1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * @(#)lfs_alloc.c 7.11 (Berkeley) 08/26/89 18 */ 19 20 #include "param.h" 21 #include "systm.h" 22 #include "mount.h" 23 #include "buf.h" 24 #include "user.h" 25 #include "vnode.h" 26 #include "kernel.h" 27 #include "syslog.h" 28 #include "cmap.h" 29 #include "../ufs/quota.h" 30 #include "../ufs/inode.h" 31 #include "../ufs/fs.h" 32 33 extern u_long hashalloc(); 34 extern ino_t ialloccg(); 35 extern daddr_t alloccg(); 36 extern daddr_t alloccgblk(); 37 extern daddr_t fragextend(); 38 extern daddr_t blkpref(); 39 extern daddr_t mapsearch(); 40 extern int inside[], around[]; 41 extern unsigned char *fragtbl[]; 42 43 /* 44 * Allocate a block in the file system. 45 * 46 * The size of the requested block is given, which must be some 47 * multiple of fs_fsize and <= fs_bsize. 48 * A preference may be optionally specified. If a preference is given 49 * the following hierarchy is used to allocate a block: 50 * 1) allocate the requested block. 51 * 2) allocate a rotationally optimal block in the same cylinder. 52 * 3) allocate a block in the same cylinder group. 53 * 4) quadradically rehash into other cylinder groups, until an 54 * available block is located. 55 * If no block preference is given the following heirarchy is used 56 * to allocate a block: 57 * 1) allocate a block in the cylinder group that contains the 58 * inode for the file. 59 * 2) quadradically rehash into other cylinder groups, until an 60 * available block is located. 61 */ 62 alloc(ip, bpref, size, bpp, flags) 63 register struct inode *ip; 64 daddr_t bpref; 65 int size; 66 struct buf **bpp; 67 int flags; 68 { 69 daddr_t bno; 70 register struct fs *fs; 71 register struct buf *bp; 72 int cg, error; 73 74 *bpp = 0; 75 fs = ip->i_fs; 76 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 77 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 78 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 79 panic("alloc: bad size"); 80 } 81 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 82 goto nospace; 83 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 84 goto nospace; 85 #ifdef QUOTA 86 if (error = chkdq(ip, (long)btodb(size), 0)) 87 return (error); 88 #endif 89 if (bpref >= fs->fs_size) 90 bpref = 0; 91 if (bpref == 0) 92 cg = itog(fs, ip->i_number); 93 else 94 cg = dtog(fs, bpref); 95 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 96 (u_long (*)())alloccg); 97 if (bno <= 0) 98 goto nospace; 99 ip->i_blocks += btodb(size); 100 ip->i_flag |= IUPD|ICHG; 101 bp = getblk(ip->i_devvp, fsbtodb(fs, bno), size); 102 if (flags & B_CLRBUF) 103 clrbuf(bp); 104 *bpp = bp; 105 return (0); 106 nospace: 107 fserr(fs, "file system full"); 108 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 109 return (ENOSPC); 110 } 111 112 /* 113 * Reallocate a fragment to a bigger size 114 * 115 * The number and size of the old block is given, and a preference 116 * and new size is also specified. The allocator attempts to extend 117 * the original block. Failing that, the regular block allocator is 118 * invoked to get an appropriate block. 119 */ 120 realloccg(ip, bprev, bpref, osize, nsize, bpp) 121 register struct inode *ip; 122 daddr_t bprev, bpref; 123 int osize, nsize; 124 struct buf **bpp; 125 { 126 register struct fs *fs; 127 struct buf *bp, *obp; 128 int cg, request; 129 daddr_t bno, bn; 130 int i, error, count; 131 132 *bpp = 0; 133 fs = ip->i_fs; 134 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 135 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 136 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 137 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 138 panic("realloccg: bad size"); 139 } 140 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 141 goto nospace; 142 if (bprev == 0) { 143 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 144 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 145 panic("realloccg: bad bprev"); 146 } 147 #ifdef QUOTA 148 if (error = chkdq(ip, (long)btodb(nsize - osize), 0)) 149 return (error); 150 #endif 151 cg = dtog(fs, bprev); 152 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 153 if (bno != 0) { 154 do { 155 error = bread(ip->i_devvp, fsbtodb(fs, bno), 156 osize, NOCRED, &bp); 157 if (error) { 158 brelse(bp); 159 return (error); 160 } 161 } while (brealloc(bp, nsize) == 0); 162 bp->b_flags |= B_DONE; 163 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 164 ip->i_blocks += btodb(nsize - osize); 165 ip->i_flag |= IUPD|ICHG; 166 *bpp = bp; 167 return (0); 168 } 169 if (bpref >= fs->fs_size) 170 bpref = 0; 171 switch ((int)fs->fs_optim) { 172 case FS_OPTSPACE: 173 /* 174 * Allocate an exact sized fragment. Although this makes 175 * best use of space, we will waste time relocating it if 176 * the file continues to grow. If the fragmentation is 177 * less than half of the minimum free reserve, we choose 178 * to begin optimizing for time. 179 */ 180 request = nsize; 181 if (fs->fs_minfree < 5 || 182 fs->fs_cstotal.cs_nffree > 183 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 184 break; 185 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 186 fs->fs_fsmnt); 187 fs->fs_optim = FS_OPTTIME; 188 break; 189 case FS_OPTTIME: 190 /* 191 * At this point we have discovered a file that is trying 192 * to grow a small fragment to a larger fragment. To save 193 * time, we allocate a full sized block, then free the 194 * unused portion. If the file continues to grow, the 195 * `fragextend' call above will be able to grow it in place 196 * without further copying. If aberrant programs cause 197 * disk fragmentation to grow within 2% of the free reserve, 198 * we choose to begin optimizing for space. 199 */ 200 request = fs->fs_bsize; 201 if (fs->fs_cstotal.cs_nffree < 202 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 203 break; 204 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 205 fs->fs_fsmnt); 206 fs->fs_optim = FS_OPTSPACE; 207 break; 208 default: 209 printf("dev = 0x%x, optim = %d, fs = %s\n", 210 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 211 panic("realloccg: bad optim"); 212 /* NOTREACHED */ 213 } 214 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 215 (u_long (*)())alloccg); 216 if (bno > 0) { 217 error = bread(ip->i_devvp, fsbtodb(fs, bprev), 218 osize, NOCRED, &obp); 219 if (error) { 220 brelse(obp); 221 return (error); 222 } 223 bn = fsbtodb(fs, bno); 224 bp = getblk(ip->i_devvp, bn, nsize); 225 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 226 count = howmany(osize, CLBYTES); 227 for (i = 0; i < count; i++) 228 munhash(ip->i_devvp, bn + i * CLBYTES / DEV_BSIZE); 229 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 230 if (obp->b_flags & B_DELWRI) { 231 obp->b_flags &= ~B_DELWRI; 232 u.u_ru.ru_oublock--; /* delete charge */ 233 } 234 brelse(obp); 235 blkfree(ip, bprev, (off_t)osize); 236 if (nsize < request) 237 blkfree(ip, bno + numfrags(fs, nsize), 238 (off_t)(request - nsize)); 239 ip->i_blocks += btodb(nsize - osize); 240 ip->i_flag |= IUPD|ICHG; 241 *bpp = bp; 242 return (0); 243 } 244 nospace: 245 /* 246 * no space available 247 */ 248 fserr(fs, "file system full"); 249 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 250 return (ENOSPC); 251 } 252 253 /* 254 * Allocate an inode in the file system. 255 * 256 * A preference may be optionally specified. If a preference is given 257 * the following hierarchy is used to allocate an inode: 258 * 1) allocate the requested inode. 259 * 2) allocate an inode in the same cylinder group. 260 * 3) quadradically rehash into other cylinder groups, until an 261 * available inode is located. 262 * If no inode preference is given the following heirarchy is used 263 * to allocate an inode: 264 * 1) allocate an inode in cylinder group 0. 265 * 2) quadradically rehash into other cylinder groups, until an 266 * available inode is located. 267 */ 268 ialloc(pip, ipref, mode, ipp) 269 register struct inode *pip; 270 ino_t ipref; 271 int mode; 272 struct inode **ipp; 273 { 274 ino_t ino; 275 register struct fs *fs; 276 register struct inode *ip; 277 int cg, error; 278 279 *ipp = 0; 280 fs = pip->i_fs; 281 if (fs->fs_cstotal.cs_nifree == 0) 282 goto noinodes; 283 #ifdef QUOTA 284 if (error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0)) 285 return (error); 286 #endif 287 if (ipref >= fs->fs_ncg * fs->fs_ipg) 288 ipref = 0; 289 cg = itog(fs, ipref); 290 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 291 if (ino == 0) 292 goto noinodes; 293 error = iget(pip, ino, ipp); 294 if (error) { 295 ifree(pip, ino, 0); 296 return (error); 297 } 298 ip = *ipp; 299 if (ip->i_mode) { 300 printf("mode = 0%o, inum = %d, fs = %s\n", 301 ip->i_mode, ip->i_number, fs->fs_fsmnt); 302 panic("ialloc: dup alloc"); 303 } 304 if (ip->i_blocks) { /* XXX */ 305 printf("free inode %s/%d had %d blocks\n", 306 fs->fs_fsmnt, ino, ip->i_blocks); 307 ip->i_blocks = 0; 308 } 309 /* 310 * Set up a new generation number for this inode. 311 */ 312 if (++nextgennumber < (u_long)time.tv_sec) 313 nextgennumber = time.tv_sec; 314 ip->i_gen = nextgennumber; 315 return (0); 316 noinodes: 317 fserr(fs, "out of inodes"); 318 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 319 return (ENOSPC); 320 } 321 322 /* 323 * Find a cylinder to place a directory. 324 * 325 * The policy implemented by this algorithm is to select from 326 * among those cylinder groups with above the average number of 327 * free inodes, the one with the smallest number of directories. 328 */ 329 ino_t 330 dirpref(fs) 331 register struct fs *fs; 332 { 333 int cg, minndir, mincg, avgifree; 334 335 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 336 minndir = fs->fs_ipg; 337 mincg = 0; 338 for (cg = 0; cg < fs->fs_ncg; cg++) 339 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 340 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 341 mincg = cg; 342 minndir = fs->fs_cs(fs, cg).cs_ndir; 343 } 344 return ((ino_t)(fs->fs_ipg * mincg)); 345 } 346 347 /* 348 * Select the desired position for the next block in a file. The file is 349 * logically divided into sections. The first section is composed of the 350 * direct blocks. Each additional section contains fs_maxbpg blocks. 351 * 352 * If no blocks have been allocated in the first section, the policy is to 353 * request a block in the same cylinder group as the inode that describes 354 * the file. If no blocks have been allocated in any other section, the 355 * policy is to place the section in a cylinder group with a greater than 356 * average number of free blocks. An appropriate cylinder group is found 357 * by using a rotor that sweeps the cylinder groups. When a new group of 358 * blocks is needed, the sweep begins in the cylinder group following the 359 * cylinder group from which the previous allocation was made. The sweep 360 * continues until a cylinder group with greater than the average number 361 * of free blocks is found. If the allocation is for the first block in an 362 * indirect block, the information on the previous allocation is unavailable; 363 * here a best guess is made based upon the logical block number being 364 * allocated. 365 * 366 * If a section is already partially allocated, the policy is to 367 * contiguously allocate fs_maxcontig blocks. The end of one of these 368 * contiguous blocks and the beginning of the next is physically separated 369 * so that the disk head will be in transit between them for at least 370 * fs_rotdelay milliseconds. This is to allow time for the processor to 371 * schedule another I/O transfer. 372 */ 373 daddr_t 374 blkpref(ip, lbn, indx, bap) 375 struct inode *ip; 376 daddr_t lbn; 377 int indx; 378 daddr_t *bap; 379 { 380 register struct fs *fs; 381 register int cg; 382 int avgbfree, startcg; 383 daddr_t nextblk; 384 385 fs = ip->i_fs; 386 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 387 if (lbn < NDADDR) { 388 cg = itog(fs, ip->i_number); 389 return (fs->fs_fpg * cg + fs->fs_frag); 390 } 391 /* 392 * Find a cylinder with greater than average number of 393 * unused data blocks. 394 */ 395 if (indx == 0 || bap[indx - 1] == 0) 396 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 397 else 398 startcg = dtog(fs, bap[indx - 1]) + 1; 399 startcg %= fs->fs_ncg; 400 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 401 for (cg = startcg; cg < fs->fs_ncg; cg++) 402 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 403 fs->fs_cgrotor = cg; 404 return (fs->fs_fpg * cg + fs->fs_frag); 405 } 406 for (cg = 0; cg <= startcg; cg++) 407 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 408 fs->fs_cgrotor = cg; 409 return (fs->fs_fpg * cg + fs->fs_frag); 410 } 411 return (NULL); 412 } 413 /* 414 * One or more previous blocks have been laid out. If less 415 * than fs_maxcontig previous blocks are contiguous, the 416 * next block is requested contiguously, otherwise it is 417 * requested rotationally delayed by fs_rotdelay milliseconds. 418 */ 419 nextblk = bap[indx - 1] + fs->fs_frag; 420 if (indx > fs->fs_maxcontig && 421 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 422 != nextblk) 423 return (nextblk); 424 if (fs->fs_rotdelay != 0) 425 /* 426 * Here we convert ms of delay to frags as: 427 * (frags) = (ms) * (rev/sec) * (sect/rev) / 428 * ((sect/frag) * (ms/sec)) 429 * then round up to the next block. 430 */ 431 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 432 (NSPF(fs) * 1000), fs->fs_frag); 433 return (nextblk); 434 } 435 436 /* 437 * Implement the cylinder overflow algorithm. 438 * 439 * The policy implemented by this algorithm is: 440 * 1) allocate the block in its requested cylinder group. 441 * 2) quadradically rehash on the cylinder group number. 442 * 3) brute force search for a free block. 443 */ 444 /*VARARGS5*/ 445 u_long 446 hashalloc(ip, cg, pref, size, allocator) 447 struct inode *ip; 448 int cg; 449 long pref; 450 int size; /* size for data blocks, mode for inodes */ 451 u_long (*allocator)(); 452 { 453 register struct fs *fs; 454 long result; 455 int i, icg = cg; 456 457 fs = ip->i_fs; 458 /* 459 * 1: preferred cylinder group 460 */ 461 result = (*allocator)(ip, cg, pref, size); 462 if (result) 463 return (result); 464 /* 465 * 2: quadratic rehash 466 */ 467 for (i = 1; i < fs->fs_ncg; i *= 2) { 468 cg += i; 469 if (cg >= fs->fs_ncg) 470 cg -= fs->fs_ncg; 471 result = (*allocator)(ip, cg, 0, size); 472 if (result) 473 return (result); 474 } 475 /* 476 * 3: brute force search 477 * Note that we start at i == 2, since 0 was checked initially, 478 * and 1 is always checked in the quadratic rehash. 479 */ 480 cg = (icg + 2) % fs->fs_ncg; 481 for (i = 2; i < fs->fs_ncg; i++) { 482 result = (*allocator)(ip, cg, 0, size); 483 if (result) 484 return (result); 485 cg++; 486 if (cg == fs->fs_ncg) 487 cg = 0; 488 } 489 return (NULL); 490 } 491 492 /* 493 * Determine whether a fragment can be extended. 494 * 495 * Check to see if the necessary fragments are available, and 496 * if they are, allocate them. 497 */ 498 daddr_t 499 fragextend(ip, cg, bprev, osize, nsize) 500 struct inode *ip; 501 int cg; 502 long bprev; 503 int osize, nsize; 504 { 505 register struct fs *fs; 506 register struct cg *cgp; 507 struct buf *bp; 508 long bno; 509 int frags, bbase; 510 int i, error; 511 512 fs = ip->i_fs; 513 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 514 return (NULL); 515 frags = numfrags(fs, nsize); 516 bbase = fragnum(fs, bprev); 517 if (bbase > fragnum(fs, (bprev + frags - 1))) { 518 /* cannot extend across a block boundary */ 519 return (NULL); 520 } 521 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 522 (int)fs->fs_cgsize, NOCRED, &bp); 523 if (error) { 524 brelse(bp); 525 return (NULL); 526 } 527 cgp = bp->b_un.b_cg; 528 if (!cg_chkmagic(cgp)) { 529 brelse(bp); 530 return (NULL); 531 } 532 cgp->cg_time = time.tv_sec; 533 bno = dtogd(fs, bprev); 534 for (i = numfrags(fs, osize); i < frags; i++) 535 if (isclr(cg_blksfree(cgp), bno + i)) { 536 brelse(bp); 537 return (NULL); 538 } 539 /* 540 * the current fragment can be extended 541 * deduct the count on fragment being extended into 542 * increase the count on the remaining fragment (if any) 543 * allocate the extended piece 544 */ 545 for (i = frags; i < fs->fs_frag - bbase; i++) 546 if (isclr(cg_blksfree(cgp), bno + i)) 547 break; 548 cgp->cg_frsum[i - numfrags(fs, osize)]--; 549 if (i != frags) 550 cgp->cg_frsum[i - frags]++; 551 for (i = numfrags(fs, osize); i < frags; i++) { 552 clrbit(cg_blksfree(cgp), bno + i); 553 cgp->cg_cs.cs_nffree--; 554 fs->fs_cstotal.cs_nffree--; 555 fs->fs_cs(fs, cg).cs_nffree--; 556 } 557 fs->fs_fmod++; 558 bdwrite(bp); 559 return (bprev); 560 } 561 562 /* 563 * Determine whether a block can be allocated. 564 * 565 * Check to see if a block of the apprpriate size is available, 566 * and if it is, allocate it. 567 */ 568 daddr_t 569 alloccg(ip, cg, bpref, size) 570 struct inode *ip; 571 int cg; 572 daddr_t bpref; 573 int size; 574 { 575 register struct fs *fs; 576 register struct cg *cgp; 577 struct buf *bp; 578 register int i; 579 int error, bno, frags, allocsiz; 580 581 fs = ip->i_fs; 582 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 583 return (NULL); 584 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 585 (int)fs->fs_cgsize, NOCRED, &bp); 586 if (error) { 587 brelse(bp); 588 return (NULL); 589 } 590 cgp = bp->b_un.b_cg; 591 if (!cg_chkmagic(cgp) || 592 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 593 brelse(bp); 594 return (NULL); 595 } 596 cgp->cg_time = time.tv_sec; 597 if (size == fs->fs_bsize) { 598 bno = alloccgblk(fs, cgp, bpref); 599 bdwrite(bp); 600 return (bno); 601 } 602 /* 603 * check to see if any fragments are already available 604 * allocsiz is the size which will be allocated, hacking 605 * it down to a smaller size if necessary 606 */ 607 frags = numfrags(fs, size); 608 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 609 if (cgp->cg_frsum[allocsiz] != 0) 610 break; 611 if (allocsiz == fs->fs_frag) { 612 /* 613 * no fragments were available, so a block will be 614 * allocated, and hacked up 615 */ 616 if (cgp->cg_cs.cs_nbfree == 0) { 617 brelse(bp); 618 return (NULL); 619 } 620 bno = alloccgblk(fs, cgp, bpref); 621 bpref = dtogd(fs, bno); 622 for (i = frags; i < fs->fs_frag; i++) 623 setbit(cg_blksfree(cgp), bpref + i); 624 i = fs->fs_frag - frags; 625 cgp->cg_cs.cs_nffree += i; 626 fs->fs_cstotal.cs_nffree += i; 627 fs->fs_cs(fs, cg).cs_nffree += i; 628 fs->fs_fmod++; 629 cgp->cg_frsum[i]++; 630 bdwrite(bp); 631 return (bno); 632 } 633 bno = mapsearch(fs, cgp, bpref, allocsiz); 634 if (bno < 0) { 635 brelse(bp); 636 return (NULL); 637 } 638 for (i = 0; i < frags; i++) 639 clrbit(cg_blksfree(cgp), bno + i); 640 cgp->cg_cs.cs_nffree -= frags; 641 fs->fs_cstotal.cs_nffree -= frags; 642 fs->fs_cs(fs, cg).cs_nffree -= frags; 643 fs->fs_fmod++; 644 cgp->cg_frsum[allocsiz]--; 645 if (frags != allocsiz) 646 cgp->cg_frsum[allocsiz - frags]++; 647 bdwrite(bp); 648 return (cg * fs->fs_fpg + bno); 649 } 650 651 /* 652 * Allocate a block in a cylinder group. 653 * 654 * This algorithm implements the following policy: 655 * 1) allocate the requested block. 656 * 2) allocate a rotationally optimal block in the same cylinder. 657 * 3) allocate the next available block on the block rotor for the 658 * specified cylinder group. 659 * Note that this routine only allocates fs_bsize blocks; these 660 * blocks may be fragmented by the routine that allocates them. 661 */ 662 daddr_t 663 alloccgblk(fs, cgp, bpref) 664 register struct fs *fs; 665 register struct cg *cgp; 666 daddr_t bpref; 667 { 668 daddr_t bno; 669 int cylno, pos, delta; 670 short *cylbp; 671 register int i; 672 673 if (bpref == 0) { 674 bpref = cgp->cg_rotor; 675 goto norot; 676 } 677 bpref = blknum(fs, bpref); 678 bpref = dtogd(fs, bpref); 679 /* 680 * if the requested block is available, use it 681 */ 682 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 683 bno = bpref; 684 goto gotit; 685 } 686 /* 687 * check for a block available on the same cylinder 688 */ 689 cylno = cbtocylno(fs, bpref); 690 if (cg_blktot(cgp)[cylno] == 0) 691 goto norot; 692 if (fs->fs_cpc == 0) { 693 /* 694 * block layout info is not available, so just have 695 * to take any block in this cylinder. 696 */ 697 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 698 goto norot; 699 } 700 /* 701 * check the summary information to see if a block is 702 * available in the requested cylinder starting at the 703 * requested rotational position and proceeding around. 704 */ 705 cylbp = cg_blks(fs, cgp, cylno); 706 pos = cbtorpos(fs, bpref); 707 for (i = pos; i < fs->fs_nrpos; i++) 708 if (cylbp[i] > 0) 709 break; 710 if (i == fs->fs_nrpos) 711 for (i = 0; i < pos; i++) 712 if (cylbp[i] > 0) 713 break; 714 if (cylbp[i] > 0) { 715 /* 716 * found a rotational position, now find the actual 717 * block. A panic if none is actually there. 718 */ 719 pos = cylno % fs->fs_cpc; 720 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 721 if (fs_postbl(fs, pos)[i] == -1) { 722 printf("pos = %d, i = %d, fs = %s\n", 723 pos, i, fs->fs_fsmnt); 724 panic("alloccgblk: cyl groups corrupted"); 725 } 726 for (i = fs_postbl(fs, pos)[i];; ) { 727 if (isblock(fs, cg_blksfree(cgp), bno + i)) { 728 bno = blkstofrags(fs, (bno + i)); 729 goto gotit; 730 } 731 delta = fs_rotbl(fs)[i]; 732 if (delta <= 0 || 733 delta + i > fragstoblks(fs, fs->fs_fpg)) 734 break; 735 i += delta; 736 } 737 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 738 panic("alloccgblk: can't find blk in cyl"); 739 } 740 norot: 741 /* 742 * no blocks in the requested cylinder, so take next 743 * available one in this cylinder group. 744 */ 745 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 746 if (bno < 0) 747 return (NULL); 748 cgp->cg_rotor = bno; 749 gotit: 750 clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 751 cgp->cg_cs.cs_nbfree--; 752 fs->fs_cstotal.cs_nbfree--; 753 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 754 cylno = cbtocylno(fs, bno); 755 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 756 cg_blktot(cgp)[cylno]--; 757 fs->fs_fmod++; 758 return (cgp->cg_cgx * fs->fs_fpg + bno); 759 } 760 761 /* 762 * Determine whether an inode can be allocated. 763 * 764 * Check to see if an inode is available, and if it is, 765 * allocate it using the following policy: 766 * 1) allocate the requested inode. 767 * 2) allocate the next available inode after the requested 768 * inode in the specified cylinder group. 769 */ 770 ino_t 771 ialloccg(ip, cg, ipref, mode) 772 struct inode *ip; 773 int cg; 774 daddr_t ipref; 775 int mode; 776 { 777 register struct fs *fs; 778 register struct cg *cgp; 779 struct buf *bp; 780 int error, start, len, loc, map, i; 781 782 fs = ip->i_fs; 783 if (fs->fs_cs(fs, cg).cs_nifree == 0) 784 return (NULL); 785 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 786 (int)fs->fs_cgsize, NOCRED, &bp); 787 if (error) { 788 brelse(bp); 789 return (NULL); 790 } 791 cgp = bp->b_un.b_cg; 792 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 793 brelse(bp); 794 return (NULL); 795 } 796 cgp->cg_time = time.tv_sec; 797 if (ipref) { 798 ipref %= fs->fs_ipg; 799 if (isclr(cg_inosused(cgp), ipref)) 800 goto gotit; 801 } 802 start = cgp->cg_irotor / NBBY; 803 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 804 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 805 if (loc == 0) { 806 len = start + 1; 807 start = 0; 808 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 809 if (loc == 0) { 810 printf("cg = %s, irotor = %d, fs = %s\n", 811 cg, cgp->cg_irotor, fs->fs_fsmnt); 812 panic("ialloccg: map corrupted"); 813 /* NOTREACHED */ 814 } 815 } 816 i = start + len - loc; 817 map = cg_inosused(cgp)[i]; 818 ipref = i * NBBY; 819 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 820 if ((map & i) == 0) { 821 cgp->cg_irotor = ipref; 822 goto gotit; 823 } 824 } 825 printf("fs = %s\n", fs->fs_fsmnt); 826 panic("ialloccg: block not in map"); 827 /* NOTREACHED */ 828 gotit: 829 setbit(cg_inosused(cgp), ipref); 830 cgp->cg_cs.cs_nifree--; 831 fs->fs_cstotal.cs_nifree--; 832 fs->fs_cs(fs, cg).cs_nifree--; 833 fs->fs_fmod++; 834 if ((mode & IFMT) == IFDIR) { 835 cgp->cg_cs.cs_ndir++; 836 fs->fs_cstotal.cs_ndir++; 837 fs->fs_cs(fs, cg).cs_ndir++; 838 } 839 bdwrite(bp); 840 return (cg * fs->fs_ipg + ipref); 841 } 842 843 /* 844 * Free a block or fragment. 845 * 846 * The specified block or fragment is placed back in the 847 * free map. If a fragment is deallocated, a possible 848 * block reassembly is checked. 849 */ 850 blkfree(ip, bno, size) 851 register struct inode *ip; 852 daddr_t bno; 853 off_t size; 854 { 855 register struct fs *fs; 856 register struct cg *cgp; 857 struct buf *bp; 858 int error, cg, blk, frags, bbase; 859 register int i; 860 861 fs = ip->i_fs; 862 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 863 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 864 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 865 panic("blkfree: bad size"); 866 } 867 cg = dtog(fs, bno); 868 if (badblock(fs, bno)) { 869 printf("bad block %d, ino %d\n", bno, ip->i_number); 870 return; 871 } 872 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 873 (int)fs->fs_cgsize, NOCRED, &bp); 874 if (error) { 875 brelse(bp); 876 return; 877 } 878 cgp = bp->b_un.b_cg; 879 if (!cg_chkmagic(cgp)) { 880 brelse(bp); 881 return; 882 } 883 cgp->cg_time = time.tv_sec; 884 bno = dtogd(fs, bno); 885 if (size == fs->fs_bsize) { 886 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 887 printf("dev = 0x%x, block = %d, fs = %s\n", 888 ip->i_dev, bno, fs->fs_fsmnt); 889 panic("blkfree: freeing free block"); 890 } 891 setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 892 cgp->cg_cs.cs_nbfree++; 893 fs->fs_cstotal.cs_nbfree++; 894 fs->fs_cs(fs, cg).cs_nbfree++; 895 i = cbtocylno(fs, bno); 896 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 897 cg_blktot(cgp)[i]++; 898 } else { 899 bbase = bno - fragnum(fs, bno); 900 /* 901 * decrement the counts associated with the old frags 902 */ 903 blk = blkmap(fs, cg_blksfree(cgp), bbase); 904 fragacct(fs, blk, cgp->cg_frsum, -1); 905 /* 906 * deallocate the fragment 907 */ 908 frags = numfrags(fs, size); 909 for (i = 0; i < frags; i++) { 910 if (isset(cg_blksfree(cgp), bno + i)) { 911 printf("dev = 0x%x, block = %d, fs = %s\n", 912 ip->i_dev, bno + i, fs->fs_fsmnt); 913 panic("blkfree: freeing free frag"); 914 } 915 setbit(cg_blksfree(cgp), bno + i); 916 } 917 cgp->cg_cs.cs_nffree += i; 918 fs->fs_cstotal.cs_nffree += i; 919 fs->fs_cs(fs, cg).cs_nffree += i; 920 /* 921 * add back in counts associated with the new frags 922 */ 923 blk = blkmap(fs, cg_blksfree(cgp), bbase); 924 fragacct(fs, blk, cgp->cg_frsum, 1); 925 /* 926 * if a complete block has been reassembled, account for it 927 */ 928 if (isblock(fs, cg_blksfree(cgp), 929 (daddr_t)fragstoblks(fs, bbase))) { 930 cgp->cg_cs.cs_nffree -= fs->fs_frag; 931 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 932 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 933 cgp->cg_cs.cs_nbfree++; 934 fs->fs_cstotal.cs_nbfree++; 935 fs->fs_cs(fs, cg).cs_nbfree++; 936 i = cbtocylno(fs, bbase); 937 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 938 cg_blktot(cgp)[i]++; 939 } 940 } 941 fs->fs_fmod++; 942 bdwrite(bp); 943 } 944 945 /* 946 * Free an inode. 947 * 948 * The specified inode is placed back in the free map. 949 */ 950 ifree(ip, ino, mode) 951 struct inode *ip; 952 ino_t ino; 953 int mode; 954 { 955 register struct fs *fs; 956 register struct cg *cgp; 957 struct buf *bp; 958 int error, cg; 959 960 fs = ip->i_fs; 961 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 962 printf("dev = 0x%x, ino = %d, fs = %s\n", 963 ip->i_dev, ino, fs->fs_fsmnt); 964 panic("ifree: range"); 965 } 966 cg = itog(fs, ino); 967 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 968 (int)fs->fs_cgsize, NOCRED, &bp); 969 if (error) { 970 brelse(bp); 971 return; 972 } 973 cgp = bp->b_un.b_cg; 974 if (!cg_chkmagic(cgp)) { 975 brelse(bp); 976 return; 977 } 978 cgp->cg_time = time.tv_sec; 979 ino %= fs->fs_ipg; 980 if (isclr(cg_inosused(cgp), ino)) { 981 printf("dev = 0x%x, ino = %d, fs = %s\n", 982 ip->i_dev, ino, fs->fs_fsmnt); 983 panic("ifree: freeing free inode"); 984 } 985 clrbit(cg_inosused(cgp), ino); 986 if (ino < cgp->cg_irotor) 987 cgp->cg_irotor = ino; 988 cgp->cg_cs.cs_nifree++; 989 fs->fs_cstotal.cs_nifree++; 990 fs->fs_cs(fs, cg).cs_nifree++; 991 if ((mode & IFMT) == IFDIR) { 992 cgp->cg_cs.cs_ndir--; 993 fs->fs_cstotal.cs_ndir--; 994 fs->fs_cs(fs, cg).cs_ndir--; 995 } 996 fs->fs_fmod++; 997 bdwrite(bp); 998 } 999 1000 /* 1001 * Find a block of the specified size in the specified cylinder group. 1002 * 1003 * It is a panic if a request is made to find a block if none are 1004 * available. 1005 */ 1006 daddr_t 1007 mapsearch(fs, cgp, bpref, allocsiz) 1008 register struct fs *fs; 1009 register struct cg *cgp; 1010 daddr_t bpref; 1011 int allocsiz; 1012 { 1013 daddr_t bno; 1014 int start, len, loc, i; 1015 int blk, field, subfield, pos; 1016 1017 /* 1018 * find the fragment by searching through the free block 1019 * map for an appropriate bit pattern 1020 */ 1021 if (bpref) 1022 start = dtogd(fs, bpref) / NBBY; 1023 else 1024 start = cgp->cg_frotor / NBBY; 1025 len = howmany(fs->fs_fpg, NBBY) - start; 1026 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1027 (u_char *)fragtbl[fs->fs_frag], 1028 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1029 if (loc == 0) { 1030 len = start + 1; 1031 start = 0; 1032 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1033 (u_char *)fragtbl[fs->fs_frag], 1034 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1035 if (loc == 0) { 1036 printf("start = %d, len = %d, fs = %s\n", 1037 start, len, fs->fs_fsmnt); 1038 panic("alloccg: map corrupted"); 1039 /* NOTREACHED */ 1040 } 1041 } 1042 bno = (start + len - loc) * NBBY; 1043 cgp->cg_frotor = bno; 1044 /* 1045 * found the byte in the map 1046 * sift through the bits to find the selected frag 1047 */ 1048 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1049 blk = blkmap(fs, cg_blksfree(cgp), bno); 1050 blk <<= 1; 1051 field = around[allocsiz]; 1052 subfield = inside[allocsiz]; 1053 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1054 if ((blk & field) == subfield) 1055 return (bno + pos); 1056 field <<= 1; 1057 subfield <<= 1; 1058 } 1059 } 1060 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1061 panic("alloccg: block not in map"); 1062 return (-1); 1063 } 1064 1065 /* 1066 * Fserr prints the name of a file system with an error diagnostic. 1067 * 1068 * The form of the error message is: 1069 * fs: error message 1070 */ 1071 fserr(fs, cp) 1072 struct fs *fs; 1073 char *cp; 1074 { 1075 1076 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp); 1077 } 1078