1 /* 2 * Copyright (c) 1987 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)uda.c 7.12 (Berkeley) 02/06/88 7 * 8 */ 9 10 /* 11 * UDA50/MSCP device driver 12 */ 13 14 #define POLLSTATS 15 16 /* 17 * TODO 18 * write bad block forwarding code 19 */ 20 21 #include "ra.h" 22 23 #if NUDA > 0 24 25 /* 26 * CONFIGURATION OPTIONS. The next three defines are tunable -- tune away! 27 * 28 * COMPAT_42 enables 4.2/4.3 compatibility (label mapping) 29 * 30 * NRSPL2 and NCMDL2 control the number of response and command 31 * packets respectively. They may be any value from 0 to 7, though 32 * setting them higher than 5 is unlikely to be of any value. 33 * If you get warnings about your command ring being too small, 34 * try increasing the values by one. 35 * 36 * MAXUNIT controls the maximum unit number (number of drives per 37 * controller) we are prepared to handle. 38 * 39 * DEFAULT_BURST must be at least 1. 40 */ 41 #define COMPAT_42 42 43 #define NRSPL2 5 /* log2 number of response packets */ 44 #define NCMDL2 5 /* log2 number of command packets */ 45 #define MAXUNIT 8 /* maximum allowed unit number */ 46 #define DEFAULT_BURST 4 /* default DMA burst size */ 47 48 #include "../machine/pte.h" 49 50 #include "param.h" 51 #include "systm.h" 52 #include "buf.h" 53 #include "conf.h" 54 #include "dir.h" 55 #include "file.h" 56 #include "ioctl.h" 57 #include "user.h" 58 #include "map.h" 59 #include "vm.h" 60 #include "dkstat.h" 61 #include "cmap.h" 62 #include "disklabel.h" 63 #include "syslog.h" 64 #include "stat.h" 65 66 #include "../vax/cpu.h" 67 #include "ubareg.h" 68 #include "ubavar.h" 69 70 #define NRSP (1 << NRSPL2) 71 #define NCMD (1 << NCMDL2) 72 73 #include "udareg.h" 74 #include "../vax/mscp.h" 75 #include "../vax/mscpvar.h" 76 #include "../vax/mtpr.h" 77 78 /* 79 * Backwards compatibility: Reuse the old names. Should fix someday. 80 */ 81 #define udaprobe udprobe 82 #define udaslave udslave 83 #define udaattach udattach 84 #define udaopen udopen 85 #define udaclose udclose 86 #define udastrategy udstrategy 87 #define udaread udread 88 #define udawrite udwrite 89 #define udaioctl udioctl 90 #define udareset udreset 91 #define udaintr udintr 92 #define udadump uddump 93 #define udasize udsize 94 95 /* 96 * UDA communications area and MSCP packet pools, per controller. 97 */ 98 struct uda { 99 struct udaca uda_ca; /* communications area */ 100 struct mscp uda_rsp[NRSP]; /* response packets */ 101 struct mscp uda_cmd[NCMD]; /* command packets */ 102 } uda[NUDA]; 103 104 /* 105 * Software status, per controller. 106 */ 107 struct uda_softc { 108 struct uda *sc_uda; /* Unibus address of uda struct */ 109 short sc_state; /* UDA50 state; see below */ 110 short sc_flags; /* flags; see below */ 111 int sc_micro; /* microcode revision */ 112 int sc_ivec; /* interrupt vector address */ 113 struct mscp_info sc_mi;/* MSCP info (per mscpvar.h) */ 114 #ifndef POLLSTATS 115 int sc_wticks; /* watchdog timer ticks */ 116 #else 117 short sc_wticks; 118 short sc_ncmd; 119 #endif 120 } uda_softc[NUDA]; 121 122 #ifdef POLLSTATS 123 struct udastats { 124 int ncmd; 125 int cmd[NCMD + 1]; 126 } udastats = { NCMD + 1 }; 127 #endif 128 129 /* 130 * Controller states 131 */ 132 #define ST_IDLE 0 /* uninitialised */ 133 #define ST_STEP1 1 /* in `STEP 1' */ 134 #define ST_STEP2 2 /* in `STEP 2' */ 135 #define ST_STEP3 3 /* in `STEP 3' */ 136 #define ST_SETCHAR 4 /* in `Set Controller Characteristics' */ 137 #define ST_RUN 5 /* up and running */ 138 139 /* 140 * Flags 141 */ 142 #define SC_MAPPED 0x01 /* mapped in Unibus I/O space */ 143 #define SC_INSTART 0x02 /* inside udastart() */ 144 #define SC_GRIPED 0x04 /* griped about cmd ring too small */ 145 #define SC_INSLAVE 0x08 /* inside udaslave() */ 146 #define SC_DOWAKE 0x10 /* wakeup when ctlr init done */ 147 #define SC_STARTPOLL 0x20 /* need to initiate polling */ 148 149 /* 150 * Device to unit number and partition and back 151 */ 152 #define UNITSHIFT 3 153 #define UNITMASK 7 154 #define udaunit(dev) (minor(dev) >> UNITSHIFT) 155 #define udapart(dev) (minor(dev) & UNITMASK) 156 #define udaminor(u, p) (((u) << UNITSHIFT) | (p)) 157 158 /* 159 * Drive status, per drive 160 */ 161 struct ra_info { 162 daddr_t ra_dsize; /* size in sectors */ 163 u_long ra_type; /* drive type */ 164 #define RA_TYPE_RX50 7 /* special: see udaopen */ 165 u_long ra_mediaid; /* media id */ 166 int ra_state; /* open/closed state */ 167 struct ra_geom { /* geometry information */ 168 u_short rg_nsectors; /* sectors/track */ 169 u_short rg_ngroups; /* track groups */ 170 u_short rg_ngpc; /* groups/cylinder */ 171 u_short rg_ntracks; /* ngroups*ngpc */ 172 u_short rg_ncyl; /* ra_dsize/ntracks/nsectors */ 173 #ifdef notyet 174 u_short rg_rctsize; /* size of rct */ 175 u_short rg_rbns; /* replacement blocks per track */ 176 u_short rg_nrct; /* number of rct copies */ 177 #endif 178 } ra_geom; 179 int ra_wlabel; /* label sector is currently writable */ 180 u_long ra_openpart; /* partitions open */ 181 u_long ra_bopenpart; /* block partitions open */ 182 u_long ra_copenpart; /* character partitions open */ 183 } ra_info[NRA]; 184 185 /* 186 * Software state, per drive 187 */ 188 #define CLOSED 0 189 #define WANTOPEN 1 190 #define RDLABEL 2 191 #define OPEN 3 192 #define OPENRAW 4 193 194 /* 195 * Definition of the driver for autoconf. 196 */ 197 int udaprobe(), udaslave(), udaattach(), udadgo(), udaintr(); 198 struct uba_ctlr *udaminfo[NUDA]; 199 struct uba_device *udadinfo[NRA]; 200 struct disklabel udalabel[NRA]; 201 202 u_short udastd[] = { 0772150, 0772550, 0777550, 0 }; 203 struct uba_driver udadriver = 204 { udaprobe, udaslave, udaattach, udadgo, udastd, "ra", udadinfo, "uda", 205 udaminfo }; 206 207 /* 208 * More driver definitions, for generic MSCP code. 209 */ 210 int udadgram(), udactlrdone(), udaunconf(), udaiodone(); 211 int udaonline(), udagotstatus(), udaioerror(), udareplace(), udabb(); 212 213 struct buf udautab[NRA]; /* per drive transfer queue */ 214 215 struct mscp_driver udamscpdriver = 216 { MAXUNIT, NRA, UNITSHIFT, udautab, udadinfo, 217 udadgram, udactlrdone, udaunconf, udaiodone, 218 udaonline, udagotstatus, udareplace, udaioerror, udabb, 219 "uda", "ra" }; 220 221 /* 222 * Miscellaneous private variables. 223 */ 224 char udasr_bits[] = UDASR_BITS; 225 226 struct uba_device *udaip[NUDA][MAXUNIT]; 227 /* inverting pointers: ctlr & unit => Unibus 228 device pointer */ 229 230 int udaburst[NUDA] = { 0 }; /* burst size, per UDA50, zero => default; 231 in data space so patchable via adb */ 232 233 struct mscp udaslavereply; /* get unit status response packet, set 234 for udaslave by udaunconf, via udaintr */ 235 236 static struct uba_ctlr *probeum;/* this is a hack---autoconf should pass ctlr 237 info to slave routine; instead, we remember 238 the last ctlr argument to probe */ 239 240 int udawstart, udawatch(); /* watchdog timer */ 241 242 /* 243 * Externals 244 */ 245 int wakeup(); 246 int hz; 247 248 /* 249 * Poke at a supposed UDA50 to see if it is there. 250 * This routine duplicates some of the code in udainit() only 251 * because autoconf has not set up the right information yet. 252 * We have to do everything `by hand'. 253 */ 254 udaprobe(reg, ctlr, um) 255 caddr_t reg; 256 int ctlr; 257 struct uba_ctlr *um; 258 { 259 register int br, cvec; 260 register struct uda_softc *sc; 261 register struct udadevice *udaddr; 262 register struct mscp_info *mi; 263 int timeout, tries; 264 265 #ifdef VAX750 266 /* 267 * The UDA50 wants to share BDPs on 750s, but not on 780s or 268 * 8600s. (730s have no BDPs anyway.) Toward this end, we 269 * here set the `keep bdp' flag in the per-driver information 270 * if this is a 750. (We just need to do it once, but it is 271 * easiest to do it now, for each UDA50.) 272 */ 273 if (cpu == VAX_750) 274 udadriver.ud_keepbdp = 1; 275 #endif 276 277 probeum = um; /* remember for udaslave() */ 278 #ifdef lint 279 br = 0; cvec = br; br = cvec; udaintr(0); 280 #endif 281 /* 282 * Set up the controller-specific generic MSCP driver info. 283 * Note that this should really be done in the (nonexistent) 284 * controller attach routine. 285 */ 286 sc = &uda_softc[ctlr]; 287 mi = &sc->sc_mi; 288 mi->mi_md = &udamscpdriver; 289 mi->mi_ctlr = um->um_ctlr; 290 mi->mi_tab = &um->um_tab; 291 mi->mi_ip = udaip[ctlr]; 292 mi->mi_cmd.mri_size = NCMD; 293 mi->mi_cmd.mri_desc = uda[ctlr].uda_ca.ca_cmddsc; 294 mi->mi_cmd.mri_ring = uda[ctlr].uda_cmd; 295 mi->mi_rsp.mri_size = NRSP; 296 mi->mi_rsp.mri_desc = uda[ctlr].uda_ca.ca_rspdsc; 297 mi->mi_rsp.mri_ring = uda[ctlr].uda_rsp; 298 mi->mi_wtab.av_forw = mi->mi_wtab.av_back = &mi->mi_wtab; 299 300 /* 301 * More controller specific variables. Again, this should 302 * be in the controller attach routine. 303 */ 304 if (udaburst[ctlr] == 0) 305 udaburst[ctlr] = DEFAULT_BURST; 306 307 /* 308 * Get an interrupt vector. Note that even if the controller 309 * does not respond, we keep the vector. This is not a serious 310 * problem; but it would be easily fixed if we had a controller 311 * attach routine. Sigh. 312 */ 313 sc->sc_ivec = (uba_hd[numuba].uh_lastiv -= 4); 314 udaddr = (struct udadevice *) reg; 315 316 /* 317 * Initialise the controller (partially). The UDA50 programmer's 318 * manual states that if initialisation fails, it should be retried 319 * at least once, but after a second failure the port should be 320 * considered `down'; it also mentions that the controller should 321 * initialise within ten seconds. Or so I hear; I have not seen 322 * this manual myself. 323 */ 324 tries = 0; 325 again: 326 udaddr->udaip = 0; /* start initialisation */ 327 timeout = todr() + 1000; /* timeout in 10 seconds */ 328 while ((udaddr->udasa & UDA_STEP1) == 0) 329 if (todr() > timeout) 330 goto bad; 331 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE | 332 (sc->sc_ivec >> 2); 333 while ((udaddr->udasa & UDA_STEP2) == 0) 334 if (todr() > timeout) 335 goto bad; 336 337 /* should have interrupted by now */ 338 #ifdef VAX630 339 if (cpu == VAX_630) 340 br = 0x15; /* screwy interrupt structure */ 341 #endif 342 return (sizeof (struct udadevice)); 343 bad: 344 if (++tries < 2) 345 goto again; 346 return (0); 347 } 348 349 /* 350 * Find a slave. We allow wildcard slave numbers (something autoconf 351 * is not really prepared to deal with); and we need to know the 352 * controller number to talk to the UDA. For the latter, we keep 353 * track of the last controller probed, since a controller probe 354 * immediately precedes all slave probes for that controller. For the 355 * former, we simply put the unit number into ui->ui_slave after we 356 * have found one. 357 * 358 * Note that by the time udaslave is called, the interrupt vector 359 * for the UDA50 has been set up (so that udaunconf() will be called). 360 */ 361 udaslave(ui, reg) 362 register struct uba_device *ui; 363 caddr_t reg; 364 { 365 register struct uba_ctlr *um = probeum; 366 register struct mscp *mp; 367 register struct uda_softc *sc; 368 register struct ra_info *ra; 369 int next = 0, timeout, tries, i; 370 371 #ifdef lint 372 i = 0; i = i; 373 #endif 374 /* 375 * Make sure the controller is fully initialised, by waiting 376 * for it if necessary. 377 */ 378 sc = &uda_softc[um->um_ctlr]; 379 if (sc->sc_state == ST_RUN) 380 goto findunit; 381 tries = 0; 382 again: 383 if (udainit(ui->ui_ctlr)) 384 return (0); 385 timeout = todr() + 1000; /* 10 seconds */ 386 while (todr() < timeout) 387 if (sc->sc_state == ST_RUN) /* made it */ 388 goto findunit; 389 if (++tries < 2) 390 goto again; 391 printf("uda%d: controller hung\n", um->um_ctlr); 392 return (0); 393 394 /* 395 * The controller is all set; go find the unit. Grab an 396 * MSCP packet and send out a Get Unit Status command, with 397 * the `next unit' modifier if we are looking for a generic 398 * unit. We set the `in slave' flag so that udaunconf() 399 * knows to copy the response to `udaslavereply'. 400 */ 401 findunit: 402 udaslavereply.mscp_opcode = 0; 403 sc->sc_flags |= SC_INSLAVE; 404 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) 405 panic("udaslave"); /* `cannot happen' */ 406 mp->mscp_opcode = M_OP_GETUNITST; 407 if (ui->ui_slave == '?') { 408 mp->mscp_unit = next; 409 mp->mscp_modifier = M_GUM_NEXTUNIT; 410 } else { 411 mp->mscp_unit = ui->ui_slave; 412 mp->mscp_modifier = 0; 413 } 414 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 415 i = ((struct udadevice *) reg)->udaip; /* initiate polling */ 416 mp = &udaslavereply; 417 timeout = todr() + 1000; 418 while (todr() < timeout) 419 if (mp->mscp_opcode) 420 goto gotit; 421 printf("uda%d: no response to Get Unit Status request\n", 422 um->um_ctlr); 423 sc->sc_flags &= ~SC_INSLAVE; 424 return (0); 425 426 gotit: 427 sc->sc_flags &= ~SC_INSLAVE; 428 429 /* 430 * Got a slave response. If the unit is there, use it. 431 */ 432 switch (mp->mscp_status & M_ST_MASK) { 433 434 case M_ST_SUCCESS: /* worked */ 435 case M_ST_AVAILABLE: /* found another drive */ 436 break; /* use it */ 437 438 case M_ST_OFFLINE: 439 /* 440 * Figure out why it is off line. It may be because 441 * it is nonexistent, or because it is spun down, or 442 * for some other reason. 443 */ 444 switch (mp->mscp_status & ~M_ST_MASK) { 445 446 case M_OFFLINE_UNKNOWN: 447 /* 448 * No such drive, and there are none with 449 * higher unit numbers either, if we are 450 * using M_GUM_NEXTUNIT. 451 */ 452 return (0); 453 454 case M_OFFLINE_UNMOUNTED: 455 /* 456 * The drive is not spun up. Use it anyway. 457 * 458 * N.B.: this seems to be a common occurrance 459 * after a power failure. The first attempt 460 * to bring it on line seems to spin it up 461 * (and thus takes several minutes). Perhaps 462 * we should note here that the on-line may 463 * take longer than usual. 464 */ 465 break; 466 467 default: 468 /* 469 * In service, or something else equally unusable. 470 */ 471 printf("uda%d: unit %d off line: ", um->um_ctlr, 472 mp->mscp_unit); 473 mscp_printevent(mp); 474 goto try_another; 475 } 476 break; 477 478 default: 479 printf("uda%d: unable to get unit status: ", um->um_ctlr); 480 mscp_printevent(mp); 481 return (0); 482 } 483 484 /* 485 * Does this ever happen? What (if anything) does it mean? 486 */ 487 if (mp->mscp_unit < next) { 488 printf("uda%d: unit %d, next %d\n", 489 um->um_ctlr, mp->mscp_unit, next); 490 return (0); 491 } 492 493 if (mp->mscp_unit >= MAXUNIT) { 494 printf("uda%d: cannot handle unit number %d (max is %d)\n", 495 um->um_ctlr, mp->mscp_unit, MAXUNIT - 1); 496 return (0); 497 } 498 499 /* 500 * See if we already handle this drive. 501 * (Only likely if ui->ui_slave=='?'.) 502 */ 503 if (udaip[um->um_ctlr][mp->mscp_unit] != NULL) { 504 try_another: 505 if (ui->ui_slave != '?') 506 return (0); 507 next = mp->mscp_unit + 1; 508 goto findunit; 509 } 510 511 /* 512 * Voila! 513 */ 514 uda_rasave(ui->ui_unit, mp, 0); 515 ui->ui_flags = 0; /* not on line, nor anything else */ 516 ui->ui_slave = mp->mscp_unit; 517 return (1); 518 } 519 520 /* 521 * Attach a found slave. Make sure the watchdog timer is running. 522 * If this disk is being profiled, fill in the `mspw' value (used by 523 * what?). Set up the inverting pointer, and attempt to bring the 524 * drive on line and read its label. 525 */ 526 udaattach(ui) 527 register struct uba_device *ui; 528 { 529 register int unit = ui->ui_unit; 530 531 if (udawstart == 0) { 532 timeout(udawatch, (caddr_t) 0, hz); 533 udawstart++; 534 } 535 if (ui->ui_dk >= 0) 536 dk_mspw[ui->ui_dk] = 1.0 / (60 * 31 * 256); /* approx */ 537 udaip[ui->ui_ctlr][ui->ui_slave] = ui; 538 539 /* 540 * RX50s cannot be brought on line unless there is 541 * a floppy in the drive. Since an ONLINE while cold 542 * takes ten seconds to fail, and (when notyet becomes now) 543 * no sensible person will swap to an RX50, we just 544 * defer the ONLINE until someone tries to use the drive. 545 */ 546 if (ra_info[unit].ra_type == RA_TYPE_RX50) { 547 printf("ra%d: rx50\n", unit); 548 return; 549 } 550 if (uda_rainit(ui, 0)) 551 printf("ra%d: offline\n", unit); 552 else { 553 printf("ra%d: %s\n", unit, udalabel[unit].d_typename); 554 #ifdef notyet 555 addswap(makedev(UDADEVNUM, udaminor(unit, 0)), &udalabel[unit]); 556 #endif 557 } 558 } 559 560 /* 561 * Initialise a UDA50. Return true iff something goes wrong. 562 */ 563 udainit(ctlr) 564 int ctlr; 565 { 566 register struct uda_softc *sc; 567 register struct udadevice *udaddr; 568 struct uba_ctlr *um; 569 int timo, ubinfo; 570 571 sc = &uda_softc[ctlr]; 572 um = udaminfo[ctlr]; 573 if ((sc->sc_flags & SC_MAPPED) == 0) { 574 /* 575 * Map the communication area and command and 576 * response packets into Unibus space. 577 */ 578 ubinfo = uballoc(um->um_ubanum, (caddr_t) &uda[ctlr], 579 sizeof (struct uda), UBA_CANTWAIT); 580 if (ubinfo == 0) { 581 printf("uda%d: uballoc map failed\n", ctlr); 582 return (-1); 583 } 584 sc->sc_uda = (struct uda *) (ubinfo & 0x3ffff); 585 sc->sc_flags |= SC_MAPPED; 586 } 587 588 /* 589 * While we are thinking about it, reset the next command 590 * and response indicies. 591 */ 592 sc->sc_mi.mi_cmd.mri_next = 0; 593 sc->sc_mi.mi_rsp.mri_next = 0; 594 595 /* 596 * Start up the hardware initialisation sequence. 597 */ 598 #define STEP0MASK (UDA_ERR | UDA_STEP4 | UDA_STEP3 | UDA_STEP2 | \ 599 UDA_STEP1 | UDA_NV) 600 601 sc->sc_state = ST_IDLE; /* in case init fails */ 602 udaddr = (struct udadevice *) um->um_addr; 603 udaddr->udaip = 0; 604 timo = todr() + 1000; 605 while ((udaddr->udasa & STEP0MASK) == 0) { 606 if (todr() > timo) { 607 printf("uda%d: timeout during init\n", ctlr); 608 return (-1); 609 } 610 } 611 if ((udaddr->udasa & STEP0MASK) != UDA_STEP1) { 612 printf("uda%d: init failed, sa=%b\n", ctlr, 613 udaddr->udasa, udasr_bits); 614 return (-1); 615 } 616 617 /* 618 * Success! Record new state, and start step 1 initialisation. 619 * The rest is done in the interrupt handler. 620 */ 621 sc->sc_state = ST_STEP1; 622 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE | 623 (sc->sc_ivec >> 2); 624 return (0); 625 } 626 627 /* 628 * Open a drive. 629 */ 630 /*ARGSUSED*/ 631 udaopen(dev, flag, fmt) 632 dev_t dev; 633 int flag, fmt; 634 { 635 register int unit; 636 register struct uba_device *ui; 637 register struct uda_softc *sc; 638 register struct disklabel *lp; 639 register struct partition *pp; 640 register struct ra_info *ra; 641 int s, i, part, mask, error = 0; 642 daddr_t start, end; 643 644 /* 645 * Make sure this is a reasonable open request. 646 */ 647 unit = udaunit(dev); 648 if (unit >= NRA || (ui = udadinfo[unit]) == 0 || ui->ui_alive == 0) 649 return (ENXIO); 650 651 /* 652 * Make sure the controller is running, by (re)initialising it if 653 * necessary. 654 */ 655 sc = &uda_softc[ui->ui_ctlr]; 656 s = spl5(); 657 if (sc->sc_state != ST_RUN) { 658 if (sc->sc_state == ST_IDLE && udainit(ui->ui_ctlr)) { 659 splx(s); 660 return (EIO); 661 } 662 /* 663 * In case it does not come up, make sure we will be 664 * restarted in 10 seconds. This corresponds to the 665 * 10 second timeouts in udaprobe() and udaslave(). 666 */ 667 sc->sc_flags |= SC_DOWAKE; 668 timeout(wakeup, (caddr_t) sc, 10 * hz); 669 sleep((caddr_t) sc, PRIBIO); 670 if (sc->sc_state != ST_RUN) { 671 splx(s); 672 printf("uda%d: controller hung\n", ui->ui_ctlr); 673 return (EIO); 674 } 675 untimeout(wakeup, (caddr_t) sc); 676 } 677 678 /* 679 * Wait for the state to settle 680 */ 681 ra = &ra_info[unit]; 682 while (ra->ra_state != OPEN && ra->ra_state != OPENRAW && 683 ra->ra_state != CLOSED) 684 sleep((caddr_t)ra, PZERO + 1); 685 686 /* 687 * If not on line, or we are not sure of the label, reinitialise 688 * the drive. 689 */ 690 if ((ui->ui_flags & UNIT_ONLINE) == 0 || 691 (ra->ra_state != OPEN && ra->ra_state != OPENRAW)) 692 error = uda_rainit(ui, flag); 693 splx(s); 694 if (error) 695 return (error); 696 697 part = udapart(dev); 698 lp = &udalabel[unit]; 699 if (part >= lp->d_npartitions) 700 return (ENXIO); 701 /* 702 * Warn if a partition is opened that overlaps another 703 * already open, unless either is the `raw' partition 704 * (whole disk). 705 */ 706 #define RAWPART 2 /* 'c' partition */ /* XXX */ 707 mask = 1 << part; 708 if ((ra->ra_openpart & mask) == 0 && part != RAWPART) { 709 pp = &lp->d_partitions[part]; 710 start = pp->p_offset; 711 end = pp->p_offset + pp->p_size; 712 for (pp = lp->d_partitions, i = 0; 713 i < lp->d_npartitions; pp++, i++) { 714 if (pp->p_offset + pp->p_size <= start || 715 pp->p_offset >= end || i == RAWPART) 716 continue; 717 if (ra->ra_openpart & (1 << i)) 718 log(LOG_WARNING, 719 "ra%d%c: overlaps open partition (%c)\n", 720 unit, part + 'a', i + 'a'); 721 } 722 } 723 switch (fmt) { 724 case S_IFCHR: 725 ra->ra_copenpart |= mask; 726 break; 727 case S_IFBLK: 728 ra->ra_bopenpart |= mask; 729 break; 730 } 731 ra->ra_openpart |= mask; 732 return (0); 733 } 734 735 /*ARGSUSED*/ 736 udaclose(dev, flags, fmt) 737 dev_t dev; 738 int flags, fmt; 739 { 740 register int unit = udaunit(dev); 741 register struct ra_info *ra = &ra_info[unit]; 742 int s, mask = (1 << udapart(dev)); 743 744 switch (fmt) { 745 case S_IFCHR: 746 ra->ra_copenpart &= ~mask; 747 break; 748 case S_IFBLK: 749 ra->ra_bopenpart &= ~mask; 750 break; 751 } 752 ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart; 753 754 /* 755 * Should wait for I/O to complete on this partition even if 756 * others are open, but wait for work on blkflush(). 757 */ 758 if (ra->ra_openpart == 0) { 759 s = spl5(); 760 while (udautab[unit].b_actf) 761 sleep((caddr_t)&udautab[unit], PZERO - 1); 762 splx(s); 763 ra->ra_state = CLOSED; 764 ra->ra_wlabel = 0; 765 } 766 return (0); 767 } 768 769 /* 770 * Initialise a drive. If it is not already, bring it on line, 771 * and set a timeout on it in case it fails to respond. 772 * When on line, read in the pack label. 773 */ 774 uda_rainit(ui, flags) 775 register struct uba_device *ui; 776 int flags; 777 { 778 register struct uda_softc *sc = &uda_softc[ui->ui_ctlr]; 779 register struct disklabel *lp; 780 register struct mscp *mp; 781 register int unit = ui->ui_unit; 782 register struct ra_info *ra; 783 char *msg, *readdisklabel(); 784 int s, i, udastrategy(); 785 extern int cold; 786 787 ra = &ra_info[unit]; 788 if ((ui->ui_flags & UNIT_ONLINE) == 0) { 789 mp = mscp_getcp(&sc->sc_mi, MSCP_WAIT); 790 mp->mscp_opcode = M_OP_ONLINE; 791 mp->mscp_unit = ui->ui_slave; 792 mp->mscp_cmdref = (long)&ui->ui_flags; 793 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 794 ra->ra_state = WANTOPEN; 795 if (!cold) 796 s = spl5(); 797 i = ((struct udadevice *)ui->ui_addr)->udaip; 798 799 if (cold) { 800 i = todr() + 1000; 801 while ((ui->ui_flags & UNIT_ONLINE) == 0) 802 if (todr() > i) 803 break; 804 } else { 805 timeout(wakeup, (caddr_t)&ui->ui_flags, 10 * hz); 806 sleep((caddr_t)&ui->ui_flags, PSWP + 1); 807 splx(s); 808 untimeout(wakeup, (caddr_t)&ui->ui_flags); 809 } 810 if (ra->ra_state != OPENRAW) { 811 ra->ra_state = CLOSED; 812 wakeup((caddr_t)ra); 813 return (EIO); 814 } 815 } 816 817 lp = &udalabel[unit]; 818 lp->d_secsize = DEV_BSIZE; 819 lp->d_secperunit = ra->ra_dsize; 820 821 if (flags & O_NDELAY) 822 return (0); 823 ra->ra_state = RDLABEL; 824 /* 825 * Set up default sizes until we have the label, or longer 826 * if there is none. Set secpercyl, as readdisklabel wants 827 * to compute b_cylin (although we do not need it). 828 */ 829 lp->d_secpercyl = 1; 830 lp->d_npartitions = 1; 831 lp->d_partitions[0].p_size = lp->d_secperunit; 832 lp->d_partitions[0].p_offset = 0; 833 834 /* 835 * Read pack label. 836 */ 837 if ((msg = readdisklabel(udaminor(unit, 0), udastrategy, lp)) != NULL) { 838 log(LOG_ERR, "ra%d: %s\n", unit, msg); 839 #ifdef COMPAT_42 840 if (udamaptype(unit, lp)) 841 ra->ra_state = OPEN; 842 else 843 ra->ra_state = OPENRAW; 844 #else 845 ra->ra_state = OPENRAW; 846 /* uda_makefakelabel(ra, lp); */ 847 #endif 848 } else 849 ra->ra_state = OPEN; 850 wakeup((caddr_t)ra); 851 return (0); 852 } 853 854 /* 855 * Copy the geometry information for the given ra from a 856 * GET UNIT STATUS response. If check, see if it changed. 857 */ 858 uda_rasave(unit, mp, check) 859 int unit; 860 register struct mscp *mp; 861 int check; 862 { 863 register struct ra_info *ra = &ra_info[unit]; 864 865 if (check && ra->ra_type != mp->mscp_guse.guse_drivetype) { 866 printf("ra%d: changed types! was %d now %d\n", unit, 867 ra->ra_type, mp->mscp_guse.guse_drivetype); 868 ra->ra_state = CLOSED; /* ??? */ 869 } 870 ra->ra_type = mp->mscp_guse.guse_drivetype; 871 ra->ra_mediaid = mp->mscp_guse.guse_mediaid; 872 ra->ra_geom.rg_nsectors = mp->mscp_guse.guse_nspt; 873 ra->ra_geom.rg_ngroups = mp->mscp_guse.guse_group; 874 ra->ra_geom.rg_ngpc = mp->mscp_guse.guse_ngpc; 875 ra->ra_geom.rg_ntracks = ra->ra_geom.rg_ngroups * ra->ra_geom.rg_ngpc; 876 /* ra_geom.rg_ncyl cannot be computed until we have ra_dsize */ 877 #ifdef notyet 878 ra->ra_geom.rg_rctsize = mp->mscp_guse.guse_rctsize; 879 ra->ra_geom.rg_rbns = mp->mscp_guse.guse_nrpt; 880 ra->ra_geom.rg_nrct = mp->mscp_guse.guse_nrct; 881 #endif 882 } 883 884 /* 885 * Queue a transfer request, and if possible, hand it to the controller. 886 * 887 * This routine is broken into two so that the internal version 888 * udastrat1() can be called by the (nonexistent, as yet) bad block 889 * revectoring routine. 890 */ 891 udastrategy(bp) 892 register struct buf *bp; 893 { 894 register int unit; 895 register struct uba_device *ui; 896 register struct ra_info *ra; 897 struct partition *pp; 898 int p; 899 daddr_t sz, maxsz; 900 901 /* 902 * Make sure this is a reasonable drive to use. 903 */ 904 if ((unit = udaunit(bp->b_dev)) >= NRA || 905 (ui = udadinfo[unit]) == NULL || ui->ui_alive == 0 || 906 (ra = &ra_info[unit])->ra_state == CLOSED) { 907 bp->b_error = ENXIO; 908 goto bad; 909 } 910 911 /* 912 * If drive is open `raw' or reading label, let it at it. 913 */ 914 if (ra->ra_state < OPEN) { 915 udastrat1(bp); 916 return; 917 } 918 p = udapart(bp->b_dev); 919 if ((ra->ra_openpart & (1 << p)) == 0) { 920 bp->b_error = ENODEV; 921 goto bad; 922 } 923 924 /* 925 * Determine the size of the transfer, and make sure it is 926 * within the boundaries of the partition. 927 */ 928 pp = &udalabel[unit].d_partitions[p]; 929 maxsz = pp->p_size; 930 if (pp->p_offset + pp->p_size > ra->ra_dsize) 931 maxsz = ra->ra_dsize - pp->p_offset; 932 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; 933 if (bp->b_blkno + pp->p_offset <= LABELSECTOR && 934 #if LABELSECTOR != 0 935 bp->b_blkno + pp->p_offset + sz > LABELSECTOR && 936 #endif 937 (bp->b_flags & B_READ) == 0 && ra->ra_wlabel == 0) { 938 bp->b_error = EROFS; 939 goto bad; 940 } 941 if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) { 942 /* if exactly at end of disk, return an EOF */ 943 if (bp->b_blkno == maxsz) { 944 bp->b_resid = bp->b_bcount; 945 biodone(bp); 946 return; 947 } 948 /* or truncate if part of it fits */ 949 sz = maxsz - bp->b_blkno; 950 if (sz <= 0) { 951 bp->b_error = EINVAL; /* or hang it up */ 952 goto bad; 953 } 954 bp->b_bcount = sz << DEV_BSHIFT; 955 } 956 udastrat1(bp); 957 return; 958 bad: 959 bp->b_flags |= B_ERROR; 960 biodone(bp); 961 } 962 963 /* 964 * Work routine for udastrategy. 965 */ 966 udastrat1(bp) 967 register struct buf *bp; 968 { 969 register int unit = udaunit(bp->b_dev); 970 register struct uba_ctlr *um; 971 register struct buf *dp; 972 struct uba_device *ui; 973 int s = spl5(); 974 975 /* 976 * Append the buffer to the drive queue, and if it is not 977 * already there, the drive to the controller queue. (However, 978 * if the drive queue is marked to be requeued, we must be 979 * awaiting an on line or get unit status command; in this 980 * case, leave it off the controller queue.) 981 */ 982 um = (ui = udadinfo[unit])->ui_mi; 983 dp = &udautab[unit]; 984 APPEND(bp, dp, av_forw); 985 if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) { 986 APPEND(dp, &um->um_tab, b_forw); 987 dp->b_active++; 988 } 989 990 /* 991 * Start activity on the controller. Note that unlike other 992 * Unibus drivers, we must always do this, not just when the 993 * controller is not active. 994 */ 995 udastart(um); 996 splx(s); 997 } 998 999 /* 1000 * Start up whatever transfers we can find. 1001 * Note that udastart() must be called at spl5(). 1002 */ 1003 udastart(um) 1004 register struct uba_ctlr *um; 1005 { 1006 register struct uda_softc *sc = &uda_softc[um->um_ctlr]; 1007 register struct buf *bp, *dp; 1008 register struct mscp *mp; 1009 struct uba_device *ui; 1010 struct udadevice *udaddr; 1011 struct partition *pp; 1012 int i, sz; 1013 1014 #ifdef lint 1015 i = 0; i = i; 1016 #endif 1017 /* 1018 * If it is not running, try (again and again...) to initialise 1019 * it. If it is currently initialising just ignore it for now. 1020 */ 1021 if (sc->sc_state != ST_RUN) { 1022 if (sc->sc_state == ST_IDLE && udainit(um->um_ctlr)) 1023 printf("uda%d: still hung\n", um->um_ctlr); 1024 return; 1025 } 1026 1027 /* 1028 * If um_cmd is nonzero, this controller is on the Unibus 1029 * resource wait queue. It will not help to try more requests; 1030 * instead, when the Unibus unblocks and calls udadgo(), we 1031 * will call udastart() again. 1032 */ 1033 if (um->um_cmd) 1034 return; 1035 1036 sc->sc_flags |= SC_INSTART; 1037 udaddr = (struct udadevice *) um->um_addr; 1038 1039 loop: 1040 /* 1041 * Service the drive at the head of the queue. It may not 1042 * need anything, in which case it might be shutting down 1043 * in udaclose(). 1044 */ 1045 if ((dp = um->um_tab.b_actf) == NULL) 1046 goto out; 1047 if ((bp = dp->b_actf) == NULL) { 1048 dp->b_active = 0; 1049 um->um_tab.b_actf = dp->b_forw; 1050 if (ra_info[dp - udautab].ra_openpart == 0) 1051 wakeup((caddr_t)dp); /* finish close protocol */ 1052 goto loop; 1053 } 1054 1055 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */ 1056 udasaerror(um); 1057 goto out; 1058 } 1059 1060 /* 1061 * Get an MSCP packet, then figure out what to do. If 1062 * we cannot get a command packet, the command ring may 1063 * be too small: We should have at least as many command 1064 * packets as credits, for best performance. 1065 */ 1066 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) { 1067 if (sc->sc_mi.mi_credits > MSCP_MINCREDITS && 1068 (sc->sc_flags & SC_GRIPED) == 0) { 1069 log(LOG_NOTICE, "uda%d: command ring too small\n", 1070 um->um_ctlr); 1071 sc->sc_flags |= SC_GRIPED;/* complain only once */ 1072 } 1073 goto out; 1074 } 1075 1076 /* 1077 * Bring the drive on line if it is not already. Get its status 1078 * if we do not already have it. Otherwise just start the transfer. 1079 */ 1080 ui = udadinfo[udaunit(bp->b_dev)]; 1081 if ((ui->ui_flags & UNIT_ONLINE) == 0) { 1082 mp->mscp_opcode = M_OP_ONLINE; 1083 goto common; 1084 } 1085 if ((ui->ui_flags & UNIT_HAVESTATUS) == 0) { 1086 mp->mscp_opcode = M_OP_GETUNITST; 1087 common: 1088 if (ui->ui_flags & UNIT_REQUEUE) panic("udastart"); 1089 /* 1090 * Take the drive off the controller queue. When the 1091 * command finishes, make sure the drive is requeued. 1092 */ 1093 um->um_tab.b_actf = dp->b_forw; 1094 dp->b_active = 0; 1095 ui->ui_flags |= UNIT_REQUEUE; 1096 mp->mscp_unit = ui->ui_slave; 1097 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 1098 sc->sc_flags |= SC_STARTPOLL; 1099 #ifdef POLLSTATS 1100 sc->sc_ncmd++; 1101 #endif 1102 goto loop; 1103 } 1104 1105 pp = &udalabel[ui->ui_unit].d_partitions[udapart(bp->b_dev)]; 1106 mp->mscp_opcode = (bp->b_flags & B_READ) ? M_OP_READ : M_OP_WRITE; 1107 mp->mscp_unit = ui->ui_slave; 1108 mp->mscp_seq.seq_lbn = bp->b_blkno + pp->p_offset; 1109 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; 1110 mp->mscp_seq.seq_bytecount = bp->b_blkno + sz > pp->p_size ? 1111 (pp->p_size - bp->b_blkno) >> DEV_BSHIFT : bp->b_bcount; 1112 /* mscp_cmdref is filled in by mscp_go() */ 1113 1114 /* 1115 * Drop the packet pointer into the `command' field so udadgo() 1116 * can tell what to start. If ubago returns 1, we can do another 1117 * transfer. If not, um_cmd will still point at mp, so we will 1118 * know that we are waiting for resources. 1119 */ 1120 um->um_cmd = (int)mp; 1121 if (ubago(ui)) 1122 goto loop; 1123 1124 /* 1125 * All done, or blocked in ubago(). If we managed to 1126 * issue some commands, start up the beast. 1127 */ 1128 out: 1129 if (sc->sc_flags & SC_STARTPOLL) { 1130 #ifdef POLLSTATS 1131 udastats.cmd[sc->sc_ncmd]++; 1132 sc->sc_ncmd = 0; 1133 #endif 1134 i = ((struct udadevice *) um->um_addr)->udaip; 1135 } 1136 sc->sc_flags &= ~(SC_INSTART | SC_STARTPOLL); 1137 } 1138 1139 /* 1140 * Start a transfer. 1141 * 1142 * If we are not called from within udastart(), we must have been 1143 * blocked, so call udastart to do more requests (if any). If 1144 * this calls us again immediately we will not recurse, because 1145 * that time we will be in udastart(). Clever.... 1146 */ 1147 udadgo(um) 1148 register struct uba_ctlr *um; 1149 { 1150 struct uda_softc *sc = &uda_softc[um->um_ctlr]; 1151 struct mscp *mp = (struct mscp *)um->um_cmd; 1152 1153 um->um_tab.b_active++; /* another transfer going */ 1154 1155 /* 1156 * Fill in the MSCP packet and move the buffer to the 1157 * I/O wait queue. Mark the controller as no longer on 1158 * the resource queue, and remember to initiate polling. 1159 */ 1160 mp->mscp_seq.seq_buffer = (um->um_ubinfo & 0x3ffff) | 1161 (UBAI_BDP(um->um_ubinfo) << 24); 1162 mscp_go(&sc->sc_mi, mp, um->um_ubinfo); 1163 um->um_cmd = 0; 1164 um->um_ubinfo = 0; /* tyke it awye */ 1165 sc->sc_flags |= SC_STARTPOLL; 1166 #ifdef POLLSTATS 1167 sc->sc_ncmd++; 1168 #endif 1169 if ((sc->sc_flags & SC_INSTART) == 0) 1170 udastart(um); 1171 } 1172 1173 udaiodone(mi, bp, info) 1174 register struct mscp_info *mi; 1175 struct buf *bp; 1176 int info; 1177 { 1178 register struct uba_ctlr *um = udaminfo[mi->mi_ctlr]; 1179 1180 um->um_ubinfo = info; 1181 ubadone(um); 1182 biodone(bp); 1183 if (um->um_bdp && mi->mi_wtab.av_forw == &mi->mi_wtab) 1184 ubarelse(um->um_ubanum, &um->um_bdp); 1185 um->um_tab.b_active--; /* another transfer done */ 1186 } 1187 1188 /* 1189 * The error bit was set in the controller status register. Gripe, 1190 * reset the controller, requeue pending transfers. 1191 */ 1192 udasaerror(um) 1193 register struct uba_ctlr *um; 1194 { 1195 1196 printf("uda%d: controller error, sa=%b\n", um->um_ctlr, 1197 ((struct udadevice *) um->um_addr)->udasa, udasr_bits); 1198 mscp_requeue(&uda_softc[um->um_ctlr].sc_mi); 1199 (void) udainit(um->um_ctlr); 1200 } 1201 1202 /* 1203 * Interrupt routine. Depending on the state of the controller, 1204 * continue initialisation, or acknowledge command and response 1205 * interrupts, and process responses. 1206 */ 1207 udaintr(ctlr) 1208 int ctlr; 1209 { 1210 register struct uba_ctlr *um = udaminfo[ctlr]; 1211 register struct uda_softc *sc = &uda_softc[ctlr]; 1212 register struct udadevice *udaddr = (struct udadevice *) um->um_addr; 1213 register struct uda *ud; 1214 register struct mscp *mp; 1215 register int i; 1216 1217 #ifdef VAX630 1218 (void) spl5(); /* Qbus interrupt protocol is odd */ 1219 #endif 1220 sc->sc_wticks = 0; /* reset interrupt watchdog */ 1221 1222 /* 1223 * Combinations during steps 1, 2, and 3: STEPnMASK 1224 * corresponds to which bits should be tested; 1225 * STEPnGOOD corresponds to the pattern that should 1226 * appear after the interrupt from STEPn initialisation. 1227 * All steps test the bits in ALLSTEPS. 1228 */ 1229 #define ALLSTEPS (UDA_ERR|UDA_STEP4|UDA_STEP3|UDA_STEP2|UDA_STEP1) 1230 1231 #define STEP1MASK (ALLSTEPS | UDA_IE | UDA_NCNRMASK) 1232 #define STEP1GOOD (UDA_STEP2 | UDA_IE | (NCMDL2 << 3) | NRSPL2) 1233 1234 #define STEP2MASK (ALLSTEPS | UDA_IE | UDA_IVECMASK) 1235 #define STEP2GOOD (UDA_STEP3 | UDA_IE | (sc->sc_ivec >> 2)) 1236 1237 #define STEP3MASK ALLSTEPS 1238 #define STEP3GOOD UDA_STEP4 1239 1240 switch (sc->sc_state) { 1241 1242 case ST_IDLE: 1243 /* 1244 * Ignore unsolicited interrupts. 1245 */ 1246 log(LOG_WARNING, "uda%d: stray intr\n", ctlr); 1247 return; 1248 1249 case ST_STEP1: 1250 /* 1251 * Begin step two initialisation. 1252 */ 1253 if ((udaddr->udasa & STEP1MASK) != STEP1GOOD) { 1254 i = 1; 1255 initfailed: 1256 printf("uda%d: init step %d failed, sa=%b\n", 1257 ctlr, i, udaddr->udasa, udasr_bits); 1258 sc->sc_state = ST_IDLE; 1259 if (sc->sc_flags & SC_DOWAKE) { 1260 sc->sc_flags &= ~SC_DOWAKE; 1261 wakeup((caddr_t) sc); 1262 } 1263 return; 1264 } 1265 udaddr->udasa = (int) &sc->sc_uda->uda_ca.ca_rspdsc[0] | 1266 (cpu == VAX_780 || cpu == VAX_8600 ? UDA_PI : 0); 1267 sc->sc_state = ST_STEP2; 1268 return; 1269 1270 case ST_STEP2: 1271 /* 1272 * Begin step 3 initialisation. 1273 */ 1274 if ((udaddr->udasa & STEP2MASK) != STEP2GOOD) { 1275 i = 2; 1276 goto initfailed; 1277 } 1278 udaddr->udasa = ((int) &sc->sc_uda->uda_ca.ca_rspdsc[0]) >> 16; 1279 sc->sc_state = ST_STEP3; 1280 return; 1281 1282 case ST_STEP3: 1283 /* 1284 * Set controller characteristics (finish initialisation). 1285 */ 1286 if ((udaddr->udasa & STEP3MASK) != STEP3GOOD) { 1287 i = 3; 1288 goto initfailed; 1289 } 1290 i = udaddr->udasa & 0xff; 1291 if (i != sc->sc_micro) { 1292 sc->sc_micro = i; 1293 printf("uda%d: version %d model %d\n", 1294 ctlr, i & 0xf, i >> 4); 1295 } 1296 1297 /* 1298 * Present the burst size, then remove it. Why this 1299 * should be done this way, I have no idea. 1300 * 1301 * Note that this assumes udaburst[ctlr] > 0. 1302 */ 1303 udaddr->udasa = UDA_GO | (udaburst[ctlr] - 1) << 2; 1304 udaddr->udasa = UDA_GO; 1305 printf("uda%d: DMA burst size set to %d\n", 1306 ctlr, udaburst[ctlr]); 1307 1308 udainitds(ctlr); /* initialise data structures */ 1309 1310 /* 1311 * Before we can get a command packet, we need some 1312 * credits. Fake some up to keep mscp_getcp() happy, 1313 * get a packet, and cancel all credits (the right 1314 * number should come back in the response to the 1315 * SCC packet). 1316 */ 1317 sc->sc_mi.mi_credits = MSCP_MINCREDITS + 1; 1318 mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT); 1319 if (mp == NULL) /* `cannot happen' */ 1320 panic("udaintr"); 1321 sc->sc_mi.mi_credits = 0; 1322 mp->mscp_opcode = M_OP_SETCTLRC; 1323 mp->mscp_unit = 0; 1324 mp->mscp_sccc.sccc_ctlrflags = M_CF_ATTN | M_CF_MISC | 1325 M_CF_THIS; 1326 *mp->mscp_addr |= MSCP_OWN | MSCP_INT; 1327 i = udaddr->udaip; 1328 sc->sc_state = ST_SETCHAR; 1329 return; 1330 1331 case ST_SETCHAR: 1332 case ST_RUN: 1333 /* 1334 * Handle Set Ctlr Characteristics responses and operational 1335 * responses (via mscp_dorsp). 1336 */ 1337 break; 1338 1339 default: 1340 printf("uda%d: driver bug, state %d\n", ctlr, sc->sc_state); 1341 panic("udastate"); 1342 } 1343 1344 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */ 1345 udasaerror(um); 1346 return; 1347 } 1348 1349 ud = &uda[ctlr]; 1350 1351 /* 1352 * Handle buffer purge requests. 1353 * I have never seen these to work usefully, thus the log(). 1354 */ 1355 if (ud->uda_ca.ca_bdp) { 1356 log(LOG_DEBUG, "uda%d: purge bdp %d\n", 1357 ctlr, ud->uda_ca.ca_bdp); 1358 UBAPURGE(um->um_hd->uh_uba, ud->uda_ca.ca_bdp); 1359 ud->uda_ca.ca_bdp = 0; 1360 udaddr->udasa = 0; /* signal purge complete */ 1361 } 1362 1363 /* 1364 * Check for response and command ring transitions. 1365 */ 1366 if (ud->uda_ca.ca_rspint) { 1367 ud->uda_ca.ca_rspint = 0; 1368 mscp_dorsp(&sc->sc_mi); 1369 } 1370 if (ud->uda_ca.ca_cmdint) { 1371 ud->uda_ca.ca_cmdint = 0; 1372 MSCP_DOCMD(&sc->sc_mi); 1373 } 1374 udastart(um); 1375 } 1376 1377 #ifndef GENERIC_RAW 1378 struct buf rudabuf[NRA]; 1379 1380 /* 1381 * Read and write. 1382 */ 1383 udaread(dev, uio) 1384 dev_t dev; 1385 struct uio *uio; 1386 { 1387 1388 return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_READ, 1389 minphys, uio)); 1390 } 1391 1392 udawrite(dev, uio) 1393 dev_t dev; 1394 struct uio *uio; 1395 { 1396 1397 return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_WRITE, 1398 minphys, uio)); 1399 } 1400 #endif /* GENERIC_RAW */ 1401 1402 /* 1403 * Initialise the various data structures that control the UDA50. 1404 */ 1405 udainitds(ctlr) 1406 int ctlr; 1407 { 1408 register struct uda *ud = &uda[ctlr]; 1409 register struct uda *uud = uda_softc[ctlr].sc_uda; 1410 register struct mscp *mp; 1411 register int i; 1412 1413 for (i = 0, mp = ud->uda_rsp; i < NRSP; i++, mp++) { 1414 ud->uda_ca.ca_rspdsc[i] = MSCP_OWN | MSCP_INT | 1415 (long)&uud->uda_rsp[i].mscp_cmdref; 1416 mp->mscp_addr = &ud->uda_ca.ca_rspdsc[i]; 1417 mp->mscp_msglen = MSCP_MSGLEN; 1418 } 1419 for (i = 0, mp = ud->uda_cmd; i < NCMD; i++, mp++) { 1420 ud->uda_ca.ca_cmddsc[i] = MSCP_INT | 1421 (long)&uud->uda_cmd[i].mscp_cmdref; 1422 mp->mscp_addr = &ud->uda_ca.ca_cmddsc[i]; 1423 mp->mscp_msglen = MSCP_MSGLEN; 1424 } 1425 } 1426 1427 /* 1428 * Handle an error datagram. All we do now is decode it. 1429 */ 1430 udadgram(mi, mp) 1431 struct mscp_info *mi; 1432 struct mscp *mp; 1433 { 1434 1435 mscp_decodeerror(mi->mi_md->md_mname, mi->mi_ctlr, mp); 1436 } 1437 1438 /* 1439 * The Set Controller Characteristics command finished. 1440 * Record the new state of the controller. 1441 */ 1442 udactlrdone(mi, mp) 1443 register struct mscp_info *mi; 1444 struct mscp *mp; 1445 { 1446 register struct uda_softc *sc = &uda_softc[mi->mi_ctlr]; 1447 1448 if ((mp->mscp_status & M_ST_MASK) == M_ST_SUCCESS) 1449 sc->sc_state = ST_RUN; 1450 else { 1451 printf("uda%d: SETCTLRC failed: ", 1452 mi->mi_ctlr, mp->mscp_status); 1453 mscp_printevent(mp); 1454 sc->sc_state = ST_IDLE; 1455 } 1456 if (sc->sc_flags & SC_DOWAKE) { 1457 sc->sc_flags &= ~SC_DOWAKE; 1458 wakeup((caddr_t)sc); 1459 } 1460 } 1461 1462 /* 1463 * Received a response from an as-yet unconfigured drive. Configure it 1464 * in, if possible. 1465 */ 1466 udaunconf(mi, mp) 1467 struct mscp_info *mi; 1468 register struct mscp *mp; 1469 { 1470 1471 /* 1472 * If it is a slave response, copy it to udaslavereply for 1473 * udaslave() to look at. 1474 */ 1475 if (mp->mscp_opcode == (M_OP_GETUNITST | M_OP_END) && 1476 (uda_softc[mi->mi_ctlr].sc_flags & SC_INSLAVE) != 0) { 1477 udaslavereply = *mp; 1478 return (MSCP_DONE); 1479 } 1480 1481 /* 1482 * Otherwise, it had better be an available attention response. 1483 */ 1484 if (mp->mscp_opcode != M_OP_AVAILATTN) 1485 return (MSCP_FAILED); 1486 1487 /* do what autoconf does */ 1488 return (MSCP_FAILED); /* not yet, arwhite, not yet */ 1489 } 1490 1491 /* 1492 * A drive came on line. Check its type and size. Return DONE if 1493 * we think the drive is truly on line. In any case, awaken anyone 1494 * sleeping on the drive on-line-ness. 1495 */ 1496 udaonline(ui, mp) 1497 register struct uba_device *ui; 1498 struct mscp *mp; 1499 { 1500 register struct ra_info *ra = &ra_info[ui->ui_unit]; 1501 1502 wakeup((caddr_t)&ui->ui_flags); 1503 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 1504 printf("uda%d: attempt to bring ra%d on line failed: ", 1505 ui->ui_ctlr, ui->ui_unit); 1506 mscp_printevent(mp); 1507 ra->ra_state = CLOSED; 1508 return (MSCP_FAILED); 1509 } 1510 1511 ra->ra_state = OPENRAW; 1512 ra->ra_dsize = (daddr_t)mp->mscp_onle.onle_unitsize; 1513 printf("ra%d: uda%d, unit %d, size = %d sectors\n", ui->ui_unit, 1514 ui->ui_ctlr, mp->mscp_unit, ra->ra_dsize); 1515 /* can now compute ncyl */ 1516 ra->ra_geom.rg_ncyl = ra->ra_dsize / ra->ra_geom.rg_ntracks / 1517 ra->ra_geom.rg_nsectors; 1518 return (MSCP_DONE); 1519 } 1520 1521 /* 1522 * We got some (configured) unit's status. Return DONE if it succeeded. 1523 */ 1524 udagotstatus(ui, mp) 1525 register struct uba_device *ui; 1526 register struct mscp *mp; 1527 { 1528 1529 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 1530 printf("uda%d: attempt to get status for ra%d failed: ", 1531 ui->ui_ctlr, ui->ui_unit); 1532 mscp_printevent(mp); 1533 return (MSCP_FAILED); 1534 } 1535 /* record for (future) bad block forwarding and whatever else */ 1536 uda_rasave(ui->ui_unit, mp, 1); 1537 return (MSCP_DONE); 1538 } 1539 1540 /* 1541 * A transfer failed. We get a chance to fix or restart it. 1542 * Need to write the bad block forwaring code first.... 1543 */ 1544 /*ARGSUSED*/ 1545 udaioerror(ui, mp, bp) 1546 register struct uba_device *ui; 1547 register struct mscp *mp; 1548 struct buf *bp; 1549 { 1550 1551 if (mp->mscp_flags & M_EF_BBLKR) { 1552 /* 1553 * A bad block report. Eventually we will 1554 * restart this transfer, but for now, just 1555 * log it and give up. 1556 */ 1557 log(LOG_ERR, "ra%d: bad block report: %d%s\n", 1558 ui->ui_unit, mp->mscp_seq.seq_lbn, 1559 mp->mscp_flags & M_EF_BBLKU ? " + others" : ""); 1560 } else { 1561 /* 1562 * What the heck IS a `serious exception' anyway? 1563 * IT SURE WOULD BE NICE IF DEC SOLD DOCUMENTATION 1564 * FOR THEIR OWN CONTROLLERS. 1565 */ 1566 if (mp->mscp_flags & M_EF_SEREX) 1567 log(LOG_ERR, "ra%d: serious exception reported\n", 1568 ui->ui_unit); 1569 } 1570 return (MSCP_FAILED); 1571 } 1572 1573 /* 1574 * A replace operation finished. 1575 */ 1576 /*ARGSUSED*/ 1577 udareplace(ui, mp) 1578 struct uba_device *ui; 1579 struct mscp *mp; 1580 { 1581 1582 panic("udareplace"); 1583 } 1584 1585 /* 1586 * A bad block related operation finished. 1587 */ 1588 /*ARGSUSED*/ 1589 udabb(ui, mp, bp) 1590 struct uba_device *ui; 1591 struct mscp *mp; 1592 struct buf *bp; 1593 { 1594 1595 panic("udabb"); 1596 } 1597 1598 1599 /* 1600 * I/O controls. 1601 */ 1602 udaioctl(dev, cmd, data, flag) 1603 dev_t dev; 1604 int cmd; 1605 caddr_t data; 1606 int flag; 1607 { 1608 register int unit = udaunit(dev); 1609 register struct disklabel *lp; 1610 register struct ra_info *ra = &ra_info[unit]; 1611 int error = 0, wlab; 1612 1613 lp = &udalabel[unit]; 1614 1615 switch (cmd) { 1616 1617 case DIOCGDINFO: 1618 *(struct disklabel *)data = *lp; 1619 break; 1620 1621 case DIOCGPART: 1622 ((struct partinfo *)data)->disklab = lp; 1623 ((struct partinfo *)data)->part = 1624 &lp->d_partitions[udapart(dev)]; 1625 break; 1626 1627 case DIOCSDINFO: 1628 if ((flag & FWRITE) == 0) 1629 error = EBADF; 1630 else 1631 error = setdisklabel(lp, (struct disklabel *)data, 1632 ra->ra_openpart); 1633 break; 1634 1635 case DIOCWLABEL: 1636 if ((flag & FWRITE) == 0) 1637 error = EBADF; 1638 else 1639 ra->ra_wlabel = *(int *)data; 1640 break; 1641 1642 case DIOCWDINFO: 1643 /* simulate opening partition 0 so write succeeds */ 1644 ra->ra_openpart |= (1 << 0); /* XXX */ 1645 wlab = ra->ra_wlabel; 1646 ra->ra_wlabel = 1; 1647 if ((flag & FWRITE) == 0) 1648 error = EBADF; 1649 else if ((error = setdisklabel(lp, (struct disklabel *)data, 1650 ra->ra_openpart)) == 0) 1651 error = writedisklabel(dev, udastrategy, lp); 1652 ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart; 1653 if (error == 0) 1654 ra->ra_state = OPEN; 1655 ra->ra_wlabel = wlab; 1656 break; 1657 1658 #ifdef notyet 1659 case UDAIOCREPLACE: 1660 /* 1661 * Initiate bad block replacement for the given LBN. 1662 * (Should we allow modifiers?) 1663 */ 1664 error = EOPNOTSUPP; 1665 break; 1666 1667 case UDAIOCGMICRO: 1668 /* 1669 * Return the microcode revision for the UDA50 running 1670 * this drive. 1671 */ 1672 *(int *) data = uda_softc[uddinfo[unit]->ui_ctlr].sc_micro; 1673 break; 1674 #endif 1675 1676 default: 1677 error = ENOTTY; 1678 break; 1679 } 1680 return (error); 1681 } 1682 1683 /* 1684 * A Unibus reset has occurred on UBA uban. Reinitialise the controller(s) 1685 * on that Unibus, and requeue outstanding I/O. 1686 */ 1687 udareset(uban) 1688 int uban; 1689 { 1690 register struct uba_ctlr *um; 1691 register struct uda_softc *sc; 1692 register int ctlr; 1693 1694 for (ctlr = 0, sc = uda_softc; ctlr < NUDA; ctlr++, sc++) { 1695 if ((um = udaminfo[ctlr]) == NULL || um->um_ubanum != uban || 1696 um->um_alive == 0) 1697 continue; 1698 printf(" uda%d", ctlr); 1699 1700 /* 1701 * Our BDP (if any) is gone; our command (if any) is 1702 * flushed; the device is no longer mapped; and the 1703 * UDA50 is not yet initialised. 1704 */ 1705 if (um->um_bdp) { 1706 printf("<%d>", UBAI_BDP(um->um_bdp)); 1707 um->um_bdp = 0; 1708 } 1709 um->um_ubinfo = 0; 1710 um->um_cmd = 0; 1711 sc->sc_flags &= ~SC_MAPPED; 1712 sc->sc_state = ST_IDLE; 1713 1714 /* reset queues and requeue pending transfers */ 1715 mscp_requeue(&sc->sc_mi); 1716 1717 /* 1718 * If it fails to initialise we will notice later and 1719 * try again (and again...). Do not call udastart() 1720 * here; it will be done after the controller finishes 1721 * initialisation. 1722 */ 1723 if (udainit(ctlr)) 1724 printf(" (hung)"); 1725 } 1726 } 1727 1728 /* 1729 * Watchdog timer: If the controller is active, and no interrupts 1730 * have occurred for 30 seconds, assume it has gone away. 1731 */ 1732 udawatch() 1733 { 1734 register int i; 1735 register struct uba_ctlr *um; 1736 register struct uda_softc *sc; 1737 1738 timeout(udawatch, (caddr_t) 0, hz); /* every second */ 1739 for (i = 0, sc = uda_softc; i < NUDA; i++, sc++) { 1740 if ((um = udaminfo[i]) == 0 || !um->um_alive) 1741 continue; 1742 if (sc->sc_state == ST_IDLE) 1743 continue; 1744 if (sc->sc_state == ST_RUN && !um->um_tab.b_active) 1745 sc->sc_wticks = 0; 1746 else if (++sc->sc_wticks >= 30) { 1747 sc->sc_wticks = 0; 1748 printf("uda%d: lost interrupt\n", i); 1749 ubareset(um->um_ubanum); 1750 } 1751 } 1752 } 1753 1754 /* 1755 * Do a panic dump. We set up the controller for one command packet 1756 * and one response packet, for which we use `struct uda1'. 1757 */ 1758 struct uda1 { 1759 struct uda1ca uda1_ca; /* communications area */ 1760 struct mscp uda1_rsp; /* response packet */ 1761 struct mscp uda1_cmd; /* command packet */ 1762 } uda1; 1763 1764 #define DBSIZE 32 /* dump 16K at a time */ 1765 1766 udadump(dev) 1767 dev_t dev; 1768 { 1769 struct udadevice *udaddr; 1770 struct uda1 *ud_ubaddr; 1771 char *start; 1772 int num, blk, unit, maxsz, blkoff, reg; 1773 struct partition *pp; 1774 register struct uba_regs *uba; 1775 register struct uba_device *ui; 1776 register struct uda1 *ud; 1777 register struct pte *io; 1778 register int i; 1779 1780 /* 1781 * Make sure the device is a reasonable place on which to dump. 1782 */ 1783 unit = udaunit(dev); 1784 if (unit >= NRA) 1785 return (ENXIO); 1786 #define phys(cast, addr) ((cast) ((int) addr & 0x7fffffff)) 1787 ui = phys(struct uba_device *, udadinfo[unit]); 1788 if (ui == NULL || ui->ui_alive == 0) 1789 return (ENXIO); 1790 1791 /* 1792 * Find and initialise the UBA; get the physical address of the 1793 * device registers, and of communications area and command and 1794 * response packet. 1795 */ 1796 uba = phys(struct uba_hd *, ui->ui_hd)->uh_physuba; 1797 ubainit(uba); 1798 udaddr = (struct udadevice *)ui->ui_physaddr; 1799 ud = phys(struct uda1 *, &uda1); 1800 1801 /* 1802 * Map the ca+packets into Unibus I/O space so the UDA50 can get 1803 * at them. Use the registers at the end of the Unibus map (since 1804 * we will use the registers at the beginning to map the memory 1805 * we are dumping). 1806 */ 1807 num = btoc(sizeof(struct uda1)) + 1; 1808 reg = NUBMREG - num; 1809 io = &uba->uba_map[reg]; 1810 for (i = 0; i < num; i++) 1811 *(int *)io++ = UBAMR_MRV | (btop(ud) + i); 1812 ud_ubaddr = (struct uda1 *)(((int)ud & PGOFSET) | (reg << 9)); 1813 1814 /* 1815 * Initialise the controller, with one command and one response 1816 * packet. 1817 */ 1818 udaddr->udaip = 0; 1819 if (udadumpwait(udaddr, UDA_STEP1)) 1820 return (EFAULT); 1821 udaddr->udasa = UDA_ERR; 1822 if (udadumpwait(udaddr, UDA_STEP2)) 1823 return (EFAULT); 1824 udaddr->udasa = (int)&ud_ubaddr->uda1_ca.ca_rspdsc; 1825 if (udadumpwait(udaddr, UDA_STEP3)) 1826 return (EFAULT); 1827 udaddr->udasa = ((int)&ud_ubaddr->uda1_ca.ca_rspdsc) >> 16; 1828 if (udadumpwait(udaddr, UDA_STEP4)) 1829 return (EFAULT); 1830 uda_softc[ui->ui_ctlr].sc_micro = udaddr->udasa & 0xff; 1831 udaddr->udasa = UDA_GO; 1832 1833 /* 1834 * Set up the command and response descriptor, then set the 1835 * controller characteristics and bring the drive on line. 1836 * Note that all uninitialised locations in uda1_cmd are zero. 1837 */ 1838 ud->uda1_ca.ca_rspdsc = (long)&ud_ubaddr->uda1_rsp.mscp_cmdref; 1839 ud->uda1_ca.ca_cmddsc = (long)&ud_ubaddr->uda1_cmd.mscp_cmdref; 1840 /* ud->uda1_cmd.mscp_sccc.sccc_ctlrflags = 0; */ 1841 /* ud->uda1_cmd.mscp_sccc.sccc_version = 0; */ 1842 if (udadumpcmd(M_OP_SETCTLRC, ud, ui)) 1843 return (EFAULT); 1844 ud->uda1_cmd.mscp_unit = ui->ui_slave; 1845 if (udadumpcmd(M_OP_ONLINE, ud, ui)) 1846 return (EFAULT); 1847 1848 pp = phys(struct partition *, 1849 &udalabel[unit].d_partitions[udapart(dev)]); 1850 maxsz = pp->p_size; 1851 blkoff = pp->p_offset; 1852 1853 /* 1854 * Dump all of physical memory, or as much as will fit in the 1855 * space provided. 1856 */ 1857 start = 0; 1858 num = maxfree; 1859 if (dumplo < 0) 1860 return (EINVAL); 1861 if (dumplo + num >= maxsz) 1862 num = maxsz - dumplo; 1863 blkoff += dumplo; 1864 1865 /* 1866 * Write out memory, DBSIZE pages at a time. 1867 * N.B.: this code depends on the fact that the sector 1868 * size == the page size. 1869 */ 1870 while (num > 0) { 1871 blk = num > DBSIZE ? DBSIZE : num; 1872 io = uba->uba_map; 1873 /* 1874 * Map in the pages to write, leaving an invalid entry 1875 * at the end to guard against wild Unibus transfers. 1876 * Then do the write. 1877 */ 1878 for (i = 0; i < blk; i++) 1879 *(int *) io++ = UBAMR_MRV | (btop(start) + i); 1880 *(int *) io = 0; 1881 ud->uda1_cmd.mscp_unit = ui->ui_slave; 1882 ud->uda1_cmd.mscp_seq.seq_lbn = btop(start) + blkoff; 1883 ud->uda1_cmd.mscp_seq.seq_bytecount = blk << PGSHIFT; 1884 if (udadumpcmd(M_OP_WRITE, ud, ui)) 1885 return (EIO); 1886 start += blk << PGSHIFT; 1887 num -= blk; 1888 } 1889 return (0); /* made it! */ 1890 } 1891 1892 /* 1893 * Wait for some of the bits in `bits' to come on. If the error bit 1894 * comes on, or ten seconds pass without response, return true (error). 1895 */ 1896 udadumpwait(udaddr, bits) 1897 register struct udadevice *udaddr; 1898 register int bits; 1899 { 1900 register int timo = todr() + 1000; 1901 1902 while ((udaddr->udasa & bits) == 0) { 1903 if (udaddr->udasa & UDA_ERR) { 1904 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits); 1905 return (1); 1906 } 1907 if (todr() >= timo) { 1908 printf("timeout\ndump "); 1909 return (1); 1910 } 1911 } 1912 return (0); 1913 } 1914 1915 /* 1916 * Feed a command to the UDA50, wait for its response, and return 1917 * true iff something went wrong. 1918 */ 1919 udadumpcmd(op, ud, ui) 1920 int op; 1921 register struct uda1 *ud; 1922 struct uba_device *ui; 1923 { 1924 register struct udadevice *udaddr; 1925 register int n; 1926 #define mp (&ud->uda1_rsp) 1927 1928 udaddr = (struct udadevice *) ui->ui_physaddr; 1929 ud->uda1_cmd.mscp_opcode = op; 1930 ud->uda1_cmd.mscp_msglen = MSCP_MSGLEN; 1931 ud->uda1_rsp.mscp_msglen = MSCP_MSGLEN; 1932 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT; 1933 ud->uda1_ca.ca_cmddsc |= MSCP_OWN | MSCP_INT; 1934 if (udaddr->udasa & UDA_ERR) { 1935 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits); 1936 return (1); 1937 } 1938 n = udaddr->udaip; 1939 n = todr() + 1000; 1940 for (;;) { 1941 if (todr() > n) { 1942 printf("timeout\ndump "); 1943 return (1); 1944 } 1945 if (ud->uda1_ca.ca_cmdint) 1946 ud->uda1_ca.ca_cmdint = 0; 1947 if (ud->uda1_ca.ca_rspint == 0) 1948 continue; 1949 ud->uda1_ca.ca_rspint = 0; 1950 if (mp->mscp_opcode == (op | M_OP_END)) 1951 break; 1952 printf("\n"); 1953 switch (MSCP_MSGTYPE(mp->mscp_msgtc)) { 1954 1955 case MSCPT_SEQ: 1956 printf("sequential"); 1957 break; 1958 1959 case MSCPT_DATAGRAM: 1960 mscp_decodeerror("uda", ui->ui_ctlr, mp); 1961 printf("datagram"); 1962 break; 1963 1964 case MSCPT_CREDITS: 1965 printf("credits"); 1966 break; 1967 1968 case MSCPT_MAINTENANCE: 1969 printf("maintenance"); 1970 break; 1971 1972 default: 1973 printf("unknown (type 0x%x)", 1974 MSCP_MSGTYPE(mp->mscp_msgtc)); 1975 break; 1976 } 1977 printf(" ignored\ndump "); 1978 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT; 1979 } 1980 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) { 1981 printf("error: op 0x%x => 0x%x status 0x%x\ndump ", op, 1982 mp->mscp_opcode, mp->mscp_status); 1983 return (1); 1984 } 1985 return (0); 1986 #undef mp 1987 } 1988 1989 /* 1990 * Return the size of a partition, if known, or -1 if not. 1991 */ 1992 udasize(dev) 1993 dev_t dev; 1994 { 1995 register int unit = udaunit(dev); 1996 register struct uba_device *ui; 1997 1998 if (unit >= NRA || (ui = udadinfo[unit]) == NULL || 1999 ui->ui_alive == 0 || (ui->ui_flags & UNIT_ONLINE) == 0 || 2000 ra_info[unit].ra_state != OPEN) 2001 return (-1); 2002 return ((int)udalabel[unit].d_partitions[udapart(dev)].p_size); 2003 } 2004 2005 #ifdef COMPAT_42 2006 /* 2007 * Tables mapping unlabelled drives. 2008 */ 2009 struct size { 2010 daddr_t nblocks; 2011 daddr_t blkoff; 2012 } ra25_sizes[8] = { 2013 15884, 0, /* A=blk 0 thru 15883 */ 2014 10032, 15884, /* B=blk 15884 thru 49323 */ 2015 -1, 0, /* C=blk 0 thru end */ 2016 0, 0, /* D=blk 340670 thru 356553 */ 2017 0, 0, /* E=blk 356554 thru 412489 */ 2018 0, 0, /* F=blk 412490 thru end */ 2019 -1, 25916, /* G=blk 49324 thru 131403 */ 2020 0, 0, /* H=blk 131404 thru end */ 2021 }, rx50_sizes[8] = { 2022 800, 0, /* A=blk 0 thru 799 */ 2023 0, 0, 2024 -1, 0, /* C=blk 0 thru end */ 2025 0, 0, 2026 0, 0, 2027 0, 0, 2028 0, 0, 2029 0, 0, 2030 }, rd52_sizes[8] = { 2031 15884, 0, /* A=blk 0 thru 15883 */ 2032 9766, 15884, /* B=blk 15884 thru 25649 */ 2033 -1, 0, /* C=blk 0 thru end */ 2034 0, 0, /* D=unused */ 2035 0, 0, /* E=unused */ 2036 0, 0, /* F=unused */ 2037 -1, 25650, /* G=blk 25650 thru end */ 2038 0, 0, /* H=unused */ 2039 }, rd53_sizes[8] = { 2040 15884, 0, /* A=blk 0 thru 15883 */ 2041 33440, 15884, /* B=blk 15884 thru 49323 */ 2042 -1, 0, /* C=blk 0 thru end */ 2043 0, 0, /* D=unused */ 2044 33440, 0, /* E=blk 0 thru 33439 */ 2045 -1, 33440, /* F=blk 33440 thru end */ 2046 -1, 49324, /* G=blk 49324 thru end */ 2047 -1, 15884, /* H=blk 15884 thru end */ 2048 }, ra60_sizes[8] = { 2049 15884, 0, /* A=sectors 0 thru 15883 */ 2050 33440, 15884, /* B=sectors 15884 thru 49323 */ 2051 400176, 0, /* C=sectors 0 thru 400175 */ 2052 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */ 2053 268772, 131404, /* 4.2 H => E=sectors 131404 thru 400175 */ 2054 350852, 49324, /* F=sectors 49324 thru 400175 */ 2055 157570, 242606, /* UCB G => G=sectors 242606 thru 400175 */ 2056 193282, 49324, /* UCB H => H=sectors 49324 thru 242605 */ 2057 }, ra80_sizes[8] = { 2058 15884, 0, /* A=sectors 0 thru 15883 */ 2059 33440, 15884, /* B=sectors 15884 thru 49323 */ 2060 242606, 0, /* C=sectors 0 thru 242605 */ 2061 0, 0, /* D=unused */ 2062 193282, 49324, /* UCB H => E=sectors 49324 thru 242605 */ 2063 82080, 49324, /* 4.2 G => F=sectors 49324 thru 131403 */ 2064 192696, 49910, /* G=sectors 49910 thru 242605 */ 2065 111202, 131404, /* 4.2 H => H=sectors 131404 thru 242605 */ 2066 }, ra81_sizes[8] ={ 2067 /* 2068 * These are the new standard partition sizes for ra81's. 2069 * An RA_COMPAT system is compiled with D, E, and F corresponding 2070 * to the 4.2 partitions for G, H, and F respectively. 2071 */ 2072 #ifndef UCBRA 2073 15884, 0, /* A=sectors 0 thru 15883 */ 2074 66880, 16422, /* B=sectors 16422 thru 83301 */ 2075 891072, 0, /* C=sectors 0 thru 891071 */ 2076 #ifdef RA_COMPAT 2077 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */ 2078 759668, 131404, /* 4.2 H => E=sectors 131404 thru 891071 */ 2079 478582, 412490, /* 4.2 F => F=sectors 412490 thru 891071 */ 2080 #else 2081 15884, 375564, /* D=sectors 375564 thru 391447 */ 2082 307200, 391986, /* E=sectors 391986 thru 699185 */ 2083 191352, 699720, /* F=sectors 699720 thru 891071 */ 2084 #endif RA_COMPAT 2085 515508, 375564, /* G=sectors 375564 thru 891071 */ 2086 291346, 83538, /* H=sectors 83538 thru 374883 */ 2087 2088 /* 2089 * These partitions correspond to the sizes used by sites at Berkeley, 2090 * and by those sites that have received copies of the Berkeley driver 2091 * with deltas 6.2 or greater (11/15/83). 2092 */ 2093 #else UCBRA 2094 2095 15884, 0, /* A=sectors 0 thru 15883 */ 2096 33440, 15884, /* B=sectors 15884 thru 49323 */ 2097 891072, 0, /* C=sectors 0 thru 891071 */ 2098 15884, 242606, /* D=sectors 242606 thru 258489 */ 2099 307200, 258490, /* E=sectors 258490 thru 565689 */ 2100 325382, 565690, /* F=sectors 565690 thru 891071 */ 2101 648466, 242606, /* G=sectors 242606 thru 891071 */ 2102 193282, 49324, /* H=sectors 49324 thru 242605 */ 2103 2104 #endif UCBRA 2105 }; 2106 2107 /* 2108 * Drive type index decoding table. `ut_name' is null iff the 2109 * type is not known. 2110 */ 2111 struct udatypes { 2112 char *ut_name; /* drive type name */ 2113 struct size *ut_sizes; /* partition tables */ 2114 int ut_nsectors, ut_ntracks, ut_ncylinders; 2115 } udatypes[] = { 2116 NULL, NULL, 2117 0, 0, 0, 2118 "ra80", ra80_sizes, /* 1 = ra80 */ 2119 31, 14, 559, 2120 "rc25-removable", ra25_sizes, /* 2 = rc25-r */ 2121 42, 4, 302, 2122 "rc25-fixed", ra25_sizes, /* 3 = rc25-f */ 2123 42, 4, 302, 2124 "ra60", ra60_sizes, /* 4 = ra60 */ 2125 42, 4, 2382, 2126 "ra81", ra81_sizes, /* 5 = ra81 */ 2127 51, 14, 1248, 2128 NULL, NULL, /* 6 = ? */ 2129 0, 0, 0, 2130 "rx50", rx50_sizes, /* 7 = rx50 */ 2131 10, 1, 80, 2132 "rd52", rd52_sizes, /* 8 = rd52 */ 2133 18, 7, 480, 2134 "rd53", rd53_sizes, /* 9 = rd53 */ 2135 18, 8, 963, 2136 }; 2137 2138 #define NTYPES (sizeof(udatypes) / sizeof(*udatypes)) 2139 2140 udamaptype(unit, lp) 2141 int unit; 2142 register struct disklabel *lp; 2143 { 2144 register struct udatypes *ut; 2145 register struct size *sz; 2146 register struct partition *pp; 2147 register char *p; 2148 register int i; 2149 register struct ra_info *ra = &ra_info[unit]; 2150 2151 lp->d_secsize = 512; 2152 lp->d_secperunit = ra->ra_dsize; 2153 if ((u_long)ra->ra_type >= NTYPES) { 2154 printf("ra%d: don't have a partition table for", unit); 2155 mscp_printmedia(ra->ra_mediaid); 2156 lp->d_nsectors = ra->ra_geom.rg_nsectors; 2157 lp->d_ntracks = ra->ra_geom.rg_ntracks; 2158 lp->d_ncylinders = ra->ra_geom.rg_ncyl; 2159 printf(";\nusing (t,s,c)=(%d,%d,%d)\n", lp->d_nsectors, 2160 lp->d_ntracks, lp->d_ncylinders); 2161 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks; 2162 lp->d_typename[0] = 'r'; 2163 lp->d_typename[1] = 'a'; 2164 lp->d_typename[2] = '?'; 2165 lp->d_typename[3] = '?'; 2166 lp->d_typename[4] = 0; 2167 lp->d_npartitions = 1; 2168 lp->d_partitions[0].p_offset = 0; 2169 lp->d_partitions[0].p_size = lp->d_secperunit; 2170 return (0); 2171 } 2172 ut = &udatypes[ra->ra_type]; 2173 p = ut->ut_name; 2174 for (i = 0; i < sizeof(lp->d_typename) - 1 && *p; i++) 2175 lp->d_typename[i] = *p++; 2176 lp->d_typename[i] = 0; 2177 sz = ut->ut_sizes; 2178 /* GET nsectors, ntracks, ncylinders FROM SAVED GEOMETRY? */ 2179 lp->d_nsectors = ut->ut_nsectors; 2180 lp->d_ntracks = ut->ut_ntracks; 2181 lp->d_ncylinders = ut->ut_ncylinders; 2182 lp->d_npartitions = 8; 2183 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks; 2184 for (pp = lp->d_partitions; pp < &lp->d_partitions[8]; pp++, sz++) { 2185 pp->p_offset = sz->blkoff; 2186 if ((pp->p_size = sz->nblocks) == (u_long)-1) 2187 pp->p_size = ra->ra_dsize - sz->blkoff; 2188 } 2189 return (1); 2190 } 2191 #endif /* COMPAT_42 */ 2192 #endif /* NUDA > 0 */ 2193