xref: /csrg-svn/sys/vax/mba/hp.c (revision 2883)
1 /*	hp.c	4.20	81/03/03	*/
2 
3 #include "hp.h"
4 #if NHP > 0
5 /*
6  * HP disk driver for RP0x+RM0x
7  *
8  * TODO:
9  *	Check out handling of spun-down drives and write lock
10  *	Check RM80 skip sector handling, esp when ECC's occur later
11  *	Add reading of bad sector information and disk layout from sector 1
12  *	Add bad sector forwarding code
13  *	Check interaction with tape driver on same mba
14  *	Check multiple drive handling
15  */
16 
17 #include "../h/param.h"
18 #include "../h/systm.h"
19 #include "../h/dk.h"
20 #include "../h/buf.h"
21 #include "../h/conf.h"
22 #include "../h/dir.h"
23 #include "../h/user.h"
24 #include "../h/map.h"
25 #include "../h/pte.h"
26 #include "../h/mba.h"
27 #include "../h/mtpr.h"
28 #include "../h/vm.h"
29 #include "../h/cmap.h"
30 
31 #include "../h/hpreg.h"
32 
33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */
34 struct	size {
35 	daddr_t	nblocks;
36 	int	cyloff;
37 } hp_sizes[8] = {
38 	15884,	0,		/* A=cyl 0 thru 37 */
39 	33440,	38,		/* B=cyl 38 thru 117 */
40 	340670,	0,		/* C=cyl 0 thru 814 */
41 	0,	0,
42 	0,	0,
43 	0,	0,
44 	291346,	118,		/* G=cyl 118 thru 814 */
45 	0,	0,
46 }, rm_sizes[8] = {
47 	15884,	0,		/* A=cyl 0 thru 99 */
48 	33440,	100,		/* B=cyl 100 thru 309 */
49 	131680,	0,		/* C=cyl 0 thru 822 */
50 	2720,	291,
51 	0,	0,
52 	0,	0,
53 	82080,	310,		/* G=cyl 310 thru 822 */
54 	0,	0,
55 }, rm5_sizes[8] = {
56 	15884,	0,		/* A=cyl 0 thru 26 */
57 	33440,	27,		/* B=cyl 27 thru 81 */
58 	500992,	0,		/* C=cyl 0 thru 823 */
59 	15884,	562,		/* D=cyl 562 thru 588 */
60 	55936,	589,		/* E=cyl 589 thru 680 */
61 	86944,	681,		/* F=cyl 681 thru 823 */
62 	159296,	562,		/* G=cyl 562 thru 823 */
63 	291346,	82,		/* H=cyl 82 thru 561 */
64 }, rm80_sizes[8] = {
65 	15884,	0,		/* A=cyl 0 thru 36 */
66 	33440,	37,		/* B=cyl 37 thru 114 */
67 	242606,	0,		/* C=cyl 0 thru 558 */
68 	0,	0,
69 	0,	0,
70 	0,	0,
71 	82080,	115,		/* G=cyl 115 thru 304 */
72 	110236,	305,		/* H=cyl 305 thru 558 */
73 };
74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */
75 
76 #define	_hpSDIST	2
77 #define	_hpRDIST	3
78 
79 int	hpSDIST = _hpSDIST;
80 int	hpRDIST = _hpRDIST;
81 
82 short	hptypes[] =
83 	{ MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 };
84 struct	mba_info *hpinfo[NHP];
85 int	hpdkinit(),hpustart(),hpstart(),hpdtint();
86 struct	mba_driver hpdriver =
87 	{ hpdkinit, hpustart, hpstart, hpdtint, 0, hptypes, hpinfo };
88 
89 struct hpst {
90 	short	nsect;
91 	short	ntrak;
92 	short	nspc;
93 	short	ncyl;
94 	struct	size *sizes;
95 } hpst[] = {
96 	32,	5,	32*5,	823,	rm_sizes,	/* RM03 */
97 	32,	19,	32*19,	823,	rm5_sizes,	/* RM05 */
98 	22,	19,	22*19,	815,	hp_sizes,	/* RP06 */
99 	31,	14, 	31*14,	559,	rm80_sizes	/* RM80 */
100 };
101 
102 u_char	hp_offset[16] = {
103     HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800,
104     HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0,
105 };
106 
107 struct	buf	rhpbuf[NHP];
108 
109 #define	b_cylin b_resid
110 
111 #ifdef INTRLVE
112 daddr_t dkblock();
113 #endif
114 
115 int	hpseek;
116 
117 hpdkinit(mi)
118 	struct mba_info *mi;
119 {
120 	register struct hpst *st = &hpst[mi->mi_type];
121 
122 	if (mi->mi_dk >= 0)
123 		dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256);
124 }
125 
126 hpstrategy(bp)
127 	register struct buf *bp;
128 {
129 	register struct mba_info *mi;
130 	register struct hpst *st;
131 	register int unit;
132 	long sz, bn;
133 	int xunit = minor(bp->b_dev) & 07;
134 
135 	sz = bp->b_bcount;
136 	sz = (sz+511) >> 9;
137 	unit = dkunit(bp);
138 	if (unit >= NHP)
139 		goto bad;
140 	mi = hpinfo[unit];
141 	if (mi == 0 || mi->mi_alive == 0)
142 		goto bad;
143 	st = &hpst[mi->mi_type];
144 	if (bp->b_blkno < 0 ||
145 	    (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks)
146 		goto bad;
147 	bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff;
148 	(void) spl5();
149 	disksort(&mi->mi_tab, bp);
150 	if (mi->mi_tab.b_active == 0)
151 		mbustart(mi);
152 	(void) spl0();
153 	return;
154 
155 bad:
156 	bp->b_flags |= B_ERROR;
157 	iodone(bp);
158 	return;
159 }
160 
161 hpustart(mi)
162 	register struct mba_info *mi;
163 {
164 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
165 	register struct buf *bp = mi->mi_tab.b_actf;
166 	register struct hpst *st;
167 	daddr_t bn;
168 	int sn, dist, flags;
169 
170 	if ((hpaddr->hpcs1&HP_DVA) == 0)
171 		return (MBU_BUSY);
172 	if ((hpaddr->hpds & HP_VV) == 0) {
173 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
174 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
175 		hpaddr->hpof = HP_FMT22;
176 	}
177 	if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1)
178 		return (MBU_DODATA);
179 	if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL))
180 		return (MBU_DODATA);
181 	st = &hpst[mi->mi_type];
182 	bn = dkblock(bp);
183 	sn = bn%st->nspc;
184 	sn = (sn+st->nsect-hpSDIST)%st->nsect;
185 	if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) {
186 		if (hpseek)
187 			return (MBU_DODATA);
188 		dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1;
189 		if (dist < 0)
190 			dist += st->nsect;
191 		if (dist > st->nsect - hpRDIST)
192 			return (MBU_DODATA);
193 	} else
194 		hpaddr->hpdc = bp->b_cylin;
195 	if (hpseek)
196 		hpaddr->hpcs1 = HP_SEEK|HP_GO;
197 	else {
198 		hpaddr->hpda = sn;
199 		hpaddr->hpcs1 = HP_SEARCH|HP_GO;
200 	}
201 	return (MBU_STARTED);
202 }
203 
204 hpstart(mi)
205 	register struct mba_info *mi;
206 {
207 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
208 	register struct buf *bp = mi->mi_tab.b_actf;
209 	register struct hpst *st = &hpst[mi->mi_type];
210 	daddr_t bn;
211 	int sn, tn;
212 
213 	bn = dkblock(bp);
214 	sn = bn%st->nspc;
215 	tn = sn/st->nsect;
216 	sn %= st->nsect;
217 	if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) {
218 		hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22;
219 		hpaddr->hpcs1 = HP_OFFSET|HP_GO;
220 		while (hpaddr->hpds & HP_PIP)
221 			;
222 		mbclrattn(mi);
223 	}
224 	hpaddr->hpdc = bp->b_cylin;
225 	hpaddr->hpda = (tn << 8) + sn;
226 }
227 
228 hpdtint(mi, mbasr)
229 	register struct mba_info *mi;
230 	int mbasr;
231 {
232 	register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv;
233 	register struct buf *bp = mi->mi_tab.b_actf;
234 	int retry = 0;
235 
236 	if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) {
237 		int dready = 0;
238 
239 		while ((hpaddr->hpds & HP_DRY) == 0) {
240 			if (++dready > 32)
241 				break;
242 		}
243 		if ((hpaddr->hpds&HP_DREADY) != HP_DREADY) {
244 			printf("hp%d not ready\n", dkunit(bp));
245 			bp->b_flags |= B_ERROR;
246 		} else if (hpaddr->hper1&HP_WLE) {
247 			printf("hp%d is write locked\n", dkunit(bp));
248 			bp->b_flags |= B_ERROR;
249 		} else if (++mi->mi_tab.b_errcnt > 27 ||
250 		    mbasr & MBASR_HARD ||
251 		    hpaddr->hper1 & HPER1_HARD ||
252 		    hpaddr->hper2 & HPER2_HARD) {
253 			harderr(bp);
254 			printf("hp%d mbasr=%b er1=%b er2=%b\n",
255 			    dkunit(bp), mbasr, mbasr_bits,
256 			    hpaddr->hper1, HPER1_BITS,
257 			    hpaddr->hper2, HPER2_BITS);
258 			bp->b_flags |= B_ERROR;
259 #ifdef notdef
260 		} else if (hpaddr->hper2&HP_SSE) {
261 			hpecc(mi, 1);
262 			return (MBD_RESTARTED);
263 #endif
264 		} else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) {
265 			if (hpecc(mi, 0))
266 				return (MBD_RESTARTED);
267 			/* else done */
268 		} else
269 			retry = 1;
270 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
271 		if ((mi->mi_tab.b_errcnt&07) == 4) {
272 			hpaddr->hpcs1 = HP_RECAL|HP_GO;
273 			/* SHOULD SET AN INTERRUPT AND RETURN */
274 			/* AND HANDLE ALA rk.c OR up.c */
275 			while (hpaddr->hpds & HP_PIP)
276 				;
277 			mbclrattn(mi);
278 		}
279 		if (retry)
280 			return (MBD_RETRY);
281 	}
282 	bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff;
283 	if (mi->mi_tab.b_errcnt > 16) {
284 		hpaddr->hpcs1 = HP_RTC|HP_GO;
285 		while (hpaddr->hpds & HP_PIP)
286 			;
287 		mbclrattn(mi);
288 	}
289 	hpaddr->hpcs1 = HP_RELEASE|HP_GO;
290 	return (MBD_DONE);
291 }
292 
293 hpread(dev)
294 	dev_t dev;
295 {
296 	register int unit = minor(dev) >> 3;
297 
298 	if (unit >= NHP)
299 		u.u_error = ENXIO;
300 	else
301 		physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys);
302 }
303 
304 hpwrite(dev)
305 	dev_t dev;
306 {
307 	register int unit = minor(dev) >> 3;
308 
309 	if (unit >= NHP)
310 		u.u_error = ENXIO;
311 	else
312 		physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys);
313 }
314 
315 hpecc(mi, rm80sse)
316 	register struct mba_info *mi;
317 	int rm80sse;
318 {
319 	register struct mba_regs *mbp = mi->mi_mba;
320 	register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv;
321 	register struct buf *bp = mi->mi_tab.b_actf;
322 	register struct hpst *st;
323 	register int i;
324 	caddr_t addr;
325 	int reg, bit, byte, npf, mask, o;
326 	int bn, cn, tn, sn;
327 	struct pte mpte;
328 	int bcr;
329 
330 	bcr = mbp->mba_bcr & 0xffff;
331 	if (bcr)
332 		bcr |= 0xffff0000;		/* sxt */
333 	npf = btop(bcr + bp->b_bcount) - 1;
334 	reg = npf;
335 #ifdef notdef
336 	if (rm80sse) {
337 		rp->hpof |= HP_SSEI;
338 		reg--;		/* compensate in advance for reg-- below */
339 		goto sse;
340 	}
341 #endif
342 	o = (int)bp->b_un.b_addr & PGOFSET;
343 	printf("SOFT ECC hp%d%c bn%d\n", dkunit(bp),
344 	    'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf);
345 	mask = rp->hpec2&0xffff;
346 	i = (rp->hpec1&0xffff) - 1;		/* -1 makes 0 origin */
347 	bit = i&07;
348 	i = (i&~07)>>3;
349 	byte = i + o;
350 	while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) {
351 		mpte = mbp->mba_map[reg+btop(byte)];
352 		addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET);
353 		putmemc(addr, getmemc(addr)^(mask<<bit));
354 		byte++;
355 		i++;
356 		bit -= 8;
357 	}
358 	if (bcr == 0)
359 		return (0);
360 #ifdef notdef
361 sse:
362 	if (rpof&HP_SSEI)
363 		rp->hpda = rp->hpda + 1;
364 	rp->hper1 = 0;
365 	rp->hpcs1 = HP_RCOM|HP_GO;
366 #else
367 sse:
368 	rp->hpcs1 = HP_DCLR|HP_GO;
369 	bn = dkblock(bp);
370 	st = &hpst[mi->mi_type];
371 	cn = bp->b_cylin;
372 	sn = bn%(st->nspc) + npf + 1;
373 	tn = sn/st->nsect;
374 	sn %= st->nsect;
375 	cn += tn/st->ntrak;
376 	tn %= st->ntrak;
377 #ifdef notdef
378 	if (rp->hpof&SSEI)
379 		sn++;
380 #endif
381 	rp->hpdc = cn;
382 	rp->hpda = (tn<<8) + sn;
383 	mbp->mba_sr = -1;
384 	mbp->mba_var = (int)ptob(reg+1) + o;
385 	rp->hpcs1 = HP_RCOM|HP_GO;
386 #endif
387 	return (1);
388 }
389 
390 #define	DBSIZE	20
391 
392 hpdump(dev)
393 	dev_t dev;
394 {
395 	register struct mba_info *mi;
396 	register struct mba_regs *mba;
397 	struct hpdevice *hpaddr;
398 	char *start;
399 	int num, unit;
400 	register struct hpst *st;
401 
402 	num = maxfree;
403 	start = 0;
404 	unit = minor(dev) >> 3;
405 	if (unit >= NHP)
406 		return (ENXIO);
407 #define	phys(a,b)	((b)((int)(a)&0x7fffffff))
408 	mi = phys(hpinfo[unit],struct mba_info *);
409 	if (mi == 0 || mi->mi_alive == 0)
410 		return (ENXIO);
411 	mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba;
412 	mba->mba_cr = MBAINIT;
413 	hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive];
414 	if ((hpaddr->hpds & HP_VV) == 0) {
415 		hpaddr->hpcs1 = HP_DCLR|HP_GO;
416 		hpaddr->hpcs1 = HP_PRESET|HP_GO;
417 		hpaddr->hpof = HP_FMT22;
418 	}
419 	st = &hpst[mi->mi_type];
420 	if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks)
421 		return (EINVAL);
422 	while (num > 0) {
423 		register struct pte *hpte = mba->mba_map;
424 		register int i;
425 		int blk, cn, sn, tn;
426 		daddr_t bn;
427 
428 		blk = num > DBSIZE ? DBSIZE : num;
429 		bn = dumplo + btop(start);
430 		cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff;
431 		sn = bn%st->nspc;
432 		tn = sn/st->nsect;
433 		sn = sn%st->nsect;
434 		hpaddr->hpdc = cn;
435 		hpaddr->hpda = (tn << 8) + sn;
436 		for (i = 0; i < blk; i++)
437 			*(int *)hpte++ = (btop(start)+i) | PG_V;
438 		mba->mba_sr = -1;
439 		mba->mba_bcr = -(blk*NBPG);
440 		mba->mba_var = 0;
441 		hpaddr->hpcs1 = HP_WCOM | HP_GO;
442 		while ((hpaddr->hpds & HP_DRY) == 0)
443 			;
444 		if (hpaddr->hpds&HP_ERR)
445 			return (EIO);
446 		start += blk*NBPG;
447 		num -= blk;
448 	}
449 	return (0);
450 }
451 #endif
452