xref: /csrg-svn/sys/vax/mba/hp.c (revision 2978)
1 /*	hp.c	4.24	81/03/07	*/
2 
3 #include "hp.h"
4 #if NHP > 0
5 /*
6  * HP disk driver for RP0x+RM0x
7  *
8  * TODO:
9  *	Check RM80 skip sector handling, esp when ECC's occur later
10  *	Add reading of bad sector information and disk layout from sector 1
11  *	Add bad sector forwarding code
12  *	Check interaction with tape driver on same mba
13  *	Check multiple drive handling
14  */
15 
16 #include "../h/param.h"
17 #include "../h/systm.h"
18 #include "../h/dk.h"
19 #include "../h/buf.h"
20 #include "../h/conf.h"
21 #include "../h/dir.h"
22 #include "../h/user.h"
23 #include "../h/map.h"
24 #include "../h/pte.h"
25 #include "../h/mbareg.h"
26 #include "../h/mbavar.h"
27 #include "../h/mtpr.h"
28 #include "../h/vm.h"
29 #include "../h/cmap.h"
30 
31 #include "../h/hpreg.h"
32 
33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */
34 struct	size {
35 	daddr_t	nblocks;
36 	int	cyloff;
37 } hp_sizes[8] = {
38 	15884,	0,		/* A=cyl 0 thru 37 */
39 	33440,	38,		/* B=cyl 38 thru 117 */
40 	340670,	0,		/* C=cyl 0 thru 814 */
41 	0,	0,
42 	0,	0,
43 	0,	0,
44 	291346,	118,		/* G=cyl 118 thru 814 */
45 	0,	0,
46 }, rm_sizes[8] = {
47 	15884,	0,		/* A=cyl 0 thru 99 */
48 	33440,	100,		/* B=cyl 100 thru 309 */
49 	131680,	0,		/* C=cyl 0 thru 822 */
50 	2720,	291,
51 	0,	0,
52 	0,	0,
53 	82080,	310,		/* G=cyl 310 thru 822 */
54 	0,	0,
55 }, rm5_sizes[8] = {
56 	15884,	0,		/* A=cyl 0 thru 26 */
57 	33440,	27,		/* B=cyl 27 thru 81 */
58 	500992,	0,		/* C=cyl 0 thru 823 */
59 	15884,	562,		/* D=cyl 562 thru 588 */
60 	55936,	589,		/* E=cyl 589 thru 680 */
61 	86944,	681,		/* F=cyl 681 thru 823 */
62 	159296,	562,		/* G=cyl 562 thru 823 */
63 	291346,	82,		/* H=cyl 82 thru 561 */
64 }, rm80_sizes[8] = {
65 	15884,	0,		/* A=cyl 0 thru 36 */
66 	33440,	37,		/* B=cyl 37 thru 114 */
67 	242606,	0,		/* C=cyl 0 thru 558 */
68 	0,	0,
69 	0,	0,
70 	0,	0,
71 	82080,	115,		/* G=cyl 115 thru 304 */
72 	110236,	305,		/* H=cyl 305 thru 558 */
73 };
74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */
75 
76 #define	_hpSDIST	2
77 #define	_hpRDIST	3
78 
79 int	hpSDIST = _hpSDIST;
80 int	hpRDIST = _hpRDIST;
81 
82 short	hptypes[] =
83 	{ MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 };
84 struct	mba_device *hpinfo[NHP];
85 int	hpattach(),hpustart(),hpstart(),hpdtint();
86 struct	mba_driver hpdriver =
87 	{ hpattach, 0, hpustart, hpstart, hpdtint, 0,
88 	  hptypes, "hp", 0, hpinfo };
89 
90 struct hpst {
91 	short	nsect;
92 	short	ntrak;
93 	short	nspc;
94 	short	ncyl;
95 	struct	size *sizes;
96 } hpst[] = {
97 	32,	5,	32*5,	823,	rm_sizes,	/* RM03 */
98 	32,	19,	32*19,	823,	rm5_sizes,	/* RM05 */
99 	22,	19,	22*19,	815,	hp_sizes,	/* RP06 */
100 	31,	14, 	31*14,	559,	rm80_sizes	/* RM80 */
101 };
102 
103 u_char	hp_offset[16] = {
104     HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800,
105     HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0,
106 };
107 
108 struct	buf	rhpbuf[NHP];
109 char	hprecal[NHP];
110 
111 #define	b_cylin b_resid
112 
113 #ifdef INTRLVE
114 daddr_t dkblock();
115 #endif
116 
117 int	hpseek;
118 
119 /*ARGSUSED*/
120 hpattach(mi, slave)
121 	struct mba_device *mi;
122 {
123 	register struct hpst *st = &hpst[mi->mi_type];
124 
125 	if (mi->mi_dk >= 0)
126 		dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256);
127 }
128 
129 hpstrategy(bp)
130 	register struct buf *bp;
131 {
132 	register struct mba_device *mi;
133 	register struct hpst *st;
134 	register int unit;
135 	long sz, bn;
136 	int xunit = minor(bp->b_dev) & 07;
137 
138 	sz = bp->b_bcount;
139 	sz = (sz+511) >> 9;
140 	unit = dkunit(bp);
141 	if (unit >= NHP)
142 		goto bad;
143 	mi = hpinfo[unit];
144 	if (mi == 0 || mi->mi_alive == 0)
145 		goto bad;
146 	st = &hpst[mi->mi_type];
147 	if (bp->b_blkno < 0 ||
148 	    (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks)
149 		goto bad;
150 	bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff;
151 	(void) spl5();
152 	disksort(&mi->mi_tab, bp);
153 	if (mi->mi_tab.b_active == 0)
154 		mbustart(mi);
155 	(void) spl0();
156 	return;
157 
158 bad:
159 	bp->b_flags |= B_ERROR;
160 	iodone(bp);
161 	return;
162 }
163 
164 hpustart(mi)
165 	register struct mba_device *mi;
166 {
167 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
168 	register struct buf *bp = mi->mi_tab.b_actf;
169 	register struct hpst *st;
170 	daddr_t bn;
171 	int sn, dist, flags;
172 
173 	if ((hpaddr->hpcs1&HP_DVA) == 0)
174 		return (MBU_BUSY);
175 	if ((hpaddr->hpds & HP_VV) == 0) {
176 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
177 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
178 		hpaddr->hpof = HP_FMT22;
179 	}
180 	if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1)
181 		return (MBU_DODATA);
182 	if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL))
183 		return (MBU_DODATA);
184 	st = &hpst[mi->mi_type];
185 	bn = dkblock(bp);
186 	sn = bn%st->nspc;
187 	sn = (sn+st->nsect-hpSDIST)%st->nsect;
188 	if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) {
189 		if (hpseek)
190 			return (MBU_DODATA);
191 		dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1;
192 		if (dist < 0)
193 			dist += st->nsect;
194 		if (dist > st->nsect - hpRDIST)
195 			return (MBU_DODATA);
196 	} else
197 		hpaddr->hpdc = bp->b_cylin;
198 	if (hpseek)
199 		hpaddr->hpcs1 = HP_SEEK|HP_GO;
200 	else {
201 		hpaddr->hpda = sn;
202 		hpaddr->hpcs1 = HP_SEARCH|HP_GO;
203 	}
204 	return (MBU_STARTED);
205 }
206 
207 hpstart(mi)
208 	register struct mba_device *mi;
209 {
210 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
211 	register struct buf *bp = mi->mi_tab.b_actf;
212 	register struct hpst *st = &hpst[mi->mi_type];
213 	daddr_t bn;
214 	int sn, tn;
215 
216 	bn = dkblock(bp);
217 	sn = bn%st->nspc;
218 	tn = sn/st->nsect;
219 	sn %= st->nsect;
220 	if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) {
221 		hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22;
222 		hpaddr->hpcs1 = HP_OFFSET|HP_GO;
223 		while (hpaddr->hpds & HP_PIP)
224 			;
225 		mbclrattn(mi);
226 	}
227 	hpaddr->hpdc = bp->b_cylin;
228 	hpaddr->hpda = (tn << 8) + sn;
229 }
230 
231 hpdtint(mi, mbasr)
232 	register struct mba_device *mi;
233 	int mbasr;
234 {
235 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
236 	register struct buf *bp = mi->mi_tab.b_actf;
237 	int retry = 0;
238 
239 	if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) {
240 		if (hpaddr->hper1&HP_WLE) {
241 			printf("hp%d: write locked\n", dkunit(bp));
242 			bp->b_flags |= B_ERROR;
243 		} else if (++mi->mi_tab.b_errcnt > 27 ||
244 		    mbasr & MBASR_HARD ||
245 		    hpaddr->hper1 & HPER1_HARD ||
246 		    hpaddr->hper2 & HPER2_HARD) {
247 			harderr(bp, "hp");
248 			printf("mbasr=%b er1=%b er2=%b\n",
249 			    mbasr, mbasr_bits,
250 			    hpaddr->hper1, HPER1_BITS,
251 			    hpaddr->hper2, HPER2_BITS);
252 			bp->b_flags |= B_ERROR;
253 #ifdef notdef
254 		} else if (hpaddr->hper2&HP_SSE) {
255 			hpecc(mi, 1);
256 			return (MBD_RESTARTED);
257 #endif
258 		} else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) {
259 			if (hpecc(mi, 0))
260 				return (MBD_RESTARTED);
261 			/* else done */
262 		} else
263 			retry = 1;
264 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
265 		if ((mi->mi_tab.b_errcnt&07) == 4) {
266 			hpaddr->hpcs1 = HP_RECAL|HP_GO;
267 			hprecal[mi->mi_unit] = 1;
268 			return (MBD_RESTARTED);
269 		}
270 		if (retry)
271 			return (MBD_RETRY);
272 	}
273 	if (hprecal[mi->mi_unit]) {
274 		hprecal[mi->mi_unit] = 0;
275 		return (MBD_RETRY);
276 	}
277 	bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff;
278 	if (mi->mi_tab.b_errcnt > 16) {
279 		hpaddr->hpcs1 = HP_RTC|HP_GO;
280 		while (hpaddr->hpds & HP_PIP)
281 			;
282 		mbclrattn(mi);
283 	}
284 	hpaddr->hpcs1 = HP_RELEASE|HP_GO;
285 	return (MBD_DONE);
286 }
287 
288 hpread(dev)
289 	dev_t dev;
290 {
291 	register int unit = minor(dev) >> 3;
292 
293 	if (unit >= NHP)
294 		u.u_error = ENXIO;
295 	else
296 		physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys);
297 }
298 
299 hpwrite(dev)
300 	dev_t dev;
301 {
302 	register int unit = minor(dev) >> 3;
303 
304 	if (unit >= NHP)
305 		u.u_error = ENXIO;
306 	else
307 		physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys);
308 }
309 
310 hpecc(mi, rm80sse)
311 	register struct mba_device *mi;
312 	int rm80sse;
313 {
314 	register struct mba_regs *mbp = mi->mi_mba;
315 	register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv;
316 	register struct buf *bp = mi->mi_tab.b_actf;
317 	register struct hpst *st;
318 	register int i;
319 	caddr_t addr;
320 	int reg, bit, byte, npf, mask, o;
321 	int bn, cn, tn, sn;
322 	struct pte mpte;
323 	int bcr;
324 
325 	bcr = mbp->mba_bcr & 0xffff;
326 	if (bcr)
327 		bcr |= 0xffff0000;		/* sxt */
328 	npf = btop(bcr + bp->b_bcount) - 1;
329 	reg = npf;
330 #ifdef notdef
331 	if (rm80sse) {
332 		rp->hpof |= HP_SSEI;
333 		reg--;		/* compensate in advance for reg-- below */
334 		goto sse;
335 	}
336 #endif
337 	o = (int)bp->b_un.b_addr & PGOFSET;
338 	printf("hp%d%c: soft ecc sn%d\n", dkunit(bp),
339 	    'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf);
340 	mask = rp->hpec2&0xffff;
341 	i = (rp->hpec1&0xffff) - 1;		/* -1 makes 0 origin */
342 	bit = i&07;
343 	i = (i&~07)>>3;
344 	byte = i + o;
345 	while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) {
346 		mpte = mbp->mba_map[reg+btop(byte)];
347 		addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET);
348 		putmemc(addr, getmemc(addr)^(mask<<bit));
349 		byte++;
350 		i++;
351 		bit -= 8;
352 	}
353 	if (bcr == 0)
354 		return (0);
355 #ifdef notdef
356 sse:
357 	if (rpof&HP_SSEI)
358 		rp->hpda = rp->hpda + 1;
359 	rp->hper1 = 0;
360 	rp->hpcs1 = HP_RCOM|HP_GO;
361 #else
362 sse:
363 	rp->hpcs1 = HP_DCLR|HP_GO;
364 	bn = dkblock(bp);
365 	st = &hpst[mi->mi_type];
366 	cn = bp->b_cylin;
367 	sn = bn%(st->nspc) + npf + 1;
368 	tn = sn/st->nsect;
369 	sn %= st->nsect;
370 	cn += tn/st->ntrak;
371 	tn %= st->ntrak;
372 #ifdef notdef
373 	if (rp->hpof&SSEI)
374 		sn++;
375 #endif
376 	rp->hpdc = cn;
377 	rp->hpda = (tn<<8) + sn;
378 	mbp->mba_sr = -1;
379 	mbp->mba_var = (int)ptob(reg+1) + o;
380 	rp->hpcs1 = HP_RCOM|HP_GO;
381 #endif
382 	return (1);
383 }
384 
385 #define	DBSIZE	20
386 
387 hpdump(dev)
388 	dev_t dev;
389 {
390 	register struct mba_device *mi;
391 	register struct mba_regs *mba;
392 	struct hpdevice *hpaddr;
393 	char *start;
394 	int num, unit;
395 	register struct hpst *st;
396 
397 	num = maxfree;
398 	start = 0;
399 	unit = minor(dev) >> 3;
400 	if (unit >= NHP)
401 		return (ENXIO);
402 #define	phys(a,b)	((b)((int)(a)&0x7fffffff))
403 	mi = phys(hpinfo[unit],struct mba_device *);
404 	if (mi == 0 || mi->mi_alive == 0)
405 		return (ENXIO);
406 	mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba;
407 	mba->mba_cr = MBAINIT;
408 	hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive];
409 	if ((hpaddr->hpds & HP_VV) == 0) {
410 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
411 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
412 		hpaddr->hpof = HP_FMT22;
413 	}
414 	st = &hpst[mi->mi_type];
415 	if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks)
416 		return (EINVAL);
417 	while (num > 0) {
418 		register struct pte *hpte = mba->mba_map;
419 		register int i;
420 		int blk, cn, sn, tn;
421 		daddr_t bn;
422 
423 		blk = num > DBSIZE ? DBSIZE : num;
424 		bn = dumplo + btop(start);
425 		cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff;
426 		sn = bn%st->nspc;
427 		tn = sn/st->nsect;
428 		sn = sn%st->nsect;
429 		hpaddr->hpdc = cn;
430 		hpaddr->hpda = (tn << 8) + sn;
431 		for (i = 0; i < blk; i++)
432 			*(int *)hpte++ = (btop(start)+i) | PG_V;
433 		mba->mba_sr = -1;
434 		mba->mba_bcr = -(blk*NBPG);
435 		mba->mba_var = 0;
436 		hpaddr->hpcs1 = HP_WCOM | HP_GO;
437 		while ((hpaddr->hpds & HP_DRY) == 0)
438 			;
439 		if (hpaddr->hpds&HP_ERR)
440 			return (EIO);
441 		start += blk*NBPG;
442 		num -= blk;
443 	}
444 	return (0);
445 }
446 #endif
447