1 /* hp.c 4.24 81/03/07 */ 2 3 #include "hp.h" 4 #if NHP > 0 5 /* 6 * HP disk driver for RP0x+RM0x 7 * 8 * TODO: 9 * Check RM80 skip sector handling, esp when ECC's occur later 10 * Add reading of bad sector information and disk layout from sector 1 11 * Add bad sector forwarding code 12 * Check interaction with tape driver on same mba 13 * Check multiple drive handling 14 */ 15 16 #include "../h/param.h" 17 #include "../h/systm.h" 18 #include "../h/dk.h" 19 #include "../h/buf.h" 20 #include "../h/conf.h" 21 #include "../h/dir.h" 22 #include "../h/user.h" 23 #include "../h/map.h" 24 #include "../h/pte.h" 25 #include "../h/mbareg.h" 26 #include "../h/mbavar.h" 27 #include "../h/mtpr.h" 28 #include "../h/vm.h" 29 #include "../h/cmap.h" 30 31 #include "../h/hpreg.h" 32 33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */ 34 struct size { 35 daddr_t nblocks; 36 int cyloff; 37 } hp_sizes[8] = { 38 15884, 0, /* A=cyl 0 thru 37 */ 39 33440, 38, /* B=cyl 38 thru 117 */ 40 340670, 0, /* C=cyl 0 thru 814 */ 41 0, 0, 42 0, 0, 43 0, 0, 44 291346, 118, /* G=cyl 118 thru 814 */ 45 0, 0, 46 }, rm_sizes[8] = { 47 15884, 0, /* A=cyl 0 thru 99 */ 48 33440, 100, /* B=cyl 100 thru 309 */ 49 131680, 0, /* C=cyl 0 thru 822 */ 50 2720, 291, 51 0, 0, 52 0, 0, 53 82080, 310, /* G=cyl 310 thru 822 */ 54 0, 0, 55 }, rm5_sizes[8] = { 56 15884, 0, /* A=cyl 0 thru 26 */ 57 33440, 27, /* B=cyl 27 thru 81 */ 58 500992, 0, /* C=cyl 0 thru 823 */ 59 15884, 562, /* D=cyl 562 thru 588 */ 60 55936, 589, /* E=cyl 589 thru 680 */ 61 86944, 681, /* F=cyl 681 thru 823 */ 62 159296, 562, /* G=cyl 562 thru 823 */ 63 291346, 82, /* H=cyl 82 thru 561 */ 64 }, rm80_sizes[8] = { 65 15884, 0, /* A=cyl 0 thru 36 */ 66 33440, 37, /* B=cyl 37 thru 114 */ 67 242606, 0, /* C=cyl 0 thru 558 */ 68 0, 0, 69 0, 0, 70 0, 0, 71 82080, 115, /* G=cyl 115 thru 304 */ 72 110236, 305, /* H=cyl 305 thru 558 */ 73 }; 74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */ 75 76 #define _hpSDIST 2 77 #define _hpRDIST 3 78 79 int hpSDIST = _hpSDIST; 80 int hpRDIST = _hpRDIST; 81 82 short hptypes[] = 83 { MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 }; 84 struct mba_device *hpinfo[NHP]; 85 int hpattach(),hpustart(),hpstart(),hpdtint(); 86 struct mba_driver hpdriver = 87 { hpattach, 0, hpustart, hpstart, hpdtint, 0, 88 hptypes, "hp", 0, hpinfo }; 89 90 struct hpst { 91 short nsect; 92 short ntrak; 93 short nspc; 94 short ncyl; 95 struct size *sizes; 96 } hpst[] = { 97 32, 5, 32*5, 823, rm_sizes, /* RM03 */ 98 32, 19, 32*19, 823, rm5_sizes, /* RM05 */ 99 22, 19, 22*19, 815, hp_sizes, /* RP06 */ 100 31, 14, 31*14, 559, rm80_sizes /* RM80 */ 101 }; 102 103 u_char hp_offset[16] = { 104 HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800, 105 HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0, 106 }; 107 108 struct buf rhpbuf[NHP]; 109 char hprecal[NHP]; 110 111 #define b_cylin b_resid 112 113 #ifdef INTRLVE 114 daddr_t dkblock(); 115 #endif 116 117 int hpseek; 118 119 /*ARGSUSED*/ 120 hpattach(mi, slave) 121 struct mba_device *mi; 122 { 123 register struct hpst *st = &hpst[mi->mi_type]; 124 125 if (mi->mi_dk >= 0) 126 dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256); 127 } 128 129 hpstrategy(bp) 130 register struct buf *bp; 131 { 132 register struct mba_device *mi; 133 register struct hpst *st; 134 register int unit; 135 long sz, bn; 136 int xunit = minor(bp->b_dev) & 07; 137 138 sz = bp->b_bcount; 139 sz = (sz+511) >> 9; 140 unit = dkunit(bp); 141 if (unit >= NHP) 142 goto bad; 143 mi = hpinfo[unit]; 144 if (mi == 0 || mi->mi_alive == 0) 145 goto bad; 146 st = &hpst[mi->mi_type]; 147 if (bp->b_blkno < 0 || 148 (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks) 149 goto bad; 150 bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff; 151 (void) spl5(); 152 disksort(&mi->mi_tab, bp); 153 if (mi->mi_tab.b_active == 0) 154 mbustart(mi); 155 (void) spl0(); 156 return; 157 158 bad: 159 bp->b_flags |= B_ERROR; 160 iodone(bp); 161 return; 162 } 163 164 hpustart(mi) 165 register struct mba_device *mi; 166 { 167 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 168 register struct buf *bp = mi->mi_tab.b_actf; 169 register struct hpst *st; 170 daddr_t bn; 171 int sn, dist, flags; 172 173 if ((hpaddr->hpcs1&HP_DVA) == 0) 174 return (MBU_BUSY); 175 if ((hpaddr->hpds & HP_VV) == 0) { 176 hpaddr->hpcs1 = HP_DCLR|HP_GO; 177 hpaddr->hpcs1 = HP_PRESET|HP_GO; 178 hpaddr->hpof = HP_FMT22; 179 } 180 if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1) 181 return (MBU_DODATA); 182 if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL)) 183 return (MBU_DODATA); 184 st = &hpst[mi->mi_type]; 185 bn = dkblock(bp); 186 sn = bn%st->nspc; 187 sn = (sn+st->nsect-hpSDIST)%st->nsect; 188 if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) { 189 if (hpseek) 190 return (MBU_DODATA); 191 dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1; 192 if (dist < 0) 193 dist += st->nsect; 194 if (dist > st->nsect - hpRDIST) 195 return (MBU_DODATA); 196 } else 197 hpaddr->hpdc = bp->b_cylin; 198 if (hpseek) 199 hpaddr->hpcs1 = HP_SEEK|HP_GO; 200 else { 201 hpaddr->hpda = sn; 202 hpaddr->hpcs1 = HP_SEARCH|HP_GO; 203 } 204 return (MBU_STARTED); 205 } 206 207 hpstart(mi) 208 register struct mba_device *mi; 209 { 210 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 211 register struct buf *bp = mi->mi_tab.b_actf; 212 register struct hpst *st = &hpst[mi->mi_type]; 213 daddr_t bn; 214 int sn, tn; 215 216 bn = dkblock(bp); 217 sn = bn%st->nspc; 218 tn = sn/st->nsect; 219 sn %= st->nsect; 220 if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) { 221 hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22; 222 hpaddr->hpcs1 = HP_OFFSET|HP_GO; 223 while (hpaddr->hpds & HP_PIP) 224 ; 225 mbclrattn(mi); 226 } 227 hpaddr->hpdc = bp->b_cylin; 228 hpaddr->hpda = (tn << 8) + sn; 229 } 230 231 hpdtint(mi, mbasr) 232 register struct mba_device *mi; 233 int mbasr; 234 { 235 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 236 register struct buf *bp = mi->mi_tab.b_actf; 237 int retry = 0; 238 239 if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) { 240 if (hpaddr->hper1&HP_WLE) { 241 printf("hp%d: write locked\n", dkunit(bp)); 242 bp->b_flags |= B_ERROR; 243 } else if (++mi->mi_tab.b_errcnt > 27 || 244 mbasr & MBASR_HARD || 245 hpaddr->hper1 & HPER1_HARD || 246 hpaddr->hper2 & HPER2_HARD) { 247 harderr(bp, "hp"); 248 printf("mbasr=%b er1=%b er2=%b\n", 249 mbasr, mbasr_bits, 250 hpaddr->hper1, HPER1_BITS, 251 hpaddr->hper2, HPER2_BITS); 252 bp->b_flags |= B_ERROR; 253 #ifdef notdef 254 } else if (hpaddr->hper2&HP_SSE) { 255 hpecc(mi, 1); 256 return (MBD_RESTARTED); 257 #endif 258 } else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) { 259 if (hpecc(mi, 0)) 260 return (MBD_RESTARTED); 261 /* else done */ 262 } else 263 retry = 1; 264 hpaddr->hpcs1 = HP_DCLR|HP_GO; 265 if ((mi->mi_tab.b_errcnt&07) == 4) { 266 hpaddr->hpcs1 = HP_RECAL|HP_GO; 267 hprecal[mi->mi_unit] = 1; 268 return (MBD_RESTARTED); 269 } 270 if (retry) 271 return (MBD_RETRY); 272 } 273 if (hprecal[mi->mi_unit]) { 274 hprecal[mi->mi_unit] = 0; 275 return (MBD_RETRY); 276 } 277 bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff; 278 if (mi->mi_tab.b_errcnt > 16) { 279 hpaddr->hpcs1 = HP_RTC|HP_GO; 280 while (hpaddr->hpds & HP_PIP) 281 ; 282 mbclrattn(mi); 283 } 284 hpaddr->hpcs1 = HP_RELEASE|HP_GO; 285 return (MBD_DONE); 286 } 287 288 hpread(dev) 289 dev_t dev; 290 { 291 register int unit = minor(dev) >> 3; 292 293 if (unit >= NHP) 294 u.u_error = ENXIO; 295 else 296 physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys); 297 } 298 299 hpwrite(dev) 300 dev_t dev; 301 { 302 register int unit = minor(dev) >> 3; 303 304 if (unit >= NHP) 305 u.u_error = ENXIO; 306 else 307 physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys); 308 } 309 310 hpecc(mi, rm80sse) 311 register struct mba_device *mi; 312 int rm80sse; 313 { 314 register struct mba_regs *mbp = mi->mi_mba; 315 register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv; 316 register struct buf *bp = mi->mi_tab.b_actf; 317 register struct hpst *st; 318 register int i; 319 caddr_t addr; 320 int reg, bit, byte, npf, mask, o; 321 int bn, cn, tn, sn; 322 struct pte mpte; 323 int bcr; 324 325 bcr = mbp->mba_bcr & 0xffff; 326 if (bcr) 327 bcr |= 0xffff0000; /* sxt */ 328 npf = btop(bcr + bp->b_bcount) - 1; 329 reg = npf; 330 #ifdef notdef 331 if (rm80sse) { 332 rp->hpof |= HP_SSEI; 333 reg--; /* compensate in advance for reg-- below */ 334 goto sse; 335 } 336 #endif 337 o = (int)bp->b_un.b_addr & PGOFSET; 338 printf("hp%d%c: soft ecc sn%d\n", dkunit(bp), 339 'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf); 340 mask = rp->hpec2&0xffff; 341 i = (rp->hpec1&0xffff) - 1; /* -1 makes 0 origin */ 342 bit = i&07; 343 i = (i&~07)>>3; 344 byte = i + o; 345 while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) { 346 mpte = mbp->mba_map[reg+btop(byte)]; 347 addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET); 348 putmemc(addr, getmemc(addr)^(mask<<bit)); 349 byte++; 350 i++; 351 bit -= 8; 352 } 353 if (bcr == 0) 354 return (0); 355 #ifdef notdef 356 sse: 357 if (rpof&HP_SSEI) 358 rp->hpda = rp->hpda + 1; 359 rp->hper1 = 0; 360 rp->hpcs1 = HP_RCOM|HP_GO; 361 #else 362 sse: 363 rp->hpcs1 = HP_DCLR|HP_GO; 364 bn = dkblock(bp); 365 st = &hpst[mi->mi_type]; 366 cn = bp->b_cylin; 367 sn = bn%(st->nspc) + npf + 1; 368 tn = sn/st->nsect; 369 sn %= st->nsect; 370 cn += tn/st->ntrak; 371 tn %= st->ntrak; 372 #ifdef notdef 373 if (rp->hpof&SSEI) 374 sn++; 375 #endif 376 rp->hpdc = cn; 377 rp->hpda = (tn<<8) + sn; 378 mbp->mba_sr = -1; 379 mbp->mba_var = (int)ptob(reg+1) + o; 380 rp->hpcs1 = HP_RCOM|HP_GO; 381 #endif 382 return (1); 383 } 384 385 #define DBSIZE 20 386 387 hpdump(dev) 388 dev_t dev; 389 { 390 register struct mba_device *mi; 391 register struct mba_regs *mba; 392 struct hpdevice *hpaddr; 393 char *start; 394 int num, unit; 395 register struct hpst *st; 396 397 num = maxfree; 398 start = 0; 399 unit = minor(dev) >> 3; 400 if (unit >= NHP) 401 return (ENXIO); 402 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 403 mi = phys(hpinfo[unit],struct mba_device *); 404 if (mi == 0 || mi->mi_alive == 0) 405 return (ENXIO); 406 mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba; 407 mba->mba_cr = MBAINIT; 408 hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive]; 409 if ((hpaddr->hpds & HP_VV) == 0) { 410 hpaddr->hpcs1 = HP_DCLR|HP_GO; 411 hpaddr->hpcs1 = HP_PRESET|HP_GO; 412 hpaddr->hpof = HP_FMT22; 413 } 414 st = &hpst[mi->mi_type]; 415 if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks) 416 return (EINVAL); 417 while (num > 0) { 418 register struct pte *hpte = mba->mba_map; 419 register int i; 420 int blk, cn, sn, tn; 421 daddr_t bn; 422 423 blk = num > DBSIZE ? DBSIZE : num; 424 bn = dumplo + btop(start); 425 cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff; 426 sn = bn%st->nspc; 427 tn = sn/st->nsect; 428 sn = sn%st->nsect; 429 hpaddr->hpdc = cn; 430 hpaddr->hpda = (tn << 8) + sn; 431 for (i = 0; i < blk; i++) 432 *(int *)hpte++ = (btop(start)+i) | PG_V; 433 mba->mba_sr = -1; 434 mba->mba_bcr = -(blk*NBPG); 435 mba->mba_var = 0; 436 hpaddr->hpcs1 = HP_WCOM | HP_GO; 437 while ((hpaddr->hpds & HP_DRY) == 0) 438 ; 439 if (hpaddr->hpds&HP_ERR) 440 return (EIO); 441 start += blk*NBPG; 442 num -= blk; 443 } 444 return (0); 445 } 446 #endif 447