xref: /csrg-svn/sys/vax/mba/hp.c (revision 2892)
1 /*	hp.c	4.21	81/03/03	*/
2 
3 #include "hp.h"
4 #if NHP > 0
5 /*
6  * HP disk driver for RP0x+RM0x
7  *
8  * TODO:
9  *	Check out handling of spun-down drives and write lock
10  *	Check RM80 skip sector handling, esp when ECC's occur later
11  *	Add reading of bad sector information and disk layout from sector 1
12  *	Add bad sector forwarding code
13  *	Check interaction with tape driver on same mba
14  *	Check multiple drive handling
15  */
16 
17 #include "../h/param.h"
18 #include "../h/systm.h"
19 #include "../h/dk.h"
20 #include "../h/buf.h"
21 #include "../h/conf.h"
22 #include "../h/dir.h"
23 #include "../h/user.h"
24 #include "../h/map.h"
25 #include "../h/pte.h"
26 #include "../h/mba.h"
27 #include "../h/mtpr.h"
28 #include "../h/vm.h"
29 #include "../h/cmap.h"
30 
31 #include "../h/hpreg.h"
32 
33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */
34 struct	size {
35 	daddr_t	nblocks;
36 	int	cyloff;
37 } hp_sizes[8] = {
38 	15884,	0,		/* A=cyl 0 thru 37 */
39 	33440,	38,		/* B=cyl 38 thru 117 */
40 	340670,	0,		/* C=cyl 0 thru 814 */
41 	0,	0,
42 	0,	0,
43 	0,	0,
44 	291346,	118,		/* G=cyl 118 thru 814 */
45 	0,	0,
46 }, rm_sizes[8] = {
47 	15884,	0,		/* A=cyl 0 thru 99 */
48 	33440,	100,		/* B=cyl 100 thru 309 */
49 	131680,	0,		/* C=cyl 0 thru 822 */
50 	2720,	291,
51 	0,	0,
52 	0,	0,
53 	82080,	310,		/* G=cyl 310 thru 822 */
54 	0,	0,
55 }, rm5_sizes[8] = {
56 	15884,	0,		/* A=cyl 0 thru 26 */
57 	33440,	27,		/* B=cyl 27 thru 81 */
58 	500992,	0,		/* C=cyl 0 thru 823 */
59 	15884,	562,		/* D=cyl 562 thru 588 */
60 	55936,	589,		/* E=cyl 589 thru 680 */
61 	86944,	681,		/* F=cyl 681 thru 823 */
62 	159296,	562,		/* G=cyl 562 thru 823 */
63 	291346,	82,		/* H=cyl 82 thru 561 */
64 }, rm80_sizes[8] = {
65 	15884,	0,		/* A=cyl 0 thru 36 */
66 	33440,	37,		/* B=cyl 37 thru 114 */
67 	242606,	0,		/* C=cyl 0 thru 558 */
68 	0,	0,
69 	0,	0,
70 	0,	0,
71 	82080,	115,		/* G=cyl 115 thru 304 */
72 	110236,	305,		/* H=cyl 305 thru 558 */
73 };
74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */
75 
76 #define	_hpSDIST	2
77 #define	_hpRDIST	3
78 
79 int	hpSDIST = _hpSDIST;
80 int	hpRDIST = _hpRDIST;
81 
82 short	hptypes[] =
83 	{ MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 };
84 struct	mba_info *hpinfo[NHP];
85 int	hpdkinit(),hpustart(),hpstart(),hpdtint();
86 struct	mba_driver hpdriver =
87 	{ hpdkinit, hpustart, hpstart, hpdtint, 0, hptypes, hpinfo };
88 
89 struct hpst {
90 	short	nsect;
91 	short	ntrak;
92 	short	nspc;
93 	short	ncyl;
94 	struct	size *sizes;
95 } hpst[] = {
96 	32,	5,	32*5,	823,	rm_sizes,	/* RM03 */
97 	32,	19,	32*19,	823,	rm5_sizes,	/* RM05 */
98 	22,	19,	22*19,	815,	hp_sizes,	/* RP06 */
99 	31,	14, 	31*14,	559,	rm80_sizes	/* RM80 */
100 };
101 
102 u_char	hp_offset[16] = {
103     HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800,
104     HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0,
105 };
106 
107 struct	buf	rhpbuf[NHP];
108 char	hprecal[NHP];
109 
110 #define	b_cylin b_resid
111 
112 #ifdef INTRLVE
113 daddr_t dkblock();
114 #endif
115 
116 int	hpseek;
117 
118 hpdkinit(mi)
119 	struct mba_info *mi;
120 {
121 	register struct hpst *st = &hpst[mi->mi_type];
122 
123 	if (mi->mi_dk >= 0)
124 		dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256);
125 }
126 
127 hpstrategy(bp)
128 	register struct buf *bp;
129 {
130 	register struct mba_info *mi;
131 	register struct hpst *st;
132 	register int unit;
133 	long sz, bn;
134 	int xunit = minor(bp->b_dev) & 07;
135 
136 	sz = bp->b_bcount;
137 	sz = (sz+511) >> 9;
138 	unit = dkunit(bp);
139 	if (unit >= NHP)
140 		goto bad;
141 	mi = hpinfo[unit];
142 	if (mi == 0 || mi->mi_alive == 0)
143 		goto bad;
144 	st = &hpst[mi->mi_type];
145 	if (bp->b_blkno < 0 ||
146 	    (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks)
147 		goto bad;
148 	bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff;
149 	(void) spl5();
150 	disksort(&mi->mi_tab, bp);
151 	if (mi->mi_tab.b_active == 0)
152 		mbustart(mi);
153 	(void) spl0();
154 	return;
155 
156 bad:
157 	bp->b_flags |= B_ERROR;
158 	iodone(bp);
159 	return;
160 }
161 
162 hpustart(mi)
163 	register struct mba_info *mi;
164 {
165 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
166 	register struct buf *bp = mi->mi_tab.b_actf;
167 	register struct hpst *st;
168 	daddr_t bn;
169 	int sn, dist, flags;
170 
171 	if ((hpaddr->hpcs1&HP_DVA) == 0)
172 		return (MBU_BUSY);
173 	if ((hpaddr->hpds & HP_VV) == 0) {
174 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
175 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
176 		hpaddr->hpof = HP_FMT22;
177 	}
178 	if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1)
179 		return (MBU_DODATA);
180 	if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL))
181 		return (MBU_DODATA);
182 	st = &hpst[mi->mi_type];
183 	bn = dkblock(bp);
184 	sn = bn%st->nspc;
185 	sn = (sn+st->nsect-hpSDIST)%st->nsect;
186 	if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) {
187 		if (hpseek)
188 			return (MBU_DODATA);
189 		dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1;
190 		if (dist < 0)
191 			dist += st->nsect;
192 		if (dist > st->nsect - hpRDIST)
193 			return (MBU_DODATA);
194 	} else
195 		hpaddr->hpdc = bp->b_cylin;
196 	if (hpseek)
197 		hpaddr->hpcs1 = HP_SEEK|HP_GO;
198 	else {
199 		hpaddr->hpda = sn;
200 		hpaddr->hpcs1 = HP_SEARCH|HP_GO;
201 	}
202 	return (MBU_STARTED);
203 }
204 
205 hpstart(mi)
206 	register struct mba_info *mi;
207 {
208 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
209 	register struct buf *bp = mi->mi_tab.b_actf;
210 	register struct hpst *st = &hpst[mi->mi_type];
211 	daddr_t bn;
212 	int sn, tn;
213 
214 	bn = dkblock(bp);
215 	sn = bn%st->nspc;
216 	tn = sn/st->nsect;
217 	sn %= st->nsect;
218 	if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) {
219 		hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22;
220 		hpaddr->hpcs1 = HP_OFFSET|HP_GO;
221 		while (hpaddr->hpds & HP_PIP)
222 			;
223 		mbclrattn(mi);
224 	}
225 	hpaddr->hpdc = bp->b_cylin;
226 	hpaddr->hpda = (tn << 8) + sn;
227 }
228 
229 hpdtint(mi, mbasr)
230 	register struct mba_info *mi;
231 	int mbasr;
232 {
233 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
234 	register struct buf *bp = mi->mi_tab.b_actf;
235 	int retry = 0;
236 
237 	if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) {
238 		if (hpaddr->hper1&HP_WLE) {
239 			printf("hp%d is write locked\n", dkunit(bp));
240 			bp->b_flags |= B_ERROR;
241 		} else if (++mi->mi_tab.b_errcnt > 27 ||
242 		    mbasr & MBASR_HARD ||
243 		    hpaddr->hper1 & HPER1_HARD ||
244 		    hpaddr->hper2 & HPER2_HARD) {
245 			harderr(bp);
246 			printf("hp%d%c mbasr=%b er1=%b er2=%b\n",
247 			    dkunit(bp), 'a'+(minor(bp->b_dev)&07),
248 			    mbasr, mbasr_bits,
249 			    hpaddr->hper1, HPER1_BITS,
250 			    hpaddr->hper2, HPER2_BITS);
251 			bp->b_flags |= B_ERROR;
252 #ifdef notdef
253 		} else if (hpaddr->hper2&HP_SSE) {
254 			hpecc(mi, 1);
255 			return (MBD_RESTARTED);
256 #endif
257 		} else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) {
258 			if (hpecc(mi, 0))
259 				return (MBD_RESTARTED);
260 			/* else done */
261 		} else
262 			retry = 1;
263 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
264 		if ((mi->mi_tab.b_errcnt&07) == 4) {
265 			hpaddr->hpcs1 = HP_RECAL|HP_GO;
266 			hprecal[mi->mi_unit] = 1;
267 			return (MBD_RESTARTED);
268 		}
269 		if (retry)
270 			return (MBD_RETRY);
271 	}
272 	if (hprecal[mi->mi_unit]) {
273 		hprecal[mi->mi_unit] = 0;
274 		return (MBD_RETRY);
275 	}
276 	bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff;
277 	if (mi->mi_tab.b_errcnt > 16) {
278 		hpaddr->hpcs1 = HP_RTC|HP_GO;
279 		while (hpaddr->hpds & HP_PIP)
280 			;
281 		mbclrattn(mi);
282 	}
283 	hpaddr->hpcs1 = HP_RELEASE|HP_GO;
284 	return (MBD_DONE);
285 }
286 
287 hpread(dev)
288 	dev_t dev;
289 {
290 	register int unit = minor(dev) >> 3;
291 
292 	if (unit >= NHP)
293 		u.u_error = ENXIO;
294 	else
295 		physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys);
296 }
297 
298 hpwrite(dev)
299 	dev_t dev;
300 {
301 	register int unit = minor(dev) >> 3;
302 
303 	if (unit >= NHP)
304 		u.u_error = ENXIO;
305 	else
306 		physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys);
307 }
308 
309 hpecc(mi, rm80sse)
310 	register struct mba_info *mi;
311 	int rm80sse;
312 {
313 	register struct mba_regs *mbp = mi->mi_mba;
314 	register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv;
315 	register struct buf *bp = mi->mi_tab.b_actf;
316 	register struct hpst *st;
317 	register int i;
318 	caddr_t addr;
319 	int reg, bit, byte, npf, mask, o;
320 	int bn, cn, tn, sn;
321 	struct pte mpte;
322 	int bcr;
323 
324 	bcr = mbp->mba_bcr & 0xffff;
325 	if (bcr)
326 		bcr |= 0xffff0000;		/* sxt */
327 	npf = btop(bcr + bp->b_bcount) - 1;
328 	reg = npf;
329 #ifdef notdef
330 	if (rm80sse) {
331 		rp->hpof |= HP_SSEI;
332 		reg--;		/* compensate in advance for reg-- below */
333 		goto sse;
334 	}
335 #endif
336 	o = (int)bp->b_un.b_addr & PGOFSET;
337 	printf("soft ecc hp%d%c bn%d\n", dkunit(bp),
338 	    'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf);
339 	mask = rp->hpec2&0xffff;
340 	i = (rp->hpec1&0xffff) - 1;		/* -1 makes 0 origin */
341 	bit = i&07;
342 	i = (i&~07)>>3;
343 	byte = i + o;
344 	while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) {
345 		mpte = mbp->mba_map[reg+btop(byte)];
346 		addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET);
347 		putmemc(addr, getmemc(addr)^(mask<<bit));
348 		byte++;
349 		i++;
350 		bit -= 8;
351 	}
352 	if (bcr == 0)
353 		return (0);
354 #ifdef notdef
355 sse:
356 	if (rpof&HP_SSEI)
357 		rp->hpda = rp->hpda + 1;
358 	rp->hper1 = 0;
359 	rp->hpcs1 = HP_RCOM|HP_GO;
360 #else
361 sse:
362 	rp->hpcs1 = HP_DCLR|HP_GO;
363 	bn = dkblock(bp);
364 	st = &hpst[mi->mi_type];
365 	cn = bp->b_cylin;
366 	sn = bn%(st->nspc) + npf + 1;
367 	tn = sn/st->nsect;
368 	sn %= st->nsect;
369 	cn += tn/st->ntrak;
370 	tn %= st->ntrak;
371 #ifdef notdef
372 	if (rp->hpof&SSEI)
373 		sn++;
374 #endif
375 	rp->hpdc = cn;
376 	rp->hpda = (tn<<8) + sn;
377 	mbp->mba_sr = -1;
378 	mbp->mba_var = (int)ptob(reg+1) + o;
379 	rp->hpcs1 = HP_RCOM|HP_GO;
380 #endif
381 	return (1);
382 }
383 
384 #define	DBSIZE	20
385 
386 hpdump(dev)
387 	dev_t dev;
388 {
389 	register struct mba_info *mi;
390 	register struct mba_regs *mba;
391 	struct hpdevice *hpaddr;
392 	char *start;
393 	int num, unit;
394 	register struct hpst *st;
395 
396 	num = maxfree;
397 	start = 0;
398 	unit = minor(dev) >> 3;
399 	if (unit >= NHP)
400 		return (ENXIO);
401 #define	phys(a,b)	((b)((int)(a)&0x7fffffff))
402 	mi = phys(hpinfo[unit],struct mba_info *);
403 	if (mi == 0 || mi->mi_alive == 0)
404 		return (ENXIO);
405 	mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba;
406 	mba->mba_cr = MBAINIT;
407 	hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive];
408 	if ((hpaddr->hpds & HP_VV) == 0) {
409 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
410 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
411 		hpaddr->hpof = HP_FMT22;
412 	}
413 	st = &hpst[mi->mi_type];
414 	if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks)
415 		return (EINVAL);
416 	while (num > 0) {
417 		register struct pte *hpte = mba->mba_map;
418 		register int i;
419 		int blk, cn, sn, tn;
420 		daddr_t bn;
421 
422 		blk = num > DBSIZE ? DBSIZE : num;
423 		bn = dumplo + btop(start);
424 		cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff;
425 		sn = bn%st->nspc;
426 		tn = sn/st->nsect;
427 		sn = sn%st->nsect;
428 		hpaddr->hpdc = cn;
429 		hpaddr->hpda = (tn << 8) + sn;
430 		for (i = 0; i < blk; i++)
431 			*(int *)hpte++ = (btop(start)+i) | PG_V;
432 		mba->mba_sr = -1;
433 		mba->mba_bcr = -(blk*NBPG);
434 		mba->mba_var = 0;
435 		hpaddr->hpcs1 = HP_WCOM | HP_GO;
436 		while ((hpaddr->hpds & HP_DRY) == 0)
437 			;
438 		if (hpaddr->hpds&HP_ERR)
439 			return (EIO);
440 		start += blk*NBPG;
441 		num -= blk;
442 	}
443 	return (0);
444 }
445 #endif
446