1 /* 2 * Copyright (c) 1988 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Digital Equipment Corp. 7 * 8 * Redistribution and use in source and binary forms are permitted 9 * provided that the above copyright notice and this paragraph are 10 * duplicated in all such forms and that any documentation, 11 * advertising materials, and other materials related to such 12 * distribution and use acknowledge that the software was developed 13 * by the University of California, Berkeley. The name of the 14 * University may not be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 18 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 19 * 20 * @(#)if_qe.c 7.12 (Berkeley) 09/04/89 21 */ 22 23 /* from @(#)if_qe.c 1.15 (ULTRIX) 4/16/86 */ 24 25 /**************************************************************** 26 * * 27 * Licensed from Digital Equipment Corporation * 28 * Copyright (c) * 29 * Digital Equipment Corporation * 30 * Maynard, Massachusetts * 31 * 1985, 1986 * 32 * All rights reserved. * 33 * * 34 * The Information in this software is subject to change * 35 * without notice and should not be construed as a commitment * 36 * by Digital Equipment Corporation. Digital makes no * 37 * representations about the suitability of this software for * 38 * any purpose. It is supplied "As Is" without expressed or * 39 * implied warranty. * 40 * * 41 * If the Regents of the University of California or its * 42 * licensees modify the software in a manner creating * 43 * derivative copyright rights, appropriate copyright * 44 * legends may be placed on the derivative work in addition * 45 * to that set forth above. * 46 * * 47 ****************************************************************/ 48 /* --------------------------------------------------------------------- 49 * Modification History 50 * 51 * 15-Apr-86 -- afd 52 * Rename "unused_multi" to "qunused_multi" for extending Generic 53 * kernel to MicroVAXen. 54 * 55 * 18-mar-86 -- jaw br/cvec changed to NOT use registers. 56 * 57 * 12 March 86 -- Jeff Chase 58 * Modified to handle the new MCLGET macro 59 * Changed if_qe_data.c to use more receive buffers 60 * Added a flag to poke with adb to log qe_restarts on console 61 * 62 * 19 Oct 85 -- rjl 63 * Changed the watch dog timer from 30 seconds to 3. VMS is using 64 * less than 1 second in their's. Also turned the printf into an 65 * mprintf. 66 * 67 * 09/16/85 -- Larry Cohen 68 * Add 43bsd alpha tape changes for subnet routing 69 * 70 * 1 Aug 85 -- rjl 71 * Panic on a non-existent memory interrupt and the case where a packet 72 * was chained. The first should never happen because non-existant 73 * memory interrupts cause a bus reset. The second should never happen 74 * because we hang 2k input buffers on the device. 75 * 76 * 1 Aug 85 -- rich 77 * Fixed the broadcast loopback code to handle Clusters without 78 * wedging the system. 79 * 80 * 27 Feb. 85 -- ejf 81 * Return default hardware address on ioctl request. 82 * 83 * 12 Feb. 85 -- ejf 84 * Added internal extended loopback capability. 85 * 86 * 27 Dec. 84 -- rjl 87 * Fixed bug that caused every other transmit descriptor to be used 88 * instead of every descriptor. 89 * 90 * 21 Dec. 84 -- rjl 91 * Added watchdog timer to mask hardware bug that causes device lockup. 92 * 93 * 18 Dec. 84 -- rjl 94 * Reworked driver to use q-bus mapping routines. MicroVAX-I now does 95 * copying instead of m-buf shuffleing. 96 * A number of deficencies in the hardware/firmware were compensated 97 * for. See comments in qestart and qerint. 98 * 99 * 14 Nov. 84 -- jf 100 * Added usage counts for multicast addresses. 101 * Updated general protocol support to allow access to the Ethernet 102 * header. 103 * 104 * 04 Oct. 84 -- jf 105 * Added support for new ioctls to add and delete multicast addresses 106 * and set the physical address. 107 * Add support for general protocols. 108 * 109 * 14 Aug. 84 -- rjl 110 * Integrated Shannon changes. (allow arp above 1024 and ? ) 111 * 112 * 13 Feb. 84 -- rjl 113 * 114 * Initial version of driver. derived from IL driver. 115 * 116 * --------------------------------------------------------------------- 117 */ 118 119 #include "qe.h" 120 #if NQE > 0 121 /* 122 * Digital Q-BUS to NI Adapter 123 */ 124 #include "param.h" 125 #include "systm.h" 126 #include "mbuf.h" 127 #include "buf.h" 128 #include "protosw.h" 129 #include "socket.h" 130 #include "vmmac.h" 131 #include "ioctl.h" 132 #include "errno.h" 133 #include "syslog.h" 134 #include "time.h" 135 #include "kernel.h" 136 137 #include "../net/if.h" 138 #include "../net/netisr.h" 139 #include "../net/route.h" 140 141 #ifdef INET 142 #include "../netinet/in.h" 143 #include "../netinet/in_systm.h" 144 #include "../netinet/in_var.h" 145 #include "../netinet/ip.h" 146 #include "../netinet/if_ether.h" 147 #endif 148 149 #ifdef NS 150 #include "../netns/ns.h" 151 #include "../netns/ns_if.h" 152 #endif 153 154 #ifdef ISO 155 #include "../netiso/iso.h" 156 #include "../netiso/iso_var.h" 157 #include "../netiso/iso_snpac.h" 158 extern struct snpa_cache all_es, all_is; 159 #endif 160 161 #include "../vax/pte.h" 162 #include "../vax/cpu.h" 163 #include "../vax/mtpr.h" 164 #include "if_qereg.h" 165 #include "if_uba.h" 166 #include "../vaxuba/ubareg.h" 167 #include "../vaxuba/ubavar.h" 168 169 #if NQE == 1 && !defined(QNIVERT) 170 #define NRCV 15 /* Receive descriptors */ 171 #else 172 #define NRCV 10 /* Receive descriptors */ 173 #endif 174 #define NXMT 5 /* Transmit descriptors */ 175 #define NTOT (NXMT + NRCV) 176 177 #define QETIMEOUT 2 /* transmit timeout, must be > 1 */ 178 179 /* 180 * This constant should really be 60 because the qna adds 4 bytes of crc. 181 * However when set to 60 our packets are ignored by deuna's , 3coms are 182 * okay ?????????????????????????????????????????? 183 */ 184 #define MINDATA 64 185 186 /* 187 * Ethernet software status per interface. 188 * 189 * Each interface is referenced by a network interface structure, 190 * qe_if, which the routing code uses to locate the interface. 191 * This structure contains the output queue for the interface, its address, ... 192 */ 193 struct qe_softc { 194 struct arpcom qe_ac; /* Ethernet common part */ 195 #define qe_if qe_ac.ac_if /* network-visible interface */ 196 #define qe_addr qe_ac.ac_enaddr /* hardware Ethernet address */ 197 struct ifubinfo qe_uba; /* Q-bus resources */ 198 struct ifrw qe_ifr[NRCV]; /* for receive buffers; */ 199 struct ifxmt qe_ifw[NXMT]; /* for xmit buffers; */ 200 int qe_flags; /* software state */ 201 #define QEF_RUNNING 0x01 202 #define QEF_SETADDR 0x02 203 int setupaddr; /* mapping info for setup pkts */ 204 int ipl; /* interrupt priority */ 205 struct qe_ring *rringaddr; /* mapping info for rings */ 206 struct qe_ring *tringaddr; /* "" */ 207 struct qe_ring rring[NRCV+1]; /* Receive ring descriptors */ 208 struct qe_ring tring[NXMT+1]; /* Transmit ring descriptors */ 209 u_char setup_pkt[16][8]; /* Setup packet */ 210 int rindex; /* Receive index */ 211 int tindex; /* Transmit index */ 212 int otindex; /* Old transmit index */ 213 int qe_intvec; /* Interrupt vector */ 214 struct qedevice *addr; /* device addr */ 215 int setupqueued; /* setup packet queued */ 216 int nxmit; /* Transmits in progress */ 217 int qe_restarts; /* timeouts */ 218 } qe_softc[NQE]; 219 220 struct uba_device *qeinfo[NQE]; 221 222 extern struct timeval time; 223 224 int qeprobe(), qeattach(), qeintr(), qetimeout(); 225 int qeinit(), qeioctl(), qereset(), qestart(); 226 227 u_short qestd[] = { 0 }; 228 struct uba_driver qedriver = 229 { qeprobe, 0, qeattach, 0, qestd, "qe", qeinfo }; 230 231 #define QEUNIT(x) minor(x) 232 /* 233 * The deqna shouldn't receive more than ETHERMTU + sizeof(struct ether_header) 234 * but will actually take in up to 2048 bytes. To guard against the receiver 235 * chaining buffers (which we aren't prepared to handle) we allocate 2kb 236 * size buffers. 237 */ 238 #define MAXPACKETSIZE 2048 /* Should really be ETHERMTU */ 239 /* 240 * Probe the QNA to see if it's there 241 */ 242 qeprobe(reg, ui) 243 caddr_t reg; 244 struct uba_device *ui; 245 { 246 register int br, cvec; /* r11, r10 value-result */ 247 register struct qedevice *addr = (struct qedevice *)reg; 248 register struct qe_ring *rp; 249 register struct qe_ring *prp; /* physical rp */ 250 register int i; 251 register struct qe_softc *sc = &qe_softc[ui->ui_unit]; 252 253 #ifdef lint 254 br = 0; cvec = br; br = cvec; 255 qeintr(0); 256 #endif 257 258 /* 259 * The QNA interrupts on i/o operations. To do an I/O operation 260 * we have to setup the interface by transmitting a setup packet. 261 */ 262 addr->qe_csr = QE_RESET; 263 addr->qe_csr &= ~QE_RESET; 264 addr->qe_vector = (uba_hd[numuba].uh_lastiv -= 4); 265 266 /* 267 * Map the communications area and the setup packet. 268 */ 269 sc->setupaddr = 270 uballoc(0, (caddr_t)sc->setup_pkt, sizeof(sc->setup_pkt), 0); 271 sc->rringaddr = (struct qe_ring *) uballoc(0, (caddr_t)sc->rring, 272 sizeof(struct qe_ring) * (NTOT+2), 0); 273 prp = (struct qe_ring *)UBAI_ADDR((int)sc->rringaddr); 274 275 /* 276 * The QNA will loop the setup packet back to the receive ring 277 * for verification, therefore we initialize the first 278 * receive & transmit ring descriptors and link the setup packet 279 * to them. 280 */ 281 qeinitdesc(sc->tring, (caddr_t)UBAI_ADDR(sc->setupaddr), 282 sizeof(sc->setup_pkt)); 283 qeinitdesc(sc->rring, (caddr_t)UBAI_ADDR(sc->setupaddr), 284 sizeof(sc->setup_pkt)); 285 286 rp = (struct qe_ring *)sc->tring; 287 rp->qe_setup = 1; 288 rp->qe_eomsg = 1; 289 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 290 rp->qe_valid = 1; 291 292 rp = (struct qe_ring *)sc->rring; 293 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 294 rp->qe_valid = 1; 295 296 /* 297 * Get the addr off of the interface and place it into the setup 298 * packet. This code looks strange due to the fact that the address 299 * is placed in the setup packet in col. major order. 300 */ 301 for( i = 0 ; i < 6 ; i++ ) 302 sc->setup_pkt[i][1] = addr->qe_sta_addr[i]; 303 304 qesetup( sc ); 305 /* 306 * Start the interface and wait for the packet. 307 */ 308 (void) spl6(); 309 addr->qe_csr = QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT; 310 addr->qe_rcvlist_lo = (short)prp; 311 addr->qe_rcvlist_hi = (short)((int)prp >> 16); 312 prp += NRCV+1; 313 addr->qe_xmtlist_lo = (short)prp; 314 addr->qe_xmtlist_hi = (short)((int)prp >> 16); 315 DELAY(10000); 316 /* 317 * All done with the bus resources. 318 */ 319 ubarelse(0, &sc->setupaddr); 320 ubarelse(0, (int *)&sc->rringaddr); 321 sc->ipl = br = qbgetpri(); 322 return( sizeof(struct qedevice) ); 323 } 324 325 /* 326 * Interface exists: make available by filling in network interface 327 * record. System will initialize the interface when it is ready 328 * to accept packets. 329 */ 330 qeattach(ui) 331 struct uba_device *ui; 332 { 333 register struct qe_softc *sc = &qe_softc[ui->ui_unit]; 334 register struct ifnet *ifp = &sc->qe_if; 335 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 336 register int i; 337 338 ifp->if_unit = ui->ui_unit; 339 ifp->if_name = "qe"; 340 ifp->if_mtu = ETHERMTU; 341 ifp->if_flags = IFF_BROADCAST; 342 343 /* 344 * Read the address from the prom and save it. 345 */ 346 for( i=0 ; i<6 ; i++ ) 347 sc->setup_pkt[i][1] = sc->qe_addr[i] = addr->qe_sta_addr[i] & 0xff; 348 addr->qe_vector |= 1; 349 printf("qe%d: %s, hardware address %s\n", ui->ui_unit, 350 addr->qe_vector&01 ? "delqa":"deqna", 351 ether_sprintf(sc->qe_addr)); 352 addr->qe_vector &= ~1; 353 354 /* 355 * Save the vector for initialization at reset time. 356 */ 357 sc->qe_intvec = addr->qe_vector; 358 359 ifp->if_init = qeinit; 360 ifp->if_output = ether_output; 361 ifp->if_start = qestart; 362 ifp->if_ioctl = qeioctl; 363 ifp->if_reset = qereset; 364 ifp->if_watchdog = qetimeout; 365 sc->qe_uba.iff_flags = UBA_CANTWAIT; 366 if_attach(ifp); 367 } 368 369 /* 370 * Reset of interface after UNIBUS reset. 371 * If interface is on specified uba, reset its state. 372 */ 373 qereset(unit, uban) 374 int unit, uban; 375 { 376 register struct uba_device *ui; 377 378 if (unit >= NQE || (ui = qeinfo[unit]) == 0 || ui->ui_alive == 0 || 379 ui->ui_ubanum != uban) 380 return; 381 printf(" qe%d", unit); 382 qe_softc[unit].qe_if.if_flags &= ~IFF_RUNNING; 383 qeinit(unit); 384 } 385 386 /* 387 * Initialization of interface. 388 */ 389 qeinit(unit) 390 int unit; 391 { 392 register struct qe_softc *sc = &qe_softc[unit]; 393 register struct uba_device *ui = qeinfo[unit]; 394 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 395 register struct ifnet *ifp = &sc->qe_if; 396 register i; 397 int s; 398 399 /* address not known */ 400 if (ifp->if_addrlist == (struct ifaddr *)0) 401 return; 402 if (sc->qe_flags & QEF_RUNNING) 403 return; 404 405 if ((ifp->if_flags & IFF_RUNNING) == 0) { 406 /* 407 * map the communications area onto the device 408 */ 409 i = uballoc(0, (caddr_t)sc->rring, 410 sizeof(struct qe_ring) * (NTOT+2), 0); 411 if (i == 0) 412 goto fail; 413 sc->rringaddr = (struct qe_ring *)UBAI_ADDR(i); 414 sc->tringaddr = sc->rringaddr + NRCV + 1; 415 i = uballoc(0, (caddr_t)sc->setup_pkt, 416 sizeof(sc->setup_pkt), 0); 417 if (i == 0) 418 goto fail; 419 sc->setupaddr = UBAI_ADDR(i); 420 /* 421 * init buffers and maps 422 */ 423 if (if_ubaminit(&sc->qe_uba, ui->ui_ubanum, 424 sizeof (struct ether_header), (int)btoc(MAXPACKETSIZE), 425 sc->qe_ifr, NRCV, sc->qe_ifw, NXMT) == 0) { 426 fail: 427 printf("qe%d: can't allocate uba resources\n", unit); 428 sc->qe_if.if_flags &= ~IFF_UP; 429 return; 430 } 431 } 432 /* 433 * Init the buffer descriptors and indexes for each of the lists and 434 * loop them back to form a ring. 435 */ 436 for (i = 0; i < NRCV; i++) { 437 qeinitdesc( &sc->rring[i], 438 (caddr_t)UBAI_ADDR(sc->qe_ifr[i].ifrw_info), MAXPACKETSIZE); 439 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 440 sc->rring[i].qe_valid = 1; 441 } 442 qeinitdesc(&sc->rring[i], (caddr_t)NULL, 0); 443 444 sc->rring[i].qe_addr_lo = (short)sc->rringaddr; 445 sc->rring[i].qe_addr_hi = (short)((int)sc->rringaddr >> 16); 446 sc->rring[i].qe_chain = 1; 447 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 448 sc->rring[i].qe_valid = 1; 449 450 for( i = 0 ; i <= NXMT ; i++ ) 451 qeinitdesc(&sc->tring[i], (caddr_t)NULL, 0); 452 i--; 453 454 sc->tring[i].qe_addr_lo = (short)sc->tringaddr; 455 sc->tring[i].qe_addr_hi = (short)((int)sc->tringaddr >> 16); 456 sc->tring[i].qe_chain = 1; 457 sc->tring[i].qe_flag = sc->tring[i].qe_status1 = QE_NOTYET; 458 sc->tring[i].qe_valid = 1; 459 460 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 461 462 /* 463 * Take the interface out of reset, program the vector, 464 * enable interrupts, and tell the world we are up. 465 */ 466 s = splimp(); 467 addr->qe_vector = sc->qe_intvec; 468 sc->addr = addr; 469 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 470 QE_RCV_INT | QE_ILOOP; 471 addr->qe_rcvlist_lo = (short)sc->rringaddr; 472 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 473 ifp->if_flags |= IFF_UP | IFF_RUNNING; 474 sc->qe_flags |= QEF_RUNNING; 475 qesetup( sc ); 476 (void) qestart( ifp ); 477 splx( s ); 478 } 479 480 /* 481 * Start output on interface. 482 * 483 */ 484 qestart(ifp) 485 struct ifnet *ifp; 486 { 487 int unit = ifp->if_unit; 488 struct uba_device *ui = qeinfo[unit]; 489 register struct qe_softc *sc = &qe_softc[unit]; 490 register struct qedevice *addr; 491 register struct qe_ring *rp; 492 register index; 493 struct mbuf *m; 494 int buf_addr, len, s; 495 496 497 s = splimp(); 498 addr = (struct qedevice *)ui->ui_addr; 499 /* 500 * The deqna doesn't look at anything but the valid bit 501 * to determine if it should transmit this packet. If you have 502 * a ring and fill it the device will loop indefinately on the 503 * packet and continue to flood the net with packets until you 504 * break the ring. For this reason we never queue more than n-1 505 * packets in the transmit ring. 506 * 507 * The microcoders should have obeyed their own defination of the 508 * flag and status words, but instead we have to compensate. 509 */ 510 for( index = sc->tindex; 511 sc->tring[index].qe_valid == 0 && sc->nxmit < (NXMT-1) ; 512 sc->tindex = index = ++index % NXMT){ 513 rp = &sc->tring[index]; 514 if( sc->setupqueued ) { 515 buf_addr = sc->setupaddr; 516 len = 128; 517 rp->qe_setup = 1; 518 sc->setupqueued = 0; 519 } else { 520 IF_DEQUEUE(&sc->qe_if.if_snd, m); 521 if( m == 0 ){ 522 splx(s); 523 return (0); 524 } 525 buf_addr = sc->qe_ifw[index].ifw_info; 526 len = if_ubaput(&sc->qe_uba, &sc->qe_ifw[index], m); 527 } 528 /* 529 * Does buffer end on odd byte ? 530 */ 531 if( len & 1 ) { 532 len++; 533 rp->qe_odd_end = 1; 534 } 535 if( len < MINDATA ) 536 len = MINDATA; 537 rp->qe_buf_len = -(len/2); 538 buf_addr = UBAI_ADDR(buf_addr); 539 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 540 rp->qe_addr_lo = (short)buf_addr; 541 rp->qe_addr_hi = (short)(buf_addr >> 16); 542 rp->qe_eomsg = 1; 543 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 544 rp->qe_valid = 1; 545 if (sc->nxmit++ == 0) 546 sc->qe_if.if_timer = QETIMEOUT; 547 548 /* 549 * See if the xmit list is invalid. 550 */ 551 if( addr->qe_csr & QE_XL_INVALID ) { 552 buf_addr = (int)(sc->tringaddr+index); 553 addr->qe_xmtlist_lo = (short)buf_addr; 554 addr->qe_xmtlist_hi = (short)(buf_addr >> 16); 555 } 556 } 557 splx( s ); 558 return (0); 559 } 560 561 /* 562 * Ethernet interface interrupt processor 563 */ 564 qeintr(unit) 565 int unit; 566 { 567 register struct qe_softc *sc = &qe_softc[unit]; 568 struct qedevice *addr = (struct qedevice *)qeinfo[unit]->ui_addr; 569 int buf_addr, csr; 570 571 #ifdef notdef 572 splx(sc->ipl); 573 #else 574 (void) splimp(); 575 #endif 576 csr = addr->qe_csr; 577 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT | QE_ILOOP; 578 if( csr & QE_RCV_INT ) 579 qerint( unit ); 580 if( csr & QE_XMIT_INT ) 581 qetint( unit ); 582 if( csr & QE_NEX_MEM_INT ) 583 printf("qe%d: Nonexistent memory interrupt\n", unit); 584 585 if( addr->qe_csr & QE_RL_INVALID && sc->rring[sc->rindex].qe_status1 == QE_NOTYET ) { 586 buf_addr = (int)&sc->rringaddr[sc->rindex]; 587 addr->qe_rcvlist_lo = (short)buf_addr; 588 addr->qe_rcvlist_hi = (short)(buf_addr >> 16); 589 } 590 } 591 592 /* 593 * Ethernet interface transmit interrupt. 594 */ 595 596 qetint(unit) 597 int unit; 598 { 599 register struct qe_softc *sc = &qe_softc[unit]; 600 register struct qe_ring *rp; 601 register struct ifxmt *ifxp; 602 int status1, setupflag; 603 short len; 604 605 606 while( sc->otindex != sc->tindex && sc->tring[sc->otindex].qe_status1 != QE_NOTYET && sc->nxmit > 0 ) { 607 /* 608 * Save the status words from the descriptor so that it can 609 * be released. 610 */ 611 rp = &sc->tring[sc->otindex]; 612 status1 = rp->qe_status1; 613 setupflag = rp->qe_setup; 614 len = (-rp->qe_buf_len) * 2; 615 if( rp->qe_odd_end ) 616 len++; 617 /* 618 * Init the buffer descriptor 619 */ 620 bzero((caddr_t)rp, sizeof(struct qe_ring)); 621 if( --sc->nxmit == 0 ) 622 sc->qe_if.if_timer = 0; 623 if( !setupflag ) { 624 /* 625 * Do some statistics. 626 */ 627 sc->qe_if.if_opackets++; 628 sc->qe_if.if_collisions += ( status1 & QE_CCNT ) >> 4; 629 if (status1 & QE_ERROR) 630 sc->qe_if.if_oerrors++; 631 /* 632 * If this was a broadcast packet loop it 633 * back because the hardware can't hear its own 634 * transmits. 635 */ 636 ifxp = &sc->qe_ifw[sc->otindex]; 637 if (bcmp((caddr_t)((struct ether_header *)ifxp->ifw_addr)->ether_dhost, 638 (caddr_t)etherbroadcastaddr, 639 sizeof(etherbroadcastaddr)) == 0) 640 qeread(sc, &ifxp->ifrw, 641 len - sizeof(struct ether_header)); 642 if (ifxp->ifw_xtofree) { 643 m_freem(ifxp->ifw_xtofree); 644 ifxp->ifw_xtofree = 0; 645 } 646 } 647 sc->otindex = ++sc->otindex % NXMT; 648 } 649 (void) qestart( &sc->qe_if ); 650 } 651 652 /* 653 * Ethernet interface receiver interrupt. 654 * If can't determine length from type, then have to drop packet. 655 * Othewise decapsulate packet based on type and pass to type specific 656 * higher-level input routine. 657 */ 658 qerint(unit) 659 int unit; 660 { 661 register struct qe_softc *sc = &qe_softc[unit]; 662 register struct qe_ring *rp; 663 int len, status1, status2; 664 int bufaddr; 665 666 /* 667 * Traverse the receive ring looking for packets to pass back. 668 * The search is complete when we find a descriptor not in use. 669 * 670 * As in the transmit case the deqna doesn't honor it's own protocols 671 * so there exists the possibility that the device can beat us around 672 * the ring. The proper way to guard against this is to insure that 673 * there is always at least one invalid descriptor. We chose instead 674 * to make the ring large enough to minimize the problem. With a ring 675 * size of 4 we haven't been able to see the problem. To be safe we 676 * doubled that to 8. 677 * 678 */ 679 for( ; sc->rring[sc->rindex].qe_status1 != QE_NOTYET ; sc->rindex = ++sc->rindex % NRCV ){ 680 rp = &sc->rring[sc->rindex]; 681 status1 = rp->qe_status1; 682 status2 = rp->qe_status2; 683 bzero((caddr_t)rp, sizeof(struct qe_ring)); 684 if( (status1 & QE_MASK) == QE_MASK ) 685 panic("qe: chained packet"); 686 len = ((status1 & QE_RBL_HI) | (status2 & QE_RBL_LO)) + 60; 687 sc->qe_if.if_ipackets++; 688 689 if (status1 & QE_ERROR) { 690 if ((status1 & QE_RUNT) == 0) 691 sc->qe_if.if_ierrors++; 692 } else { 693 /* 694 * We don't process setup packets. 695 */ 696 if( !(status1 & QE_ESETUP) ) 697 qeread(sc, &sc->qe_ifr[sc->rindex], 698 len - sizeof(struct ether_header)); 699 } 700 /* 701 * Return the buffer to the ring 702 */ 703 bufaddr = (int)UBAI_ADDR(sc->qe_ifr[sc->rindex].ifrw_info); 704 rp->qe_buf_len = -((MAXPACKETSIZE)/2); 705 rp->qe_addr_lo = (short)bufaddr; 706 rp->qe_addr_hi = (short)((int)bufaddr >> 16); 707 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 708 rp->qe_valid = 1; 709 } 710 } 711 712 /* 713 * Process an ioctl request. 714 */ 715 qeioctl(ifp, cmd, data) 716 register struct ifnet *ifp; 717 int cmd; 718 caddr_t data; 719 { 720 struct qe_softc *sc = &qe_softc[ifp->if_unit]; 721 struct ifaddr *ifa = (struct ifaddr *)data; 722 int s = splimp(), error = 0; 723 724 switch (cmd) { 725 726 case SIOCSIFADDR: 727 ifp->if_flags |= IFF_UP; 728 qeinit(ifp->if_unit); 729 switch(ifa->ifa_addr->sa_family) { 730 #ifdef INET 731 case AF_INET: 732 ((struct arpcom *)ifp)->ac_ipaddr = 733 IA_SIN(ifa)->sin_addr; 734 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); 735 break; 736 #endif 737 #ifdef NS 738 case AF_NS: 739 { 740 register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); 741 742 if (ns_nullhost(*ina)) 743 ina->x_host = *(union ns_host *)(sc->qe_addr); 744 else 745 qe_setaddr(ina->x_host.c_host, ifp->if_unit); 746 break; 747 } 748 #endif 749 } 750 break; 751 752 case SIOCSIFFLAGS: 753 if ((ifp->if_flags & IFF_UP) == 0 && 754 sc->qe_flags & QEF_RUNNING) { 755 ((struct qedevice *) 756 (qeinfo[ifp->if_unit]->ui_addr))->qe_csr = QE_RESET; 757 sc->qe_flags &= ~QEF_RUNNING; 758 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 759 IFF_RUNNING && (sc->qe_flags & QEF_RUNNING) == 0) 760 qerestart(sc); 761 break; 762 763 default: 764 error = EINVAL; 765 766 } 767 splx(s); 768 return (error); 769 } 770 771 /* 772 * set ethernet address for unit 773 */ 774 qe_setaddr(physaddr, unit) 775 u_char *physaddr; 776 int unit; 777 { 778 register struct qe_softc *sc = &qe_softc[unit]; 779 register int i; 780 781 for (i = 0; i < 6; i++) 782 sc->setup_pkt[i][1] = sc->qe_addr[i] = physaddr[i]; 783 sc->qe_flags |= QEF_SETADDR; 784 if (sc->qe_if.if_flags & IFF_RUNNING) 785 qesetup(sc); 786 qeinit(unit); 787 } 788 789 790 /* 791 * Initialize a ring descriptor with mbuf allocation side effects 792 */ 793 qeinitdesc(rp, addr, len) 794 register struct qe_ring *rp; 795 caddr_t addr; /* mapped address */ 796 int len; 797 { 798 /* 799 * clear the entire descriptor 800 */ 801 bzero((caddr_t)rp, sizeof(struct qe_ring)); 802 803 if( len ) { 804 rp->qe_buf_len = -(len/2); 805 rp->qe_addr_lo = (short)addr; 806 rp->qe_addr_hi = (short)((int)addr >> 16); 807 } 808 } 809 /* 810 * Build a setup packet - the physical address will already be present 811 * in first column. 812 */ 813 qesetup( sc ) 814 struct qe_softc *sc; 815 { 816 register i, j; 817 818 /* 819 * Copy the target address to the rest of the entries in this row. 820 */ 821 for ( j = 0; j < 6 ; j++ ) 822 for ( i = 2 ; i < 8 ; i++ ) 823 sc->setup_pkt[j][i] = sc->setup_pkt[j][1]; 824 /* 825 * Duplicate the first half. 826 */ 827 bcopy((caddr_t)sc->setup_pkt[0], (caddr_t)sc->setup_pkt[8], 64); 828 /* 829 * Fill in the broadcast (and ISO multicast) address(es). 830 */ 831 for ( i = 0; i < 6 ; i++ ) { 832 sc->setup_pkt[i][2] = 0xff; 833 #ifdef ISO 834 sc->setup_pkt[i][3] = all_es.sc_snpa[i]; 835 sc->setup_pkt[i][4] = all_is.sc_snpa[i]; 836 #endif 837 } 838 sc->setupqueued++; 839 } 840 841 /* 842 * Pass a packet to the higher levels. 843 * We deal with the trailer protocol here. 844 */ 845 qeread(sc, ifrw, len) 846 register struct qe_softc *sc; 847 struct ifrw *ifrw; 848 int len; 849 { 850 struct ether_header *eh; 851 struct mbuf *m; 852 int off, resid, s; 853 struct ifqueue *inq; 854 855 /* 856 * Deal with trailer protocol: if type is INET trailer 857 * get true type from first 16-bit word past data. 858 * Remember that type was trailer by setting off. 859 */ 860 861 eh = (struct ether_header *)ifrw->ifrw_addr; 862 eh->ether_type = ntohs((u_short)eh->ether_type); 863 #define qedataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off)))) 864 if (eh->ether_type >= ETHERTYPE_TRAIL && 865 eh->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { 866 off = (eh->ether_type - ETHERTYPE_TRAIL) * 512; 867 if (off >= ETHERMTU) 868 return; /* sanity */ 869 eh->ether_type = ntohs(*qedataaddr(eh,off, u_short *)); 870 resid = ntohs(*(qedataaddr(eh, off+2, u_short *))); 871 if (off + resid > len) 872 return; /* sanity */ 873 len = off + resid; 874 } else 875 off = 0; 876 if (len == 0) 877 return; 878 879 /* 880 * Pull packet off interface. Off is nonzero if packet 881 * has trailing header; qeget will then force this header 882 * information to be at the front, but we still have to drop 883 * the type and length which are at the front of any trailer data. 884 */ 885 m = if_ubaget(&sc->qe_uba, ifrw, len, off, &sc->qe_if); 886 887 if (m) 888 ether_input(&sc->qe_if, eh, m); 889 } 890 891 /* 892 * Watchdog timeout routine. There is a condition in the hardware that 893 * causes the board to lock up under heavy load. This routine detects 894 * the hang up and restarts the device. 895 */ 896 qetimeout(unit) 897 int unit; 898 { 899 register struct qe_softc *sc; 900 901 sc = &qe_softc[unit]; 902 log(LOG_ERR, "qe%d: transmit timeout, restarted %d\n", 903 unit, sc->qe_restarts++); 904 qerestart(sc); 905 } 906 /* 907 * Restart for board lockup problem. 908 */ 909 qerestart(sc) 910 register struct qe_softc *sc; 911 { 912 register struct ifnet *ifp = &sc->qe_if; 913 register struct qedevice *addr = sc->addr; 914 register struct qe_ring *rp; 915 register i; 916 917 addr->qe_csr = QE_RESET; 918 addr->qe_csr &= ~QE_RESET; 919 qesetup( sc ); 920 for (i = 0, rp = sc->tring; i < NXMT; rp++, i++) { 921 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 922 rp->qe_valid = 0; 923 } 924 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 925 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 926 QE_RCV_INT | QE_ILOOP; 927 addr->qe_rcvlist_lo = (short)sc->rringaddr; 928 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 929 sc->qe_flags |= QEF_RUNNING; 930 (void) qestart(ifp); 931 } 932 #endif 933