1 /* hp.c 4.20 81/03/03 */ 2 3 #include "hp.h" 4 #if NHP > 0 5 /* 6 * HP disk driver for RP0x+RM0x 7 * 8 * TODO: 9 * Check out handling of spun-down drives and write lock 10 * Check RM80 skip sector handling, esp when ECC's occur later 11 * Add reading of bad sector information and disk layout from sector 1 12 * Add bad sector forwarding code 13 * Check interaction with tape driver on same mba 14 * Check multiple drive handling 15 */ 16 17 #include "../h/param.h" 18 #include "../h/systm.h" 19 #include "../h/dk.h" 20 #include "../h/buf.h" 21 #include "../h/conf.h" 22 #include "../h/dir.h" 23 #include "../h/user.h" 24 #include "../h/map.h" 25 #include "../h/pte.h" 26 #include "../h/mba.h" 27 #include "../h/mtpr.h" 28 #include "../h/vm.h" 29 #include "../h/cmap.h" 30 31 #include "../h/hpreg.h" 32 33 /* THIS SHOULD BE READ OFF THE PACK, PER DRIVE */ 34 struct size { 35 daddr_t nblocks; 36 int cyloff; 37 } hp_sizes[8] = { 38 15884, 0, /* A=cyl 0 thru 37 */ 39 33440, 38, /* B=cyl 38 thru 117 */ 40 340670, 0, /* C=cyl 0 thru 814 */ 41 0, 0, 42 0, 0, 43 0, 0, 44 291346, 118, /* G=cyl 118 thru 814 */ 45 0, 0, 46 }, rm_sizes[8] = { 47 15884, 0, /* A=cyl 0 thru 99 */ 48 33440, 100, /* B=cyl 100 thru 309 */ 49 131680, 0, /* C=cyl 0 thru 822 */ 50 2720, 291, 51 0, 0, 52 0, 0, 53 82080, 310, /* G=cyl 310 thru 822 */ 54 0, 0, 55 }, rm5_sizes[8] = { 56 15884, 0, /* A=cyl 0 thru 26 */ 57 33440, 27, /* B=cyl 27 thru 81 */ 58 500992, 0, /* C=cyl 0 thru 823 */ 59 15884, 562, /* D=cyl 562 thru 588 */ 60 55936, 589, /* E=cyl 589 thru 680 */ 61 86944, 681, /* F=cyl 681 thru 823 */ 62 159296, 562, /* G=cyl 562 thru 823 */ 63 291346, 82, /* H=cyl 82 thru 561 */ 64 }, rm80_sizes[8] = { 65 15884, 0, /* A=cyl 0 thru 36 */ 66 33440, 37, /* B=cyl 37 thru 114 */ 67 242606, 0, /* C=cyl 0 thru 558 */ 68 0, 0, 69 0, 0, 70 0, 0, 71 82080, 115, /* G=cyl 115 thru 304 */ 72 110236, 305, /* H=cyl 305 thru 558 */ 73 }; 74 /* END OF STUFF WHICH SHOULD BE READ IN PER DISK */ 75 76 #define _hpSDIST 2 77 #define _hpRDIST 3 78 79 int hpSDIST = _hpSDIST; 80 int hpRDIST = _hpRDIST; 81 82 short hptypes[] = 83 { MBDT_RM03, MBDT_RM05, MBDT_RP06, MBDT_RM80, 0 }; 84 struct mba_info *hpinfo[NHP]; 85 int hpdkinit(),hpustart(),hpstart(),hpdtint(); 86 struct mba_driver hpdriver = 87 { hpdkinit, hpustart, hpstart, hpdtint, 0, hptypes, hpinfo }; 88 89 struct hpst { 90 short nsect; 91 short ntrak; 92 short nspc; 93 short ncyl; 94 struct size *sizes; 95 } hpst[] = { 96 32, 5, 32*5, 823, rm_sizes, /* RM03 */ 97 32, 19, 32*19, 823, rm5_sizes, /* RM05 */ 98 22, 19, 22*19, 815, hp_sizes, /* RP06 */ 99 31, 14, 31*14, 559, rm80_sizes /* RM80 */ 100 }; 101 102 u_char hp_offset[16] = { 103 HP_P400, HP_M400, HP_P400, HP_M400, HP_P800, HP_M800, HP_P800, HP_M800, 104 HP_P1200, HP_M1200, HP_P1200, HP_M1200, 0, 0, 0, 0, 105 }; 106 107 struct buf rhpbuf[NHP]; 108 109 #define b_cylin b_resid 110 111 #ifdef INTRLVE 112 daddr_t dkblock(); 113 #endif 114 115 int hpseek; 116 117 hpdkinit(mi) 118 struct mba_info *mi; 119 { 120 register struct hpst *st = &hpst[mi->mi_type]; 121 122 if (mi->mi_dk >= 0) 123 dk_mspw[mi->mi_dk] = 1.0 / 60 / (st->nsect * 256); 124 } 125 126 hpstrategy(bp) 127 register struct buf *bp; 128 { 129 register struct mba_info *mi; 130 register struct hpst *st; 131 register int unit; 132 long sz, bn; 133 int xunit = minor(bp->b_dev) & 07; 134 135 sz = bp->b_bcount; 136 sz = (sz+511) >> 9; 137 unit = dkunit(bp); 138 if (unit >= NHP) 139 goto bad; 140 mi = hpinfo[unit]; 141 if (mi == 0 || mi->mi_alive == 0) 142 goto bad; 143 st = &hpst[mi->mi_type]; 144 if (bp->b_blkno < 0 || 145 (bn = dkblock(bp))+sz > st->sizes[xunit].nblocks) 146 goto bad; 147 bp->b_cylin = bn/st->nspc + st->sizes[xunit].cyloff; 148 (void) spl5(); 149 disksort(&mi->mi_tab, bp); 150 if (mi->mi_tab.b_active == 0) 151 mbustart(mi); 152 (void) spl0(); 153 return; 154 155 bad: 156 bp->b_flags |= B_ERROR; 157 iodone(bp); 158 return; 159 } 160 161 hpustart(mi) 162 register struct mba_info *mi; 163 { 164 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 165 register struct buf *bp = mi->mi_tab.b_actf; 166 register struct hpst *st; 167 daddr_t bn; 168 int sn, dist, flags; 169 170 if ((hpaddr->hpcs1&HP_DVA) == 0) 171 return (MBU_BUSY); 172 if ((hpaddr->hpds & HP_VV) == 0) { 173 hpaddr->hpcs1 = HP_DCLR|HP_GO; 174 hpaddr->hpcs1 = HP_PRESET|HP_GO; 175 hpaddr->hpof = HP_FMT22; 176 } 177 if (mi->mi_tab.b_active || mi->mi_hd->mh_ndrive == 1) 178 return (MBU_DODATA); 179 if ((hpaddr->hpds & (HP_DPR|HP_MOL)) != (HP_DPR|HP_MOL)) 180 return (MBU_DODATA); 181 st = &hpst[mi->mi_type]; 182 bn = dkblock(bp); 183 sn = bn%st->nspc; 184 sn = (sn+st->nsect-hpSDIST)%st->nsect; 185 if (bp->b_cylin == (hpaddr->hpdc & 0xffff)) { 186 if (hpseek) 187 return (MBU_DODATA); 188 dist = ((hpaddr->hpla & 0xffff)>>6) - st->nsect + 1; 189 if (dist < 0) 190 dist += st->nsect; 191 if (dist > st->nsect - hpRDIST) 192 return (MBU_DODATA); 193 } else 194 hpaddr->hpdc = bp->b_cylin; 195 if (hpseek) 196 hpaddr->hpcs1 = HP_SEEK|HP_GO; 197 else { 198 hpaddr->hpda = sn; 199 hpaddr->hpcs1 = HP_SEARCH|HP_GO; 200 } 201 return (MBU_STARTED); 202 } 203 204 hpstart(mi) 205 register struct mba_info *mi; 206 { 207 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 208 register struct buf *bp = mi->mi_tab.b_actf; 209 register struct hpst *st = &hpst[mi->mi_type]; 210 daddr_t bn; 211 int sn, tn; 212 213 bn = dkblock(bp); 214 sn = bn%st->nspc; 215 tn = sn/st->nsect; 216 sn %= st->nsect; 217 if (mi->mi_tab.b_errcnt >= 16 && (bp->b_flags&B_READ) != 0) { 218 hpaddr->hpof = hp_offset[mi->mi_tab.b_errcnt & 017] | HP_FMT22; 219 hpaddr->hpcs1 = HP_OFFSET|HP_GO; 220 while (hpaddr->hpds & HP_PIP) 221 ; 222 mbclrattn(mi); 223 } 224 hpaddr->hpdc = bp->b_cylin; 225 hpaddr->hpda = (tn << 8) + sn; 226 } 227 228 hpdtint(mi, mbasr) 229 register struct mba_info *mi; 230 int mbasr; 231 { 232 register struct hpdevice *hpaddr = (struct hpdevice *)mi->mi_drv; 233 register struct buf *bp = mi->mi_tab.b_actf; 234 int retry = 0; 235 236 if (hpaddr->hpds&HP_ERR || mbasr&MBAEBITS) { 237 int dready = 0; 238 239 while ((hpaddr->hpds & HP_DRY) == 0) { 240 if (++dready > 32) 241 break; 242 } 243 if ((hpaddr->hpds&HP_DREADY) != HP_DREADY) { 244 printf("hp%d not ready\n", dkunit(bp)); 245 bp->b_flags |= B_ERROR; 246 } else if (hpaddr->hper1&HP_WLE) { 247 printf("hp%d is write locked\n", dkunit(bp)); 248 bp->b_flags |= B_ERROR; 249 } else if (++mi->mi_tab.b_errcnt > 27 || 250 mbasr & MBASR_HARD || 251 hpaddr->hper1 & HPER1_HARD || 252 hpaddr->hper2 & HPER2_HARD) { 253 harderr(bp); 254 printf("hp%d mbasr=%b er1=%b er2=%b\n", 255 dkunit(bp), mbasr, mbasr_bits, 256 hpaddr->hper1, HPER1_BITS, 257 hpaddr->hper2, HPER2_BITS); 258 bp->b_flags |= B_ERROR; 259 #ifdef notdef 260 } else if (hpaddr->hper2&HP_SSE) { 261 hpecc(mi, 1); 262 return (MBD_RESTARTED); 263 #endif 264 } else if ((hpaddr->hper1&(HP_DCK|HP_ECH)) == HP_DCK) { 265 if (hpecc(mi, 0)) 266 return (MBD_RESTARTED); 267 /* else done */ 268 } else 269 retry = 1; 270 hpaddr->hpcs1 = HP_DCLR|HP_GO; 271 if ((mi->mi_tab.b_errcnt&07) == 4) { 272 hpaddr->hpcs1 = HP_RECAL|HP_GO; 273 /* SHOULD SET AN INTERRUPT AND RETURN */ 274 /* AND HANDLE ALA rk.c OR up.c */ 275 while (hpaddr->hpds & HP_PIP) 276 ; 277 mbclrattn(mi); 278 } 279 if (retry) 280 return (MBD_RETRY); 281 } 282 bp->b_resid = -(mi->mi_mba->mba_bcr) & 0xffff; 283 if (mi->mi_tab.b_errcnt > 16) { 284 hpaddr->hpcs1 = HP_RTC|HP_GO; 285 while (hpaddr->hpds & HP_PIP) 286 ; 287 mbclrattn(mi); 288 } 289 hpaddr->hpcs1 = HP_RELEASE|HP_GO; 290 return (MBD_DONE); 291 } 292 293 hpread(dev) 294 dev_t dev; 295 { 296 register int unit = minor(dev) >> 3; 297 298 if (unit >= NHP) 299 u.u_error = ENXIO; 300 else 301 physio(hpstrategy, &rhpbuf[unit], dev, B_READ, minphys); 302 } 303 304 hpwrite(dev) 305 dev_t dev; 306 { 307 register int unit = minor(dev) >> 3; 308 309 if (unit >= NHP) 310 u.u_error = ENXIO; 311 else 312 physio(hpstrategy, &rhpbuf[unit], dev, B_WRITE, minphys); 313 } 314 315 hpecc(mi, rm80sse) 316 register struct mba_info *mi; 317 int rm80sse; 318 { 319 register struct mba_regs *mbp = mi->mi_mba; 320 register struct hpdevice *rp = (struct hpdevice *)mi->mi_drv; 321 register struct buf *bp = mi->mi_tab.b_actf; 322 register struct hpst *st; 323 register int i; 324 caddr_t addr; 325 int reg, bit, byte, npf, mask, o; 326 int bn, cn, tn, sn; 327 struct pte mpte; 328 int bcr; 329 330 bcr = mbp->mba_bcr & 0xffff; 331 if (bcr) 332 bcr |= 0xffff0000; /* sxt */ 333 npf = btop(bcr + bp->b_bcount) - 1; 334 reg = npf; 335 #ifdef notdef 336 if (rm80sse) { 337 rp->hpof |= HP_SSEI; 338 reg--; /* compensate in advance for reg-- below */ 339 goto sse; 340 } 341 #endif 342 o = (int)bp->b_un.b_addr & PGOFSET; 343 printf("SOFT ECC hp%d%c bn%d\n", dkunit(bp), 344 'a'+(minor(bp->b_dev)&07), bp->b_blkno + npf); 345 mask = rp->hpec2&0xffff; 346 i = (rp->hpec1&0xffff) - 1; /* -1 makes 0 origin */ 347 bit = i&07; 348 i = (i&~07)>>3; 349 byte = i + o; 350 while (i < 512 && (int)ptob(npf)+i < bp->b_bcount && bit > -11) { 351 mpte = mbp->mba_map[reg+btop(byte)]; 352 addr = ptob(mpte.pg_pfnum) + (byte & PGOFSET); 353 putmemc(addr, getmemc(addr)^(mask<<bit)); 354 byte++; 355 i++; 356 bit -= 8; 357 } 358 if (bcr == 0) 359 return (0); 360 #ifdef notdef 361 sse: 362 if (rpof&HP_SSEI) 363 rp->hpda = rp->hpda + 1; 364 rp->hper1 = 0; 365 rp->hpcs1 = HP_RCOM|HP_GO; 366 #else 367 sse: 368 rp->hpcs1 = HP_DCLR|HP_GO; 369 bn = dkblock(bp); 370 st = &hpst[mi->mi_type]; 371 cn = bp->b_cylin; 372 sn = bn%(st->nspc) + npf + 1; 373 tn = sn/st->nsect; 374 sn %= st->nsect; 375 cn += tn/st->ntrak; 376 tn %= st->ntrak; 377 #ifdef notdef 378 if (rp->hpof&SSEI) 379 sn++; 380 #endif 381 rp->hpdc = cn; 382 rp->hpda = (tn<<8) + sn; 383 mbp->mba_sr = -1; 384 mbp->mba_var = (int)ptob(reg+1) + o; 385 rp->hpcs1 = HP_RCOM|HP_GO; 386 #endif 387 return (1); 388 } 389 390 #define DBSIZE 20 391 392 hpdump(dev) 393 dev_t dev; 394 { 395 register struct mba_info *mi; 396 register struct mba_regs *mba; 397 struct hpdevice *hpaddr; 398 char *start; 399 int num, unit; 400 register struct hpst *st; 401 402 num = maxfree; 403 start = 0; 404 unit = minor(dev) >> 3; 405 if (unit >= NHP) 406 return (ENXIO); 407 #define phys(a,b) ((b)((int)(a)&0x7fffffff)) 408 mi = phys(hpinfo[unit],struct mba_info *); 409 if (mi == 0 || mi->mi_alive == 0) 410 return (ENXIO); 411 mba = phys(mi->mi_hd, struct mba_hd *)->mh_physmba; 412 mba->mba_cr = MBAINIT; 413 hpaddr = (struct hpdevice *)&mba->mba_drv[mi->mi_drive]; 414 if ((hpaddr->hpds & HP_VV) == 0) { 415 hpaddr->hpcs1 = HP_DCLR|HP_GO; 416 hpaddr->hpcs1 = HP_PRESET|HP_GO; 417 hpaddr->hpof = HP_FMT22; 418 } 419 st = &hpst[mi->mi_type]; 420 if (dumplo < 0 || dumplo + num >= st->sizes[minor(dev)&07].nblocks) 421 return (EINVAL); 422 while (num > 0) { 423 register struct pte *hpte = mba->mba_map; 424 register int i; 425 int blk, cn, sn, tn; 426 daddr_t bn; 427 428 blk = num > DBSIZE ? DBSIZE : num; 429 bn = dumplo + btop(start); 430 cn = bn/st->nspc + st->sizes[minor(dev)&07].cyloff; 431 sn = bn%st->nspc; 432 tn = sn/st->nsect; 433 sn = sn%st->nsect; 434 hpaddr->hpdc = cn; 435 hpaddr->hpda = (tn << 8) + sn; 436 for (i = 0; i < blk; i++) 437 *(int *)hpte++ = (btop(start)+i) | PG_V; 438 mba->mba_sr = -1; 439 mba->mba_bcr = -(blk*NBPG); 440 mba->mba_var = 0; 441 hpaddr->hpcs1 = HP_WCOM | HP_GO; 442 while ((hpaddr->hpds & HP_DRY) == 0) 443 ; 444 if (hpaddr->hpds&HP_ERR) 445 return (EIO); 446 start += blk*NBPG; 447 num -= blk; 448 } 449 return (0); 450 } 451 #endif 452