1 /* hp.c 4.21 81/03/03 */ 2 3 #include "hp.h" 4 #if NHP > 0 5 /* 6 * HP disk driver for RP0x+RM0x 7 * 8 * TODO: 9 * Check out handling of spun-down drives and write lock 10 * Check RM80 skip sector handling, esp when ECC's occur later 11 * Add reading of bad sector information and disk layout from sector 1 12 * Add bad sector forwarding code 13 * Check interaction with tape driver on same mba 14 * Check multiple drive handling 15 */ 16 17 #include "../h/param.h" 18 #include "../h/systm.h" 19 #include "../h/dk.h" 20 #include "../h/buf.h" 21 #include "../h/conf.h" 22 #include "../h/dir.h" 23 #include "../h/user.h" 24 #include "../h/map.h" 25 #include "../h/pte.h" 26 #include "../h/mba.h" 27 #include "../h/mtpr.h" 28 #include "../h/vm.h" 29 #include "../h/cmap.h" 30 31 #include "../h/hpreg.h" 32 33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */ 34 struct size { 35 daddr_t nblocks; 36 int cyloff; 37 } hp_sizes[8] = { 38 15884, 0, /* A=cyl 0 thru 37 */ 39 33440, 38, /* B=cyl 38 thru 117 */ 40 340670, 0, /* C=cyl 0 thru 814 */ 41 0, 0, 42 0, 0, 43 0, 0, 44 291346, 118, /* G=cyl 118 thru 814 */ 45 0, 0, 46 }, rm_sizes[8] = { 47 15884, 0, /* A=cyl 0 thru 99 */ 48 33440, 100, /* B=cyl 100 thru 309 */ 49 131680, 0, /* C=cyl 0 thru 822 */ 50 2720, 291, 51 0, 0, 52 0, 0, 53 82080, 310, /* G=cyl 310 thru 822 */ 54 0, 0, 55 }, rm5_sizes[8] = { 56 15884, 0, /* A=cyl 0 thru 26 */ 57 33440, 27, /* B=cyl 27 thru 81 */ 58 500992, 0, /* C=cyl 0 thru 823 */ 59 15884, 562, /* D=cyl 562 thru 588 */ 60 55936, 589, /* E=cyl 589 thru 680 */ 61 86944, 681, /* F=cyl 681 thru 823 */ 62 159296, 562, /* G=cyl 562 thru 823 */ 63 291346, 82, /* H=cyl 82 thru 561 */ 64 }, rm80_sizes[8] = { 65 15884, 0, /* A=cyl 0 thru 36 */ 66 33440, 37, /* B=cyl 37 thru 114 */ 67 242606, 0, /* C=cyl 0 thru 558 */ 68 0, 0, 69 0, 0, 70 0, 0, 71 82080, 115, /* G=cyl 115 thru 304 */ 72 110236, 305, /* H=cyl 305 thru 558 */ 73 }; 74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */ 75 76 #define _hpSDIST 2 77 #define _hpRDIST 3 78 79 int hpSDIST = _hpSDIST; 80 int hpRDIST = _hpRDIST; 81 82 short hptypes[] = 83 { MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 }; 84 struct mba_info *hpinfo[NHP]; 85 int hpdkinit(),hpustart(),hpstart(),hpdtint(); 86 struct mba_driver hpdriver = 87 { hpdkinit, hpustart, hpstart, hpdtint, 0, hptypes, hpinfo }; 88 89 struct hpst { 90 short nsect; 91 short ntrak; 92 short nspc; 93 short ncyl; 94 struct size *sizes; 95 } hpst[] = { 96 32, 5, 32*5, 823, rm_sizes, /* RM03 */ 97 32, 19, 32*19, 823, rm5_sizes, /* RM05 */ 98 22, 19, 22*19, 815, hp_sizes, /* RP06 */ 99 31, 14, 31*14, 559, rm80_sizes /* RM80 */ 100 }; 101 102 u_char hp_offset[16] = { 103 HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800, 104 HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0, 105 }; 106 107 struct buf rhpbuf[NHP]; 108 char hprecal[NHP]; 109 110 #define b_cylin b_resid 111 112 #ifdef INTRLVE 113 daddr_t dkblock(); 114 #endif 115 116 int hpseek; 117 118 hpdkinit(mi) 119 struct mba_info *mi; 120 { 121 register struct hpst *st = &hpst[mi->mi_type]; 122 123 if (mi->mi_dk >= 0) 124 dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256); 125 } 126 127 hpstrategy(bp) 128 register struct buf *bp; 129 { 130 register struct mba_info *mi; 131 register struct hpst *st; 132 register int unit; 133 long sz, bn; 134 int xunit = minor(bp->b_dev) & 07; 135 136 sz = bp->b_bcount; 137 sz = (sz+511) >> 9; 138 unit = dkunit(bp); 139 if (unit >= NHP) 140 goto bad; 141 mi = hpinfo[unit]; 142 if (mi == 0 || mi->mi_alive == 0) 143 goto bad; 144 st = &hpst[mi->mi_type]; 145 if (bp->b_blkno < 0 || 146 (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks) 147 goto bad; 148 bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff; 149 (void) spl5(); 150 disksort(&mi->mi_tab, bp); 151 if (mi->mi_tab.b_active == 0) 152 mbustart(mi); 153 (void) spl0(); 154 return; 155 156 bad: 157 bp->b_flags |= B_ERROR; 158 iodone(bp); 159 return; 160 } 161 162 hpustart(mi) 163 register struct mba_info *mi; 164 { 165 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 166 register struct buf *bp = mi->mi_tab.b_actf; 167 register struct hpst *st; 168 daddr_t bn; 169 int sn, dist, flags; 170 171 if ((hpaddr->hpcs1&HP_DVA) == 0) 172 return (MBU_BUSY); 173 if ((hpaddr->hpds & HP_VV) == 0) { 174 hpaddr->hpcs1 = HP_DCLR|HP_GO; 175 hpaddr->hpcs1 = HP_PRESET|HP_GO; 176 hpaddr->hpof = HP_FMT22; 177 } 178 if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1) 179 return (MBU_DODATA); 180 if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL)) 181 return (MBU_DODATA); 182 st = &hpst[mi->mi_type]; 183 bn = dkblock(bp); 184 sn = bn%st->nspc; 185 sn = (sn+st->nsect-hpSDIST)%st->nsect; 186 if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) { 187 if (hpseek) 188 return (MBU_DODATA); 189 dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1; 190 if (dist < 0) 191 dist += st->nsect; 192 if (dist > st->nsect - hpRDIST) 193 return (MBU_DODATA); 194 } else 195 hpaddr->hpdc = bp->b_cylin; 196 if (hpseek) 197 hpaddr->hpcs1 = HP_SEEK|HP_GO; 198 else { 199 hpaddr->hpda = sn; 200 hpaddr->hpcs1 = HP_SEARCH|HP_GO; 201 } 202 return (MBU_STARTED); 203 } 204 205 hpstart(mi) 206 register struct mba_info *mi; 207 { 208 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 209 register struct buf *bp = mi->mi_tab.b_actf; 210 register struct hpst *st = &hpst[mi->mi_type]; 211 daddr_t bn; 212 int sn, tn; 213 214 bn = dkblock(bp); 215 sn = bn%st->nspc; 216 tn = sn/st->nsect; 217 sn %= st->nsect; 218 if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) { 219 hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22; 220 hpaddr->hpcs1 = HP_OFFSET|HP_GO; 221 while (hpaddr->hpds & HP_PIP) 222 ; 223 mbclrattn(mi); 224 } 225 hpaddr->hpdc = bp->b_cylin; 226 hpaddr->hpda = (tn << 8) + sn; 227 } 228 229 hpdtint(mi, mbasr) 230 register struct mba_info *mi; 231 int mbasr; 232 { 233 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 234 register struct buf *bp = mi->mi_tab.b_actf; 235 int retry = 0; 236 237 if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) { 238 if (hpaddr->hper1&HP_WLE) { 239 printf("hp%d is write locked\n", dkunit(bp)); 240 bp->b_flags |= B_ERROR; 241 } else if (++mi->mi_tab.b_errcnt > 27 || 242 mbasr & MBASR_HARD || 243 hpaddr->hper1 & HPER1_HARD || 244 hpaddr->hper2 & HPER2_HARD) { 245 harderr(bp); 246 printf("hp%d%c mbasr=%b er1=%b er2=%b\n", 247 dkunit(bp), 'a'+(minor(bp->b_dev)&07), 248 mbasr, mbasr_bits, 249 hpaddr->hper1, HPER1_BITS, 250 hpaddr->hper2, HPER2_BITS); 251 bp->b_flags |= B_ERROR; 252 #ifdef notdef 253 } else if (hpaddr->hper2&HP_SSE) { 254 hpecc(mi, 1); 255 return (MBD_RESTARTED); 256 #endif 257 } else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) { 258 if (hpecc(mi, 0)) 259 return (MBD_RESTARTED); 260 /* else done */ 261 } else 262 retry = 1; 263 hpaddr->hpcs1 = HP_DCLR|HP_GO; 264 if ((mi->mi_tab.b_errcnt&07) == 4) { 265 hpaddr->hpcs1 = HP_RECAL|HP_GO; 266 hprecal[mi->mi_unit] = 1; 267 return (MBD_RESTARTED); 268 } 269 if (retry) 270 return (MBD_RETRY); 271 } 272 if (hprecal[mi->mi_unit]) { 273 hprecal[mi->mi_unit] = 0; 274 return (MBD_RETRY); 275 } 276 bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff; 277 if (mi->mi_tab.b_errcnt > 16) { 278 hpaddr->hpcs1 = HP_RTC|HP_GO; 279 while (hpaddr->hpds & HP_PIP) 280 ; 281 mbclrattn(mi); 282 } 283 hpaddr->hpcs1 = HP_RELEASE|HP_GO; 284 return (MBD_DONE); 285 } 286 287 hpread(dev) 288 dev_t dev; 289 { 290 register int unit = minor(dev) >> 3; 291 292 if (unit >= NHP) 293 u.u_error = ENXIO; 294 else 295 physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys); 296 } 297 298 hpwrite(dev) 299 dev_t dev; 300 { 301 register int unit = minor(dev) >> 3; 302 303 if (unit >= NHP) 304 u.u_error = ENXIO; 305 else 306 physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys); 307 } 308 309 hpecc(mi, rm80sse) 310 register struct mba_info *mi; 311 int rm80sse; 312 { 313 register struct mba_regs *mbp = mi->mi_mba; 314 register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv; 315 register struct buf *bp = mi->mi_tab.b_actf; 316 register struct hpst *st; 317 register int i; 318 caddr_t addr; 319 int reg, bit, byte, npf, mask, o; 320 int bn, cn, tn, sn; 321 struct pte mpte; 322 int bcr; 323 324 bcr = mbp->mba_bcr & 0xffff; 325 if (bcr) 326 bcr |= 0xffff0000; /* sxt */ 327 npf = btop(bcr + bp->b_bcount) - 1; 328 reg = npf; 329 #ifdef notdef 330 if (rm80sse) { 331 rp->hpof |= HP_SSEI; 332 reg--; /* compensate in advance for reg-- below */ 333 goto sse; 334 } 335 #endif 336 o = (int)bp->b_un.b_addr & PGOFSET; 337 printf("soft ecc hp%d%c bn%d\n", dkunit(bp), 338 'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf); 339 mask = rp->hpec2&0xffff; 340 i = (rp->hpec1&0xffff) - 1; /* -1 makes 0 origin */ 341 bit = i&07; 342 i = (i&~07)>>3; 343 byte = i + o; 344 while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) { 345 mpte = mbp->mba_map[reg+btop(byte)]; 346 addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET); 347 putmemc(addr, getmemc(addr)^(mask<<bit)); 348 byte++; 349 i++; 350 bit -= 8; 351 } 352 if (bcr == 0) 353 return (0); 354 #ifdef notdef 355 sse: 356 if (rpof&HP_SSEI) 357 rp->hpda = rp->hpda + 1; 358 rp->hper1 = 0; 359 rp->hpcs1 = HP_RCOM|HP_GO; 360 #else 361 sse: 362 rp->hpcs1 = HP_DCLR|HP_GO; 363 bn = dkblock(bp); 364 st = &hpst[mi->mi_type]; 365 cn = bp->b_cylin; 366 sn = bn%(st->nspc) + npf + 1; 367 tn = sn/st->nsect; 368 sn %= st->nsect; 369 cn += tn/st->ntrak; 370 tn %= st->ntrak; 371 #ifdef notdef 372 if (rp->hpof&SSEI) 373 sn++; 374 #endif 375 rp->hpdc = cn; 376 rp->hpda = (tn<<8) + sn; 377 mbp->mba_sr = -1; 378 mbp->mba_var = (int)ptob(reg+1) + o; 379 rp->hpcs1 = HP_RCOM|HP_GO; 380 #endif 381 return (1); 382 } 383 384 #define DBSIZE 20 385 386 hpdump(dev) 387 dev_t dev; 388 { 389 register struct mba_info *mi; 390 register struct mba_regs *mba; 391 struct hpdevice *hpaddr; 392 char *start; 393 int num, unit; 394 register struct hpst *st; 395 396 num = maxfree; 397 start = 0; 398 unit = minor(dev) >> 3; 399 if (unit >= NHP) 400 return (ENXIO); 401 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 402 mi = phys(hpinfo[unit],struct mba_info *); 403 if (mi == 0 || mi->mi_alive == 0) 404 return (ENXIO); 405 mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba; 406 mba->mba_cr = MBAINIT; 407 hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive]; 408 if ((hpaddr->hpds & HP_VV) == 0) { 409 hpaddr->hpcs1 = HP_DCLR|HP_GO; 410 hpaddr->hpcs1 = HP_PRESET|HP_GO; 411 hpaddr->hpof = HP_FMT22; 412 } 413 st = &hpst[mi->mi_type]; 414 if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks) 415 return (EINVAL); 416 while (num > 0) { 417 register struct pte *hpte = mba->mba_map; 418 register int i; 419 int blk, cn, sn, tn; 420 daddr_t bn; 421 422 blk = num > DBSIZE ? DBSIZE : num; 423 bn = dumplo + btop(start); 424 cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff; 425 sn = bn%st->nspc; 426 tn = sn/st->nsect; 427 sn = sn%st->nsect; 428 hpaddr->hpdc = cn; 429 hpaddr->hpda = (tn << 8) + sn; 430 for (i = 0; i < blk; i++) 431 *(int *)hpte++ = (btop(start)+i) | PG_V; 432 mba->mba_sr = -1; 433 mba->mba_bcr = -(blk*NBPG); 434 mba->mba_var = 0; 435 hpaddr->hpcs1 = HP_WCOM | HP_GO; 436 while ((hpaddr->hpds & HP_DRY) == 0) 437 ; 438 if (hpaddr->hpds&HP_ERR) 439 return (EIO); 440 start += blk*NBPG; 441 num -= blk; 442 } 443 return (0); 444 } 445 #endif 446