1 /* 2 * Copyright (c) 1988 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Digital Equipment Corp. 7 * 8 * %sccs.include.redist.c% 9 * 10 * @(#)if_qe.c 7.17 (Berkeley) 07/24/90 11 */ 12 13 /* from @(#)if_qe.c 1.15 (ULTRIX) 4/16/86 */ 14 15 /**************************************************************** 16 * * 17 * Licensed from Digital Equipment Corporation * 18 * Copyright (c) * 19 * Digital Equipment Corporation * 20 * Maynard, Massachusetts * 21 * 1985, 1986 * 22 * All rights reserved. * 23 * * 24 * The Information in this software is subject to change * 25 * without notice and should not be construed as a commitment * 26 * by Digital Equipment Corporation. Digital makes no * 27 * representations about the suitability of this software for * 28 * any purpose. It is supplied "As Is" without expressed or * 29 * implied warranty. * 30 * * 31 * If the Regents of the University of California or its * 32 * licensees modify the software in a manner creating * 33 * derivative copyright rights, appropriate copyright * 34 * legends may be placed on the derivative work in addition * 35 * to that set forth above. * 36 * * 37 ****************************************************************/ 38 /* --------------------------------------------------------------------- 39 * Modification History 40 * 41 * 15-Apr-86 -- afd 42 * Rename "unused_multi" to "qunused_multi" for extending Generic 43 * kernel to MicroVAXen. 44 * 45 * 18-mar-86 -- jaw br/cvec changed to NOT use registers. 46 * 47 * 12 March 86 -- Jeff Chase 48 * Modified to handle the new MCLGET macro 49 * Changed if_qe_data.c to use more receive buffers 50 * Added a flag to poke with adb to log qe_restarts on console 51 * 52 * 19 Oct 85 -- rjl 53 * Changed the watch dog timer from 30 seconds to 3. VMS is using 54 * less than 1 second in their's. Also turned the printf into an 55 * mprintf. 56 * 57 * 09/16/85 -- Larry Cohen 58 * Add 43bsd alpha tape changes for subnet routing 59 * 60 * 1 Aug 85 -- rjl 61 * Panic on a non-existent memory interrupt and the case where a packet 62 * was chained. The first should never happen because non-existant 63 * memory interrupts cause a bus reset. The second should never happen 64 * because we hang 2k input buffers on the device. 65 * 66 * 1 Aug 85 -- rich 67 * Fixed the broadcast loopback code to handle Clusters without 68 * wedging the system. 69 * 70 * 27 Feb. 85 -- ejf 71 * Return default hardware address on ioctl request. 72 * 73 * 12 Feb. 85 -- ejf 74 * Added internal extended loopback capability. 75 * 76 * 27 Dec. 84 -- rjl 77 * Fixed bug that caused every other transmit descriptor to be used 78 * instead of every descriptor. 79 * 80 * 21 Dec. 84 -- rjl 81 * Added watchdog timer to mask hardware bug that causes device lockup. 82 * 83 * 18 Dec. 84 -- rjl 84 * Reworked driver to use q-bus mapping routines. MicroVAX-I now does 85 * copying instead of m-buf shuffleing. 86 * A number of deficencies in the hardware/firmware were compensated 87 * for. See comments in qestart and qerint. 88 * 89 * 14 Nov. 84 -- jf 90 * Added usage counts for multicast addresses. 91 * Updated general protocol support to allow access to the Ethernet 92 * header. 93 * 94 * 04 Oct. 84 -- jf 95 * Added support for new ioctls to add and delete multicast addresses 96 * and set the physical address. 97 * Add support for general protocols. 98 * 99 * 14 Aug. 84 -- rjl 100 * Integrated Shannon changes. (allow arp above 1024 and ? ) 101 * 102 * 13 Feb. 84 -- rjl 103 * 104 * Initial version of driver. derived from IL driver. 105 * 106 * --------------------------------------------------------------------- 107 */ 108 109 #include "qe.h" 110 #if NQE > 0 111 /* 112 * Digital Q-BUS to NI Adapter 113 */ 114 #include "param.h" 115 #include "systm.h" 116 #include "mbuf.h" 117 #include "buf.h" 118 #include "protosw.h" 119 #include "socket.h" 120 #include "vmmac.h" 121 #include "ioctl.h" 122 #include "errno.h" 123 #include "syslog.h" 124 #include "time.h" 125 #include "kernel.h" 126 127 #include "../net/if.h" 128 #include "../net/netisr.h" 129 #include "../net/route.h" 130 131 #ifdef INET 132 #include "../netinet/in.h" 133 #include "../netinet/in_systm.h" 134 #include "../netinet/in_var.h" 135 #include "../netinet/ip.h" 136 #include "../netinet/if_ether.h" 137 #endif 138 139 #ifdef NS 140 #include "../netns/ns.h" 141 #include "../netns/ns_if.h" 142 #endif 143 144 #ifdef ISO 145 #include "../netiso/iso.h" 146 #include "../netiso/iso_var.h" 147 extern char all_es_snpa[], all_is_snpa[]; 148 #endif 149 150 #include "../vax/pte.h" 151 #include "../vax/cpu.h" 152 #include "../vax/mtpr.h" 153 #include "if_qereg.h" 154 #include "if_uba.h" 155 #include "../vaxuba/ubareg.h" 156 #include "../vaxuba/ubavar.h" 157 158 #if NQE == 1 && !defined(QNIVERT) 159 #define NRCV 15 /* Receive descriptors */ 160 #else 161 #define NRCV 10 /* Receive descriptors */ 162 #endif 163 #define NXMT 5 /* Transmit descriptors */ 164 #define NTOT (NXMT + NRCV) 165 166 #define QETIMEOUT 2 /* transmit timeout, must be > 1 */ 167 #define QESLOWTIMEOUT 40 /* timeout when no xmits in progress */ 168 169 #define MINDATA 60 170 171 /* 172 * Ethernet software status per interface. 173 * 174 * Each interface is referenced by a network interface structure, 175 * qe_if, which the routing code uses to locate the interface. 176 * This structure contains the output queue for the interface, its address, ... 177 */ 178 struct qe_softc { 179 struct arpcom qe_ac; /* Ethernet common part */ 180 #define qe_if qe_ac.ac_if /* network-visible interface */ 181 #define qe_addr qe_ac.ac_enaddr /* hardware Ethernet address */ 182 struct ifubinfo qe_uba; /* Q-bus resources */ 183 struct ifrw qe_ifr[NRCV]; /* for receive buffers; */ 184 struct ifxmt qe_ifw[NXMT]; /* for xmit buffers; */ 185 int qe_flags; /* software state */ 186 #define QEF_RUNNING 0x01 187 #define QEF_SETADDR 0x02 188 #define QEF_FASTTIMEO 0x04 189 int setupaddr; /* mapping info for setup pkts */ 190 int ipl; /* interrupt priority */ 191 struct qe_ring *rringaddr; /* mapping info for rings */ 192 struct qe_ring *tringaddr; /* "" */ 193 struct qe_ring rring[NRCV+1]; /* Receive ring descriptors */ 194 struct qe_ring tring[NXMT+1]; /* Transmit ring descriptors */ 195 u_char setup_pkt[16][8]; /* Setup packet */ 196 int rindex; /* Receive index */ 197 int tindex; /* Transmit index */ 198 int otindex; /* Old transmit index */ 199 int qe_intvec; /* Interrupt vector */ 200 struct qedevice *addr; /* device addr */ 201 int setupqueued; /* setup packet queued */ 202 int nxmit; /* Transmits in progress */ 203 int qe_restarts; /* timeouts */ 204 } qe_softc[NQE]; 205 206 struct uba_device *qeinfo[NQE]; 207 208 extern struct timeval time; 209 210 int qeprobe(), qeattach(), qeintr(), qetimeout(); 211 int qeinit(), qeioctl(), qereset(), qestart(); 212 213 u_short qestd[] = { 0 }; 214 struct uba_driver qedriver = 215 { qeprobe, 0, qeattach, 0, qestd, "qe", qeinfo }; 216 217 #define QEUNIT(x) minor(x) 218 /* 219 * The deqna shouldn't receive more than ETHERMTU + sizeof(struct ether_header) 220 * but will actually take in up to 2048 bytes. To guard against the receiver 221 * chaining buffers (which we aren't prepared to handle) we allocate 2kb 222 * size buffers. 223 */ 224 #define MAXPACKETSIZE 2048 /* Should really be ETHERMTU */ 225 /* 226 * Probe the QNA to see if it's there 227 */ 228 qeprobe(reg, ui) 229 caddr_t reg; 230 struct uba_device *ui; 231 { 232 register int br, cvec; /* r11, r10 value-result */ 233 register struct qedevice *addr = (struct qedevice *)reg; 234 register struct qe_ring *rp; 235 register struct qe_ring *prp; /* physical rp */ 236 register int i; 237 register struct qe_softc *sc = &qe_softc[ui->ui_unit]; 238 239 #ifdef lint 240 br = 0; cvec = br; br = cvec; 241 qeintr(0); 242 #endif 243 244 /* 245 * The QNA interrupts on i/o operations. To do an I/O operation 246 * we have to setup the interface by transmitting a setup packet. 247 */ 248 addr->qe_csr = QE_RESET; 249 addr->qe_csr &= ~QE_RESET; 250 addr->qe_vector = (uba_hd[numuba].uh_lastiv -= 4); 251 252 /* 253 * Map the communications area and the setup packet. 254 */ 255 sc->setupaddr = 256 uballoc(0, (caddr_t)sc->setup_pkt, sizeof(sc->setup_pkt), 0); 257 sc->rringaddr = (struct qe_ring *) uballoc(0, (caddr_t)sc->rring, 258 sizeof(struct qe_ring) * (NTOT+2), 0); 259 prp = (struct qe_ring *)UBAI_ADDR((int)sc->rringaddr); 260 261 /* 262 * The QNA will loop the setup packet back to the receive ring 263 * for verification, therefore we initialize the first 264 * receive & transmit ring descriptors and link the setup packet 265 * to them. 266 */ 267 qeinitdesc(sc->tring, (caddr_t)UBAI_ADDR(sc->setupaddr), 268 sizeof(sc->setup_pkt)); 269 qeinitdesc(sc->rring, (caddr_t)UBAI_ADDR(sc->setupaddr), 270 sizeof(sc->setup_pkt)); 271 272 rp = (struct qe_ring *)sc->tring; 273 rp->qe_setup = 1; 274 rp->qe_eomsg = 1; 275 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 276 rp->qe_valid = 1; 277 278 rp = (struct qe_ring *)sc->rring; 279 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 280 rp->qe_valid = 1; 281 282 /* 283 * Get the addr off of the interface and place it into the setup 284 * packet. This code looks strange due to the fact that the address 285 * is placed in the setup packet in col. major order. 286 */ 287 for( i = 0 ; i < 6 ; i++ ) 288 sc->setup_pkt[i][1] = addr->qe_sta_addr[i]; 289 290 qesetup( sc ); 291 /* 292 * Start the interface and wait for the packet. 293 */ 294 (void) spl6(); 295 addr->qe_csr = QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT; 296 addr->qe_rcvlist_lo = (short)prp; 297 addr->qe_rcvlist_hi = (short)((int)prp >> 16); 298 prp += NRCV+1; 299 addr->qe_xmtlist_lo = (short)prp; 300 addr->qe_xmtlist_hi = (short)((int)prp >> 16); 301 DELAY(10000); 302 /* 303 * All done with the bus resources. 304 */ 305 ubarelse(0, &sc->setupaddr); 306 ubarelse(0, (int *)&sc->rringaddr); 307 sc->ipl = br = qbgetpri(); 308 return( sizeof(struct qedevice) ); 309 } 310 311 /* 312 * Interface exists: make available by filling in network interface 313 * record. System will initialize the interface when it is ready 314 * to accept packets. 315 */ 316 qeattach(ui) 317 struct uba_device *ui; 318 { 319 register struct qe_softc *sc = &qe_softc[ui->ui_unit]; 320 register struct ifnet *ifp = &sc->qe_if; 321 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 322 register int i; 323 324 ifp->if_unit = ui->ui_unit; 325 ifp->if_name = "qe"; 326 ifp->if_mtu = ETHERMTU; 327 ifp->if_flags = IFF_BROADCAST; 328 329 /* 330 * Read the address from the prom and save it. 331 */ 332 for( i=0 ; i<6 ; i++ ) 333 sc->setup_pkt[i][1] = sc->qe_addr[i] = addr->qe_sta_addr[i] & 0xff; 334 addr->qe_vector |= 1; 335 printf("qe%d: %s, hardware address %s\n", ui->ui_unit, 336 addr->qe_vector&01 ? "delqa":"deqna", 337 ether_sprintf(sc->qe_addr)); 338 addr->qe_vector &= ~1; 339 340 /* 341 * Save the vector for initialization at reset time. 342 */ 343 sc->qe_intvec = addr->qe_vector; 344 345 ifp->if_init = qeinit; 346 ifp->if_output = ether_output; 347 ifp->if_start = qestart; 348 ifp->if_ioctl = qeioctl; 349 ifp->if_reset = qereset; 350 ifp->if_watchdog = qetimeout; 351 sc->qe_uba.iff_flags = UBA_CANTWAIT; 352 if_attach(ifp); 353 } 354 355 /* 356 * Reset of interface after UNIBUS reset. 357 * If interface is on specified uba, reset its state. 358 */ 359 qereset(unit, uban) 360 int unit, uban; 361 { 362 register struct uba_device *ui; 363 364 if (unit >= NQE || (ui = qeinfo[unit]) == 0 || ui->ui_alive == 0 || 365 ui->ui_ubanum != uban) 366 return; 367 printf(" qe%d", unit); 368 qe_softc[unit].qe_if.if_flags &= ~IFF_RUNNING; 369 qeinit(unit); 370 } 371 372 /* 373 * Initialization of interface. 374 */ 375 qeinit(unit) 376 int unit; 377 { 378 register struct qe_softc *sc = &qe_softc[unit]; 379 register struct uba_device *ui = qeinfo[unit]; 380 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 381 register struct ifnet *ifp = &sc->qe_if; 382 register i; 383 int s; 384 385 /* address not known */ 386 if (ifp->if_addrlist == (struct ifaddr *)0) 387 return; 388 if (sc->qe_flags & QEF_RUNNING) 389 return; 390 391 if ((ifp->if_flags & IFF_RUNNING) == 0) { 392 /* 393 * map the communications area onto the device 394 */ 395 i = uballoc(0, (caddr_t)sc->rring, 396 sizeof(struct qe_ring) * (NTOT+2), 0); 397 if (i == 0) 398 goto fail; 399 sc->rringaddr = (struct qe_ring *)UBAI_ADDR(i); 400 sc->tringaddr = sc->rringaddr + NRCV + 1; 401 i = uballoc(0, (caddr_t)sc->setup_pkt, 402 sizeof(sc->setup_pkt), 0); 403 if (i == 0) 404 goto fail; 405 sc->setupaddr = UBAI_ADDR(i); 406 /* 407 * init buffers and maps 408 */ 409 if (if_ubaminit(&sc->qe_uba, ui->ui_ubanum, 410 sizeof (struct ether_header), (int)btoc(MAXPACKETSIZE), 411 sc->qe_ifr, NRCV, sc->qe_ifw, NXMT) == 0) { 412 fail: 413 printf("qe%d: can't allocate uba resources\n", unit); 414 sc->qe_if.if_flags &= ~IFF_UP; 415 return; 416 } 417 } 418 /* 419 * Init the buffer descriptors and indexes for each of the lists and 420 * loop them back to form a ring. 421 */ 422 for (i = 0; i < NRCV; i++) { 423 qeinitdesc( &sc->rring[i], 424 (caddr_t)UBAI_ADDR(sc->qe_ifr[i].ifrw_info), MAXPACKETSIZE); 425 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 426 sc->rring[i].qe_valid = 1; 427 } 428 qeinitdesc(&sc->rring[i], (caddr_t)NULL, 0); 429 430 sc->rring[i].qe_addr_lo = (short)sc->rringaddr; 431 sc->rring[i].qe_addr_hi = (short)((int)sc->rringaddr >> 16); 432 sc->rring[i].qe_chain = 1; 433 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 434 sc->rring[i].qe_valid = 1; 435 436 for( i = 0 ; i <= NXMT ; i++ ) 437 qeinitdesc(&sc->tring[i], (caddr_t)NULL, 0); 438 i--; 439 440 sc->tring[i].qe_addr_lo = (short)sc->tringaddr; 441 sc->tring[i].qe_addr_hi = (short)((int)sc->tringaddr >> 16); 442 sc->tring[i].qe_chain = 1; 443 sc->tring[i].qe_flag = sc->tring[i].qe_status1 = QE_NOTYET; 444 sc->tring[i].qe_valid = 1; 445 446 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 447 448 /* 449 * Take the interface out of reset, program the vector, 450 * enable interrupts, and tell the world we are up. 451 */ 452 s = splimp(); 453 addr->qe_vector = sc->qe_intvec; 454 sc->addr = addr; 455 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 456 QE_RCV_INT | QE_ILOOP; 457 addr->qe_rcvlist_lo = (short)sc->rringaddr; 458 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 459 ifp->if_flags |= IFF_UP | IFF_RUNNING; 460 sc->qe_flags |= QEF_RUNNING; 461 qesetup( sc ); 462 (void) qestart( ifp ); 463 sc->qe_if.if_timer = QESLOWTIMEOUT; /* Start watchdog */ 464 splx( s ); 465 } 466 467 /* 468 * Start output on interface. 469 * 470 */ 471 qestart(ifp) 472 struct ifnet *ifp; 473 { 474 int unit = ifp->if_unit; 475 struct uba_device *ui = qeinfo[unit]; 476 register struct qe_softc *sc = &qe_softc[unit]; 477 register struct qedevice *addr; 478 register struct qe_ring *rp; 479 register index; 480 struct mbuf *m; 481 int buf_addr, len, s; 482 483 484 s = splimp(); 485 addr = (struct qedevice *)ui->ui_addr; 486 /* 487 * The deqna doesn't look at anything but the valid bit 488 * to determine if it should transmit this packet. If you have 489 * a ring and fill it the device will loop indefinately on the 490 * packet and continue to flood the net with packets until you 491 * break the ring. For this reason we never queue more than n-1 492 * packets in the transmit ring. 493 * 494 * The microcoders should have obeyed their own defination of the 495 * flag and status words, but instead we have to compensate. 496 */ 497 for( index = sc->tindex; 498 sc->tring[index].qe_valid == 0 && sc->nxmit < (NXMT-1) ; 499 sc->tindex = index = ++index % NXMT){ 500 rp = &sc->tring[index]; 501 if( sc->setupqueued ) { 502 buf_addr = sc->setupaddr; 503 len = 128; 504 rp->qe_setup = 1; 505 sc->setupqueued = 0; 506 } else { 507 IF_DEQUEUE(&sc->qe_if.if_snd, m); 508 if( m == 0 ){ 509 splx(s); 510 return (0); 511 } 512 buf_addr = sc->qe_ifw[index].ifw_info; 513 len = if_ubaput(&sc->qe_uba, &sc->qe_ifw[index], m); 514 } 515 if( len < MINDATA ) 516 len = MINDATA; 517 /* 518 * Does buffer end on odd byte ? 519 */ 520 if( len & 1 ) { 521 len++; 522 rp->qe_odd_end = 1; 523 } 524 rp->qe_buf_len = -(len/2); 525 buf_addr = UBAI_ADDR(buf_addr); 526 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 527 rp->qe_addr_lo = (short)buf_addr; 528 rp->qe_addr_hi = (short)(buf_addr >> 16); 529 rp->qe_eomsg = 1; 530 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 531 rp->qe_valid = 1; 532 if (sc->nxmit++ == 0) { 533 sc->qe_flags |= QEF_FASTTIMEO; 534 sc->qe_if.if_timer = QETIMEOUT; 535 } 536 537 /* 538 * See if the xmit list is invalid. 539 */ 540 if( addr->qe_csr & QE_XL_INVALID ) { 541 buf_addr = (int)(sc->tringaddr+index); 542 addr->qe_xmtlist_lo = (short)buf_addr; 543 addr->qe_xmtlist_hi = (short)(buf_addr >> 16); 544 } 545 } 546 splx( s ); 547 return (0); 548 } 549 550 /* 551 * Ethernet interface interrupt processor 552 */ 553 qeintr(unit) 554 int unit; 555 { 556 register struct qe_softc *sc = &qe_softc[unit]; 557 struct qedevice *addr = (struct qedevice *)qeinfo[unit]->ui_addr; 558 int buf_addr, csr; 559 560 #ifdef notdef 561 splx(sc->ipl); 562 #else 563 (void) splimp(); 564 #endif 565 if (!(sc->qe_flags & QEF_FASTTIMEO)) 566 sc->qe_if.if_timer = QESLOWTIMEOUT; /* Restart timer clock */ 567 csr = addr->qe_csr; 568 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT | QE_ILOOP; 569 if( csr & QE_RCV_INT ) 570 qerint( unit ); 571 if( csr & QE_XMIT_INT ) 572 qetint( unit ); 573 if( csr & QE_NEX_MEM_INT ) 574 printf("qe%d: Nonexistent memory interrupt\n", unit); 575 576 if( addr->qe_csr & QE_RL_INVALID && sc->rring[sc->rindex].qe_status1 == QE_NOTYET ) { 577 buf_addr = (int)&sc->rringaddr[sc->rindex]; 578 addr->qe_rcvlist_lo = (short)buf_addr; 579 addr->qe_rcvlist_hi = (short)(buf_addr >> 16); 580 } 581 } 582 583 /* 584 * Ethernet interface transmit interrupt. 585 */ 586 587 qetint(unit) 588 int unit; 589 { 590 register struct qe_softc *sc = &qe_softc[unit]; 591 register struct qe_ring *rp; 592 register struct ifxmt *ifxp; 593 int status1, setupflag; 594 short len; 595 596 597 while( sc->otindex != sc->tindex && sc->tring[sc->otindex].qe_status1 != QE_NOTYET && sc->nxmit > 0 ) { 598 /* 599 * Save the status words from the descriptor so that it can 600 * be released. 601 */ 602 rp = &sc->tring[sc->otindex]; 603 status1 = rp->qe_status1; 604 setupflag = rp->qe_setup; 605 len = (-rp->qe_buf_len) * 2; 606 if( rp->qe_odd_end ) 607 len++; 608 /* 609 * Init the buffer descriptor 610 */ 611 bzero((caddr_t)rp, sizeof(struct qe_ring)); 612 if( --sc->nxmit == 0 ) { 613 sc->qe_flags &= ~QEF_FASTTIMEO; 614 sc->qe_if.if_timer = QESLOWTIMEOUT; 615 } 616 if( !setupflag ) { 617 /* 618 * Do some statistics. 619 */ 620 sc->qe_if.if_opackets++; 621 sc->qe_if.if_collisions += ( status1 & QE_CCNT ) >> 4; 622 if (status1 & QE_ERROR) 623 sc->qe_if.if_oerrors++; 624 /* 625 * If this was a broadcast packet loop it 626 * back because the hardware can't hear its own 627 * transmits. 628 */ 629 ifxp = &sc->qe_ifw[sc->otindex]; 630 if (bcmp((caddr_t)((struct ether_header *)ifxp->ifw_addr)->ether_dhost, 631 (caddr_t)etherbroadcastaddr, 632 sizeof(etherbroadcastaddr)) == 0) 633 qeread(sc, &ifxp->ifrw, 634 len - sizeof(struct ether_header)); 635 if (ifxp->ifw_xtofree) { 636 m_freem(ifxp->ifw_xtofree); 637 ifxp->ifw_xtofree = 0; 638 } 639 } 640 sc->otindex = ++sc->otindex % NXMT; 641 } 642 (void) qestart( &sc->qe_if ); 643 } 644 645 /* 646 * Ethernet interface receiver interrupt. 647 * If can't determine length from type, then have to drop packet. 648 * Othewise decapsulate packet based on type and pass to type specific 649 * higher-level input routine. 650 */ 651 qerint(unit) 652 int unit; 653 { 654 register struct qe_softc *sc = &qe_softc[unit]; 655 register struct qe_ring *rp; 656 int len, status1, status2; 657 int bufaddr; 658 659 /* 660 * Traverse the receive ring looking for packets to pass back. 661 * The search is complete when we find a descriptor not in use. 662 * 663 * As in the transmit case the deqna doesn't honor it's own protocols 664 * so there exists the possibility that the device can beat us around 665 * the ring. The proper way to guard against this is to insure that 666 * there is always at least one invalid descriptor. We chose instead 667 * to make the ring large enough to minimize the problem. With a ring 668 * size of 4 we haven't been able to see the problem. To be safe we 669 * doubled that to 8. 670 * 671 */ 672 for( ; sc->rring[sc->rindex].qe_status1 != QE_NOTYET ; sc->rindex = ++sc->rindex % NRCV ){ 673 rp = &sc->rring[sc->rindex]; 674 status1 = rp->qe_status1; 675 status2 = rp->qe_status2; 676 bzero((caddr_t)rp, sizeof(struct qe_ring)); 677 if( (status1 & QE_MASK) == QE_MASK ) 678 panic("qe: chained packet"); 679 len = ((status1 & QE_RBL_HI) | (status2 & QE_RBL_LO)) + 60; 680 sc->qe_if.if_ipackets++; 681 682 if (status1 & QE_ERROR) { 683 if ((status1 & QE_RUNT) == 0) 684 sc->qe_if.if_ierrors++; 685 } else { 686 /* 687 * We don't process setup packets. 688 */ 689 if( !(status1 & QE_ESETUP) ) 690 qeread(sc, &sc->qe_ifr[sc->rindex], 691 len - sizeof(struct ether_header)); 692 } 693 /* 694 * Return the buffer to the ring 695 */ 696 bufaddr = (int)UBAI_ADDR(sc->qe_ifr[sc->rindex].ifrw_info); 697 rp->qe_buf_len = -((MAXPACKETSIZE)/2); 698 rp->qe_addr_lo = (short)bufaddr; 699 rp->qe_addr_hi = (short)((int)bufaddr >> 16); 700 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 701 rp->qe_valid = 1; 702 } 703 } 704 705 /* 706 * Process an ioctl request. 707 */ 708 qeioctl(ifp, cmd, data) 709 register struct ifnet *ifp; 710 int cmd; 711 caddr_t data; 712 { 713 struct qe_softc *sc = &qe_softc[ifp->if_unit]; 714 struct ifaddr *ifa = (struct ifaddr *)data; 715 int s = splimp(), error = 0; 716 717 switch (cmd) { 718 719 case SIOCSIFADDR: 720 ifp->if_flags |= IFF_UP; 721 qeinit(ifp->if_unit); 722 switch(ifa->ifa_addr->sa_family) { 723 #ifdef INET 724 case AF_INET: 725 ((struct arpcom *)ifp)->ac_ipaddr = 726 IA_SIN(ifa)->sin_addr; 727 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); 728 break; 729 #endif 730 #ifdef NS 731 case AF_NS: 732 { 733 register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); 734 735 if (ns_nullhost(*ina)) 736 ina->x_host = *(union ns_host *)(sc->qe_addr); 737 else 738 qe_setaddr(ina->x_host.c_host, ifp->if_unit); 739 break; 740 } 741 #endif 742 } 743 break; 744 745 case SIOCSIFFLAGS: 746 if ((ifp->if_flags & IFF_UP) == 0 && 747 sc->qe_flags & QEF_RUNNING) { 748 ((struct qedevice *) 749 (qeinfo[ifp->if_unit]->ui_addr))->qe_csr = QE_RESET; 750 sc->qe_flags &= ~QEF_RUNNING; 751 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 752 IFF_RUNNING && (sc->qe_flags & QEF_RUNNING) == 0) 753 qerestart(sc); 754 break; 755 756 default: 757 error = EINVAL; 758 759 } 760 splx(s); 761 return (error); 762 } 763 764 /* 765 * set ethernet address for unit 766 */ 767 qe_setaddr(physaddr, unit) 768 u_char *physaddr; 769 int unit; 770 { 771 register struct qe_softc *sc = &qe_softc[unit]; 772 register int i; 773 774 for (i = 0; i < 6; i++) 775 sc->setup_pkt[i][1] = sc->qe_addr[i] = physaddr[i]; 776 sc->qe_flags |= QEF_SETADDR; 777 if (sc->qe_if.if_flags & IFF_RUNNING) 778 qesetup(sc); 779 qeinit(unit); 780 } 781 782 783 /* 784 * Initialize a ring descriptor with mbuf allocation side effects 785 */ 786 qeinitdesc(rp, addr, len) 787 register struct qe_ring *rp; 788 caddr_t addr; /* mapped address */ 789 int len; 790 { 791 /* 792 * clear the entire descriptor 793 */ 794 bzero((caddr_t)rp, sizeof(struct qe_ring)); 795 796 if( len ) { 797 rp->qe_buf_len = -(len/2); 798 rp->qe_addr_lo = (short)addr; 799 rp->qe_addr_hi = (short)((int)addr >> 16); 800 } 801 } 802 /* 803 * Build a setup packet - the physical address will already be present 804 * in first column. 805 */ 806 qesetup( sc ) 807 struct qe_softc *sc; 808 { 809 register i, j; 810 811 /* 812 * Copy the target address to the rest of the entries in this row. 813 */ 814 for ( j = 0; j < 6 ; j++ ) 815 for ( i = 2 ; i < 8 ; i++ ) 816 sc->setup_pkt[j][i] = sc->setup_pkt[j][1]; 817 /* 818 * Duplicate the first half. 819 */ 820 bcopy((caddr_t)sc->setup_pkt[0], (caddr_t)sc->setup_pkt[8], 64); 821 /* 822 * Fill in the broadcast (and ISO multicast) address(es). 823 */ 824 for ( i = 0; i < 6 ; i++ ) { 825 sc->setup_pkt[i][2] = 0xff; 826 #ifdef ISO 827 sc->setup_pkt[i][3] = all_es_snpa[i]; 828 sc->setup_pkt[i][4] = all_is_snpa[i]; 829 #endif 830 } 831 sc->setupqueued++; 832 } 833 834 /* 835 * Pass a packet to the higher levels. 836 * We deal with the trailer protocol here. 837 */ 838 qeread(sc, ifrw, len) 839 register struct qe_softc *sc; 840 struct ifrw *ifrw; 841 int len; 842 { 843 struct ether_header *eh; 844 struct mbuf *m; 845 int off, resid, s; 846 struct ifqueue *inq; 847 848 /* 849 * Deal with trailer protocol: if type is INET trailer 850 * get true type from first 16-bit word past data. 851 * Remember that type was trailer by setting off. 852 */ 853 854 eh = (struct ether_header *)ifrw->ifrw_addr; 855 eh->ether_type = ntohs((u_short)eh->ether_type); 856 #define qedataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off)))) 857 if (eh->ether_type >= ETHERTYPE_TRAIL && 858 eh->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { 859 off = (eh->ether_type - ETHERTYPE_TRAIL) * 512; 860 if (off >= ETHERMTU) 861 return; /* sanity */ 862 eh->ether_type = ntohs(*qedataaddr(eh,off, u_short *)); 863 resid = ntohs(*(qedataaddr(eh, off+2, u_short *))); 864 if (off + resid > len) 865 return; /* sanity */ 866 len = off + resid; 867 } else 868 off = 0; 869 if (len == 0) 870 return; 871 872 /* 873 * Pull packet off interface. Off is nonzero if packet 874 * has trailing header; qeget will then force this header 875 * information to be at the front, but we still have to drop 876 * the type and length which are at the front of any trailer data. 877 */ 878 m = if_ubaget(&sc->qe_uba, ifrw, len, off, &sc->qe_if); 879 880 if (m) 881 ether_input(&sc->qe_if, eh, m); 882 } 883 884 /* 885 * Watchdog timeout routine. There is a condition in the hardware that 886 * causes the board to lock up under heavy load. This routine detects 887 * the hang up and restarts the device. 888 */ 889 qetimeout(unit) 890 int unit; 891 { 892 register struct qe_softc *sc; 893 894 sc = &qe_softc[unit]; 895 #ifdef notdef 896 log(LOG_ERR, "qe%d: transmit timeout, restarted %d\n", 897 unit, sc->qe_restarts++); 898 #endif 899 qerestart(sc); 900 } 901 /* 902 * Restart for board lockup problem. 903 */ 904 qerestart(sc) 905 register struct qe_softc *sc; 906 { 907 register struct ifnet *ifp = &sc->qe_if; 908 register struct qedevice *addr = sc->addr; 909 register struct qe_ring *rp; 910 register i; 911 912 addr->qe_csr = QE_RESET; 913 addr->qe_csr &= ~QE_RESET; 914 qesetup( sc ); 915 for (i = 0, rp = sc->tring; i < NXMT; rp++, i++) { 916 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 917 rp->qe_valid = 0; 918 } 919 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 920 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 921 QE_RCV_INT | QE_ILOOP; 922 addr->qe_rcvlist_lo = (short)sc->rringaddr; 923 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 924 sc->qe_flags |= QEF_RUNNING; 925 (void) qestart(ifp); 926 } 927 #endif 928