1 /* 2 * Copyright (c) 1988 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Digital Equipment Corp. 7 * 8 * Redistribution and use in source and binary forms are permitted 9 * provided that the above copyright notice and this paragraph are 10 * duplicated in all such forms and that any documentation, 11 * advertising materials, and other materials related to such 12 * distribution and use acknowledge that the software was developed 13 * by the University of California, Berkeley. The name of the 14 * University may not be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 18 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 19 * 20 * @(#)if_qe.c 7.9 (Berkeley) 10/12/88 21 */ 22 23 /* from @(#)if_qe.c 1.15 (ULTRIX) 4/16/86 */ 24 25 /**************************************************************** 26 * * 27 * Licensed from Digital Equipment Corporation * 28 * Copyright (c) * 29 * Digital Equipment Corporation * 30 * Maynard, Massachusetts * 31 * 1985, 1986 * 32 * All rights reserved. * 33 * * 34 * The Information in this software is subject to change * 35 * without notice and should not be construed as a commitment * 36 * by Digital Equipment Corporation. Digital makes no * 37 * representations about the suitability of this software for * 38 * any purpose. It is supplied "As Is" without expressed or * 39 * implied warranty. * 40 * * 41 * If the Regents of the University of California or its * 42 * licensees modify the software in a manner creating * 43 * derivative copyright rights, appropriate copyright * 44 * legends may be placed on the derivative work in addition * 45 * to that set forth above. * 46 * * 47 ****************************************************************/ 48 /* --------------------------------------------------------------------- 49 * Modification History 50 * 51 * 15-Apr-86 -- afd 52 * Rename "unused_multi" to "qunused_multi" for extending Generic 53 * kernel to MicroVAXen. 54 * 55 * 18-mar-86 -- jaw br/cvec changed to NOT use registers. 56 * 57 * 12 March 86 -- Jeff Chase 58 * Modified to handle the new MCLGET macro 59 * Changed if_qe_data.c to use more receive buffers 60 * Added a flag to poke with adb to log qe_restarts on console 61 * 62 * 19 Oct 85 -- rjl 63 * Changed the watch dog timer from 30 seconds to 3. VMS is using 64 * less than 1 second in their's. Also turned the printf into an 65 * mprintf. 66 * 67 * 09/16/85 -- Larry Cohen 68 * Add 43bsd alpha tape changes for subnet routing 69 * 70 * 1 Aug 85 -- rjl 71 * Panic on a non-existent memory interrupt and the case where a packet 72 * was chained. The first should never happen because non-existant 73 * memory interrupts cause a bus reset. The second should never happen 74 * because we hang 2k input buffers on the device. 75 * 76 * 1 Aug 85 -- rich 77 * Fixed the broadcast loopback code to handle Clusters without 78 * wedging the system. 79 * 80 * 27 Feb. 85 -- ejf 81 * Return default hardware address on ioctl request. 82 * 83 * 12 Feb. 85 -- ejf 84 * Added internal extended loopback capability. 85 * 86 * 27 Dec. 84 -- rjl 87 * Fixed bug that caused every other transmit descriptor to be used 88 * instead of every descriptor. 89 * 90 * 21 Dec. 84 -- rjl 91 * Added watchdog timer to mask hardware bug that causes device lockup. 92 * 93 * 18 Dec. 84 -- rjl 94 * Reworked driver to use q-bus mapping routines. MicroVAX-I now does 95 * copying instead of m-buf shuffleing. 96 * A number of deficencies in the hardware/firmware were compensated 97 * for. See comments in qestart and qerint. 98 * 99 * 14 Nov. 84 -- jf 100 * Added usage counts for multicast addresses. 101 * Updated general protocol support to allow access to the Ethernet 102 * header. 103 * 104 * 04 Oct. 84 -- jf 105 * Added support for new ioctls to add and delete multicast addresses 106 * and set the physical address. 107 * Add support for general protocols. 108 * 109 * 14 Aug. 84 -- rjl 110 * Integrated Shannon changes. (allow arp above 1024 and ? ) 111 * 112 * 13 Feb. 84 -- rjl 113 * 114 * Initial version of driver. derived from IL driver. 115 * 116 * --------------------------------------------------------------------- 117 */ 118 119 #include "qe.h" 120 #if NQE > 0 121 /* 122 * Digital Q-BUS to NI Adapter 123 */ 124 #include "param.h" 125 #include "systm.h" 126 #include "mbuf.h" 127 #include "buf.h" 128 #include "protosw.h" 129 #include "socket.h" 130 #include "vmmac.h" 131 #include "ioctl.h" 132 #include "errno.h" 133 #include "syslog.h" 134 #include "time.h" 135 #include "kernel.h" 136 137 #include "../net/if.h" 138 #include "../net/netisr.h" 139 #include "../net/route.h" 140 141 #ifdef INET 142 #include "../netinet/in.h" 143 #include "../netinet/in_systm.h" 144 #include "../netinet/in_var.h" 145 #include "../netinet/ip.h" 146 #include "../netinet/if_ether.h" 147 #endif 148 149 #ifdef NS 150 #include "../netns/ns.h" 151 #include "../netns/ns_if.h" 152 #endif 153 154 #include "../vax/pte.h" 155 #include "../vax/cpu.h" 156 #include "../vax/mtpr.h" 157 #include "if_qereg.h" 158 #include "if_uba.h" 159 #include "../vaxuba/ubareg.h" 160 #include "../vaxuba/ubavar.h" 161 162 #if NQE > 1 163 #define NRCV 15 /* Receive descriptors */ 164 #else 165 #define NRCV 20 /* Receive descriptors */ 166 #endif 167 #define NXMT 5 /* Transmit descriptors */ 168 #define NTOT (NXMT + NRCV) 169 170 #define QETIMEOUT 2 /* transmit timeout, must be > 1 */ 171 172 /* 173 * This constant should really be 60 because the qna adds 4 bytes of crc. 174 * However when set to 60 our packets are ignored by deuna's , 3coms are 175 * okay ?????????????????????????????????????????? 176 */ 177 #define MINDATA 64 178 179 /* 180 * Ethernet software status per interface. 181 * 182 * Each interface is referenced by a network interface structure, 183 * qe_if, which the routing code uses to locate the interface. 184 * This structure contains the output queue for the interface, its address, ... 185 */ 186 struct qe_softc { 187 struct arpcom qe_ac; /* Ethernet common part */ 188 #define qe_if qe_ac.ac_if /* network-visible interface */ 189 #define qe_addr qe_ac.ac_enaddr /* hardware Ethernet address */ 190 struct ifubinfo qe_uba; /* Q-bus resources */ 191 struct ifrw qe_ifr[NRCV]; /* for receive buffers; */ 192 struct ifxmt qe_ifw[NXMT]; /* for xmit buffers; */ 193 int qe_flags; /* software state */ 194 #define QEF_RUNNING 0x01 195 #define QEF_SETADDR 0x02 196 int setupaddr; /* mapping info for setup pkts */ 197 struct qe_ring *rringaddr; /* mapping info for rings */ 198 struct qe_ring *tringaddr; /* "" */ 199 struct qe_ring rring[NRCV+1]; /* Receive ring descriptors */ 200 struct qe_ring tring[NXMT+1]; /* Transmit ring descriptors */ 201 u_char setup_pkt[16][8]; /* Setup packet */ 202 int rindex; /* Receive index */ 203 int tindex; /* Transmit index */ 204 int otindex; /* Old transmit index */ 205 int qe_intvec; /* Interrupt vector */ 206 struct qedevice *addr; /* device addr */ 207 int setupqueued; /* setup packet queued */ 208 int nxmit; /* Transmits in progress */ 209 int qe_restarts; /* timeouts */ 210 } qe_softc[NQE]; 211 212 struct uba_device *qeinfo[NQE]; 213 214 extern struct timeval time; 215 216 int qeprobe(), qeattach(), qeintr(), qetimeout(); 217 int qeinit(), qeoutput(), qeioctl(), qereset(); 218 219 u_short qestd[] = { 0 }; 220 struct uba_driver qedriver = 221 { qeprobe, 0, qeattach, 0, qestd, "qe", qeinfo }; 222 223 #define QE_TIMEO (15) 224 #define QEUNIT(x) minor(x) 225 static int mask = 0x3ffff; /* address mask */ 226 /* 227 * The deqna shouldn't receive more than ETHERMTU + sizeof(struct ether_header) 228 * but will actually take in up to 2048 bytes. To guard against the receiver 229 * chaining buffers (which we aren't prepared to handle) we allocate 2kb 230 * size buffers. 231 */ 232 #define MAXPACKETSIZE 2048 /* Should really be ETHERMTU */ 233 /* 234 * Probe the QNA to see if it's there 235 */ 236 qeprobe(reg) 237 caddr_t reg; 238 { 239 register int br, cvec; /* r11, r10 value-result */ 240 register struct qedevice *addr = (struct qedevice *)reg; 241 register struct qe_ring *rp; 242 register struct qe_ring *prp; /* physical rp */ 243 register int i, j; 244 static int next=0; /* softc index */ 245 register struct qe_softc *sc = &qe_softc[next++]; 246 247 #ifdef lint 248 br = 0; cvec = br; br = cvec; 249 qeintr(0); 250 #endif 251 /* 252 * Set the address mask for the particular cpu 253 */ 254 mask = 0x3ffff; 255 256 /* 257 * The QNA interrupts on i/o operations. To do an I/O operation 258 * we have to setup the interface by transmitting a setup packet. 259 */ 260 addr->qe_csr = QE_RESET; 261 addr->qe_csr &= ~QE_RESET; 262 addr->qe_vector = (uba_hd[numuba].uh_lastiv -= 4); 263 264 /* 265 * Map the communications area and the setup packet. 266 */ 267 sc->setupaddr = 268 uballoc(0, (caddr_t)sc->setup_pkt, sizeof(sc->setup_pkt), 0); 269 sc->rringaddr = (struct qe_ring *) uballoc(0, (caddr_t)sc->rring, 270 sizeof(struct qe_ring) * (NTOT+2), 0); 271 prp = (struct qe_ring *)((int)sc->rringaddr & mask); 272 273 /* 274 * The QNA will loop the setup packet back to the receive ring 275 * for verification, therefore we initialize the first 276 * receive & transmit ring descriptors and link the setup packet 277 * to them. 278 */ 279 qeinitdesc(sc->tring, (caddr_t)(sc->setupaddr & mask), 280 sizeof(sc->setup_pkt)); 281 qeinitdesc(sc->rring, (caddr_t)(sc->setupaddr & mask), 282 sizeof(sc->setup_pkt)); 283 284 rp = (struct qe_ring *)sc->tring; 285 rp->qe_setup = 1; 286 rp->qe_eomsg = 1; 287 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 288 rp->qe_valid = 1; 289 290 rp = (struct qe_ring *)sc->rring; 291 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 292 rp->qe_valid = 1; 293 294 /* 295 * Get the addr off of the interface and place it into the setup 296 * packet. This code looks strange due to the fact that the address 297 * is placed in the setup packet in col. major order. 298 */ 299 for( i = 0 ; i < 6 ; i++ ) 300 sc->setup_pkt[i][1] = addr->qe_sta_addr[i]; 301 302 qesetup( sc ); 303 /* 304 * Start the interface and wait for the packet. 305 */ 306 j = cvec; 307 addr->qe_csr = QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT; 308 addr->qe_rcvlist_lo = (short)prp; 309 addr->qe_rcvlist_hi = (short)((int)prp >> 16); 310 prp += NRCV+1; 311 addr->qe_xmtlist_lo = (short)prp; 312 addr->qe_xmtlist_hi = (short)((int)prp >> 16); 313 DELAY(10000); 314 /* 315 * All done with the bus resources. 316 */ 317 ubarelse(0, &sc->setupaddr); 318 ubarelse(0, (int *)&sc->rringaddr); 319 if( cvec == j ) 320 return 0; /* didn't interrupt */ 321 322 br = 0x15; /* q-bus doesn't get level */ 323 return( sizeof(struct qedevice) ); 324 } 325 326 /* 327 * Interface exists: make available by filling in network interface 328 * record. System will initialize the interface when it is ready 329 * to accept packets. 330 */ 331 qeattach(ui) 332 struct uba_device *ui; 333 { 334 register struct qe_softc *sc = &qe_softc[ui->ui_unit]; 335 register struct ifnet *ifp = &sc->qe_if; 336 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 337 register int i; 338 339 ifp->if_unit = ui->ui_unit; 340 ifp->if_name = "qe"; 341 ifp->if_mtu = ETHERMTU; 342 ifp->if_flags = IFF_BROADCAST; 343 344 /* 345 * Read the address from the prom and save it. 346 */ 347 for( i=0 ; i<6 ; i++ ) 348 sc->setup_pkt[i][1] = sc->qe_addr[i] = addr->qe_sta_addr[i] & 0xff; 349 addr->qe_vector |= 1; 350 printf("qe%d: %s, hardware address %s\n", ui->ui_unit, 351 addr->qe_vector&01 ? "delqa":"deqna", 352 ether_sprintf(sc->qe_addr)); 353 addr->qe_vector &= ~1; 354 355 /* 356 * Save the vector for initialization at reset time. 357 */ 358 sc->qe_intvec = addr->qe_vector; 359 360 ifp->if_init = qeinit; 361 ifp->if_output = qeoutput; 362 ifp->if_ioctl = qeioctl; 363 ifp->if_reset = qereset; 364 ifp->if_watchdog = qetimeout; 365 sc->qe_uba.iff_flags = UBA_CANTWAIT; 366 if_attach(ifp); 367 } 368 369 /* 370 * Reset of interface after UNIBUS reset. 371 * If interface is on specified uba, reset its state. 372 */ 373 qereset(unit, uban) 374 int unit, uban; 375 { 376 register struct uba_device *ui; 377 378 if (unit >= NQE || (ui = qeinfo[unit]) == 0 || ui->ui_alive == 0 || 379 ui->ui_ubanum != uban) 380 return; 381 printf(" qe%d", unit); 382 qe_softc[unit].qe_if.if_flags &= ~IFF_RUNNING; 383 qeinit(unit); 384 } 385 386 /* 387 * Initialization of interface. 388 */ 389 qeinit(unit) 390 int unit; 391 { 392 register struct qe_softc *sc = &qe_softc[unit]; 393 register struct uba_device *ui = qeinfo[unit]; 394 register struct qedevice *addr = (struct qedevice *)ui->ui_addr; 395 register struct ifnet *ifp = &sc->qe_if; 396 register i; 397 int s; 398 399 /* address not known */ 400 if (ifp->if_addrlist == (struct ifaddr *)0) 401 return; 402 if (sc->qe_flags & QEF_RUNNING) 403 return; 404 405 if ((ifp->if_flags & IFF_RUNNING) == 0) { 406 /* 407 * map the communications area onto the device 408 */ 409 sc->rringaddr = (struct qe_ring *) 410 ((int) uballoc(0, (caddr_t)sc->rring, 411 sizeof(struct qe_ring) * (NTOT+2), 0) & mask); 412 sc->tringaddr = sc->rringaddr + NRCV + 1; 413 sc->setupaddr = uballoc(0, (caddr_t)sc->setup_pkt, 414 sizeof(sc->setup_pkt), 0) & mask; 415 /* 416 * init buffers and maps 417 */ 418 if (if_ubaminit(&sc->qe_uba, ui->ui_ubanum, 419 sizeof (struct ether_header), (int)btoc(MAXPACKETSIZE), 420 sc->qe_ifr, NRCV, sc->qe_ifw, NXMT) == 0) { 421 printf("qe%d: can't initialize\n", unit); 422 sc->qe_if.if_flags &= ~IFF_UP; 423 return; 424 } 425 } 426 /* 427 * Init the buffer descriptors and indexes for each of the lists and 428 * loop them back to form a ring. 429 */ 430 for (i = 0; i < NRCV; i++) { 431 qeinitdesc( &sc->rring[i], 432 (caddr_t)(sc->qe_ifr[i].ifrw_info & mask), MAXPACKETSIZE); 433 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 434 sc->rring[i].qe_valid = 1; 435 } 436 qeinitdesc(&sc->rring[i], (caddr_t)NULL, 0); 437 438 sc->rring[i].qe_addr_lo = (short)sc->rringaddr; 439 sc->rring[i].qe_addr_hi = (short)((int)sc->rringaddr >> 16); 440 sc->rring[i].qe_chain = 1; 441 sc->rring[i].qe_flag = sc->rring[i].qe_status1 = QE_NOTYET; 442 sc->rring[i].qe_valid = 1; 443 444 for( i = 0 ; i <= NXMT ; i++ ) 445 qeinitdesc(&sc->tring[i], (caddr_t)NULL, 0); 446 i--; 447 448 sc->tring[i].qe_addr_lo = (short)sc->tringaddr; 449 sc->tring[i].qe_addr_hi = (short)((int)sc->tringaddr >> 16); 450 sc->tring[i].qe_chain = 1; 451 sc->tring[i].qe_flag = sc->tring[i].qe_status1 = QE_NOTYET; 452 sc->tring[i].qe_valid = 1; 453 454 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 455 456 /* 457 * Take the interface out of reset, program the vector, 458 * enable interrupts, and tell the world we are up. 459 */ 460 s = splimp(); 461 addr->qe_vector = sc->qe_intvec; 462 sc->addr = addr; 463 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 464 QE_RCV_INT | QE_ILOOP; 465 addr->qe_rcvlist_lo = (short)sc->rringaddr; 466 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 467 ifp->if_flags |= IFF_UP | IFF_RUNNING; 468 sc->qe_flags |= QEF_RUNNING; 469 qesetup( sc ); 470 qestart( unit ); 471 splx( s ); 472 473 } 474 475 /* 476 * Start output on interface. 477 * 478 */ 479 qestart(unit) 480 int unit; 481 { 482 struct uba_device *ui = qeinfo[unit]; 483 register struct qe_softc *sc = &qe_softc[unit]; 484 register struct qedevice *addr; 485 register struct qe_ring *rp; 486 register index; 487 struct mbuf *m; 488 int buf_addr, len, s; 489 490 491 s = splimp(); 492 addr = (struct qedevice *)ui->ui_addr; 493 /* 494 * The deqna doesn't look at anything but the valid bit 495 * to determine if it should transmit this packet. If you have 496 * a ring and fill it the device will loop indefinately on the 497 * packet and continue to flood the net with packets until you 498 * break the ring. For this reason we never queue more than n-1 499 * packets in the transmit ring. 500 * 501 * The microcoders should have obeyed their own defination of the 502 * flag and status words, but instead we have to compensate. 503 */ 504 for( index = sc->tindex; 505 sc->tring[index].qe_valid == 0 && sc->nxmit < (NXMT-1) ; 506 sc->tindex = index = ++index % NXMT){ 507 rp = &sc->tring[index]; 508 if( sc->setupqueued ) { 509 buf_addr = sc->setupaddr; 510 len = 128; 511 rp->qe_setup = 1; 512 sc->setupqueued = 0; 513 } else { 514 IF_DEQUEUE(&sc->qe_if.if_snd, m); 515 if( m == 0 ){ 516 splx(s); 517 return; 518 } 519 buf_addr = sc->qe_ifw[index].ifw_info; 520 len = if_ubaput(&sc->qe_uba, &sc->qe_ifw[index], m); 521 } 522 /* 523 * Does buffer end on odd byte ? 524 */ 525 if( len & 1 ) { 526 len++; 527 rp->qe_odd_end = 1; 528 } 529 if( len < MINDATA ) 530 len = MINDATA; 531 rp->qe_buf_len = -(len/2); 532 buf_addr &= mask; 533 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 534 rp->qe_addr_lo = (short)buf_addr; 535 rp->qe_addr_hi = (short)(buf_addr >> 16); 536 rp->qe_eomsg = 1; 537 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 538 rp->qe_valid = 1; 539 sc->nxmit++; 540 sc->qe_if.if_timer = QETIMEOUT; 541 542 /* 543 * See if the xmit list is invalid. 544 */ 545 if( addr->qe_csr & QE_XL_INVALID ) { 546 buf_addr = (int)(sc->tringaddr+index); 547 addr->qe_xmtlist_lo = (short)buf_addr; 548 addr->qe_xmtlist_hi = (short)(buf_addr >> 16); 549 } 550 } 551 splx( s ); 552 } 553 554 /* 555 * Ethernet interface interrupt processor 556 */ 557 qeintr(unit) 558 int unit; 559 { 560 register struct qe_softc *sc = &qe_softc[unit]; 561 struct qedevice *addr = (struct qedevice *)qeinfo[unit]->ui_addr; 562 int s, buf_addr, csr; 563 564 s = splimp(); 565 csr = addr->qe_csr; 566 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | QE_RCV_INT | QE_ILOOP; 567 if( csr & QE_RCV_INT ) 568 qerint( unit ); 569 if( csr & QE_XMIT_INT ) 570 qetint( unit ); 571 if( csr & QE_NEX_MEM_INT ) 572 panic("qe: Non existant memory interrupt"); 573 574 if( addr->qe_csr & QE_RL_INVALID && sc->rring[sc->rindex].qe_status1 == QE_NOTYET ) { 575 buf_addr = (int)&sc->rringaddr[sc->rindex]; 576 addr->qe_rcvlist_lo = (short)buf_addr; 577 addr->qe_rcvlist_hi = (short)(buf_addr >> 16); 578 } 579 splx( s ); 580 } 581 582 /* 583 * Ethernet interface transmit interrupt. 584 */ 585 586 qetint(unit) 587 int unit; 588 { 589 register struct qe_softc *sc = &qe_softc[unit]; 590 register struct qe_ring *rp; 591 register struct ifxmt *ifxp; 592 int status1, setupflag; 593 short len; 594 595 596 while( sc->otindex != sc->tindex && sc->tring[sc->otindex].qe_status1 != QE_NOTYET && sc->nxmit > 0 ) { 597 /* 598 * Save the status words from the descriptor so that it can 599 * be released. 600 */ 601 rp = &sc->tring[sc->otindex]; 602 status1 = rp->qe_status1; 603 setupflag = rp->qe_setup; 604 len = (-rp->qe_buf_len) * 2; 605 if( rp->qe_odd_end ) 606 len++; 607 /* 608 * Init the buffer descriptor 609 */ 610 bzero((caddr_t)rp, sizeof(struct qe_ring)); 611 if( --sc->nxmit == 0 ) 612 sc->qe_if.if_timer = 0; 613 if( !setupflag ) { 614 /* 615 * Do some statistics. 616 */ 617 sc->qe_if.if_opackets++; 618 sc->qe_if.if_collisions += ( status1 & QE_CCNT ) >> 4; 619 if (status1 & QE_ERROR) 620 sc->qe_if.if_oerrors++; 621 /* 622 * If this was a broadcast packet loop it 623 * back because the hardware can't hear its own 624 * transmits. 625 */ 626 ifxp = &sc->qe_ifw[sc->otindex]; 627 if (bcmp((caddr_t)((struct ether_header *)ifxp->ifw_addr)->ether_dhost, 628 (caddr_t)etherbroadcastaddr, 629 sizeof(etherbroadcastaddr)) == 0) 630 qeread(sc, &ifxp->ifrw, 631 len - sizeof(struct ether_header)); 632 if (ifxp->ifw_xtofree) { 633 m_freem(ifxp->ifw_xtofree); 634 ifxp->ifw_xtofree = 0; 635 } 636 } 637 sc->otindex = ++sc->otindex % NXMT; 638 } 639 qestart( unit ); 640 } 641 642 /* 643 * Ethernet interface receiver interrupt. 644 * If can't determine length from type, then have to drop packet. 645 * Othewise decapsulate packet based on type and pass to type specific 646 * higher-level input routine. 647 */ 648 qerint(unit) 649 int unit; 650 { 651 register struct qe_softc *sc = &qe_softc[unit]; 652 register struct qe_ring *rp; 653 int len, status1, status2; 654 int bufaddr; 655 656 /* 657 * Traverse the receive ring looking for packets to pass back. 658 * The search is complete when we find a descriptor not in use. 659 * 660 * As in the transmit case the deqna doesn't honor it's own protocols 661 * so there exists the possibility that the device can beat us around 662 * the ring. The proper way to guard against this is to insure that 663 * there is always at least one invalid descriptor. We chose instead 664 * to make the ring large enough to minimize the problem. With a ring 665 * size of 4 we haven't been able to see the problem. To be safe we 666 * doubled that to 8. 667 * 668 */ 669 for( ; sc->rring[sc->rindex].qe_status1 != QE_NOTYET ; sc->rindex = ++sc->rindex % NRCV ){ 670 rp = &sc->rring[sc->rindex]; 671 status1 = rp->qe_status1; 672 status2 = rp->qe_status2; 673 bzero((caddr_t)rp, sizeof(struct qe_ring)); 674 if( (status1 & QE_MASK) == QE_MASK ) 675 panic("qe: chained packet"); 676 len = ((status1 & QE_RBL_HI) | (status2 & QE_RBL_LO)) + 60; 677 sc->qe_if.if_ipackets++; 678 679 if (status1 & QE_ERROR) { 680 if ((status1 & QE_RUNT) == 0) 681 sc->qe_if.if_ierrors++; 682 } else { 683 /* 684 * We don't process setup packets. 685 */ 686 if( !(status1 & QE_ESETUP) ) 687 qeread(sc, &sc->qe_ifr[sc->rindex], 688 len - sizeof(struct ether_header)); 689 } 690 /* 691 * Return the buffer to the ring 692 */ 693 bufaddr = (int)sc->qe_ifr[sc->rindex].ifrw_info & mask; 694 rp->qe_buf_len = -((MAXPACKETSIZE)/2); 695 rp->qe_addr_lo = (short)bufaddr; 696 rp->qe_addr_hi = (short)((int)bufaddr >> 16); 697 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 698 rp->qe_valid = 1; 699 } 700 } 701 /* 702 * Ethernet output routine. 703 * Encapsulate a packet of type family for the local net. 704 * Use trailer local net encapsulation if enough data in first 705 * packet leaves a multiple of 512 bytes of data in remainder. 706 */ 707 qeoutput(ifp, m0, dst) 708 struct ifnet *ifp; 709 struct mbuf *m0; 710 struct sockaddr *dst; 711 { 712 int type, s, error; 713 u_char edst[6]; 714 struct in_addr idst; 715 register struct qe_softc *is = &qe_softc[ifp->if_unit]; 716 register struct mbuf *m = m0; 717 register struct ether_header *eh; 718 register int off; 719 int usetrailers; 720 721 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) { 722 error = ENETDOWN; 723 goto bad; 724 } 725 726 switch (dst->sa_family) { 727 728 #ifdef INET 729 case AF_INET: 730 idst = ((struct sockaddr_in *)dst)->sin_addr; 731 if (!arpresolve(&is->qe_ac, m, &idst, edst, &usetrailers)) 732 return (0); /* if not yet resolved */ 733 off = ntohs((u_short)mtod(m, struct ip *)->ip_len) - m->m_len; 734 if (usetrailers && off > 0 && (off & 0x1ff) == 0 && 735 m->m_off >= MMINOFF + 2 * sizeof (u_short)) { 736 type = ETHERTYPE_TRAIL + (off>>9); 737 m->m_off -= 2 * sizeof (u_short); 738 m->m_len += 2 * sizeof (u_short); 739 *mtod(m, u_short *) = htons((u_short)ETHERTYPE_IP); 740 *(mtod(m, u_short *) + 1) = htons((u_short)m->m_len); 741 goto gottrailertype; 742 } 743 type = ETHERTYPE_IP; 744 off = 0; 745 goto gottype; 746 #endif 747 #ifdef NS 748 case AF_NS: 749 type = ETHERTYPE_NS; 750 bcopy((caddr_t)&(((struct sockaddr_ns *)dst)->sns_addr.x_host), 751 (caddr_t)edst, sizeof (edst)); 752 off = 0; 753 goto gottype; 754 #endif 755 756 757 case AF_UNSPEC: 758 eh = (struct ether_header *)dst->sa_data; 759 bcopy((caddr_t)eh->ether_dhost, (caddr_t)edst, sizeof (edst)); 760 type = eh->ether_type; 761 goto gottype; 762 763 default: 764 printf("qe%d: can't handle af%d\n", ifp->if_unit, 765 dst->sa_family); 766 error = EAFNOSUPPORT; 767 goto bad; 768 } 769 770 gottrailertype: 771 /* 772 * Packet to be sent as trailer: move first packet 773 * (control information) to end of chain. 774 */ 775 while (m->m_next) 776 m = m->m_next; 777 m->m_next = m0; 778 m = m0->m_next; 779 m0->m_next = 0; 780 m0 = m; 781 782 gottype: 783 /* 784 * Add local net header. If no space in first mbuf, 785 * allocate another. 786 */ 787 if (m->m_off > MMAXOFF || 788 MMINOFF + sizeof (struct ether_header) > m->m_off) { 789 m = m_get(M_DONTWAIT, MT_HEADER); 790 if (m == 0) { 791 error = ENOBUFS; 792 goto bad; 793 } 794 m->m_next = m0; 795 m->m_off = MMINOFF; 796 m->m_len = sizeof (struct ether_header); 797 } else { 798 m->m_off -= sizeof (struct ether_header); 799 m->m_len += sizeof (struct ether_header); 800 } 801 eh = mtod(m, struct ether_header *); 802 eh->ether_type = htons((u_short)type); 803 bcopy((caddr_t)edst, (caddr_t)eh->ether_dhost, sizeof (edst)); 804 bcopy((caddr_t)is->qe_addr, (caddr_t)eh->ether_shost, sizeof (is->qe_addr)); 805 806 /* 807 * Queue message on interface, and start output if interface 808 * not yet active. 809 */ 810 s = splimp(); 811 if (IF_QFULL(&ifp->if_snd)) { 812 IF_DROP(&ifp->if_snd); 813 splx(s); 814 m_freem(m); 815 return (ENOBUFS); 816 } 817 IF_ENQUEUE(&ifp->if_snd, m); 818 qestart(ifp->if_unit); 819 splx(s); 820 return (0); 821 822 bad: 823 m_freem(m0); 824 return (error); 825 } 826 827 828 /* 829 * Process an ioctl request. 830 */ 831 qeioctl(ifp, cmd, data) 832 register struct ifnet *ifp; 833 int cmd; 834 caddr_t data; 835 { 836 struct qe_softc *sc = &qe_softc[ifp->if_unit]; 837 struct ifaddr *ifa = (struct ifaddr *)data; 838 int s = splimp(), error = 0; 839 840 switch (cmd) { 841 842 case SIOCSIFADDR: 843 ifp->if_flags |= IFF_UP; 844 qeinit(ifp->if_unit); 845 switch(ifa->ifa_addr.sa_family) { 846 #ifdef INET 847 case AF_INET: 848 ((struct arpcom *)ifp)->ac_ipaddr = 849 IA_SIN(ifa)->sin_addr; 850 arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); 851 break; 852 #endif 853 #ifdef NS 854 case AF_NS: 855 { 856 register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); 857 858 if (ns_nullhost(*ina)) 859 ina->x_host = *(union ns_host *)(sc->qe_addr); 860 else 861 qe_setaddr(ina->x_host.c_host, ifp->if_unit); 862 break; 863 } 864 #endif 865 } 866 break; 867 868 case SIOCSIFFLAGS: 869 if ((ifp->if_flags & IFF_UP) == 0 && 870 sc->qe_flags & QEF_RUNNING) { 871 ((struct qedevice *) 872 (qeinfo[ifp->if_unit]->ui_addr))->qe_csr = QE_RESET; 873 sc->qe_flags &= ~QEF_RUNNING; 874 } else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 875 IFF_RUNNING && (sc->qe_flags & QEF_RUNNING) == 0) 876 qerestart(sc); 877 break; 878 879 default: 880 error = EINVAL; 881 882 } 883 splx(s); 884 return (error); 885 } 886 887 /* 888 * set ethernet address for unit 889 */ 890 qe_setaddr(physaddr, unit) 891 u_char *physaddr; 892 int unit; 893 { 894 register struct qe_softc *sc = &qe_softc[unit]; 895 register int i; 896 897 for (i = 0; i < 6; i++) 898 sc->setup_pkt[i][1] = sc->qe_addr[i] = physaddr[i]; 899 sc->qe_flags |= QEF_SETADDR; 900 if (sc->qe_if.if_flags & IFF_RUNNING) 901 qesetup(sc); 902 qeinit(unit); 903 } 904 905 906 /* 907 * Initialize a ring descriptor with mbuf allocation side effects 908 */ 909 qeinitdesc(rp, addr, len) 910 register struct qe_ring *rp; 911 caddr_t addr; /* mapped address */ 912 int len; 913 { 914 /* 915 * clear the entire descriptor 916 */ 917 bzero((caddr_t)rp, sizeof(struct qe_ring)); 918 919 if( len ) { 920 rp->qe_buf_len = -(len/2); 921 rp->qe_addr_lo = (short)addr; 922 rp->qe_addr_hi = (short)((int)addr >> 16); 923 } 924 } 925 /* 926 * Build a setup packet - the physical address will already be present 927 * in first column. 928 */ 929 qesetup( sc ) 930 struct qe_softc *sc; 931 { 932 register i, j; 933 934 /* 935 * Copy the target address to the rest of the entries in this row. 936 */ 937 for ( j = 0; j < 6 ; j++ ) 938 for ( i = 2 ; i < 8 ; i++ ) 939 sc->setup_pkt[j][i] = sc->setup_pkt[j][1]; 940 /* 941 * Duplicate the first half. 942 */ 943 bcopy((caddr_t)sc->setup_pkt[0], (caddr_t)sc->setup_pkt[8], 64); 944 /* 945 * Fill in the broadcast address. 946 */ 947 for ( i = 0; i < 6 ; i++ ) 948 sc->setup_pkt[i][2] = 0xff; 949 sc->setupqueued++; 950 } 951 952 /* 953 * Pass a packet to the higher levels. 954 * We deal with the trailer protocol here. 955 */ 956 qeread(sc, ifrw, len) 957 register struct qe_softc *sc; 958 struct ifrw *ifrw; 959 int len; 960 { 961 struct ether_header *eh; 962 struct mbuf *m; 963 int off, resid; 964 struct ifqueue *inq; 965 966 /* 967 * Deal with trailer protocol: if type is INET trailer 968 * get true type from first 16-bit word past data. 969 * Remember that type was trailer by setting off. 970 */ 971 972 eh = (struct ether_header *)ifrw->ifrw_addr; 973 eh->ether_type = ntohs((u_short)eh->ether_type); 974 #define qedataaddr(eh, off, type) ((type)(((caddr_t)((eh)+1)+(off)))) 975 if (eh->ether_type >= ETHERTYPE_TRAIL && 976 eh->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { 977 off = (eh->ether_type - ETHERTYPE_TRAIL) * 512; 978 if (off >= ETHERMTU) 979 return; /* sanity */ 980 eh->ether_type = ntohs(*qedataaddr(eh,off, u_short *)); 981 resid = ntohs(*(qedataaddr(eh, off+2, u_short *))); 982 if (off + resid > len) 983 return; /* sanity */ 984 len = off + resid; 985 } else 986 off = 0; 987 if (len == 0) 988 return; 989 990 /* 991 * Pull packet off interface. Off is nonzero if packet 992 * has trailing header; qeget will then force this header 993 * information to be at the front, but we still have to drop 994 * the type and length which are at the front of any trailer data. 995 */ 996 m = if_ubaget(&sc->qe_uba, ifrw, len, off, &sc->qe_if); 997 998 if (m == 0) 999 return; 1000 1001 if (off) { 1002 struct ifnet *ifp; 1003 1004 ifp = *(mtod(m, struct ifnet **)); 1005 m->m_off += 2 * sizeof (u_short); 1006 m->m_len -= 2 * sizeof (u_short); 1007 *(mtod(m, struct ifnet **)) = ifp; 1008 } 1009 switch (eh->ether_type) { 1010 1011 #ifdef INET 1012 case ETHERTYPE_IP: 1013 schednetisr(NETISR_IP); 1014 inq = &ipintrq; 1015 break; 1016 1017 case ETHERTYPE_ARP: 1018 arpinput(&sc->qe_ac, m); 1019 return; 1020 #endif 1021 #ifdef NS 1022 case ETHERTYPE_NS: 1023 schednetisr(NETISR_NS); 1024 inq = &nsintrq; 1025 break; 1026 1027 #endif 1028 1029 default: 1030 m_freem(m); 1031 return; 1032 } 1033 1034 if (IF_QFULL(inq)) { 1035 IF_DROP(inq); 1036 m_freem(m); 1037 return; 1038 } 1039 IF_ENQUEUE(inq, m); 1040 } 1041 1042 /* 1043 * Watchdog timeout routine. There is a condition in the hardware that 1044 * causes the board to lock up under heavy load. This routine detects 1045 * the hang up and restarts the device. 1046 */ 1047 qetimeout(unit) 1048 int unit; 1049 { 1050 register struct qe_softc *sc; 1051 1052 sc = &qe_softc[unit]; 1053 log(LOG_ERR, "qe%d: transmit timeout, restarted %d\n", 1054 unit, ++sc->qe_restarts); 1055 qerestart(sc); 1056 } 1057 /* 1058 * Restart for board lockup problem. 1059 */ 1060 qerestart(sc) 1061 register struct qe_softc *sc; 1062 { 1063 register struct ifnet *ifp = &sc->qe_if; 1064 register struct qedevice *addr = sc->addr; 1065 register struct qe_ring *rp; 1066 register i; 1067 1068 addr->qe_csr = QE_RESET; 1069 qesetup( sc ); 1070 for (i = 0, rp = sc->tring; i < NXMT; rp++, i++) { 1071 rp->qe_flag = rp->qe_status1 = QE_NOTYET; 1072 rp->qe_valid = 0; 1073 } 1074 sc->nxmit = sc->otindex = sc->tindex = sc->rindex = 0; 1075 addr->qe_csr = QE_RCV_ENABLE | QE_INT_ENABLE | QE_XMIT_INT | 1076 QE_RCV_INT | QE_ILOOP; 1077 addr->qe_rcvlist_lo = (short)sc->rringaddr; 1078 addr->qe_rcvlist_hi = (short)((int)sc->rringaddr >> 16); 1079 sc->qe_flags |= QEF_RUNNING; 1080 qestart(ifp->if_unit); 1081 } 1082 #endif 1083