1 /* hp.c 4.31 81/03/11 */ 2 3 #include "hp.h" 4 #if NHP > 0 5 /* 6 * HP disk driver for RP0x+RM0x 7 * 8 * TODO: 9 * check RM80 skip sector handling, esp when ECC's occur later 10 * check offset recovery handling 11 * see if DCLR and/or RELEASE set attention status 12 */ 13 14 #include "../h/param.h" 15 #include "../h/systm.h" 16 #include "../h/dk.h" 17 #include "../h/buf.h" 18 #include "../h/conf.h" 19 #include "../h/dir.h" 20 #include "../h/user.h" 21 #include "../h/map.h" 22 #include "../h/pte.h" 23 #include "../h/mbareg.h" 24 #include "../h/mbavar.h" 25 #include "../h/mtpr.h" 26 #include "../h/vm.h" 27 #include "../h/cmap.h" 28 29 #include "../h/hpreg.h" 30 31 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */ 32 struct size { 33 daddr_t nblocks; 34 int cyloff; 35 } hp_sizes[8] = { 36 15884, 0, /* A=cyl 0 thru 37 */ 37 33440, 38, /* B=cyl 38 thru 117 */ 38 340670, 0, /* C=cyl 0 thru 814 */ 39 0, 0, 40 0, 0, 41 0, 0, 42 291346, 118, /* G=cyl 118 thru 814 */ 43 0, 0, 44 }, rm_sizes[8] = { 45 15884, 0, /* A=cyl 0 thru 99 */ 46 33440, 100, /* B=cyl 100 thru 309 */ 47 131680, 0, /* C=cyl 0 thru 822 */ 48 2720, 291, 49 0, 0, 50 0, 0, 51 82080, 310, /* G=cyl 310 thru 822 */ 52 0, 0, 53 }, rm5_sizes[8] = { 54 15884, 0, /* A=cyl 0 thru 26 */ 55 33440, 27, /* B=cyl 27 thru 81 */ 56 500992, 0, /* C=cyl 0 thru 823 */ 57 15884, 562, /* D=cyl 562 thru 588 */ 58 55936, 589, /* E=cyl 589 thru 680 */ 59 86944, 681, /* F=cyl 681 thru 823 */ 60 159296, 562, /* G=cyl 562 thru 823 */ 61 291346, 82, /* H=cyl 82 thru 561 */ 62 }, rm80_sizes[8] = { 63 15884, 0, /* A=cyl 0 thru 36 */ 64 33440, 37, /* B=cyl 37 thru 114 */ 65 242606, 0, /* C=cyl 0 thru 558 */ 66 0, 0, 67 0, 0, 68 0, 0, 69 82080, 115, /* G=cyl 115 thru 304 */ 70 110236, 305, /* H=cyl 305 thru 558 */ 71 }; 72 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */ 73 74 #define _hpSDIST 2 75 #define _hpRDIST 3 76 77 int hpSDIST = _hpSDIST; 78 int hpRDIST = _hpRDIST; 79 80 short hptypes[] = 81 { MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 }; 82 struct mba_device *hpinfo[NHP]; 83 int hpattach(),hpustart(),hpstart(),hpdtint(); 84 struct mba_driver hpdriver = 85 { hpattach, 0, hpustart, hpstart, hpdtint, 0, 86 hptypes, "hp", 0, hpinfo }; 87 88 struct hpst { 89 short nsect; 90 short ntrak; 91 short nspc; 92 short ncyl; 93 struct size *sizes; 94 } hpst[] = { 95 32, 5, 32*5, 823, rm_sizes, /* RM03 */ 96 32, 19, 32*19, 823, rm5_sizes, /* RM05 */ 97 22, 19, 22*19, 815, hp_sizes, /* RP06 */ 98 31, 14, 31*14, 559, rm80_sizes /* RM80 */ 99 }; 100 101 u_char hp_offset[16] = { 102 HPOF_P400, HPOF_M400, HPOF_P400, HPOF_M400, 103 HPOF_P800, HPOF_M800, HPOF_P800, HPOF_M800, 104 HPOF_P1200, HPOF_M1200, HPOF_P1200, HPOF_M1200, 105 0, 0, 0, 0, 106 }; 107 108 struct buf rhpbuf[NHP]; 109 char hprecal[NHP]; 110 111 #define b_cylin b_resid 112 113 #ifdef INTRLVE 114 daddr_t dkblock(); 115 #endif 116 117 int hpseek; 118 119 /*ARGSUSED*/ 120 hpattach(mi, slave) 121 struct mba_device *mi; 122 { 123 register struct hpst *st = &hpst[mi->mi_type]; 124 125 if (mi->mi_dk >= 0) 126 dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256); 127 } 128 129 hpstrategy(bp) 130 register struct buf *bp; 131 { 132 register struct mba_device *mi; 133 register struct hpst *st; 134 register int unit; 135 long sz, bn; 136 int xunit = minor(bp->b_dev) & 07; 137 138 sz = bp->b_bcount; 139 sz = (sz+511) >> 9; 140 unit = dkunit(bp); 141 if (unit >= NHP) 142 goto bad; 143 mi = hpinfo[unit]; 144 if (mi == 0 || mi->mi_alive == 0) 145 goto bad; 146 st = &hpst[mi->mi_type]; 147 if (bp->b_blkno < 0 || 148 (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks) 149 goto bad; 150 bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff; 151 (void) spl5(); 152 disksort(&mi->mi_tab, bp); 153 if (mi->mi_tab.b_active == 0) 154 mbustart(mi); 155 (void) spl0(); 156 return; 157 158 bad: 159 bp->b_flags |= B_ERROR; 160 iodone(bp); 161 return; 162 } 163 164 hpustart(mi) 165 register struct mba_device *mi; 166 { 167 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 168 register struct buf *bp = mi->mi_tab.b_actf; 169 register struct hpst *st; 170 daddr_t bn; 171 int sn, dist; 172 173 if ((hpaddr->hpcs1&HP_DVA) == 0) 174 return (MBU_BUSY); 175 if ((hpaddr->hpds & HPDS_VV) == 0) { 176 hpaddr->hpcs1 = HP_DCLR|HP_GO; 177 if (mi->mi_mba->mba_drv[0].mbd_as & (1<<mi->mi_drive)) 178 printf("DCLR attn\n"); 179 hpaddr->hpcs1 = HP_PRESET|HP_GO; 180 hpaddr->hpof = HPOF_FMT22; 181 mbclrattn(mi); 182 } 183 if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1) 184 return (MBU_DODATA); 185 if ((hpaddr->hpds & HPDS_DREADY) != HPDS_DREADY) 186 return (MBU_DODATA); 187 st = &hpst[mi->mi_type]; 188 bn = dkblock(bp); 189 sn = bn%st->nspc; 190 sn = (sn+st->nsect-hpSDIST)%st->nsect; 191 if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) { 192 if (hpseek) 193 return (MBU_DODATA); 194 dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1; 195 if (dist < 0) 196 dist += st->nsect; 197 if (dist > st->nsect - hpRDIST) 198 return (MBU_DODATA); 199 } else 200 hpaddr->hpdc = bp->b_cylin; 201 if (hpseek) 202 hpaddr->hpcs1 = HP_SEEK|HP_GO; 203 else { 204 hpaddr->hpda = sn; 205 hpaddr->hpcs1 = HP_SEARCH|HP_GO; 206 } 207 return (MBU_STARTED); 208 } 209 210 hpstart(mi) 211 register struct mba_device *mi; 212 { 213 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 214 register struct buf *bp = mi->mi_tab.b_actf; 215 register struct hpst *st = &hpst[mi->mi_type]; 216 daddr_t bn; 217 int sn, tn; 218 219 bn = dkblock(bp); 220 sn = bn%st->nspc; 221 tn = sn/st->nsect; 222 sn %= st->nsect; 223 hpaddr->hpdc = bp->b_cylin; 224 hpaddr->hpda = (tn << 8) + sn; 225 } 226 227 hpdtint(mi, mbsr) 228 register struct mba_device *mi; 229 int mbsr; 230 { 231 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 232 register struct buf *bp = mi->mi_tab.b_actf; 233 int retry = 0; 234 235 if (hpaddr->hpds&HPDS_ERR || mbsr&MBSR_EBITS) { 236 if (hpaddr->hper1&HPER1_WLE) { 237 printf("hp%d: write locked\n", dkunit(bp)); 238 bp->b_flags |= B_ERROR; 239 } else if (++mi->mi_tab.b_errcnt > 27 || 240 mbsr & MBSR_HARD || 241 hpaddr->hper1 & HPER1_HARD || 242 hpaddr->hper2 & HPER2_HARD) { 243 harderr(bp, "hp"); 244 printf("mbsr=%b er1=%b er2=%b\n", 245 mbsr, mbsr_bits, 246 hpaddr->hper1, HPER1_BITS, 247 hpaddr->hper2, HPER2_BITS); 248 bp->b_flags |= B_ERROR; 249 hprecal[mi->mi_unit] = 0; 250 } else if (hptypes[mi->mi_type] == MBDT_RM80 && hpaddr->hper2&HPER2_SSE) { 251 hpecc(mi, 1); 252 return (MBD_RESTARTED); 253 } else if ((hpaddr->hper1&(HPER1_DCK|HPER1_ECH))==HPER1_DCK) { 254 if (hpecc(mi, 0)) 255 return (MBD_RESTARTED); 256 /* else done */ 257 } else 258 retry = 1; 259 hpaddr->hpcs1 = HP_DCLR|HP_GO; 260 if ((mi->mi_tab.b_errcnt&07) == 4) { 261 hpaddr->hpcs1 = HP_RECAL|HP_GO; 262 hprecal[mi->mi_unit] = 0; 263 goto nextrecal; 264 } 265 if (retry) 266 return (MBD_RETRY); 267 } 268 switch (hprecal[mi->mi_unit]) { 269 270 case 1: 271 hpaddr->hpdc = bp->b_cylin; 272 hpaddr->hpcs1 = HP_SEEK|HP_GO; 273 goto nextrecal; 274 case 2: 275 if (mi->mi_tab.b_errcnt < 16 || 276 (bp->b_flags & B_READ) != 0) 277 goto donerecal; 278 hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017]|HPOF_FMT22; 279 hpaddr->hpcs1 = HP_OFFSET|HP_GO; 280 goto nextrecal; 281 nextrecal: 282 hprecal[mi->mi_unit]++; 283 return (MBD_RESTARTED); 284 donerecal: 285 case 3: 286 hprecal[mi->mi_unit] = 0; 287 return (MBD_RETRY); 288 } 289 bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff; 290 if (mi->mi_tab.b_errcnt > 16) { 291 /* 292 * This is fast and occurs rarely; we don't 293 * bother with interrupts. 294 */ 295 hpaddr->hpcs1 = HP_RTC|HP_GO; 296 while (hpaddr->hpds & HPDS_PIP) 297 ; 298 mbclrattn(mi); 299 } 300 hpaddr->hpcs1 = HP_RELEASE|HP_GO; 301 if (mi->mi_mba->mba_drv[0].mbd_as & (1<<mi->mi_drive)) 302 printf("REL attn\n"); 303 mbclrattn(mi); 304 return (MBD_DONE); 305 } 306 307 hpread(dev) 308 dev_t dev; 309 { 310 register int unit = minor(dev) >> 3; 311 312 if (unit >= NHP) 313 u.u_error = ENXIO; 314 else 315 physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys); 316 } 317 318 hpwrite(dev) 319 dev_t dev; 320 { 321 register int unit = minor(dev) >> 3; 322 323 if (unit >= NHP) 324 u.u_error = ENXIO; 325 else 326 physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys); 327 } 328 329 /*ARGSUSED*/ 330 hpecc(mi, rm80sse) 331 register struct mba_device *mi; 332 int rm80sse; 333 { 334 register struct mba_regs *mbp = mi->mi_mba; 335 register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv; 336 register struct buf *bp = mi->mi_tab.b_actf; 337 register struct hpst *st; 338 register int i; 339 caddr_t addr; 340 int reg, bit, byte, npf, mask, o; 341 int bn, cn, tn, sn; 342 struct pte mpte; 343 int bcr; 344 345 bcr = mbp->mba_bcr & 0xffff; 346 if (bcr) 347 bcr |= 0xffff0000; /* sxt */ 348 npf = btop(bcr + bp->b_bcount) - 1; 349 reg = npf; 350 if (rm80sse) { 351 rp->hpof |= HPOF_SSEI; 352 reg--; /* compensate in advance for reg+1 below */ 353 goto sse; 354 } 355 o = (int)bp->b_un.b_addr & PGOFSET; 356 printf("hp%d%c: soft ecc sn%d\n", dkunit(bp), 357 'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf); 358 mask = rp->hpec2&0xffff; 359 i = (rp->hpec1&0xffff) - 1; /* -1 makes 0 origin */ 360 bit = i&07; 361 i = (i&~07)>>3; 362 byte = i + o; 363 while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) { 364 mpte = mbp->mba_map[reg+btop(byte)]; 365 addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET); 366 putmemc(addr, getmemc(addr)^(mask<<bit)); 367 byte++; 368 i++; 369 bit -= 8; 370 } 371 if (bcr == 0) 372 return (0); 373 #ifdef notdef 374 sse: 375 if (rpof&HPOF_SSEI) 376 rp->hpda = rp->hpda + 1; 377 rp->hper1 = 0; 378 rp->hpcs1 = HP_RCOM|HP_GO; 379 #else 380 sse: 381 rp->hpcs1 = HP_DCLR|HP_GO; 382 bn = dkblock(bp); 383 st = &hpst[mi->mi_type]; 384 cn = bp->b_cylin; 385 sn = bn%(st->nspc) + npf + 1; 386 tn = sn/st->nsect; 387 sn %= st->nsect; 388 cn += tn/st->ntrak; 389 tn %= st->ntrak; 390 #ifdef notdef 391 if (rp->hpof&SSEI) 392 sn++; 393 #endif 394 rp->hpdc = cn; 395 rp->hpda = (tn<<8) + sn; 396 mbp->mba_sr = -1; 397 mbp->mba_var = (int)ptob(reg+1) + o; 398 rp->hpcs1 = HP_RCOM|HP_GO; 399 #endif 400 return (1); 401 } 402 403 #define DBSIZE 20 404 405 hpdump(dev) 406 dev_t dev; 407 { 408 register struct mba_device *mi; 409 register struct mba_regs *mba; 410 struct hpdevice *hpaddr; 411 char *start; 412 int num, unit; 413 register struct hpst *st; 414 415 num = maxfree; 416 start = 0; 417 unit = minor(dev) >> 3; 418 if (unit >= NHP) 419 return (ENXIO); 420 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 421 mi = phys(hpinfo[unit],struct mba_device *); 422 if (mi == 0 || mi->mi_alive == 0) 423 return (ENXIO); 424 mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba; 425 mba->mba_cr = MBCR_INIT; 426 hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive]; 427 if ((hpaddr->hpds & HPDS_VV) == 0) { 428 hpaddr->hpcs1 = HP_DCLR|HP_GO; 429 hpaddr->hpcs1 = HP_PRESET|HP_GO; 430 hpaddr->hpof = HPOF_FMT22; 431 } 432 st = &hpst[mi->mi_type]; 433 if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks) 434 return (EINVAL); 435 while (num > 0) { 436 register struct pte *hpte = mba->mba_map; 437 register int i; 438 int blk, cn, sn, tn; 439 daddr_t bn; 440 441 blk = num > DBSIZE ? DBSIZE : num; 442 bn = dumplo + btop(start); 443 cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff; 444 sn = bn%st->nspc; 445 tn = sn/st->nsect; 446 sn = sn%st->nsect; 447 hpaddr->hpdc = cn; 448 hpaddr->hpda = (tn << 8) + sn; 449 for (i = 0; i < blk; i++) 450 *(int *)hpte++ = (btop(start)+i) | PG_V; 451 mba->mba_sr = -1; 452 mba->mba_bcr = -(blk*NBPG); 453 mba->mba_var = 0; 454 hpaddr->hpcs1 = HP_WCOM | HP_GO; 455 while ((hpaddr->hpds & HPDS_DRY) == 0) 456 ; 457 if (hpaddr->hpds&HPDS_ERR) 458 return (EIO); 459 start += blk*NBPG; 460 num -= blk; 461 } 462 return (0); 463 } 464 #endif 465