1 /* if_acc.c 4.1 82/02/01 */ 2 3 #include "acc.h" 4 #ifdef NACC > 0 5 6 /* 7 * ACC LH/DH ARPAnet IMP interface driver. 8 */ 9 10 #include "../h/param.h" 11 #include "../h/systm.h" 12 #include "../h/mbuf.h" 13 #include "../h/pte.h" 14 #include "../h/buf.h" 15 #include "../h/protosw.h" 16 #include "../h/socket.h" 17 #include "../h/ubareg.h" 18 #include "../h/ubavar.h" 19 #include "../h/accreg.h" 20 #include "../h/cpu.h" 21 #include "../h/mtpr.h" 22 #include "../h/vmmac.h" 23 #include "../net/in.h" 24 #include "../net/in_systm.h" 25 #include "../net/if.h" 26 #include "../net/if_imp.h" 27 #include "../net/if_uba.h" 28 29 int accprobe(), accattach(), accrint(), accxint(); 30 struct uba_device *accinfo[NACC]; 31 u_short accstd[] = { 0 }; 32 struct uba_driver accdriver = 33 { accprobe, 0, accattach, 0, accstd, "acc", accinfo }; 34 #define ACCUNIT(x) minor(x) 35 36 int accinit(), accstart(), accreset(); 37 38 /* 39 * "Lower half" of IMP interface driver. 40 * 41 * Each IMP interface is handled by a common module which handles 42 * the IMP-host protocol and a hardware driver which manages the 43 * hardware specific details of talking with the IMP. 44 * 45 * The hardware portion of the IMP driver handles DMA and related 46 * management of UNIBUS resources. The IMP protocol module interprets 47 * contents of these messages and "controls" the actions of the 48 * hardware module during IMP resets, but not, for instance, during 49 * UNIBUS resets. 50 * 51 * The two modules are coupled at "attach time", and ever after, 52 * through the imp interface structure. Higher level protocols, 53 * e.g. IP, interact with the IMP driver, rather than the ACC. 54 */ 55 struct acc_softc { 56 struct ifnet *acc_if; /* pointer to IMP's ifnet struct */ 57 struct impcb *acc_ic; /* data structure shared with IMP */ 58 struct ifuba acc_ifuba; /* UNIBUS resources */ 59 struct mbuf *acc_iq; /* input reassembly queue */ 60 short acc_olen; /* size of last message sent */ 61 char acc_flush; /* flush remainder of message */ 62 char acc_previous; /* something on input queue */ 63 } acc_softc[NACC]; 64 65 /* 66 * Reset the IMP and cause a transmitter interrupt by 67 * performing a null DMA. 68 */ 69 accprobe(reg) 70 caddr_t reg; 71 { 72 register int br, cvec; /* r11, r10 value-result */ 73 register struct accdevice *addr = (struct accdevice *)reg; 74 75 COUNT(ACCPROBE); 76 #ifdef lint 77 br = 0; cvec = br; br = cvec; 78 accrint(0); accxint(0); 79 #endif 80 addr->acc_icsr = ACC_RESET; 81 DELAY(500000); 82 addr->acc_ocsr = ACC_RESET; 83 DELAY(500000); 84 85 addr->acc_ocsr = OUT_BBACK; 86 DELAY(500000); 87 addr->acc_owc = 0; 88 addr->acc_ocsr = ACC_IE | ACC_GO; 89 DELAY(500000); 90 addr->acc_ocsr = 0; 91 /* interrupt was for transmit, push back to receive vector */ 92 if (cvec && cvec != 0x200) 93 cvec -= 4; 94 return (1); 95 } 96 97 /* 98 * Call the IMP module to allow it to set up its internal 99 * state, then tie the two modules together by setting up 100 * the back pointers to common data structures. 101 */ 102 accattach(ui) 103 struct uba_device *ui; 104 { 105 register struct acc_softc *sc = &acc_softc[ui->ui_unit]; 106 register struct impcb *ip; 107 struct ifimpcb { 108 struct ifnet ifimp_if; 109 struct impcb ifimp_impcb; 110 } *ifimp; 111 112 COUNT(ACCATTACH); 113 if ((ifimp = (struct ifimpcb *)impattach(ui)) == 0) 114 panic("accattach"); /* XXX */ 115 sc->acc_if = &ifimp->ifimp_if; 116 ip = &ifimp->ifimp_impcb; 117 sc->acc_ic = ip; 118 ip->ic_init = accinit; 119 ip->ic_start = accstart; 120 } 121 122 /* 123 * Reset interface after UNIBUS reset. 124 * If interface is on specified uba, reset its state. 125 */ 126 accreset(unit, uban) 127 int unit, uban; 128 { 129 register struct uba_device *ui; 130 struct acc_softc *sc; 131 132 COUNT(ACCRESET); 133 if (unit >= NACC || (ui = accinfo[unit]) == 0 || ui->ui_alive == 0 || 134 ui->ui_ubanum != uban) 135 return; 136 printf(" acc%d", unit); 137 sc = &acc_softc[unit]; 138 /* must go through IMP to allow it to set state */ 139 (*sc->acc_if->if_init)(unit); 140 } 141 142 /* 143 * Initialize interface: clear recorded pending operations, 144 * and retrieve, and reinitialize UNIBUS resources. 145 */ 146 accinit(unit) 147 int unit; 148 { 149 register struct acc_softc *sc = &acc_softc[unit]; 150 register struct uba_device *ui = accinfo[unit]; 151 register struct accdevice *addr; 152 int x, info; 153 154 COUNT(ACCINIT); 155 if (if_ubainit(&sc->acc_ifuba, ui->ui_ubanum, 156 sizeof(struct imp_leader), (int)btop(IMP_MTU)) == 0) { 157 printf("acc%d: can't initialize\n", unit); 158 return; 159 } 160 addr = (struct accdevice *)ui->ui_addr; 161 162 /* reset the imp interface. */ 163 x = spl5(); 164 addr->acc_icsr = ACC_RESET; 165 addr->acc_ocsr = ACC_RESET; 166 addr->acc_ocsr = OUT_BBACK; /* reset host master ready */ 167 addr->acc_ocsr = 0; 168 addr->acc_icsr = IN_MRDY; /* close the relay */ 169 splx(x); 170 171 /* YECH!!! */ 172 while ((addr->acc_icsr & IN_HRDY) == 0 || 173 (addr->acc_icsr & (IN_RMR | IN_IMPBSY))) { 174 /* keep turning IN_RMR off */ 175 addr->acc_icsr = IN_MRDY; 176 sleep((caddr_t)&lbolt, PZERO); 177 } 178 179 /* 180 * Put up a read. We can't restart any outstanding writes 181 * until we're back in synch with the IMP (i.e. we've flushed 182 * the NOOPs it throws at us). 183 */ 184 x = spl5(); 185 info = sc->acc_ifuba.ifu_r.ifrw_info; 186 addr->acc_iba = (u_short)info; 187 addr->acc_iwc = -(sizeof(struct imp_leader) + IMP_MTU) >> 1; 188 addr->acc_icsr = 189 IN_MRDY | ACC_IE | IN_WEN | ((info & 0x30000) >> 12) | ACC_GO; 190 splx(x); 191 } 192 193 /* 194 * Start output on an interface. 195 */ 196 accstart(dev) 197 dev_t dev; 198 { 199 int unit = ACCUNIT(dev), info; 200 struct uba_device *ui = accinfo[unit]; 201 register struct acc_softc *sc = &acc_softc[unit]; 202 register struct accdevice *addr; 203 struct mbuf *m; 204 u_short cmd; 205 206 COUNT(ACCSTART); 207 if (sc->acc_ic->ic_oactive) 208 goto restart; 209 210 /* 211 * Not already active, deqeue a request and 212 * map it onto the UNIBUS. If no more 213 * requeusts, just return. 214 */ 215 IF_DEQUEUE(&sc->acc_if->if_snd, m); 216 if (m == 0) { 217 sc->acc_ic->ic_oactive = 0; 218 return; 219 } 220 sc->acc_olen = if_wubaput(&sc->acc_ifuba, m); 221 222 restart: 223 /* 224 * Have request mapped to UNIBUS for transmission. 225 * Purge any stale data from the BDP, and start the output. 226 */ 227 UBAPURGE(sc->acc_ifuba.ifu_uba, sc->acc_ifuba.ifu_w.ifrw_bdp); 228 addr = (struct accdevice *)ui->ui_addr; 229 info = sc->acc_ifuba.ifu_w.ifrw_info; 230 addr->acc_oba = (u_short)info; 231 addr->acc_owc = -((sc->acc_olen + 1) >> 1); 232 cmd = ACC_IE | OUT_ENLB | ((info & 0x30000) >> 12) | ACC_GO; 233 addr->acc_ocsr = cmd; 234 sc->acc_ic->ic_oactive = 1; 235 } 236 237 /* 238 * Output interrupt handler. 239 */ 240 accxint(unit) 241 { 242 register struct uba_device *ui = accinfo[unit]; 243 register struct acc_softc *sc = &acc_softc[unit]; 244 register struct accdevice *addr; 245 246 COUNT(ACCXINT); 247 if (sc->acc_ic->ic_oactive == 0) { 248 printf("acc%d: stray output interrupt\n", unit); 249 return; 250 } 251 addr = (struct accdevice *)ui->ui_addr; 252 sc->acc_if->if_opackets++; 253 sc->acc_ic->ic_oactive = 0; 254 if (addr->acc_ocsr & ACC_ERR) 255 printf("acc%d: output error, csr=%b\n", unit, 256 addr->acc_ocsr, ACC_OUTBITS); 257 if (sc->acc_if->if_snd.ifq_head == 0) { 258 sc->acc_if->if_oerrors++; 259 if (sc->acc_ifuba.ifu_xtofree) { 260 m_freem(sc->acc_ifuba.ifu_xtofree); 261 sc->acc_ifuba.ifu_xtofree = 0; 262 } 263 return; 264 } 265 accstart(unit); 266 } 267 268 /* 269 * Input interrupt handler 270 */ 271 accrint(unit) 272 { 273 register struct acc_softc *sc = &acc_softc[unit]; 274 register struct accdevice *addr; 275 register struct ifqueue *inq; 276 struct mbuf *m; 277 int len, info; 278 279 COUNT(ACCRINT); 280 sc->acc_if->if_ipackets++; 281 282 /* 283 * Purge BDP; flush message if error indicated. 284 */ 285 UBAPURGE(sc->acc_ifuba.ifu_uba, sc->acc_ifuba.ifu_r.ifrw_bdp); 286 addr = (struct accdevice *)accinfo[unit]->ui_addr; 287 if (addr->acc_icsr & ACC_ERR) { 288 printf("acc%d: recv error, csr=%b\n", unit, 289 addr->acc_icsr, ACC_INBITS); 290 sc->acc_if->if_ierrors++; 291 sc->acc_flush = 1; 292 } 293 294 if (sc->acc_flush) { 295 if (addr->acc_icsr & IN_EOM) 296 sc->acc_flush = 0; 297 goto setup; 298 } 299 len = sizeof(struct imp_leader) + (addr->acc_iwc << 1); 300 301 /* 302 * The last parameter is always 0 since using 303 * trailers on the ARPAnet is insane. 304 */ 305 m = if_rubaget(&sc->acc_ifuba, len, 0); 306 if (m == 0) 307 goto setup; 308 if ((addr->acc_icsr & IN_EOM) == 0) { 309 if (sc->acc_previous) 310 m_cat(sc->acc_iq, m); 311 else { 312 sc->acc_iq = m; 313 sc->acc_previous = 1; 314 } 315 goto setup; 316 } 317 /* adjust message length for padding. */ 318 m->m_len -= 2; 319 if (sc->acc_previous) { 320 m_cat(sc->acc_iq, m); 321 m = sc->acc_iq; 322 sc->acc_iq = 0; 323 sc->acc_previous = 0; 324 } 325 impinput(unit, m); 326 327 setup: 328 /* 329 * Setup for next message. 330 */ 331 info = sc->acc_ifuba.ifu_r.ifrw_info; 332 addr->acc_iba = (u_short)info; 333 addr->acc_iwc = - (sizeof(struct imp_leader) + IMP_MTU) >> 1; 334 addr->acc_icsr = 335 IN_MRDY | ACC_IE | IN_WEN | ((info & 0x30000) >> 12) | ACC_GO; 336 } 337 #endif 338