1 /* hp.c 4.27 81/03/09 */ 2 3 #include "hp.h" 4 #if NHP > 0 5 /* 6 * HP disk driver for RP0x+RM0x 7 * 8 * TODO: 9 * check RM80 skip sector handling, esp when ECC's occur later 10 * add reading of bad sector information and disk layout from sector 1 11 * add bad sector forwarding code 12 * check interaction with tape driver on same mba 13 * check multiple drive handling 14 * check offset recovery handling 15 * see if DCLR and/or RELEASE set attention status 16 */ 17 18 #include "../h/param.h" 19 #include "../h/systm.h" 20 #include "../h/dk.h" 21 #include "../h/buf.h" 22 #include "../h/conf.h" 23 #include "../h/dir.h" 24 #include "../h/user.h" 25 #include "../h/map.h" 26 #include "../h/pte.h" 27 #include "../h/mbareg.h" 28 #include "../h/mbavar.h" 29 #include "../h/mtpr.h" 30 #include "../h/vm.h" 31 #include "../h/cmap.h" 32 33 #include "../h/hpreg.h" 34 35 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */ 36 struct size { 37 daddr_t nblocks; 38 int cyloff; 39 } hp_sizes[8] = { 40 15884, 0, /* A=cyl 0 thru 37 */ 41 33440, 38, /* B=cyl 38 thru 117 */ 42 340670, 0, /* C=cyl 0 thru 814 */ 43 0, 0, 44 0, 0, 45 0, 0, 46 291346, 118, /* G=cyl 118 thru 814 */ 47 0, 0, 48 }, rm_sizes[8] = { 49 15884, 0, /* A=cyl 0 thru 99 */ 50 33440, 100, /* B=cyl 100 thru 309 */ 51 131680, 0, /* C=cyl 0 thru 822 */ 52 2720, 291, 53 0, 0, 54 0, 0, 55 82080, 310, /* G=cyl 310 thru 822 */ 56 0, 0, 57 }, rm5_sizes[8] = { 58 15884, 0, /* A=cyl 0 thru 26 */ 59 33440, 27, /* B=cyl 27 thru 81 */ 60 500992, 0, /* C=cyl 0 thru 823 */ 61 15884, 562, /* D=cyl 562 thru 588 */ 62 55936, 589, /* E=cyl 589 thru 680 */ 63 86944, 681, /* F=cyl 681 thru 823 */ 64 159296, 562, /* G=cyl 562 thru 823 */ 65 291346, 82, /* H=cyl 82 thru 561 */ 66 }, rm80_sizes[8] = { 67 15884, 0, /* A=cyl 0 thru 36 */ 68 33440, 37, /* B=cyl 37 thru 114 */ 69 242606, 0, /* C=cyl 0 thru 558 */ 70 0, 0, 71 0, 0, 72 0, 0, 73 82080, 115, /* G=cyl 115 thru 304 */ 74 110236, 305, /* H=cyl 305 thru 558 */ 75 }; 76 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */ 77 78 #define _hpSDIST 2 79 #define _hpRDIST 3 80 81 int hpSDIST = _hpSDIST; 82 int hpRDIST = _hpRDIST; 83 84 short hptypes[] = 85 { MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 }; 86 struct mba_device *hpinfo[NHP]; 87 int hpattach(),hpustart(),hpstart(),hpdtint(); 88 struct mba_driver hpdriver = 89 { hpattach, 0, hpustart, hpstart, hpdtint, 0, 90 hptypes, "hp", 0, hpinfo }; 91 92 struct hpst { 93 short nsect; 94 short ntrak; 95 short nspc; 96 short ncyl; 97 struct size *sizes; 98 } hpst[] = { 99 32, 5, 32*5, 823, rm_sizes, /* RM03 */ 100 32, 19, 32*19, 823, rm5_sizes, /* RM05 */ 101 22, 19, 22*19, 815, hp_sizes, /* RP06 */ 102 31, 14, 31*14, 559, rm80_sizes /* RM80 */ 103 }; 104 105 u_char hp_offset[16] = { 106 HPOF_P400, HPOF_M400, HPOF_P400, HPOF_M400, 107 HPOF_P800, HPOF_M800, HPOF_P800, HPOF_M800, 108 HPOF_P1200, HPOF_M1200, HPOF_P1200, HPOF_M1200, 109 0, 0, 0, 0, 110 }; 111 112 struct buf rhpbuf[NHP]; 113 char hprecal[NHP]; 114 115 #define b_cylin b_resid 116 117 #ifdef INTRLVE 118 daddr_t dkblock(); 119 #endif 120 121 int hpseek; 122 123 /*ARGSUSED*/ 124 hpattach(mi, slave) 125 struct mba_device *mi; 126 { 127 register struct hpst *st = &hpst[mi->mi_type]; 128 129 if (mi->mi_dk >= 0) 130 dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256); 131 } 132 133 hpstrategy(bp) 134 register struct buf *bp; 135 { 136 register struct mba_device *mi; 137 register struct hpst *st; 138 register int unit; 139 long sz, bn; 140 int xunit = minor(bp->b_dev) & 07; 141 142 sz = bp->b_bcount; 143 sz = (sz+511) >> 9; 144 unit = dkunit(bp); 145 if (unit >= NHP) 146 goto bad; 147 mi = hpinfo[unit]; 148 if (mi == 0 || mi->mi_alive == 0) 149 goto bad; 150 st = &hpst[mi->mi_type]; 151 if (bp->b_blkno < 0 || 152 (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks) 153 goto bad; 154 bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff; 155 (void) spl5(); 156 disksort(&mi->mi_tab, bp); 157 if (mi->mi_tab.b_active == 0) 158 mbustart(mi); 159 (void) spl0(); 160 return; 161 162 bad: 163 bp->b_flags |= B_ERROR; 164 iodone(bp); 165 return; 166 } 167 168 hpustart(mi) 169 register struct mba_device *mi; 170 { 171 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 172 register struct buf *bp = mi->mi_tab.b_actf; 173 register struct hpst *st; 174 daddr_t bn; 175 int sn, dist; 176 177 if ((hpaddr->hpcs1&HP_DVA) == 0) 178 return (MBU_BUSY); 179 if ((hpaddr->hpds & HPDS_VV) == 0) { 180 hpaddr->hpcs1 = HP_DCLR|HP_GO; 181 hpaddr->hpcs1 = HP_PRESET|HP_GO; 182 hpaddr->hpof = HPOF_FMT22; 183 } 184 if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1) 185 return (MBU_DODATA); 186 if ((hpaddr->hpds & HPDS_DREADY) != HPDS_DREADY) 187 return (MBU_DODATA); 188 st = &hpst[mi->mi_type]; 189 bn = dkblock(bp); 190 sn = bn%st->nspc; 191 sn = (sn+st->nsect-hpSDIST)%st->nsect; 192 if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) { 193 if (hpseek) 194 return (MBU_DODATA); 195 dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1; 196 if (dist < 0) 197 dist += st->nsect; 198 if (dist > st->nsect - hpRDIST) 199 return (MBU_DODATA); 200 } else 201 hpaddr->hpdc = bp->b_cylin; 202 if (hpseek) 203 hpaddr->hpcs1 = HP_SEEK|HP_GO; 204 else { 205 hpaddr->hpda = sn; 206 hpaddr->hpcs1 = HP_SEARCH|HP_GO; 207 } 208 return (MBU_STARTED); 209 } 210 211 hpstart(mi) 212 register struct mba_device *mi; 213 { 214 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 215 register struct buf *bp = mi->mi_tab.b_actf; 216 register struct hpst *st = &hpst[mi->mi_type]; 217 daddr_t bn; 218 int sn, tn; 219 220 bn = dkblock(bp); 221 sn = bn%st->nspc; 222 tn = sn/st->nsect; 223 sn %= st->nsect; 224 hpaddr->hpdc = bp->b_cylin; 225 hpaddr->hpda = (tn << 8) + sn; 226 } 227 228 hpdtint(mi, mbsr) 229 register struct mba_device *mi; 230 int mbsr; 231 { 232 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 233 register struct buf *bp = mi->mi_tab.b_actf; 234 int retry = 0; 235 236 if (hpaddr->hpds&HPDS_ERR || mbsr&MBSR_EBITS) { 237 if (hpaddr->hper1&HPER1_WLE) { 238 printf("hp%d: write locked\n", dkunit(bp)); 239 bp->b_flags |= B_ERROR; 240 } else if (++mi->mi_tab.b_errcnt > 27 || 241 mbsr & MBSR_HARD || 242 hpaddr->hper1 & HPER1_HARD || 243 hpaddr->hper2 & HPER2_HARD) { 244 harderr(bp, "hp"); 245 printf("mbsr=%b er1=%b er2=%b\n", 246 mbsr, mbsr_bits, 247 hpaddr->hper1, HPER1_BITS, 248 hpaddr->hper2, HPER2_BITS); 249 bp->b_flags |= B_ERROR; 250 } else if (hpaddr->hper2&HPER2_SSE) { 251 hpecc(mi, 1); 252 return (MBD_RESTARTED); 253 } else if ((hpaddr->hper1&(HPER1_DCK|HPER1_ECH))==HPER1_DCK) { 254 if (hpecc(mi, 0)) 255 return (MBD_RESTARTED); 256 /* else done */ 257 } else 258 retry = 1; 259 hpaddr->hpcs1 = HP_DCLR|HP_GO; 260 if ((mi->mi_tab.b_errcnt&07) == 4) { 261 hpaddr->hpcs1 = HP_RECAL|HP_GO; 262 hprecal[mi->mi_unit] = 0; 263 goto nextrecal; 264 } 265 if (retry) 266 return (MBD_RETRY); 267 } 268 switch (hprecal[mi->mi_unit]) { 269 270 case 1: 271 hpaddr->hpdc = bp->b_cylin; 272 hpaddr->hpcs1 = HP_SEEK|HP_GO; 273 goto nextrecal; 274 case 2: 275 if (mi->mi_tab.b_errcnt < 16 || 276 (bp->b_flags & B_READ) != 0) 277 goto donerecal; 278 hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017]|HPOF_FMT22; 279 hpaddr->hpcs1 = HP_OFFSET|HP_GO; 280 goto nextrecal; 281 nextrecal: 282 hprecal[mi->mi_unit]++; 283 return (MBD_RESTARTED); 284 donerecal: 285 hprecal[mi->mi_unit] = 0; 286 return (MBD_RETRY); 287 } 288 bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff; 289 if (mi->mi_tab.b_errcnt > 16) { 290 /* 291 * This is fast and occurs rarely; we don't 292 * bother with interrupts. 293 */ 294 hpaddr->hpcs1 = HP_RTC|HP_GO; 295 while (hpaddr->hpds & HPDS_PIP) 296 ; 297 mbclrattn(mi); 298 } 299 hpaddr->hpcs1 = HP_RELEASE|HP_GO; 300 return (MBD_DONE); 301 } 302 303 hpread(dev) 304 dev_t dev; 305 { 306 register int unit = minor(dev) >> 3; 307 308 if (unit >= NHP) 309 u.u_error = ENXIO; 310 else 311 physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys); 312 } 313 314 hpwrite(dev) 315 dev_t dev; 316 { 317 register int unit = minor(dev) >> 3; 318 319 if (unit >= NHP) 320 u.u_error = ENXIO; 321 else 322 physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys); 323 } 324 325 /*ARGSUSED*/ 326 hpecc(mi, rm80sse) 327 register struct mba_device *mi; 328 int rm80sse; 329 { 330 register struct mba_regs *mbp = mi->mi_mba; 331 register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv; 332 register struct buf *bp = mi->mi_tab.b_actf; 333 register struct hpst *st; 334 register int i; 335 caddr_t addr; 336 int reg, bit, byte, npf, mask, o; 337 int bn, cn, tn, sn; 338 struct pte mpte; 339 int bcr; 340 341 bcr = mbp->mba_bcr & 0xffff; 342 if (bcr) 343 bcr |= 0xffff0000; /* sxt */ 344 npf = btop(bcr + bp->b_bcount) - 1; 345 reg = npf; 346 if (rm80sse) { 347 rp->hpof |= HPOF_SSEI; 348 reg--; /* compensate in advance for reg+1 below */ 349 goto sse; 350 } 351 o = (int)bp->b_un.b_addr & PGOFSET; 352 printf("hp%d%c: soft ecc sn%d\n", dkunit(bp), 353 'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf); 354 mask = rp->hpec2&0xffff; 355 i = (rp->hpec1&0xffff) - 1; /* -1 makes 0 origin */ 356 bit = i&07; 357 i = (i&~07)>>3; 358 byte = i + o; 359 while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) { 360 mpte = mbp->mba_map[reg+btop(byte)]; 361 addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET); 362 putmemc(addr, getmemc(addr)^(mask<<bit)); 363 byte++; 364 i++; 365 bit -= 8; 366 } 367 if (bcr == 0) 368 return (0); 369 #ifdef notdef 370 sse: 371 if (rpof&HPOF_SSEI) 372 rp->hpda = rp->hpda + 1; 373 rp->hper1 = 0; 374 rp->hpcs1 = HP_RCOM|HP_GO; 375 #else 376 sse: 377 rp->hpcs1 = HP_DCLR|HP_GO; 378 bn = dkblock(bp); 379 st = &hpst[mi->mi_type]; 380 cn = bp->b_cylin; 381 sn = bn%(st->nspc) + npf + 1; 382 tn = sn/st->nsect; 383 sn %= st->nsect; 384 cn += tn/st->ntrak; 385 tn %= st->ntrak; 386 #ifdef notdef 387 if (rp->hpof&SSEI) 388 sn++; 389 #endif 390 rp->hpdc = cn; 391 rp->hpda = (tn<<8) + sn; 392 mbp->mba_sr = -1; 393 mbp->mba_var = (int)ptob(reg+1) + o; 394 rp->hpcs1 = HP_RCOM|HP_GO; 395 #endif 396 return (1); 397 } 398 399 #define DBSIZE 20 400 401 hpdump(dev) 402 dev_t dev; 403 { 404 register struct mba_device *mi; 405 register struct mba_regs *mba; 406 struct hpdevice *hpaddr; 407 char *start; 408 int num, unit; 409 register struct hpst *st; 410 411 num = maxfree; 412 start = 0; 413 unit = minor(dev) >> 3; 414 if (unit >= NHP) 415 return (ENXIO); 416 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 417 mi = phys(hpinfo[unit],struct mba_device *); 418 if (mi == 0 || mi->mi_alive == 0) 419 return (ENXIO); 420 mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba; 421 mba->mba_cr = MBCR_INIT; 422 hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive]; 423 if ((hpaddr->hpds & HPDS_VV) == 0) { 424 hpaddr->hpcs1 = HP_DCLR|HP_GO; 425 hpaddr->hpcs1 = HP_PRESET|HP_GO; 426 hpaddr->hpof = HPOF_FMT22; 427 } 428 st = &hpst[mi->mi_type]; 429 if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks) 430 return (EINVAL); 431 while (num > 0) { 432 register struct pte *hpte = mba->mba_map; 433 register int i; 434 int blk, cn, sn, tn; 435 daddr_t bn; 436 437 blk = num > DBSIZE ? DBSIZE : num; 438 bn = dumplo + btop(start); 439 cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff; 440 sn = bn%st->nspc; 441 tn = sn/st->nsect; 442 sn = sn%st->nsect; 443 hpaddr->hpdc = cn; 444 hpaddr->hpda = (tn << 8) + sn; 445 for (i = 0; i < blk; i++) 446 *(int *)hpte++ = (btop(start)+i) | PG_V; 447 mba->mba_sr = -1; 448 mba->mba_bcr = -(blk*NBPG); 449 mba->mba_var = 0; 450 hpaddr->hpcs1 = HP_WCOM | HP_GO; 451 while ((hpaddr->hpds & HPDS_DRY) == 0) 452 ; 453 if (hpaddr->hpds&HPDS_ERR) 454 return (EIO); 455 start += blk*NBPG; 456 num -= blk; 457 } 458 return (0); 459 } 460 #endif 461