr(0); 263 #endif 264 /* 265 * Set up the controller-specific generic MSCP driver info. 266 * Note that this should really be done in the (nonexistent) 267 * controller attach routine. 268 */ 269 sc = &uda_softc[ctlr]; 270 mi = &sc->sc_mi; 271 mi->mi_md = &udamscpdriver; 272 mi->mi_ctlr = um->um_ctlr; 273 mi->mi_tab = &um->um_tab; 274 mi->mi_ip = udaip[ctlr]; 275 mi->mi_cmd.mri_size = NCMD; 276 mi->mi_cmd.mri_desc = uda[ctlr].uda_ca.ca_cmddsc; 277 mi->mi_cmd.mri_ring = uda[ctlr].uda_cmd; 278 mi->mi_rsp.mri_size = NRSP; 279 mi->mi_rsp.mri_desc = uda[ctlr].uda_ca.ca_rspdsc; 280 mi->mi_rsp.mri_ring = uda[ctlr].uda_rsp; 281 mi->mi_wtab.av_forw = mi->mi_wtab.av_back = &mi->mi_wtab; 282 283 /* 284 * More controller specific variables. Again, this should 285 * be in the controller attach routine. 286 */ 287 if (udaburst[ctlr] == 0) 288 udaburst[ctlr] = DEFAULT_BURST; 289 290 /* 291 * Get an interrupt vector. Note that even if the controller 292 * does not respond, we keep the vector. This is not a serious 293 * problem; but it would be easily fixed if we had a controller 294 * attach routine. Sigh. 295 */ 296 sc->sc_ivec = (uba_hd[numuba].uh_lastiv -= 4); 297 udaddr = (struct udadevice *) reg; 298 299 /* 300 * Initialise the controller (partially). The UDA50 programmer's 301 * manual states that if initialisation fails, it should be retried 302 * at least once, but after a second failure the port should be 303 * considered `down'; it also mentions that the controller should 304 * initialise within ten seconds. Or so I hear; I have not seen 305 * this manual myself. 306 */ 307 tries = 0; 308 again: 309 udaddr->udaip = 0; /* start initialisation */ 310 timeout = todr() + 1000; /* timeout in 10 seconds */ 311 while ((udaddr->udasa & UDA_STEP1) == 0) 312 if (todr() > timeout) 313 goto bad; 314 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE | 315 (sc->sc_ivec >> 2); 316 while ((udaddr->udasa & UDA_STEP2) == 0) 317 if (todr() > timeout) 318 goto bad; 319 320 /* should have interrupted by now */ 321 #ifdef VAX630 322 if (cpu == VAX_630) 323 br = 0x15; /* screwy interrupt structure */ 324 #endif 325 return (sizeof (struct udadevice)); 326 bad: 327 if (++tries < 2) 328 goto again; 329 return (0); 330 } 331 332 /* 333 * Find a slave. We allow wildcard slave numbers (something autoconf 334 * is not really prepared to deal with); and we need to know the 335 * controller number to talk to the UDA. For the latter, we keep 336 * track of the last controller probed, since a controller probe 337 * immediately precedes all slave probes for that controller. For the 338 * former, we simply put the unit number into ui->ui_slave after we 339 * have found one. 340 * 341 * Note that by the time udaslave is called, the interrupt vector 342 * for the UDA50 has been set up (so that udaunconf() will be called). 343 */ 344 udaslave(ui, reg) 345 register struct uba_device *ui; 346 caddr_t reg; 347 { 348 register struct uba_ctlr *um = probeum; 349 register struct mscp *mp; 350 register struct uda_softc *sc; 351 int next = 0, timeout, tries, i; 352 353 #ifdef lint 354 i = 0; i = i; 355 #endif 356 /* 357 * Make sure the controller is fully initialised, by waiting 358 * for it if necessary. 359 */ 360 sc = &uda_softc[um->um_ctlr]; 361 if (sc->sc_state == ST_RUN) 362 goto findunit; 363 tries = 0; 364 again: 365 if (udainit(ui->ui_ctlr)) 366 return (0); 367 timeout = todr() + 1000; /* 10 seconds */ 368 while (todr() < timeout) 369 if (sc->sc_state == ST_RUN) /* made it */ 370 goto findunit; 371 if (++tries < 2) 372 goto again; 373 printf("uda%d: controller hung\n", um->um_ctlr); 374 return (0); 375 376 /* 377 * The controller is all set; go find the unit. Grab an 378 * MSCP packet and send out a Get Unit Status command, with 379 * the `next unit' modifier if we are looking for a generic 380 * unit. We set the `in slave' flag so that udaunconf() 381 * knows to copy the response to `udaslavereply'. 382 */ 383 findunit: 384 udaslavereply.mscp_opcode = 0; 385 sc->sc_flags |= SC_INSLAVE; 386 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) 387 panic("udaslave"); /* `cannot happen' */ 388 mp->mscp_opcode = M_OP_GETUNITST; 389 if (ui->ui_slave == '?') { 390 mp->mscp_unit = next; 391 mp->mscp_modifier = M_GUM_NEXTUNIT; 392 } else { 393 mp->mscp_unit = ui->ui_slave; 394 mp->mscp_modifier = 0; 395 } 396 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 397 i = ((struct udadevice *) reg)->udaip; /* initiate polling */ 398 mp = &udaslavereply; 399 timeout = todr() + 1000; 400 while (todr() < timeout) 401 if (mp->mscp_opcode) 402 goto gotit; 403 printf("uda%d: no response to Get Unit Status request\n", 404 um->um_ctlr); 405 sc->sc_flags &= ~SC_INSLAVE; 406 return (0); 407 408 gotit: 409 sc->sc_flags &= ~SC_INSLAVE; 410 411 /* 412 * Got a slave response. If the unit is there, use it. 413 */ 414 switch (mp->mscp_status & M_ST_MASK) { 415 416 case M_ST_SUCCESS: /* worked */ 417 case M_ST_AVAILABLE: /* found another drive */ 418 break; /* use it */ 419 420 case M_ST_OFFLINE: 421 /* 422 * Figure out why it is off line. It may be because 423 * it is nonexistent, or because it is spun down, or 424 * for some other reason. 425 */ 426 switch (mp->mscp_status & ~M_ST_MASK) { 427 428 case M_OFFLINE_UNKNOWN: 429 /* 430 * No such drive, and there are none with 431 * higher unit numbers either, if we are 432 * using M_GUM_NEXTUNIT. 433 */ 434 return (0); 435 436 case M_OFFLINE_UNMOUNTED: 437 /* 438 * The drive is not spun up. Use it anyway. 439 * 440 * N.B.: this seems to be a common occurrance 441 * after a power failure. The first attempt 442 * to bring it on line seems to spin it up 443 * (and thus takes several minutes). Perhaps 444 * we should note here that the on-line may 445 * take longer than usual. 446 */ 447 break; 448 449 default: 450 /* 451 * In service, or something else equally unusable. 452 */ 453 printf("uda%d: unit %d off line: ", um->um_ctlr, 454 mp->mscp_unit); 455 mscp_printevent(mp); 456 goto try_another; 457 } 458 break; 459 460 default: 461 printf("uda%d: unable to get unit status: ", um->um_ctlr); 462 mscp_printevent(mp); 463 return (0); 464 } 465 466 /* 467 * Does this ever happen? What (if anything) does it mean? 468 */ 469 if (mp->mscp_unit < next) { 470 printf("uda%d: unit %d, next %d\n", 471 um->um_ctlr, mp->mscp_unit, next); 472 return (0); 473 } 474 475 if (mp->mscp_unit >= MAXUNIT) { 476 printf("uda%d: cannot handle unit number %d (max is %d)\n", 477 um->um_ctlr, mp->mscp_unit, MAXUNIT - 1); 478 return (0); 479 } 480 481 /* 482 * See if we already handle this drive. 483 * (Only likely if ui->ui_slave=='?'.) 484 */ 485 if (udaip[um->um_ctlr][mp->mscp_unit] != NULL) { 486 try_another: 487 if (ui->ui_slave != '?') 488 return (0); 489 next = mp->mscp_unit + 1; 490 goto findunit; 491 } 492 493 /* 494 * Voila! 495 */ 496 uda_rasave(ui->ui_unit, mp, 0); 497 ui->ui_flags = 0; /* not on line, nor anything else */ 498 ui->ui_slave = mp->mscp_unit; 499 return (1); 500 } 501 502 /* 503 * Attach a found slave. Make sure the watchdog timer is running. 504 * If this disk is being profiled, fill in the `mspw' value (used by 505 * what?). Set up the inverting pointer, and attempt to bring the 506 * drive on line and read its label. 507 */ 508 udaattach(ui) 509 register struct uba_device *ui; 510 { 511 register int unit = ui->ui_unit; 512 513 if (udawstart == 0) { 514 timeout(udawatch, (caddr_t) 0, hz); 515 udawstart++; 516 } 517 if (ui->ui_dk >= 0) 518 519 /* 520 * Floppies cannot be brought on line unless there is 521 * a disk in the drive. Since an ONLINE while cold 522 * takes ten seconds to fail, and (when notyet becomes now) 523 * no sensible person will swap to one, we just 524 * defer the ONLINE until someone tries to use the drive. 525 * 526 * THIS ASSUMES THAT DRIVE TYPES ?X? ARE FLOPPIES 527 */ 528 if (MSCP_MID_ECH(1, ra_info[unit].ra_mediaid) == 'X' - '@') { 529 printf(": floppy"); 530 return; 531 } 532 dk_mspw[ui->ui_dk] = 1.0 / (60 * 31 * 256); /* approx */ 533 udaip[ui->ui_ctlr][ui->ui_slave] = ui; 534 535 #ifdef notdef 536 /* 537 * RX50s cannot be brought on line unless there is 538 * a floppy in the drive. Since an ONLINE while cold 539 * takes ten seconds to fail, and (when notyet becomes now) 540 * no sensible person will swap to an RX50, we just 541 * defer the ONLINE until someone tries to use the drive. 542 */ 543 if (ra_info[unit].ra_type == RA_TYPE_RX50) { 544 printf(": rx50"); 545 return; 546 } 547 #endif 548 if (uda_rainit(ui, 0)) 549 printf(": offline"); 550 else { 551 printf(": %s, size = %d sectors", 552 udalabel[unit].d_typename, ra_info[unit].ra_dsize); 553 #ifdef notyet 554 addswap(makedev(UDADEVNUM, udaminor(unit, 0)), &udalabel[unit]); 555 #endif 556 } 557 } 558 559 /* 560 * Initialise a UDA50. Return true iff something goes wrong. 561 */ 562 udainit(ctlr) 563 int ctlr; 564 { 565 register struct uda_softc *sc; 566 register struct udadevice *udaddr; 567 struct uba_ctlr *um; 568 int timo, ubinfo; 569 570 sc = &uda_softc[ctlr]; 571 um = udaminfo[ctlr]; 572 if ((sc->sc_flags & SC_MAPPED) == 0) { 573 /* 574 * Map the communication area and command and 575 * response packets into Unibus space. 576 */ 577 ubinfo = uballoc(um->um_ubanum, (caddr_t) &uda[ctlr], 578 sizeof (struct uda), UBA_CANTWAIT); 579 if (ubinfo == 0) { 580 printf("uda%d: uballoc map failed\n", ctlr); 581 return (-1); 582 } 583 sc->sc_uda = (struct uda *) (ubinfo & 0x3ffff); 584 sc->sc_flags |= SC_MAPPED; 585 } 586 587 /* 588 * While we are thinking about it, reset the next command 589 * and response indicies. 590 */ 591 sc->sc_mi.mi_cmd.mri_next = 0; 592 sc->sc_mi.mi_rsp.mri_next = 0; 593 594 /* 595 * Start up the hardware initialisation sequence. 596 */ 597 #define STEP0MASK (UDA_ERR | UDA_STEP4 | UDA_STEP3 | UDA_STEP2 | \ 598 UDA_STEP1 | UDA_NV) 599 600 sc->sc_state = ST_IDLE; /* in case init fails */ 601 udaddr = (struct udadevice *)um->um_addr; 602 udaddr->udaip = 0; 603 timo = todr() + 1000; 604 while ((udaddr->udasa & STEP0MASK) == 0) { 605 if (todr() > timo) { 606 printf("uda%d: timeout during init\n", ctlr); 607 return (-1); 608 } 609 } 610 if ((udaddr->udasa & STEP0MASK) != UDA_STEP1) { 611 printf("uda%d: init failed, sa=%b\n", ctlr, 612 udaddr->udasa, udasr_bits); 613 udasaerror(um, 0); 614 return (-1); 615 } 616 617 /* 618 * Success! Record new state, and start step 1 initialisation. 619 * The rest is done in the interrupt handler. 620 */ 621 sc->sc_state = ST_STEP1; 622 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE | 623 (sc->sc_ivec >> 2); 624 return (0); 625 } 626 627 /* 628 * Open a drive. 629 */ 630 /*ARGSUSED*/ 631 udaopen(dev, flag, fmt) 632 dev_t dev; 633 int flag, fmt; 634 { 635 register int unit; 636 register struct uba_device *ui; 637 register struct uda_softc *sc; 638 register struct disklabel *lp; 639 register struct partition *pp; 640 register struct ra_info *ra; 641 int s, i, part, mask, error = 0; 642 daddr_t start, end; 643 644 /* 645 * Make sure this is a reasonable open request. 646 */ 647 unit = udaunit(dev); 648 if (unit >= NRA || (ui = udadinfo[unit]) == 0 || ui->ui_alive == 0) 649 return (ENXIO); 650 651 /* 652 * Make sure the controller is running, by (re)initialising it if 653 * necessary. 654 */ 655 sc = &uda_softc[ui->ui_ctlr]; 656 s = spl5(); 657 if (sc->sc_state != ST_RUN) { 658 if (sc->sc_state == ST_IDLE && udainit(ui->ui_ctlr)) { 659 splx(s); 660 return (EIO); 661 } 662 /* 663 * In case it does not come up, make sure we will be 664 * restarted in 10 seconds. This corresponds to the 665 * 10 second timeouts in udaprobe() and udaslave(). 666 */ 667 sc->sc_flags |= SC_DOWAKE; 668 timeout(wakeup, (caddr_t) sc, 10 * hz); 669 sleep((caddr_t) sc, PRIBIO); 670 if (sc->sc_state != ST_RUN) { 671 splx(s); 672 printf("uda%d: controller hung\n", ui->ui_ctlr); 673 return (EIO); 674 } 675 untimeout(wakeup, (caddr_t) sc); 676 } 677 678 /* 679 * Wait for the state to settle 680 */ 681 ra = &ra_info[unit]; 682 while (ra->ra_state != OPEN && ra->ra_state != OPENRAW && 683 ra->ra_state != CLOSED) 684 sleep((caddr_t)ra, PZERO + 1); 685 686 /* 687 * If not on line, or we are not sure of the label, reinitialise 688 * the drive. 689 */ 690 if ((ui->ui_flags & UNIT_ONLINE) == 0 || 691 (ra->ra_state != OPEN && ra->ra_state != OPENRAW)) 692 error = uda_rainit(ui, flag); 693 splx(s); 694 if (error) 695 return (error); 696 697 part = udapart(dev); 698 lp = &udalabel[unit]; 699 if (part >= lp->d_npartitions) 700 return (ENXIO); 701 /* 702 * Warn if a partition is opened that overlaps another 703 * already open, unless either is the `raw' partition 704 * (whole disk). 705 */ 706 #define RAWPART 2 /* 'c' partition */ /* XXX */ 707 mask = 1 << part; 708 if ((ra->ra_openpart & mask) == 0 && part != RAWPART) { 709 pp = &lp->d_partitions[part]; 710 start = pp->p_offset; 711 end = pp->p_offset + pp->p_size; 712 for (pp = lp->d_partitions, i = 0; 713 i < lp->d_npartitions; pp++, i++) { 714 if (pp->p_offset + pp->p_size <= start || 715 pp->p_offset >= end || i == RAWPART) 716 continue; 717 if (ra->ra_openpart & (1 << i)) 718 log(LOG_WARNING, 719 "ra%d%c: overlaps open partition (%c)\n", 720 unit, part + 'a', i + 'a'); 721 } 722 } 723 switch (fmt) { 724 case S_IFCHR: 725 ra->ra_copenpart |= mask; 726 break; 727 case S_IFBLK: 728 ra->ra_bopenpart |= mask; 729 break; 730 } 731 ra->ra_openpart |= mask; 732 return (0); 733 } 734 735 /* ARGSUSED */ 736 /*ARGSUSED*/ 737 udaclose(dev, flags, fmt) 738 dev_t dev; 739 int flags, fmt; 740 { 741 register int unit = udaunit(dev); 742 register struct ra_info *ra = &ra_info[unit]; 743 int s, mask = (1 << udapart(dev)); 744 745 switch (fmt) { 746 case S_IFCHR: 747 ra->ra_copenpart &= ~mask; 748 break; 749 case S_IFBLK: 750 ra->ra_bopenpart &= ~mask; 751 break; 752 } 753 ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart; 754 755 /* 756 * Should wait for I/O to complete on this partition even if 757 * others are open, but wait for work on blkflush(). 758 */ 759 if (ra->ra_openpart == 0) { 760 s = spl5(); 761 while (udautab[unit].b_actf) 762 sleep((caddr_t)&udautab[unit], PZERO - 1); 763 splx(s); 764 ra->ra_state = CLOSED; 765 ra->ra_wlabel = 0; 766 } 767 return (0); 768 } 769 770 /* 771 * Initialise a drive. If it is not already, bring it on line, 772 * and set a timeout on it in case it fails to respond. 773 * When on line, read in the pack label. 774 */ 775 uda_rainit(ui, flags) 776 register struct uba_device *ui; 777 int flags; 778 { 779 register struct uda_softc *sc = &uda_softc[ui->ui_ctlr]; 780 register struct disklabel *lp; 781 register struct mscp *mp; 782 register int unit = ui->ui_unit; 783 register struct ra_info *ra; 784 char *msg, *readdisklabel(); 785 int s, i, udastrategy(); 786 extern int cold; 787 788 ra = &ra_info[unit]; 789 if ((ui->ui_flags & UNIT_ONLINE) == 0) { 790 mp = mscp_getcp(&sc->sc_mi, MSCP_WAIT); 791 mp->mscp_opcode = M_OP_ONLINE; 792 mp->mscp_unit = ui->ui_slave; 793 mp->mscp_cmdref = (long)&ui->ui_flags; 794 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 795 ra->ra_state = WANTOPEN; 796 if (!cold) 797 s = spl5(); 798 i = ((struct udadevice *)ui->ui_addr)->udaip; 799 800 if (cold) { 801 i = todr() + 1000; 802 while ((ui->ui_flags & UNIT_ONLINE) == 0) 803 if (todr() > i) 804 break; 805 } else { 806 timeout(wakeup, (caddr_t)&ui->ui_flags, 10 * hz); 807 sleep((caddr_t)&ui->ui_flags, PSWP + 1); 808 splx(s); 809 untimeout(wakeup, (caddr_t)&ui->ui_flags); 810 } 811 if (ra->ra_state != OPENRAW) { 812 ra->ra_state = CLOSED; 813 wakeup((caddr_t)ra); 814 return (EIO); 815 } 816 } 817 818 lp = &udalabel[unit]; 819 lp->d_secsize = DEV_BSIZE; 820 lp->d_secperunit = ra->ra_dsize; 821 822 if (flags & O_NDELAY) 823 return (0); 824 ra->ra_state = RDLABEL; 825 /* 826 * Set up default sizes until we have the label, or longer 827 * if there is none. Set secpercyl, as readdisklabel wants 828 * to compute b_cylin (although we do not need it). 829 */ 830 lp->d_secpercyl = 1; 831 lp->d_npartitions = 1; 832 lp->d_partitions[0].p_size = lp->d_secperunit; 833 lp->d_partitions[0].p_offset = 0; 834 835 /* 836 * Read pack label. 837 */ 838 if ((msg = readdisklabel(udaminor(unit, 0), udastrategy, lp)) != NULL) { 839 if (cold) 840 printf(": %s", msg); 841 else 842 log(LOG_ERR, "ra%d: %s\n", unit, msg); 843 #ifdef COMPAT_42 844 if (udamaptype(unit, lp)) 845 ra->ra_state = OPEN; 846 else 847 ra->ra_state = OPENRAW; 848 #else 849 ra->ra_state = OPENRAW; 850 /* uda_makefakelabel(ra, lp); */ 851 #endif 852 } else 853 ra->ra_state = OPEN; 854 wakeup((caddr_t)ra); 855 return (0); 856 } 857 858 /* 859 * Copy the geometry information for the given ra from a 860 * GET UNIT STATUS response. If check, see if it changed. 861 */ 862 uda_rasave(unit, mp, check) 863 int unit; 864 register struct mscp *mp; 865 int check; 866 { 867 register struct ra_info *ra = &ra_info[unit]; 868 869 if (check && ra->ra_mediaid != mp->mscp_guse.guse_mediaid) { 870 printf("ra%d: changed types! was %d now %d\n", unit, 871 ra->ra_mediaid, mp->mscp_guse.guse_mediaid); 872 ra->ra_state = CLOSED; /* ??? */ 873 } 874 /* ra->ra_type = mp->mscp_guse.guse_drivetype; */ 875 ra->ra_mediaid = mp->mscp_guse.guse_mediaid; 876 ra->ra_geom.rg_nsectors = mp->mscp_guse.guse_nspt; 877 ra->ra_geom.rg_ngroups = mp->mscp_guse.guse_group; 878 ra->ra_geom.rg_ngpc = mp->mscp_guse.guse_ngpc; 879 ra->ra_geom.rg_ntracks = ra->ra_geom.rg_ngroups * ra->ra_geom.rg_ngpc; 880 /* ra_geom.rg_ncyl cannot be computed until we have ra_dsize */ 881 #ifdef notyet 882 ra->ra_geom.rg_rctsize = mp->mscp_guse.guse_rctsize; 883 ra->ra_geom.rg_rbns = mp->mscp_guse.guse_nrpt; 884 ra->ra_geom.rg_nrct = mp->mscp_guse.guse_nrct; 885 #endif 886 } 887 888 /* 889 * Queue a transfer request, and if possible, hand it to the controller. 890 * 891 * This routine is broken into two so that the internal version 892 * udastrat1() can be called by the (nonexistent, as yet) bad block 893 * revectoring routine. 894 */ 895 udastrategy(bp) 896 register struct buf *bp; 897 { 898 register int unit; 899 register struct uba_device *ui; 900 register struct ra_info *ra; 901 struct partition *pp; 902 int p; 903 daddr_t sz, maxsz; 904 905 /* 906 * Make sure this is a reasonable drive to use. 907 */ 908 if ((unit = udaunit(bp->b_dev)) >= NRA || 909 (ui = udadinfo[unit]) == NULL || ui->ui_alive == 0 || 910 (ra = &ra_info[unit])->ra_state == CLOSED) { 911 bp->b_error = ENXIO; 912 goto bad; 913 } 914 915 /* 916 * If drive is open `raw' or reading label, let it at it. 917 */ 918 if (ra->ra_state < OPEN) { 919 udastrat1(bp); 920 return; 921 } 922 p = udapart(bp->b_dev); 923 if ((ra->ra_openpart & (1 << p)) == 0) { 924 bp->b_error = ENODEV; 925 goto bad; 926 } 927 928 /* 929 * Determine the size of the transfer, and make sure it is 930 * within the boundaries of the partition. 931 */ 932 pp = &udalabel[unit].d_partitions[p]; 933 maxsz = pp->p_size; 934 if (pp->p_offset + pp->p_size > ra->ra_dsize) 935 maxsz = ra->ra_dsize - pp->p_offset; 936 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; 937 if (bp->b_blkno + pp->p_offset <= LABELSECTOR && 938 #if LABELSECTOR != 0 939 bp->b_blkno + pp->p_offset + sz > LABELSECTOR && 940 #endif 941 (bp->b_flags & B_READ) == 0 && ra->ra_wlabel == 0) { 942 bp->b_error = EROFS; 943 goto bad; 944 } 945 if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) { 946 /* if exactly at end of disk, return an EOF */ 947 if (bp->b_blkno == maxsz) { 948 bp->b_resid = bp->b_bcount; 949 biodone(bp); 950 return; 951 } 952 /* or truncate if part of it fits */ 953 sz = maxsz - bp->b_blkno; 954 if (sz <= 0) { 955 bp->b_error = EINVAL; /* or hang it up */ 956 goto bad; 957 } 958 bp->b_bcount = sz << DEV_BSHIFT; 959 } 960 udastrat1(bp); 961 return; 962 bad: 963 bp->b_flags |= B_ERROR; 964 biodone(bp); 965 } 966 967 /* 968 * Work routine for udastrategy. 969 */ 970 udastrat1(bp) 971 register struct buf *bp; 972 { 973 register int unit = udaunit(bp->b_dev); 974 register struct uba_ctlr *um; 975 register struct buf *dp; 976 struct uba_device *ui; 977 int s = spl5(); 978 979 /* 980 * Append the buffer to the drive queue, and if it is not 981 * already there, the drive to the controller queue. (However, 982 * if the drive queue is marked to be requeued, we must be 983 * awaiting an on line or get unit status command; in this 984 * case, leave it off the controller queue.) 985 */ 986 um = (ui = udadinfo[unit])->ui_mi; 987 dp = &udautab[unit]; 988 APPEND(bp, dp, av_forw); 989 if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) { 990 APPEND(dp, &um->um_tab, b_forw); 991 dp->b_active++; 992 } 993 994 /* 995 * Start activity on the controller. Note that unlike other 996 * Unibus drivers, we must always do this, not just when the 997 * controller is not active. 998 */ 999 udastart(um); 1000 splx(s); 1001 } 1002 1003 /* 1004 * Start up whatever transfers we can find. 1005 * Note that udastart() must be called at spl5(). 1006 */ 1007 udastart(um) 1008 register struct uba_ctlr *um; 1009 { 1010 register struct uda_softc *sc = &uda_softc[um->um_ctlr]; 1011 register struct buf *bp, *dp; 1012 register struct mscp *mp; 1013 struct uba_device *ui; 1014 struct udadevice *udaddr; 1015 struct partition *pp; 1016 int i, sz; 1017 1018 #ifdef lint 1019 i = 0; i = i; 1020 #endif 1021 /* 1022 * If it is not running, try (again and again...) to initialise 1023 * it. If it is currently initialising just ignore it for now. 1024 */ 1025 if (sc->sc_state != ST_RUN) { 1026 if (sc->sc_state == ST_IDLE && udainit(um->um_ctlr)) 1027 printf("uda%d: still hung\n", um->um_ctlr); 1028 return; 1029 } 1030 1031 /* 1032 * If um_cmd is nonzero, this controller is on the Unibus 1033 * resource wait queue. It will not help to try more requests; 1034 * instead, when the Unibus unblocks and calls udadgo(), we 1035 * will call udastart() again. 1036 */ 1037 if (um->um_cmd) 1038 return; 1039 1040 sc->sc_flags |= SC_INSTART; 1041 udaddr = (struct udadevice *) um->um_addr; 1042 1043 loop: 1044 /* 1045 * Service the drive at the head of the queue. It may not 1046 * need anything, in which case it might be shutting down 1047 * in udaclose(). 1048 */ 1049 if ((dp = um->um_tab.b_actf) == NULL) 1050 goto out; 1051 if ((bp = dp->b_actf) == NULL) { 1052 dp->b_active = 0; 1053 um->um_tab.b_actf = dp->b_forw; 1054 if (ra_info[dp - udautab].ra_openpart == 0) 1055 wakeup((caddr_t)dp); /* finish close protocol */ 1056 goto loop; 1057 } 1058 1059 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */ 1060 udasaerror(um, 1); 1061 goto out; 1062 } 1063 1064 /* 1065 * Get an MSCP packet, then figure out what to do. If 1066 * we cannot get a command packet, the command ring may 1067 * be too small: We should have at least as many command 1068 * packets as credits, for best performance. 1069 */ 1070 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) { 1071 if (sc->sc_mi.mi_credits > MSCP_MINCREDITS && 1072 (sc->sc_flags & SC_GRIPED) == 0) { 1073 log(LOG_NOTICE, "uda%d: command ring too small\n", 1074 um->um_ctlr); 1075 sc->sc_flags |= SC_GRIPED;/* complain only once */ 1076 } 1077 goto out; 1078 } 1079 1080 /* 1081 * Bring the drive on line if it is not already. Get its status 1082 * if we do not already have it. Otherwise just start the transfer. 1083 */ 1084 ui = udadinfo[udaunit(bp->b_dev)]; 1085 if ((ui->ui_flags & UNIT_ONLINE) == 0) { 1086 mp->mscp_opcode = M_OP_ONLINE; 1087 goto common; 1088 } 1089 if ((ui->ui_flags & UNIT_HAVESTATUS) == 0) { 1090 mp->mscp_opcode = M_OP_GETUNITST; 1091 common: 1092 if (ui->ui_flags & UNIT_REQUEUE) panic("udastart"); 1093 /* 1094 * Take the drive off the controller queue. When the 1095 * command finishes, make sure the drive is requeued. 1096 */ 1097 um->um_tab.b_actf = dp->b_forw; 1098 dp->b_active = 0; 1099 ui->ui_flags |= UNIT_REQUEUE; 1100 mp->mscp_unit = ui->ui_slave; 1101 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 1102 sc->sc_flags |= SC_STARTPOLL; 1103 #ifdef POLLSTATS 1104 sc->sc_ncmd++; 1105 #endif 1106 goto loop; 1107 } 1108 1109 pp = &udalabel[ui->ui_unit].d_partitions[udapart(bp->b_dev)]; 1110 mp->mscp_opcode = (bp->b_flags & B_READ) ? M_OP_READ : M_OP_WRITE; 1111 mp->mscp_unit = ui->ui_slave; 1112 mp->mscp_seq.seq_lbn = bp->b_blkno + pp->p_offset; 1113 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; 1114 mp->mscp_seq.seq_bytecount = bp->b_blkno + sz > pp->p_size ? 1115 (pp->p_size - bp->b_blkno) >> DEV_BSHIFT : bp->b_bcount; 1116 /* mscp_cmdref is filled in by mscp_go() */ 1117 1118 /* 1119 * Drop the packet pointer into the `command' field so udadgo() 1120 * can tell what to start. If ubago returns 1, we can do another 1121 * transfer. If not, um_cmd will still point at mp, so we will 1122 * know that we are waiting for resources. 1123 */ 1124 um->um_cmd = (int)mp; 1125 if (ubago(ui)) 1126 goto loop; 1127 1128 /* 1129 * All done, or blocked in ubago(). If we managed to 1130 * issue some commands, start up the beast. 1131 */ 1132 out: 1133 if (sc->sc_flags & SC_STARTPOLL) { 1134 #ifdef POLLSTATS 1135 udastats.cmd[sc->sc_ncmd]++; 1136 sc->sc_ncmd = 0; 1137 #endif 1138 i = ((struct udadevice *)um->um_addr)->udaip; 1139 } 1140 sc->sc_flags &= ~(SC_INSTART | SC_STARTPOLL); 1141 } 1142 1143 /* 1144 * Start a transfer. 1145 * 1146 * If we are not called from within udastart(), we must have been 1147 * blocked, so call udastart to do more requests (if any). If 1148 * this calls us again immediately we will not recurse, because 1149 * that time we will be in udastart(). Clever.... 1150 */ 1151 udadgo(um) 1152 register struct uba_ctlr *um; 1153 { 1154 struct uda_softc *sc = &uda_softc[um->um_ctlr]; 1155 struct mscp *mp = (struct mscp *)um->um_cmd; 1156 1157 um->um_tab.b_active++; /* another transfer going */ 1158 1159 /* 1160 * Fill in the MSCP packet and move the buffer to the 1161 * I/O wait queue. Mark the controller as no longer on 1162 * the resource queue, and remember to initiate polling. 1163 */ 1164 mp->mscp_seq.seq_buffer = (um->um_ubinfo & 0x3ffff) | 1165 (UBAI_BDP(um->um_ubinfo) << 24); 1166 mscp_go(&sc->sc_mi, mp, um->um_ubinfo); 1167 um->um_cmd = 0; 1168 um->um_ubinfo = 0; /* tyke it awye */ 1169 sc->sc_flags |= SC_STARTPOLL; 1170 #ifdef POLLSTATS 1171 sc->sc_ncmd++; 1172 #endif 1173 if ((sc->sc_flags & SC_INSTART) == 0) 1174 udastart(um); 1175 } 1176 1177 udaiodone(mi, bp, info) 1178 register struct mscp_info *mi; 1179 struct buf *bp; 1180 int info; 1181 { 1182 register struct uba_ctlr *um = udaminfo[mi->mi_ctlr]; 1183 1184 um->um_ubinfo = info; 1185 ubadone(um); 1186 biodone(bp); 1187 if (um->um_bdp && mi->mi_wtab.av_forw == &mi->mi_wtab) 1188 ubarelse(um->um_ubanum, &um->um_bdp); 1189 um->um_tab.b_active--; /* another transfer done */ 1190 } 1191 1192 static struct saerr { 1193 int code; /* error code (including UDA_ERR) */ 1194 char *desc; /* what it means: Efoo => foo error */ 1195 } saerr[] = { 1196 { 0100001, "Eunibus packet read" }, 1197 { 0100002, "Eunibus packet write" }, 1198 { 0100003, "EUDA ROM and RAM parity" }, 1199 { 0100004, "EUDA RAM parity" }, 1200 { 0100005, "EUDA ROM parity" }, 1201 { 0100006, "Eunibus ring read" }, 1202 { 0100007, "Eunibus ring write" }, 1203 { 0100010, " unibus interrupt master failure" }, 1204 { 0100011, "Ehost access timeout" }, 1205 { 0100012, " host exceeded command limit" }, 1206 { 0100013, " unibus bus master failure" }, 1207 { 0100014, " DM XFC fatal error" }, 1208 { 0100015, " hardware timeout of instruction loop" }, 1209 { 0100016, " invalid virtual circuit id" }, 1210 { 0100017, "Eunibus interrupt write" }, 1211 { 0104000, "Efatal sequence" }, 1212 { 0104040, " D proc ALU" }, 1213 { 0104041, "ED proc control ROM parity" }, 1214 { 0105102, "ED proc w/no BD#2 or RAM parity" }, 1215 { 0105105, "ED proc RAM buffer" }, 1216 { 0105152, "ED proc SDI" }, 1217 { 0105153, "ED proc write mode wrap serdes" }, 1218 { 0105154, "ED proc read mode serdes, RSGEN & ECC" }, 1219 { 0106040, "EU proc ALU" }, 1220 { 0106041, "EU proc control reg" }, 1221 { 0106042, " U proc DFAIL/cntl ROM parity/BD #1 test CNT" }, 1222 { 0106047, " U proc const PROM err w/D proc running SDI test" }, 1223 { 0106055, " unexpected trap" }, 1224 { 0106071, "EU proc const PROM" }, 1225 { 0106072, "EU proc control ROM parity" }, 1226 { 0106200, "Estep 1 data" }, 1227 { 0107103, "EU proc RAM parity" }, 1228 { 0107107, "EU proc RAM buffer" }, 1229 { 0107115, " test count wrong (BD 12)" }, 1230 { 0112300, "Estep 2" }, 1231 { 0122240, "ENPR" }, 1232 { 0122300, "Estep 3" }, 1233 { 0142300, "Estep 4" }, 1234 { 0, " unknown error code" } 1235 }; 1236 1237 /* 1238 * If the error bit was set in the controller status register, gripe, 1239 * then (optionally) reset the controller and requeue pending transfers. 1240 */ 1241 udasaerror(um, doreset) 1242 register struct uba_ctlr *um; 1243 int doreset; 1244 { 1245 register int code = ((struct udadevice *)um->um_addr)->udasa; 1246 register struct saerr *e; 1247 1248 if ((code & UDA_ERR) == 0) 1249 return; 1250 for (e = saerr; e->code; e++) 1251 if (e->code == code) 1252 break; 1253 printf("uda%d: controller error, sa=0%o (%s%s)\n", 1254 um->um_ctlr, code, e->desc + 1, 1255 *e->desc == 'E' ? " error" : ""); 1256 if (doreset) { 1257 mscp_requeue(&uda_softc[um->um_ctlr].sc_mi); 1258 (void) udainit(um->um_ctlr); 1259 } 1260 } 1261 1262 /* 1263 * Interrupt routine. Depending on the state of the controller, 1264 * continue initialisation, or acknowledge command and response 1265 * interrupts, and process responses. 1266 */ 1267 udaintr(ctlr) 1268 int ctlr; 1269 { 1270 register struct uba_ctlr *um = udaminfo[ctlr]; 1271 register struct uda_softc *sc = &uda_softc[ctlr]; 1272 register struct udadevice *udaddr = (struct udadevice *)um->um_addr; 1273 register struct uda *ud; 1274 register struct mscp *mp; 1275 register int i; 1276 1277 #ifdef VAX630 1278 (void) spl5(); /* Qbus interrupt protocol is odd */ 1279 #endif 1280 sc->sc_wticks = 0; /* reset interrupt watchdog */ 1281 1282 /* 1283 * Combinations during steps 1, 2, and 3: STEPnMASK 1284 * corresponds to which bits should be tested; 1285 * STEPnGOOD corresponds to the pattern that should 1286 * appear after the interrupt from STEPn initialisation. 1287 * All steps test the bits in ALLSTEPS. 1288 */ 1289 #define ALLSTEPS (UDA_ERR|UDA_STEP4|UDA_STEP3|UDA_STEP2|UDA_STEP1) 1290 1291 #define STEP1MASK (ALLSTEPS | UDA_IE | UDA_NCNRMASK) 1292 #define STEP1GOOD (UDA_STEP2 | UDA_IE | (NCMDL2 << 3) | NRSPL2) 1293 1294 #define STEP2MASK (ALLSTEPS | UDA_IE | UDA_IVECMASK) 1295 #define STEP2GOOD (UDA_STEP3 | UDA_IE | (sc->sc_ivec >> 2)) 1296 1297 #define STEP3MASK ALLSTEPS 1298 #define STEP3GOOD UDA_STEP4 1299 1300 switch (sc->sc_state) { 1301 1302 case ST_IDLE: 1303 /* 1304 * Ignore unsolicited interrupts. 1305 */ 1306 log(LOG_WARNING, "uda%d: stray intr\n", ctlr); 1307 return; 1308 1309 case ST_STEP1: 1310 /* 1311 * Begin step two initialisation. 1312 */ 1313 if ((udaddr->udasa & STEP1MASK) != STEP1GOOD) { 1314 i = 1; 1315 initfailed: 1316 printf("uda%d: init step %d failed, sa=%b\n", 1317 ctlr, i, udaddr->udasa, udasr_bits); 1318 udasaerror(um, 0); 1319 sc->sc_state = ST_IDLE; 1320 if (sc->sc_flags & SC_DOWAKE) { 1321 sc->sc_flags &= ~SC_DOWAKE; 1322 wakeup((caddr_t)sc); 1323 } 1324 return; 1325 } 1326 udaddr->udasa = (int)&sc->sc_uda->uda_ca.ca_rspdsc[0] | 1327 (cpu == VAX_780 || cpu == VAX_8600 ? UDA_PI : 0); 1328 sc->sc_state = ST_STEP2; 1329 return; 1330 1331 case ST_STEP2: 1332 /* 1333 * Begin step 3 initialisation. 1334 */ 1335 if ((udaddr->udasa & STEP2MASK) != STEP2GOOD) { 1336 i = 2; 1337 goto initfailed; 1338 } 1339 udaddr->udasa = ((int)&sc->sc_uda->uda_ca.ca_rspdsc[0]) >> 16; 1340 sc->sc_state = ST_STEP3; 1341 return; 1342 1343 case ST_STEP3: 1344 /* 1345 * Set controller characteristics (finish initialisation). 1346 */ 1347 if ((udaddr->udasa & STEP3MASK) != STEP3GOOD) { 1348 i = 3; 1349 goto initfailed; 1350 } 1351 i = udaddr->udasa & 0xff; 1352 if (i != sc->sc_micro) { 1353 sc->sc_micro = i; 1354 printf("uda%d: version %d model %d\n", 1355 ctlr, i & 0xf, i >> 4); 1356 } 1357 1358 /* 1359 * Present the burst size, then remove it. Why this 1360 * should be done this way, I have no idea. 1361 * 1362 * Note that this assumes udaburst[ctlr] > 0. 1363 */ 1364 udaddr->udasa = UDA_GO | (udaburst[ctlr] - 1) << 2; 1365 udaddr->udasa = UDA_GO; 1366 printf("uda%d: DMA burst size set to %d\n", 1367 ctlr, udaburst[ctlr]); 1368 1369 udainitds(ctlr); /* initialise data structures */ 1370 1371 /* 1372 * Before we can get a command packet, we need some 1373 * credits. Fake some up to keep mscp_getcp() happy, 1374 * get a packet, and cancel all credits (the right 1375 * number should come back in the response to the 1376 * SCC packet). 1377 */ 1378 sc->sc_mi.mi_credits = MSCP_MINCREDITS + 1; 1379 mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT); 1380 if (mp == NULL) /* `cannot happen' */ 1381 panic("udaintr"); 1382 sc->sc_mi.mi_credits = 0; 1383 mp->mscp_opcode = M_OP_SETCTLRC; 1384 mp->mscp_unit = 0; 1385 mp->mscp_sccc.sccc_ctlrflags = M_CF_ATTN | M_CF_MISC | 1386 M_CF_THIS; 1387 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 1388 i = udaddr->udaip; 1389 sc->sc_state = ST_SETCHAR; 1390 return; 1391 1392 case ST_SETCHAR: 1393 case ST_RUN: 1394 /* 1395 * Handle Set Ctlr Characteristics responses and operational 1396 * responses (via mscp_dorsp). 1397 */ 1398 break; 1399 1400 default: 1401 printf("uda%d: driver bug, state %d\n", ctlr, sc->sc_state); 1402 panic("udastate"); 1403 } 1404 1405 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */ 1406 udasaerror(um, 1); 1407 return; 1408 } 1409 1410 ud = &uda[ctlr]; 1411 1412 /* 1413 * Handle buffer purge requests. 1414 */ 1415 if (ud->uda_ca.ca_bdp) { 1416 UBAPURGE(um->um_hd->uh_uba, ud->uda_ca.ca_bdp); 1417 ud->uda_ca.ca_bdp = 0; 1418 udaddr->udasa = 0; /* signal purge complete */ 1419 } 1420 1421 /* 1422 * Check for response and command ring transitions. 1423 */ 1424 if (ud->uda_ca.ca_rspint) { 1425 ud->uda_ca.ca_rspint = 0; 1426 mscp_dorsp(&sc->sc_mi); 1427 } 1428 if (ud->uda_ca.ca_cmdint) { 1429 ud->uda_ca.ca_cmdint = 0; 1430 MSCP_DOCMD(&sc->sc_mi); 1431 } 1432 udastart(um); 1433 } 1434 1435 /* 1436 * Initialise the various data structures that control the UDA50. 1437 */ 1438 udainitds(ctlr) 1439 int ctlr; 1440 { 1441 register struct uda *ud = &uda[ctlr]; 1442 register struct uda *uud = uda_softc[ctlr].sc_uda; 1443 register struct mscp *mp; 1444 register int i; 1445 1446 for (i = 0, mp = ud->uda_rsp; i < NRSP; i++, mp++) { 1447 ud->uda_ca.ca_rspdsc[i] = MSCP_OWN | MSCP_INT | 1448 (long)&uud->uda_rsp[i].mscp_cmdref; 1449 mp->mscp_addr = &ud->uda_ca.ca_rspdsc[i]; 1450 mp->mscp_msglen = MSCP_MSGLEN; 1451 } 1452 for (i = 0, mp = ud->uda_cmd; i < NCMD; i++, mp++) { 1453 ud->uda_ca.ca_cmddsc[i] = MSCP_INT | 1454 (long)&uud->uda_cmd[i].mscp_cmdref; 1455 mp->mscp_addr = &ud->uda_ca.ca_cmddsc[i]; 1456 mp->mscp_msglen = MSCP_MSGLEN; 1457 } 1458 } 1459 1460 /* 1461 * Handle an error datagram. 1462 */ 1463 udadgram(mi, mp) 1464 struct mscp_info *mi; 1465 struct mscp *mp; 1466 { 1467 1468 mscp_decodeerror(mi->mi_md->md_mname, mi->mi_ctlr, mp); 1469 /* 1470 * SDI status information bytes 10 and 11 are the microprocessor 1471 * error code and front panel code respectively. These vary per 1472 * drive type and are printed purely for field service information. 1473 */ 1474 if (mp->mscp_format == M_FM_SDI) 1475 printf("\tsdi uproc error code 0x%x, front panel code 0x%x\n", 1476 mp->mscp_erd.erd_sdistat[10], 1477 mp->mscp_erd.erd_sdistat[11]); 1478 } 1479 1480 /* 1481 * The Set Controller Characteristics command finished. 1482 * Record the new state of the controller. 1483 */ 1484 udactlrdone(mi, mp) 1485 register struct mscp_info *mi; 1486 struct mscp *mp; 1487 { 1488 register struct uda_softc *sc = &uda_softc[mi->mi_ctlr]; 1489 1490 if ((mp->mscp_status & M_ST_MASK) == M_ST_SUCCESS) 1491 sc->sc_state = ST_RUN; 1492 else { 1493 printf("uda%d: SETCTLRC failed: ", 1494 mi->mi_ctlr, mp->mscp_status); 1495 mscp_printevent(mp); 1496 sc->sc_state = ST_IDLE; 1497 } 1498 if (sc->sc_flags & SC_DOWAKE) { 1499 sc->sc_flags &= ~SC_DOWAKE; 1500 wakeup((caddr_t)sc); 1501 } 1502 } 1503 1504 /* 1505 * Received a response from an as-yet unconfigured drive. Configure it 1506 * in, if possible. 1507 */ 1508 udaunconf(mi, mp) 1509 struct mscp_info *mi; 1510 register struct mscp *mp; 1511 { 1512 1513 /* 1514 * If it is a slave response, copy it to udaslavereply for 1515 * udaslave() to look at. 1516 */ 1517 if (mp->mscp_opcode == (M_OP_GETUNITST | M_OP_END) && 1518 (uda_softc[mi->mi_ctlr].sc_flags & SC_INSLAVE) != 0) { 1519 udaslavereply = *mp; 1520 return (MSCP_DONE); 1521 } 1522 1523 /* 1524 * Otherwise, it had better be an available attention response. 1525 */ 1526 if (mp->mscp_opcode != M_OP_AVAILATTN) 1527 return (MSCP_FAILED); 1528 1529 /* do what autoconf does */ 1530 return (MSCP_FAILED); /* not yet, arwhite, not yet */ 1531 } 1532 1533 /* 1534 * A drive came on line. Check its type and size. Return DONE if 1535 * we think the drive is truly on line. In any case, awaken anyone 1536 * sleeping on the drive on-line-ness. 1537 */ 1538 udaonline(ui, mp) 1539 register struct uba_device *ui; 1540 struct mscp *mp; 1541 { 1542 register struct ra_info *ra = &ra_info[ui->ui_unit]; 1543 1544 wakeup((caddr_t)&ui->ui_flags); 1545 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 1546 printf("uda%d: attempt to bring ra%d on line failed: ", 1547 ui->ui_ctlr, ui->ui_unit); 1548 mscp_printevent(mp); 1549 ra->ra_state = CLOSED; 1550 return (MSCP_FAILED); 1551 } 1552 1553 ra->ra_state = OPENRAW; 1554 ra->ra_dsize = (daddr_t)mp->mscp_onle.onle_unitsize; 1555 if (!cold) 1556 printf("ra%d: uda%d, unit %d, size = %d sectors\n", ui->ui_unit, 1557 ui->ui_ctlr, mp->mscp_unit, ra->ra_dsize); 1558 /* can now compute ncyl */ 1559 ra->ra_geom.rg_ncyl = ra->ra_dsize / ra->ra_geom.rg_ntracks / 1560 ra->ra_geom.rg_nsectors; 1561 return (MSCP_DONE); 1562 } 1563 1564 /* 1565 * We got some (configured) unit's status. Return DONE if it succeeded. 1566 */ 1567 udagotstatus(ui, mp) 1568 register struct uba_device *ui; 1569 register struct mscp *mp; 1570 { 1571 1572 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 1573 printf("uda%d: attempt to get status for ra%d failed: ", 1574 ui->ui_ctlr, ui->ui_unit); 1575 mscp_printevent(mp); 1576 return (MSCP_FAILED); 1577 } 1578 /* record for (future) bad block forwarding and whatever else */ 1579 uda_rasave(ui->ui_unit, mp, 1); 1580 return (MSCP_DONE); 1581 } 1582 1583 /* 1584 * A transfer failed. We get a chance to fix or restart it. 1585 * Need to write the bad block forwaring code first.... 1586 */ 1587 /*ARGSUSED*/ 1588 udaioerror(ui, mp, bp) 1589 register struct uba_device *ui; 1590 register struct mscp *mp; 1591 struct buf *bp; 1592 { 1593 1594 if (mp->mscp_flags & M_EF_BBLKR) { 1595 /* 1596 * A bad block report. Eventually we will 1597 * restart this transfer, but for now, just 1598 * log it and give up. 1599 */ 1600 log(LOG_ERR, "ra%d: bad block report: %d%s\n", 1601 ui->ui_unit, mp->mscp_seq.seq_lbn, 1602 mp->mscp_flags & M_EF_BBLKU ? " + others" : ""); 1603 } else { 1604 /* 1605 * What the heck IS a `serious exception' anyway? 1606 * IT SURE WOULD BE NICE IF DEC SOLD DOCUMENTATION 1607 * FOR THEIR OWN CONTROLLERS. 1608 */ 1609 if (mp->mscp_flags & M_EF_SEREX) 1610 log(LOG_ERR, "ra%d: serious exception reported\n", 1611 ui->ui_unit); 1612 } 1613 return (MSCP_FAILED); 1614 } 1615 1616 /* 1617 * A replace operation finished. 1618 */ 1619 /*ARGSUSED*/ 1620 udareplace(ui, mp) 1621 struct uba_device *ui; 1622 struct mscp *mp; 1623 { 1624 1625 panic("udareplace"); 1626 } 1627 1628 /* 1629 * A bad block related operation finished. 1630 */ 1631 /*ARGSUSED*/ 1632 udabb(ui, mp, bp) 1633 struct uba_device *ui; 1634 struct mscp *mp; 1635 struct buf *bp; 1636 { 1637 1638 panic("udabb"); 1639 } 1640 1641 1642 /* 1643 * I/O controls. 1644 */ 1645 udaioctl(dev, cmd, data, flag) 1646 dev_t dev; 1647 int cmd; 1648 caddr_t data; 1649 int flag; 1650 { 1651 register int unit = udaunit(dev); 1652 register struct disklabel *lp; 1653 register struct ra_info *ra = &ra_info[unit]; 1654 int error = 0, wlab; 1655 1656 lp = &udalabel[unit]; 1657 1658 switch (cmd) { 1659 1660 case DIOCGDINFO: 1661 *(struct disklabel *)data = *lp; 1662 break; 1663 1664 case DIOCGPART: 1665 ((struct partinfo *)data)->disklab = lp; 1666 ((struct partinfo *)data)->part = 1667 &lp->d_partitions[udapart(dev)]; 1668 break; 1669 1670 case DIOCSDINFO: 1671 if ((flag & FWRITE) == 0) 1672 error = EBADF; 1673 else 1674 error = setdisklabel(lp, (struct disklabel *)data, 1675 (ra->ra_state == OPENRAW) ? 0 : ra->ra_openpart); 1676 break; 1677 1678 case DIOCWLABEL: 1679 if ((flag & FWRITE) == 0) 1680 error = EBADF; 1681 else 1682 ra->ra_wlabel = *(int *)data; 1683 break; 1684 1685 case DIOCWDINFO: 1686 /* simulate opening partition 0 so write succeeds */ 1687 ra->ra_openpart |= (1 << 0); /* XXX */ 1688 wlab = ra->ra_wlabel; 1689 ra->ra_wlabel = 1; 1690 if ((flag & FWRITE) == 0) 1691 error = EBADF; 1692 else if ((error = setdisklabel(lp, (struct disklabel *)data, 1693 (ra->ra_state == OPENRAW) ? 0 : ra->ra_openpart)) == 0) { 1694 ra->ra_state = OPEN; 1695 error = writedisklabel(dev, udastrategy, lp); 1696 } 1697 ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart; 1698 ra->ra_wlabel = wlab; 1699 break; 1700 1701 #ifdef notyet 1702 case UDAIOCREPLACE: 1703 /* 1704 * Initiate bad block replacement for the given LBN. 1705 * (Should we allow modifiers?) 1706 */ 1707 error = EOPNOTSUPP; 1708 break; 1709 1710 case UDAIOCGMICRO: 1711 /* 1712 * Return the microcode revision for the UDA50 running 1713 * this drive. 1714 */ 1715 *(int *)data = uda_softc[uddinfo[unit]->ui_ctlr].sc_micro; 1716 break; 1717 #endif 1718 1719 default: 1720 error = ENOTTY; 1721 break; 1722 } 1723 return (error); 1724 } 1725 1726 /* 1727 * A Unibus reset has occurred on UBA uban. Reinitialise the controller(s) 1728 * on that Unibus, and requeue outstanding I/O. 1729 */ 1730 udareset(uban) 1731 int uban; 1732 { 1733 register struct uba_ctlr *um; 1734 register struct uda_softc *sc; 1735 register int ctlr; 1736 1737 for (ctlr = 0, sc = uda_softc; ctlr < NUDA; ctlr++, sc++) { 1738 if ((um = udaminfo[ctlr]) == NULL || um->um_ubanum != uban || 1739 um->um_alive == 0) 1740 continue; 1741 printf(" uda%d", ctlr); 1742 1743 /* 1744 * Our BDP (if any) is gone; our command (if any) is 1745 * flushed; the device is no longer mapped; and the 1746 * UDA50 is not yet initialised. 1747 */ 1748 if (um->um_bdp) { 1749 printf("<%d>", UBAI_BDP(um->um_bdp)); 1750 um->um_bdp = 0; 1751 } 1752 um->um_ubinfo = 0; 1753 um->um_cmd = 0; 1754 sc->sc_flags &= ~SC_MAPPED; 1755 sc->sc_state = ST_IDLE; 1756 1757 /* reset queues and requeue pending transfers */ 1758 mscp_requeue(&sc->sc_mi); 1759 1760 /* 1761 * If it fails to initialise we will notice later and 1762 * try again (and again...). Do not call udastart() 1763 * here; it will be done after the controller finishes 1764 * initialisation. 1765 */ 1766 if (udainit(ctlr)) 1767 printf(" (hung)"); 1768 } 1769 } 1770 1771 /* 1772 * Watchdog timer: If the controller is active, and no interrupts 1773 * have occurred for 30 seconds, assume it has gone away. 1774 */ 1775 udawatch() 1776 { 1777 register int i; 1778 register struct uba_ctlr *um; 1779 register struct uda_softc *sc; 1780 1781 timeout(udawatch, (caddr_t) 0, hz); /* every second */ 1782 for (i = 0, sc = uda_softc; i < NUDA; i++, sc++) { 1783 if ((um = udaminfo[i]) == 0 || !um->um_alive) 1784 continue; 1785 if (sc->sc_state == ST_IDLE) 1786 continue; 1787 if (sc->sc_state == ST_RUN && !um->um_tab.b_active) 1788 sc->sc_wticks = 0; 1789 else if (++sc->sc_wticks >= 30) { 1790 sc->sc_wticks = 0; 1791 printf("uda%d: lost interrupt\n", i); 1792 ubareset(um->um_ubanum); 1793 } 1794 } 1795 } 1796 1797 /* 1798 * Do a panic dump. We set up the controller for one command packet 1799 * and one response packet, for which we use `struct uda1'. 1800 */ 1801 struct uda1 { 1802 struct uda1ca uda1_ca; /* communications area */ 1803 struct mscp uda1_rsp; /* response packet */ 1804 struct mscp uda1_cmd; /* command packet */ 1805 } uda1; 1806 1807 #define DBSIZE 32 /* dump 16K at a time */ 1808 1809 udadump(dev) 1810 dev_t dev; 1811 { 1812 struct udadevice *udaddr; 1813 struct uda1 *ud_ubaddr; 1814 char *start; 1815 int num, blk, unit, maxsz, blkoff, reg; 1816 struct partition *pp; 1817 register struct uba_regs *uba; 1818 register struct uba_device *ui; 1819 register struct uda1 *ud; 1820 register struct pte *io; 1821 register int i; 1822 1823 /* 1824 * Make sure the device is a reasonable place on which to dump. 1825 */ 1826 unit = udaunit(dev); 1827 if (unit >= NRA) 1828 return (ENXIO); 1829 #define phys(cast, addr) ((cast) ((int)addr & 0x7fffffff)) 1830 ui = phys(struct uba_device *, udadinfo[unit]); 1831 if (ui == NULL || ui->ui_alive == 0) 1832 return (ENXIO); 1833 1834 /* 1835 * Find and initialise the UBA; get the physical address of the 1836 * device registers, and of communications area and command and 1837 * response packet. 1838 */ 1839 uba = phys(struct uba_hd *, ui->ui_hd)->uh_physuba; 1840 ubainit(uba); 1841 udaddr = (struct udadevice *)ui->ui_physaddr; 1842 ud = phys(struct uda1 *, &uda1); 1843 1844 /* 1845 * Map the ca+packets into Unibus I/O space so the UDA50 can get 1846 * at them. Use the registers at the end of the Unibus map (since 1847 * we will use the registers at the beginning to map the memory 1848 * we are dumping). 1849 */ 1850 num = btoc(sizeof(struct uda1)) + 1; 1851 reg = NUBMREG - num; 1852 io = &uba->uba_map[reg]; 1853 for (i = 0; i < num; i++) 1854 *(int *)io++ = UBAMR_MRV | (btop(ud) + i); 1855 ud_ubaddr = (struct uda1 *)(((int)ud & PGOFSET) | (reg << 9)); 1856 1857 /* 1858 * Initialise the controller, with one command and one response 1859 * packet. 1860 */ 1861 udaddr->udaip = 0; 1862 if (udadumpwait(udaddr, UDA_STEP1)) 1863 return (EFAULT); 1864 udaddr->udasa = UDA_ERR; 1865 if (udadumpwait(udaddr, UDA_STEP2)) 1866 return (EFAULT); 1867 udaddr->udasa = (int)&ud_ubaddr->uda1_ca.ca_rspdsc; 1868 if (udadumpwait(udaddr, UDA_STEP3)) 1869 return (EFAULT); 1870 udaddr->udasa = ((int)&ud_ubaddr->uda1_ca.ca_rspdsc) >> 16; 1871 if (udadumpwait(udaddr, UDA_STEP4)) 1872 return (EFAULT); 1873 uda_softc[ui->ui_ctlr].sc_micro = udaddr->udasa & 0xff; 1874 udaddr->udasa = UDA_GO; 1875 1876 /* 1877 * Set up the command and response descriptor, then set the 1878 * controller characteristics and bring the drive on line. 1879 * Note that all uninitialised locations in uda1_cmd are zero. 1880 */ 1881 ud->uda1_ca.ca_rspdsc = (long)&ud_ubaddr->uda1_rsp.mscp_cmdref; 1882 ud->uda1_ca.ca_cmddsc = (long)&ud_ubaddr->uda1_cmd.mscp_cmdref; 1883 /* ud->uda1_cmd.mscp_sccc.sccc_ctlrflags = 0; */ 1884 /* ud->uda1_cmd.mscp_sccc.sccc_version = 0; */ 1885 if (udadumpcmd(M_OP_SETCTLRC, ud, ui)) 1886 return (EFAULT); 1887 ud->uda1_cmd.mscp_unit = ui->ui_slave; 1888 if (udadumpcmd(M_OP_ONLINE, ud, ui)) 1889 return (EFAULT); 1890 1891 pp = phys(struct partition *, 1892 &udalabel[unit].d_partitions[udapart(dev)]); 1893 maxsz = pp->p_size; 1894 blkoff = pp->p_offset; 1895 1896 /* 1897 * Dump all of physical memory, or as much as will fit in the 1898 * space provided. 1899 */ 1900 start = 0; 1901 num = maxfree; 1902 if (dumplo < 0) 1903 return (EINVAL); 1904 if (dumplo + num >= maxsz) 1905 num = maxsz - dumplo; 1906 blkoff += dumplo; 1907 1908 /* 1909 * Write out memory, DBSIZE pages at a time. 1910 * N.B.: this code depends on the fact that the sector 1911 * size == the page size. 1912 */ 1913 while (num > 0) { 1914 blk = num > DBSIZE ? DBSIZE : num; 1915 io = uba->uba_map; 1916 /* 1917 * Map in the pages to write, leaving an invalid entry 1918 * at the end to guard against wild Unibus transfers. 1919 * Then do the write. 1920 */ 1921 for (i = 0; i < blk; i++) 1922 *(int *)io++ = UBAMR_MRV | (btop(start) + i); 1923 *(int *)io = 0; 1924 ud->uda1_cmd.mscp_unit = ui->ui_slave; 1925 ud->uda1_cmd.mscp_seq.seq_lbn = btop(start) + blkoff; 1926 ud->uda1_cmd.mscp_seq.seq_bytecount = blk << PGSHIFT; 1927 if (udadumpcmd(M_OP_WRITE, ud, ui)) 1928 return (EIO); 1929 start += blk << PGSHIFT; 1930 num -= blk; 1931 } 1932 return (0); /* made it! */ 1933 } 1934 1935 /* 1936 * Wait for some of the bits in `bits' to come on. If the error bit 1937 * comes on, or ten seconds pass without response, return true (error). 1938 */ 1939 udadumpwait(udaddr, bits) 1940 register struct udadevice *udaddr; 1941 register int bits; 1942 { 1943 register int timo = todr() + 1000; 1944 1945 while ((udaddr->udasa & bits) == 0) { 1946 if (udaddr->udasa & UDA_ERR) { 1947 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits); 1948 return (1); 1949 } 1950 if (todr() >= timo) { 1951 printf("timeout\ndump "); 1952 return (1); 1953 } 1954 } 1955 return (0); 1956 } 1957 1958 /* 1959 * Feed a command to the UDA50, wait for its response, and return 1960 * true iff something went wrong. 1961 */ 1962 udadumpcmd(op, ud, ui) 1963 int op; 1964 register struct uda1 *ud; 1965 struct uba_device *ui; 1966 { 1967 register struct udadevice *udaddr; 1968 register int n; 1969 #define mp (&ud->uda1_rsp) 1970 1971 udaddr = (struct udadevice *)ui->ui_physaddr; 1972 ud->uda1_cmd.mscp_opcode = op; 1973 ud->uda1_cmd.mscp_msglen = MSCP_MSGLEN; 1974 ud->uda1_rsp.mscp_msglen = MSCP_MSGLEN; 1975 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT; 1976 ud->uda1_ca.ca_cmddsc |= MSCP_OWN | MSCP_INT; 1977 if (udaddr->udasa & UDA_ERR) { 1978 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits); 1979 return (1); 1980 } 1981 n = udaddr->udaip; 1982 n = todr() + 1000; 1983 for (;;) { 1984 if (todr() > n) { 1985 printf("timeout\ndump "); 1986 return (1); 1987 } 1988 if (ud->uda1_ca.ca_cmdint) 1989 ud->uda1_ca.ca_cmdint = 0; 1990 if (ud->uda1_ca.ca_rspint == 0) 1991 continue; 1992 ud->uda1_ca.ca_rspint = 0; 1993 if (mp->mscp_opcode == (op | M_OP_END)) 1994 break; 1995 printf("\n"); 1996 switch (MSCP_MSGTYPE(mp->mscp_msgtc)) { 1997 1998 case MSCPT_SEQ: 1999 printf("sequential"); 2000 break; 2001 2002 case MSCPT_DATAGRAM: 2003 mscp_decodeerror("uda", ui->ui_ctlr, mp); 2004 printf("datagram"); 2005 break; 2006 2007 case MSCPT_CREDITS: 2008 printf("credits"); 2009 break; 2010 2011 case MSCPT_MAINTENANCE: 2012 printf("maintenance"); 2013 break; 2014 2015 default: 2016 printf("unknown (type 0x%x)", 2017 MSCP_MSGTYPE(mp->mscp_msgtc)); 2018 break; 2019 } 2020 printf(" ignored\ndump "); 2021 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT; 2022 } 2023 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 2024 printf("error: op 0x%x => 0x%x status 0x%x\ndump ", op, 2025 mp->mscp_opcode, mp->mscp_status); 2026 return (1); 2027 } 2028 return (0); 2029 #undef mp 2030 } 2031 2032 /* 2033 * Return the size of a partition, if known, or -1 if not. 2034 */ 2035 udasize(dev) 2036 dev_t dev; 2037 { 2038 register int unit = udaunit(dev); 2039 register struct uba_device *ui; 2040 2041 if (unit >= NRA || (ui = udadinfo[unit]) == NULL || 2042 ui->ui_alive == 0 || (ui->ui_flags & UNIT_ONLINE) == 0 || 2043 ra_info[unit].ra_state != OPEN) 2044 return (-1); 2045 return ((int)udalabel[unit].d_partitions[udapart(dev)].p_size); 2046 } 2047 2048 #ifdef COMPAT_42 2049 /* 2050 * Tables mapping unlabelled drives. 2051 */ 2052 struct size { 2053 daddr_t nblocks; 2054 daddr_t blkoff; 2055 } ra60_sizes[8] = { 2056 15884, 0, /* A=sectors 0 thru 15883 */ 2057 33440, 15884, /* B=sectors 15884 thru 49323 */ 2058 400176, 0, /* C=sectors 0 thru 400175 */ 2059 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */ 2060 268772, 131404, /* 4.2 H => E=sectors 131404 thru 400175 */ 2061 350852, 49324, /* F=sectors 49324 thru 400175 */ 2062 157570, 242606, /* UCB G => G=sectors 242606 thru 400175 */ 2063 193282, 49324, /* UCB H => H=sectors 49324 thru 242605 */ 2064 }, ra70_sizes[8] = { 2065 15884, 0, /* A=blk 0 thru 15883 */ 2066 33440, 15972, /* B=blk 15972 thru 49323 */ 2067 -1, 0, /* C=blk 0 thru end */ 2068 15884, 341220, /* D=blk 341220 thru 357103 */ 2069 55936, 357192, /* E=blk 357192 thru 413127 */ 2070 -1, 413457, /* F=blk 413457 thru end */ 2071 -1, 341220, /* G=blk 341220 thru end */ 2072 291346, 49731, /* H=blk 49731 thru 341076 */ 2073 }, ra80_sizes[8] = { 2074 15884, 0, /* A=sectors 0 thru 15883 */ 2075 33440, 15884, /* B=sectors 15884 thru 49323 */ 2076 242606, 0, /* C=sectors 0 thru 242605 */ 2077 0, 0, /* D=unused */ 2078 193282, 49324, /* UCB H => E=sectors 49324 thru 242605 */ 2079 82080, 49324, /* 4.2 G => F=sectors 49324 thru 131403 */ 2080 192696, 49910, /* G=sectors 49910 thru 242605 */ 2081 111202, 131404, /* 4.2 H => H=sectors 131404 thru 242605 */ 2082 }, ra81_sizes[8] ={ 2083 #ifdef MARYLAND 2084 #ifdef ENEEVAX 2085 30706, 0, /* A=cyl 0 thru 42 + 2 sectors */ 2086 40696, 30706, /* B=cyl 43 thru 99 - 2 sectors */ 2087 -1, 0, /* C=cyl 0 thru 1247 */ 2088 -1, 71400, /* D=cyl 100 thru 1247 */ 2089 2090 15884, 0, /* E=blk 0 thru 15883 */ 2091 33440, 15884, /* F=blk 15884 thru 49323 */ 2092 82080, 49324, /* G=blk 49324 thru 131403 */ 2093 -1, 131404, /* H=blk 131404 thru end */ 2094 #else 2095 67832, 0, /* A=cyl 0 thru 94 + 2 sectors */ 2096 67828, 67832, /* B=cyl 95 thru 189 - 2 sectors */ 2097 -1, 0, /* C=cyl 0 thru 1247 */ 2098 -1, 135660, /* D=cyl 190 thru 1247 */ 2099 0, 0, 2100 0, 0, 2101 0, 0, 2102 0, 0, 2103 #endif ENEEVAX 2104 #else 2105 /* 2106 * These are the new standard partition sizes for ra81's. 2107 * An RA_COMPAT system is compiled with D, E, and F corresponding 2108 * to the 4.2 partitions for G, H, and F respectively. 2109 */ 2110 #ifndef UCBRA 2111 15884, 0, /* A=sectors 0 thru 15883 */ 2112 66880, 16422, /* B=sectors 16422 thru 83301 */ 2113 891072, 0, /* C=sectors 0 thru 891071 */ 2114 #ifdef RA_COMPAT 2115 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */ 2116 759668, 131404, /* 4.2 H => E=sectors 131404 thru 891071 */ 2117 478582, 412490, /* 4.2 F => F=sectors 412490 thru 891071 */ 2118 #else 2119 15884, 375564, /* D=sectors 375564 thru 391447 */ 2120 307200, 391986, /* E=sectors 391986 thru 699185 */ 2121 191352, 699720, /* F=sectors 699720 thru 891071 */ 2122 #endif RA_COMPAT 2123 515508, 375564, /* G=sectors 375564 thru 891071 */ 2124 291346, 83538, /* H=sectors 83538 thru 374883 */ 2125 2126 /* 2127 * These partitions correspond to the sizes used by sites at Berkeley, 2128 * and by those sites that have received copies of the Berkeley driver 2129 * with deltas 6.2 or greater (11/15/83). 2130 */ 2131 #else UCBRA 2132 2133 15884, 0, /* A=sectors 0 thru 15883 */ 2134 33440, 15884, /* B=sectors 15884 thru 49323 */ 2135 891072, 0, /* C=sectors 0 thru 891071 */ 2136 15884, 242606, /* D=sectors 242606 thru 258489 */ 2137 307200, 258490, /* E=sectors 258490 thru 565689 */ 2138 325382, 565690, /* F=sectors 565690 thru 891071 */ 2139 648466, 242606, /* G=sectors 242606 thru 891071 */ 2140 193282, 49324, /* H=sectors 49324 thru 242605 */ 2141 2142 #endif UCBRA 2143 #endif MARYLAND 2144 }, ra82_sizes[8] = { 2145 15884, 0, /* A=blk 0 thru 15883 */ 2146 66880, 16245, /* B=blk 16245 thru 83124 */ 2147 -1, 0, /* C=blk 0 thru end */ 2148 15884, 375345, /* D=blk 375345 thru 391228 */ 2149 307200, 391590, /* E=blk 391590 thru 698789 */ 2150 -1, 699390, /* F=blk 699390 thru end */ 2151 -1, 375345, /* G=blk 375345 thru end */ 2152 291346, 83790, /* H=blk 83790 thru 375135 */ 2153 }, rc25_sizes[8] = { 2154 15884, 0, /* A=blk 0 thru 15883 */ 2155 10032, 15884, /* B=blk 15884 thru 49323 */ 2156 -1, 0, /* C=blk 0 thru end */ 2157 0, 0, /* D=blk 340670 thru 356553 */ 2158 0, 0, /* E=blk 356554 thru 412489 */ 2159 0, 0, /* F=blk 412490 thru end */ 2160 -1, 25916, /* G=blk 49324 thru 131403 */ 2161 0, 0, /* H=blk 131404 thru end */ 2162 }, rd52_sizes[8] = { 2163 15884, 0, /* A=blk 0 thru 15883 */ 2164 9766, 15884, /* B=blk 15884 thru 25649 */ 2165 -1, 0, /* C=blk 0 thru end */ 2166 0, 0, /* D=unused */ 2167 0, 0, /* E=unused */ 2168 0, 0, /* F=unused */ 2169 -1, 25650, /* G=blk 25650 thru end */ 2170 0, 0, /* H=unused */ 2171 }, rd53_sizes[8] = { 2172 15884, 0, /* A=blk 0 thru 15883 */ 2173 33440, 15884, /* B=blk 15884 thru 49323 */ 2174 -1, 0, /* C=blk 0 thru end */ 2175 0, 0, /* D=unused */ 2176 33440, 0, /* E=blk 0 thru 33439 */ 2177 -1, 33440, /* F=blk 33440 thru end */ 2178 -1, 49324, /* G=blk 49324 thru end */ 2179 -1, 15884, /* H=blk 15884 thru end */ 2180 }, rx50_sizes[8] = { 2181 800, 0, /* A=blk 0 thru 799 */ 2182 0, 0, 2183 -1, 0, /* C=blk 0 thru end */ 2184 0, 0, 2185 0, 0, 2186 0, 0, 2187 0, 0, 2188 0, 0, 2189 }; 2190 2191 /* 2192 * Media ID decoding table. 2193 */ 2194 struct udatypes { 2195 u_long ut_id; /* media drive ID */ 2196 char *ut_name; /* drive type name */ 2197 struct size *ut_sizes; /* partition tables */ 2198 int ut_nsectors, ut_ntracks, ut_ncylinders; 2199 } udatypes[] = { 2200 { MSCP_MKDRIVE2('R', 'A', 60), "ra60", ra60_sizes, 42, 4, 2382 }, 2201 { MSCP_MKDRIVE2('R', 'A', 70), "ra70", ra70_sizes, 33, 11, 1507 }, 2202 { MSCP_MKDRIVE2('R', 'A', 80), "ra80", ra80_sizes, 31, 14, 559 }, 2203 { MSCP_MKDRIVE2('R', 'A', 81), "ra81", ra81_sizes, 51, 14, 1248 }, 2204 { MSCP_MKDRIVE2('R', 'A', 82), "ra82", ra82_sizes, 57, 14, 1423 }, 2205 { MSCP_MKDRIVE2('R', 'C', 25), "rc25-removable", 2206 rc25_sizes, 42, 4, 302 }, 2207 { MSCP_MKDRIVE3('R', 'C', 'F', 25), "rc25-fixed", 2208 rc25_sizes, 42, 4, 302 }, 2209 { MSCP_MKDRIVE2('R', 'D', 52), "rd52", rd52_sizes, 18, 7, 480 }, 2210 { MSCP_MKDRIVE2('R', 'D', 53), "rd53", rd53_sizes, 18, 8, 963 }, 2211 { MSCP_MKDRIVE2('R', 'X', 50), "rx50", rx50_sizes, 10, 1, 80 }, 2212 0 2213 }; 2214 2215 #define NTYPES (sizeof(udatypes) / sizeof(*udatypes)) 2216 2217 udamaptype(unit, lp) 2218 int unit; 2219 register struct disklabel *lp; 2220 { 2221 register struct udatypes *ut; 2222 register struct size *sz; 2223 register struct partition *pp; 2224 register char *p; 2225 register int i; 2226 register struct ra_info *ra = &ra_info[unit]; 2227 2228 lp->d_secsize = 512; 2229 lp->d_secperunit = ra->ra_dsize; 2230 i = MSCP_MEDIA_DRIVE(ra->ra_mediaid); 2231 for (ut = udatypes; ut->ut_id; ut++) 2232 if (ut->ut_id == i) 2233 goto found; 2234 2235 /* not one we know; fake up a label for the whole drive */ 2236 lp->d_nsectors = ra->ra_geom.rg_nsectors; 2237 lp->d_ntracks = ra->ra_geom.rg_ntracks; 2238 lp->d_ncylinders = ra->ra_geom.rg_ncyl; 2239 i = ra->ra_mediaid; /* print the port type too */ 2240 if (!cold) 2241 log(LOG_ERR, "ra%d", unit); 2242 addlog(": don't have a partition table for %c%c %c%c%c%d;\n\ 2243 using (s,t,c)=(%d,%d,%d)", 2244 MSCP_MID_CHAR(4, i), MSCP_MID_CHAR(3, i), 2245 MSCP_MID_CHAR(2, i), MSCP_MID_CHAR(1, i), 2246 MSCP_MID_CHAR(0, i), MSCP_MID_CHAR(0, i), 2247 MSCP_MID_NUM(i), lp->d_nsectors, 2248 lp->d_ntracks, lp->d_ncylinders); 2249 if (!cold) 2250 addlog("\n"); 2251 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks; 2252 lp->d_typename[0] = 'r'; 2253 lp->d_typename[1] = 'a'; 2254 lp->d_typename[2] = '?'; 2255 lp->d_typename[3] = '?'; 2256 lp->d_typename[4] = 0; 2257 lp->d_npartitions = 1; 2258 lp->d_partitions[0].p_offset = 0; 2259 lp->d_partitions[0].p_size = lp->d_secperunit; 2260 return (0); 2261 found: 2262 p = ut->ut_name; 2263 for (i = 0; i < sizeof(lp->d_typename) - 1 && *p; i++) 2264 lp->d_typename[i] = *p++; 2265 lp->d_typename[i] = 0; 2266 sz = ut->ut_sizes; 2267 /* GET nsectors, ntracks, ncylinders FROM SAVED GEOMETRY? */ 2268 lp->d_nsectors = ut->ut_nsectors; 2269 lp->d_ntracks = ut->ut_ntracks; 2270 lp->d_ncylinders = ut->ut_ncylinders; 2271 lp->d_npartitions = 8; 2272 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks; 2273 for (pp = lp->d_partitions; pp < &lp->d_partitions[8]; pp++, sz++) { 2274 pp->p_offset = sz->blkoff; 2275 if ((pp->p_size = sz->nblocks) == (u_long)-1) 2276 pp->p_size = ra->ra_dsize - sz->blkoff; 2277 } 2278 return (1); 2279 } 2280 #endif /* COMPAT_42 */ 2281 #endif /* NUDA > 0 */ 2282