xref: /csrg-svn/sys/ufs/lfs/lfs_alloc.c (revision 30749)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)lfs_alloc.c	7.1.1.1 (Berkeley) 04/02/87
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "mount.h"
12 #include "fs.h"
13 #include "buf.h"
14 #include "inode.h"
15 #include "dir.h"
16 #include "user.h"
17 #include "quota.h"
18 #include "kernel.h"
19 #include "syslog.h"
20 #include "cmap.h"
21 
22 extern u_long		hashalloc();
23 extern ino_t		ialloccg();
24 extern daddr_t		alloccg();
25 extern daddr_t		alloccgblk();
26 extern daddr_t		fragextend();
27 extern daddr_t		blkpref();
28 extern daddr_t		mapsearch();
29 extern int		inside[], around[];
30 extern unsigned char	*fragtbl[];
31 
32 /*
33  * Allocate a block in the file system.
34  *
35  * The size of the requested block is given, which must be some
36  * multiple of fs_fsize and <= fs_bsize.
37  * A preference may be optionally specified. If a preference is given
38  * the following hierarchy is used to allocate a block:
39  *   1) allocate the requested block.
40  *   2) allocate a rotationally optimal block in the same cylinder.
41  *   3) allocate a block in the same cylinder group.
42  *   4) quadradically rehash into other cylinder groups, until an
43  *      available block is located.
44  * If no block preference is given the following heirarchy is used
45  * to allocate a block:
46  *   1) allocate a block in the cylinder group that contains the
47  *      inode for the file.
48  *   2) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  */
51 struct buf *
52 alloc(ip, bpref, size)
53 	register struct inode *ip;
54 	daddr_t bpref;
55 	int size;
56 {
57 	daddr_t bno;
58 	register struct fs *fs;
59 	register struct buf *bp;
60 	int cg;
61 
62 	fs = ip->i_fs;
63 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
64 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
65 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
66 		panic("alloc: bad size");
67 	}
68 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
69 		goto nospace;
70 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
71 		goto nospace;
72 #ifdef QUOTA
73 	u.u_error = chkdq(ip, (long)btodb(size), 0);
74 	if (u.u_error)
75 		return (NULL);
76 #endif
77 	if (bpref >= fs->fs_size)
78 		bpref = 0;
79 	if (bpref == 0)
80 		cg = itog(fs, ip->i_number);
81 	else
82 		cg = dtog(fs, bpref);
83 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
84 		(u_long (*)())alloccg);
85 	if (bno <= 0)
86 		goto nospace;
87 	ip->i_blocks += btodb(size);
88 	ip->i_flag |= IUPD|ICHG;
89 #ifdef SECSIZE
90 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size, fs->fs_dbsize);
91 #else SECSIZE
92 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
93 #endif SECSIZE
94 	clrbuf(bp);
95 	return (bp);
96 nospace:
97 	fserr(fs, "file system full");
98 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
99 	u.u_error = ENOSPC;
100 	return (NULL);
101 }
102 
103 /*
104  * Reallocate a fragment to a bigger size
105  *
106  * The number and size of the old block is given, and a preference
107  * and new size is also specified. The allocator attempts to extend
108  * the original block. Failing that, the regular block allocator is
109  * invoked to get an appropriate block.
110  */
111 struct buf *
112 realloccg(ip, bprev, bpref, osize, nsize)
113 	register struct inode *ip;
114 	daddr_t bprev, bpref;
115 	int osize, nsize;
116 {
117 	register struct fs *fs;
118 	register struct buf *bp, *obp;
119 	int cg, request;
120 	daddr_t bno, bn;
121 	int i, count, s;
122 	extern struct cmap *mfind();
123 
124 	fs = ip->i_fs;
125 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
126 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
127 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
128 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
129 		panic("realloccg: bad size");
130 	}
131 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
132 		goto nospace;
133 	if (bprev == 0) {
134 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
135 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
136 		panic("realloccg: bad bprev");
137 	}
138 #ifdef QUOTA
139 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
140 	if (u.u_error)
141 		return (NULL);
142 #endif
143 	cg = dtog(fs, bprev);
144 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
145 	if (bno != 0) {
146 		do {
147 #ifdef SECSIZE
148 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize,
149 			    fs->fs_dbsize);
150 #else SECSIZE
151 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
152 #endif SECSIZE
153 			if (bp->b_flags & B_ERROR) {
154 				brelse(bp);
155 				return (NULL);
156 			}
157 		} while (brealloc(bp, nsize) == 0);
158 		bp->b_flags |= B_DONE;
159 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
160 		ip->i_blocks += btodb(nsize - osize);
161 		ip->i_flag |= IUPD|ICHG;
162 		return (bp);
163 	}
164 	if (bpref >= fs->fs_size)
165 		bpref = 0;
166 	switch ((int)fs->fs_optim) {
167 	case FS_OPTSPACE:
168 		/*
169 		 * Allocate an exact sized fragment. Although this makes
170 		 * best use of space, we will waste time relocating it if
171 		 * the file continues to grow. If the fragmentation is
172 		 * less than half of the minimum free reserve, we choose
173 		 * to begin optimizing for time.
174 		 */
175 		request = nsize;
176 		if (fs->fs_minfree < 5 ||
177 		    fs->fs_cstotal.cs_nffree >
178 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
179 			break;
180 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
181 			fs->fs_fsmnt);
182 		fs->fs_optim = FS_OPTTIME;
183 		break;
184 	case FS_OPTTIME:
185 		/*
186 		 * At this point we have discovered a file that is trying
187 		 * to grow a small fragment to a larger fragment. To save
188 		 * time, we allocate a full sized block, then free the
189 		 * unused portion. If the file continues to grow, the
190 		 * `fragextend' call above will be able to grow it in place
191 		 * without further copying. If aberrant programs cause
192 		 * disk fragmentation to grow within 2% of the free reserve,
193 		 * we choose to begin optimizing for space.
194 		 */
195 		request = fs->fs_bsize;
196 		if (fs->fs_cstotal.cs_nffree <
197 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
198 			break;
199 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
200 			fs->fs_fsmnt);
201 		fs->fs_optim = FS_OPTSPACE;
202 		break;
203 	default:
204 		printf("dev = 0x%x, optim = %d, fs = %s\n",
205 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
206 		panic("realloccg: bad optim");
207 		/* NOTREACHED */
208 	}
209 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
210 		(u_long (*)())alloccg);
211 	if (bno > 0) {
212 #ifdef SECSIZE
213 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize,
214 		    fs->fs_dbsize);
215 #else SECSIZE
216 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
217 #endif SECSIZE
218 		if (obp->b_flags & B_ERROR) {
219 			brelse(obp);
220 			return (NULL);
221 		}
222 		bn = fsbtodb(fs, bno);
223 #ifdef SECSIZE
224 		bp = getblk(ip->i_dev, bn, nsize, fs->fs_dbsize);
225 #else SECSIZE
226 		bp = getblk(ip->i_dev, bn, nsize);
227 #endif SECSIZE
228 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
229 		count = howmany(osize, CLBYTES);
230 		for (i = 0; i < count; i++)
231 #ifdef SECSIZE
232 			munhash(ip->i_dev, bn + i * CLBYTES / fs->fs_dbsize);
233 #else SECSIZE
234 			munhash(ip->i_dev, bn + i * CLBYTES / DEV_BSIZE);
235 #endif SECSIZE
236 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
237 		if (obp->b_flags & B_DELWRI) {
238 			obp->b_flags &= ~B_DELWRI;
239 			u.u_ru.ru_oublock--;		/* delete charge */
240 		}
241 		brelse(obp);
242 		free(ip, bprev, (off_t)osize);
243 		if (nsize < request)
244 			free(ip, bno + numfrags(fs, nsize),
245 				(off_t)(request - nsize));
246 		ip->i_blocks += btodb(nsize - osize);
247 		ip->i_flag |= IUPD|ICHG;
248 		return (bp);
249 	}
250 nospace:
251 	/*
252 	 * no space available
253 	 */
254 	fserr(fs, "file system full");
255 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
256 	u.u_error = ENOSPC;
257 	return (NULL);
258 }
259 
260 /*
261  * Allocate an inode in the file system.
262  *
263  * A preference may be optionally specified. If a preference is given
264  * the following hierarchy is used to allocate an inode:
265  *   1) allocate the requested inode.
266  *   2) allocate an inode in the same cylinder group.
267  *   3) quadradically rehash into other cylinder groups, until an
268  *      available inode is located.
269  * If no inode preference is given the following heirarchy is used
270  * to allocate an inode:
271  *   1) allocate an inode in cylinder group 0.
272  *   2) quadradically rehash into other cylinder groups, until an
273  *      available inode is located.
274  */
275 struct inode *
276 ialloc(pip, ipref, mode)
277 	register struct inode *pip;
278 	ino_t ipref;
279 	int mode;
280 {
281 	ino_t ino;
282 	register struct fs *fs;
283 	register struct inode *ip;
284 	int cg;
285 
286 	fs = pip->i_fs;
287 	if (fs->fs_cstotal.cs_nifree == 0)
288 		goto noinodes;
289 #ifdef QUOTA
290 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
291 	if (u.u_error)
292 		return (NULL);
293 #endif
294 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
295 		ipref = 0;
296 	cg = itog(fs, ipref);
297 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
298 	if (ino == 0)
299 		goto noinodes;
300 	ip = iget(pip->i_dev, pip->i_fs, ino);
301 	if (ip == NULL) {
302 		ifree(pip, ino, 0);
303 		return (NULL);
304 	}
305 	if (ip->i_mode) {
306 		printf("mode = 0%o, inum = %d, fs = %s\n",
307 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
308 		panic("ialloc: dup alloc");
309 	}
310 	if (ip->i_blocks) {				/* XXX */
311 		printf("free inode %s/%d had %d blocks\n",
312 		    fs->fs_fsmnt, ino, ip->i_blocks);
313 		ip->i_blocks = 0;
314 	}
315 	return (ip);
316 noinodes:
317 	fserr(fs, "out of inodes");
318 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
319 	u.u_error = ENOSPC;
320 	return (NULL);
321 }
322 
323 /*
324  * Find a cylinder to place a directory.
325  *
326  * The policy implemented by this algorithm is to select from
327  * among those cylinder groups with above the average number of
328  * free inodes, the one with the smallest number of directories.
329  */
330 ino_t
331 dirpref(fs)
332 	register struct fs *fs;
333 {
334 	int cg, minndir, mincg, avgifree;
335 
336 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
337 	minndir = fs->fs_ipg;
338 	mincg = 0;
339 	for (cg = 0; cg < fs->fs_ncg; cg++)
340 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
341 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
342 			mincg = cg;
343 			minndir = fs->fs_cs(fs, cg).cs_ndir;
344 		}
345 	return ((ino_t)(fs->fs_ipg * mincg));
346 }
347 
348 /*
349  * Select the desired position for the next block in a file.  The file is
350  * logically divided into sections. The first section is composed of the
351  * direct blocks. Each additional section contains fs_maxbpg blocks.
352  *
353  * If no blocks have been allocated in the first section, the policy is to
354  * request a block in the same cylinder group as the inode that describes
355  * the file. If no blocks have been allocated in any other section, the
356  * policy is to place the section in a cylinder group with a greater than
357  * average number of free blocks.  An appropriate cylinder group is found
358  * by using a rotor that sweeps the cylinder groups. When a new group of
359  * blocks is needed, the sweep begins in the cylinder group following the
360  * cylinder group from which the previous allocation was made. The sweep
361  * continues until a cylinder group with greater than the average number
362  * of free blocks is found. If the allocation is for the first block in an
363  * indirect block, the information on the previous allocation is unavailable;
364  * here a best guess is made based upon the logical block number being
365  * allocated.
366  *
367  * If a section is already partially allocated, the policy is to
368  * contiguously allocate fs_maxcontig blocks.  The end of one of these
369  * contiguous blocks and the beginning of the next is physically separated
370  * so that the disk head will be in transit between them for at least
371  * fs_rotdelay milliseconds.  This is to allow time for the processor to
372  * schedule another I/O transfer.
373  */
374 daddr_t
375 blkpref(ip, lbn, indx, bap)
376 	struct inode *ip;
377 	daddr_t lbn;
378 	int indx;
379 	daddr_t *bap;
380 {
381 	register struct fs *fs;
382 	register int cg;
383 	int avgbfree, startcg;
384 	daddr_t nextblk;
385 
386 	fs = ip->i_fs;
387 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
388 		if (lbn < NDADDR) {
389 			cg = itog(fs, ip->i_number);
390 			return (fs->fs_fpg * cg + fs->fs_frag);
391 		}
392 		/*
393 		 * Find a cylinder with greater than average number of
394 		 * unused data blocks.
395 		 */
396 		if (indx == 0 || bap[indx - 1] == 0)
397 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
398 		else
399 			startcg = dtog(fs, bap[indx - 1]) + 1;
400 		startcg %= fs->fs_ncg;
401 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
402 		for (cg = startcg; cg < fs->fs_ncg; cg++)
403 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
404 				fs->fs_cgrotor = cg;
405 				return (fs->fs_fpg * cg + fs->fs_frag);
406 			}
407 		for (cg = 0; cg <= startcg; cg++)
408 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
409 				fs->fs_cgrotor = cg;
410 				return (fs->fs_fpg * cg + fs->fs_frag);
411 			}
412 		return (NULL);
413 	}
414 	/*
415 	 * One or more previous blocks have been laid out. If less
416 	 * than fs_maxcontig previous blocks are contiguous, the
417 	 * next block is requested contiguously, otherwise it is
418 	 * requested rotationally delayed by fs_rotdelay milliseconds.
419 	 */
420 	nextblk = bap[indx - 1] + fs->fs_frag;
421 	if (indx > fs->fs_maxcontig &&
422 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
423 	    != nextblk)
424 		return (nextblk);
425 	if (fs->fs_rotdelay != 0)
426 		/*
427 		 * Here we convert ms of delay to frags as:
428 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
429 		 *	((sect/frag) * (ms/sec))
430 		 * then round up to the next block.
431 		 */
432 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
433 		    (NSPF(fs) * 1000), fs->fs_frag);
434 	return (nextblk);
435 }
436 
437 /*
438  * Implement the cylinder overflow algorithm.
439  *
440  * The policy implemented by this algorithm is:
441  *   1) allocate the block in its requested cylinder group.
442  *   2) quadradically rehash on the cylinder group number.
443  *   3) brute force search for a free block.
444  */
445 /*VARARGS5*/
446 u_long
447 hashalloc(ip, cg, pref, size, allocator)
448 	struct inode *ip;
449 	int cg;
450 	long pref;
451 	int size;	/* size for data blocks, mode for inodes */
452 	u_long (*allocator)();
453 {
454 	register struct fs *fs;
455 	long result;
456 	int i, icg = cg;
457 
458 	fs = ip->i_fs;
459 	/*
460 	 * 1: preferred cylinder group
461 	 */
462 	result = (*allocator)(ip, cg, pref, size);
463 	if (result)
464 		return (result);
465 	/*
466 	 * 2: quadratic rehash
467 	 */
468 	for (i = 1; i < fs->fs_ncg; i *= 2) {
469 		cg += i;
470 		if (cg >= fs->fs_ncg)
471 			cg -= fs->fs_ncg;
472 		result = (*allocator)(ip, cg, 0, size);
473 		if (result)
474 			return (result);
475 	}
476 	/*
477 	 * 3: brute force search
478 	 * Note that we start at i == 2, since 0 was checked initially,
479 	 * and 1 is always checked in the quadratic rehash.
480 	 */
481 	cg = (icg + 2) % fs->fs_ncg;
482 	for (i = 2; i < fs->fs_ncg; i++) {
483 		result = (*allocator)(ip, cg, 0, size);
484 		if (result)
485 			return (result);
486 		cg++;
487 		if (cg == fs->fs_ncg)
488 			cg = 0;
489 	}
490 	return (NULL);
491 }
492 
493 /*
494  * Determine whether a fragment can be extended.
495  *
496  * Check to see if the necessary fragments are available, and
497  * if they are, allocate them.
498  */
499 daddr_t
500 fragextend(ip, cg, bprev, osize, nsize)
501 	struct inode *ip;
502 	int cg;
503 	long bprev;
504 	int osize, nsize;
505 {
506 	register struct fs *fs;
507 	register struct buf *bp;
508 	register struct cg *cgp;
509 	long bno;
510 	int frags, bbase;
511 	int i;
512 
513 	fs = ip->i_fs;
514 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
515 		return (NULL);
516 	frags = numfrags(fs, nsize);
517 	bbase = fragnum(fs, bprev);
518 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
519 		/* cannot extend across a block boundary */
520 		return (NULL);
521 	}
522 #ifdef SECSIZE
523 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
524 	    fs->fs_dbsize);
525 #else SECSIZE
526 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
527 #endif SECSIZE
528 	cgp = bp->b_un.b_cg;
529 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
530 		brelse(bp);
531 		return (NULL);
532 	}
533 	cgp->cg_time = time.tv_sec;
534 	bno = dtogd(fs, bprev);
535 	for (i = numfrags(fs, osize); i < frags; i++)
536 		if (isclr(cgp->cg_free, bno + i)) {
537 			brelse(bp);
538 			return (NULL);
539 		}
540 	/*
541 	 * the current fragment can be extended
542 	 * deduct the count on fragment being extended into
543 	 * increase the count on the remaining fragment (if any)
544 	 * allocate the extended piece
545 	 */
546 	for (i = frags; i < fs->fs_frag - bbase; i++)
547 		if (isclr(cgp->cg_free, bno + i))
548 			break;
549 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
550 	if (i != frags)
551 		cgp->cg_frsum[i - frags]++;
552 	for (i = numfrags(fs, osize); i < frags; i++) {
553 		clrbit(cgp->cg_free, bno + i);
554 		cgp->cg_cs.cs_nffree--;
555 		fs->fs_cstotal.cs_nffree--;
556 		fs->fs_cs(fs, cg).cs_nffree--;
557 	}
558 	fs->fs_fmod++;
559 	bdwrite(bp);
560 	return (bprev);
561 }
562 
563 /*
564  * Determine whether a block can be allocated.
565  *
566  * Check to see if a block of the apprpriate size is available,
567  * and if it is, allocate it.
568  */
569 daddr_t
570 alloccg(ip, cg, bpref, size)
571 	struct inode *ip;
572 	int cg;
573 	daddr_t bpref;
574 	int size;
575 {
576 	register struct fs *fs;
577 	register struct buf *bp;
578 	register struct cg *cgp;
579 	int bno, frags;
580 	int allocsiz;
581 	register int i;
582 
583 	fs = ip->i_fs;
584 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
585 		return (NULL);
586 #ifdef SECSIZE
587 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
588 	    fs->fs_dbsize);
589 #else SECSIZE
590 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
591 #endif SECSIZE
592 	cgp = bp->b_un.b_cg;
593 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
594 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
595 		brelse(bp);
596 		return (NULL);
597 	}
598 	cgp->cg_time = time.tv_sec;
599 	if (size == fs->fs_bsize) {
600 		bno = alloccgblk(fs, cgp, bpref);
601 		bdwrite(bp);
602 		return (bno);
603 	}
604 	/*
605 	 * check to see if any fragments are already available
606 	 * allocsiz is the size which will be allocated, hacking
607 	 * it down to a smaller size if necessary
608 	 */
609 	frags = numfrags(fs, size);
610 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
611 		if (cgp->cg_frsum[allocsiz] != 0)
612 			break;
613 	if (allocsiz == fs->fs_frag) {
614 		/*
615 		 * no fragments were available, so a block will be
616 		 * allocated, and hacked up
617 		 */
618 		if (cgp->cg_cs.cs_nbfree == 0) {
619 			brelse(bp);
620 			return (NULL);
621 		}
622 		bno = alloccgblk(fs, cgp, bpref);
623 		bpref = dtogd(fs, bno);
624 		for (i = frags; i < fs->fs_frag; i++)
625 			setbit(cgp->cg_free, bpref + i);
626 		i = fs->fs_frag - frags;
627 		cgp->cg_cs.cs_nffree += i;
628 		fs->fs_cstotal.cs_nffree += i;
629 		fs->fs_cs(fs, cg).cs_nffree += i;
630 		fs->fs_fmod++;
631 		cgp->cg_frsum[i]++;
632 		bdwrite(bp);
633 		return (bno);
634 	}
635 	bno = mapsearch(fs, cgp, bpref, allocsiz);
636 	if (bno < 0) {
637 		brelse(bp);
638 		return (NULL);
639 	}
640 	for (i = 0; i < frags; i++)
641 		clrbit(cgp->cg_free, bno + i);
642 	cgp->cg_cs.cs_nffree -= frags;
643 	fs->fs_cstotal.cs_nffree -= frags;
644 	fs->fs_cs(fs, cg).cs_nffree -= frags;
645 	fs->fs_fmod++;
646 	cgp->cg_frsum[allocsiz]--;
647 	if (frags != allocsiz)
648 		cgp->cg_frsum[allocsiz - frags]++;
649 	bdwrite(bp);
650 	return (cg * fs->fs_fpg + bno);
651 }
652 
653 /*
654  * Allocate a block in a cylinder group.
655  *
656  * This algorithm implements the following policy:
657  *   1) allocate the requested block.
658  *   2) allocate a rotationally optimal block in the same cylinder.
659  *   3) allocate the next available block on the block rotor for the
660  *      specified cylinder group.
661  * Note that this routine only allocates fs_bsize blocks; these
662  * blocks may be fragmented by the routine that allocates them.
663  */
664 daddr_t
665 alloccgblk(fs, cgp, bpref)
666 	register struct fs *fs;
667 	register struct cg *cgp;
668 	daddr_t bpref;
669 {
670 	daddr_t bno;
671 	int cylno, pos, delta;
672 	short *cylbp;
673 	register int i;
674 
675 	if (bpref == 0) {
676 		bpref = cgp->cg_rotor;
677 		goto norot;
678 	}
679 	bpref = blknum(fs, bpref);
680 	bpref = dtogd(fs, bpref);
681 	/*
682 	 * if the requested block is available, use it
683 	 */
684 	if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
685 		bno = bpref;
686 		goto gotit;
687 	}
688 	/*
689 	 * check for a block available on the same cylinder
690 	 */
691 	cylno = cbtocylno(fs, bpref);
692 	if (cgp->cg_btot[cylno] == 0)
693 		goto norot;
694 	if (fs->fs_cpc == 0) {
695 		/*
696 		 * block layout info is not available, so just have
697 		 * to take any block in this cylinder.
698 		 */
699 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
700 		goto norot;
701 	}
702 	/*
703 	 * check the summary information to see if a block is
704 	 * available in the requested cylinder starting at the
705 	 * requested rotational position and proceeding around.
706 	 */
707 	cylbp = cgp->cg_b[cylno];
708 	pos = cbtorpos(fs, bpref);
709 	for (i = pos; i < NRPOS; i++)
710 		if (cylbp[i] > 0)
711 			break;
712 	if (i == NRPOS)
713 		for (i = 0; i < pos; i++)
714 			if (cylbp[i] > 0)
715 				break;
716 	if (cylbp[i] > 0) {
717 		/*
718 		 * found a rotational position, now find the actual
719 		 * block. A panic if none is actually there.
720 		 */
721 		pos = cylno % fs->fs_cpc;
722 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
723 		if (fs->fs_postbl[pos][i] == -1) {
724 			printf("pos = %d, i = %d, fs = %s\n",
725 			    pos, i, fs->fs_fsmnt);
726 			panic("alloccgblk: cyl groups corrupted");
727 		}
728 		for (i = fs->fs_postbl[pos][i];; ) {
729 			if (isblock(fs, cgp->cg_free, bno + i)) {
730 				bno = blkstofrags(fs, (bno + i));
731 				goto gotit;
732 			}
733 			delta = fs->fs_rotbl[i];
734 			if (delta <= 0 || delta > MAXBPC - i)
735 				break;
736 			i += delta;
737 		}
738 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
739 		panic("alloccgblk: can't find blk in cyl");
740 	}
741 norot:
742 	/*
743 	 * no blocks in the requested cylinder, so take next
744 	 * available one in this cylinder group.
745 	 */
746 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
747 	if (bno < 0)
748 		return (NULL);
749 	cgp->cg_rotor = bno;
750 gotit:
751 	clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
752 	cgp->cg_cs.cs_nbfree--;
753 	fs->fs_cstotal.cs_nbfree--;
754 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
755 	cylno = cbtocylno(fs, bno);
756 	cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
757 	cgp->cg_btot[cylno]--;
758 	fs->fs_fmod++;
759 	return (cgp->cg_cgx * fs->fs_fpg + bno);
760 }
761 
762 /*
763  * Determine whether an inode can be allocated.
764  *
765  * Check to see if an inode is available, and if it is,
766  * allocate it using the following policy:
767  *   1) allocate the requested inode.
768  *   2) allocate the next available inode after the requested
769  *      inode in the specified cylinder group.
770  */
771 ino_t
772 ialloccg(ip, cg, ipref, mode)
773 	struct inode *ip;
774 	int cg;
775 	daddr_t ipref;
776 	int mode;
777 {
778 	register struct fs *fs;
779 	register struct cg *cgp;
780 	struct buf *bp;
781 	int start, len, loc, map, i;
782 
783 	fs = ip->i_fs;
784 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
785 		return (NULL);
786 #ifdef SECSIZE
787 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
788 	    fs->fs_dbsize);
789 #else SECSIZE
790 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
791 #endif SECSIZE
792 	cgp = bp->b_un.b_cg;
793 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
794 	    cgp->cg_cs.cs_nifree == 0) {
795 		brelse(bp);
796 		return (NULL);
797 	}
798 	cgp->cg_time = time.tv_sec;
799 	if (ipref) {
800 		ipref %= fs->fs_ipg;
801 		if (isclr(cgp->cg_iused, ipref))
802 			goto gotit;
803 	}
804 	start = cgp->cg_irotor / NBBY;
805 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
806 	loc = skpc(0xff, len, &cgp->cg_iused[start]);
807 	if (loc == 0) {
808 		len = start + 1;
809 		start = 0;
810 		loc = skpc(0xff, len, &cgp->cg_iused[0]);
811 		if (loc == 0) {
812 			printf("cg = %s, irotor = %d, fs = %s\n",
813 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
814 			panic("ialloccg: map corrupted");
815 			/* NOTREACHED */
816 		}
817 	}
818 	i = start + len - loc;
819 	map = cgp->cg_iused[i];
820 	ipref = i * NBBY;
821 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
822 		if ((map & i) == 0) {
823 			cgp->cg_irotor = ipref;
824 			goto gotit;
825 		}
826 	}
827 	printf("fs = %s\n", fs->fs_fsmnt);
828 	panic("ialloccg: block not in map");
829 	/* NOTREACHED */
830 gotit:
831 	setbit(cgp->cg_iused, ipref);
832 	cgp->cg_cs.cs_nifree--;
833 	fs->fs_cstotal.cs_nifree--;
834 	fs->fs_cs(fs, cg).cs_nifree--;
835 	fs->fs_fmod++;
836 	if ((mode & IFMT) == IFDIR) {
837 		cgp->cg_cs.cs_ndir++;
838 		fs->fs_cstotal.cs_ndir++;
839 		fs->fs_cs(fs, cg).cs_ndir++;
840 	}
841 	bdwrite(bp);
842 	return (cg * fs->fs_ipg + ipref);
843 }
844 
845 /*
846  * Free a block or fragment.
847  *
848  * The specified block or fragment is placed back in the
849  * free map. If a fragment is deallocated, a possible
850  * block reassembly is checked.
851  */
852 free(ip, bno, size)
853 	register struct inode *ip;
854 	daddr_t bno;
855 	off_t size;
856 {
857 	register struct fs *fs;
858 	register struct cg *cgp;
859 	register struct buf *bp;
860 	int cg, blk, frags, bbase;
861 	register int i;
862 
863 	fs = ip->i_fs;
864 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
865 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
866 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
867 		panic("free: bad size");
868 	}
869 	cg = dtog(fs, bno);
870 	if (badblock(fs, bno)) {
871 		printf("bad block %d, ino %d\n", bno, ip->i_number);
872 		return;
873 	}
874 #ifdef SECSIZE
875 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
876 	    fs->fs_dbsize);
877 #else SECSIZE
878 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
879 #endif SECSIZE
880 	cgp = bp->b_un.b_cg;
881 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
882 		brelse(bp);
883 		return;
884 	}
885 	cgp->cg_time = time.tv_sec;
886 	bno = dtogd(fs, bno);
887 	if (size == fs->fs_bsize) {
888 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
889 			printf("dev = 0x%x, block = %d, fs = %s\n",
890 			    ip->i_dev, bno, fs->fs_fsmnt);
891 			panic("free: freeing free block");
892 		}
893 		setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
894 		cgp->cg_cs.cs_nbfree++;
895 		fs->fs_cstotal.cs_nbfree++;
896 		fs->fs_cs(fs, cg).cs_nbfree++;
897 		i = cbtocylno(fs, bno);
898 		cgp->cg_b[i][cbtorpos(fs, bno)]++;
899 		cgp->cg_btot[i]++;
900 	} else {
901 		bbase = bno - fragnum(fs, bno);
902 		/*
903 		 * decrement the counts associated with the old frags
904 		 */
905 		blk = blkmap(fs, cgp->cg_free, bbase);
906 		fragacct(fs, blk, cgp->cg_frsum, -1);
907 		/*
908 		 * deallocate the fragment
909 		 */
910 		frags = numfrags(fs, size);
911 		for (i = 0; i < frags; i++) {
912 			if (isset(cgp->cg_free, bno + i)) {
913 				printf("dev = 0x%x, block = %d, fs = %s\n",
914 				    ip->i_dev, bno + i, fs->fs_fsmnt);
915 				panic("free: freeing free frag");
916 			}
917 			setbit(cgp->cg_free, bno + i);
918 		}
919 		cgp->cg_cs.cs_nffree += i;
920 		fs->fs_cstotal.cs_nffree += i;
921 		fs->fs_cs(fs, cg).cs_nffree += i;
922 		/*
923 		 * add back in counts associated with the new frags
924 		 */
925 		blk = blkmap(fs, cgp->cg_free, bbase);
926 		fragacct(fs, blk, cgp->cg_frsum, 1);
927 		/*
928 		 * if a complete block has been reassembled, account for it
929 		 */
930 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
931 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
932 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
933 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
934 			cgp->cg_cs.cs_nbfree++;
935 			fs->fs_cstotal.cs_nbfree++;
936 			fs->fs_cs(fs, cg).cs_nbfree++;
937 			i = cbtocylno(fs, bbase);
938 			cgp->cg_b[i][cbtorpos(fs, bbase)]++;
939 			cgp->cg_btot[i]++;
940 		}
941 	}
942 	fs->fs_fmod++;
943 	bdwrite(bp);
944 }
945 
946 /*
947  * Free an inode.
948  *
949  * The specified inode is placed back in the free map.
950  */
951 ifree(ip, ino, mode)
952 	struct inode *ip;
953 	ino_t ino;
954 	int mode;
955 {
956 	register struct fs *fs;
957 	register struct cg *cgp;
958 	register struct buf *bp;
959 	int cg;
960 
961 	fs = ip->i_fs;
962 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
963 		printf("dev = 0x%x, ino = %d, fs = %s\n",
964 		    ip->i_dev, ino, fs->fs_fsmnt);
965 		panic("ifree: range");
966 	}
967 	cg = itog(fs, ino);
968 #ifdef SECSIZE
969 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
970 	    fs->fs_dbsize);
971 #else SECSIZE
972 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
973 #endif SECSIZE
974 	cgp = bp->b_un.b_cg;
975 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
976 		brelse(bp);
977 		return;
978 	}
979 	cgp->cg_time = time.tv_sec;
980 	ino %= fs->fs_ipg;
981 	if (isclr(cgp->cg_iused, ino)) {
982 		printf("dev = 0x%x, ino = %d, fs = %s\n",
983 		    ip->i_dev, ino, fs->fs_fsmnt);
984 		panic("ifree: freeing free inode");
985 	}
986 	clrbit(cgp->cg_iused, ino);
987 	if (ino < cgp->cg_irotor)
988 		cgp->cg_irotor = ino;
989 	cgp->cg_cs.cs_nifree++;
990 	fs->fs_cstotal.cs_nifree++;
991 	fs->fs_cs(fs, cg).cs_nifree++;
992 	if ((mode & IFMT) == IFDIR) {
993 		cgp->cg_cs.cs_ndir--;
994 		fs->fs_cstotal.cs_ndir--;
995 		fs->fs_cs(fs, cg).cs_ndir--;
996 	}
997 	fs->fs_fmod++;
998 	bdwrite(bp);
999 }
1000 
1001 /*
1002  * Find a block of the specified size in the specified cylinder group.
1003  *
1004  * It is a panic if a request is made to find a block if none are
1005  * available.
1006  */
1007 daddr_t
1008 mapsearch(fs, cgp, bpref, allocsiz)
1009 	register struct fs *fs;
1010 	register struct cg *cgp;
1011 	daddr_t bpref;
1012 	int allocsiz;
1013 {
1014 	daddr_t bno;
1015 	int start, len, loc, i;
1016 	int blk, field, subfield, pos;
1017 
1018 	/*
1019 	 * find the fragment by searching through the free block
1020 	 * map for an appropriate bit pattern
1021 	 */
1022 	if (bpref)
1023 		start = dtogd(fs, bpref) / NBBY;
1024 	else
1025 		start = cgp->cg_frotor / NBBY;
1026 	len = howmany(fs->fs_fpg, NBBY) - start;
1027 	loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
1028 		(caddr_t)fragtbl[fs->fs_frag],
1029 		(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1030 	if (loc == 0) {
1031 		len = start + 1;
1032 		start = 0;
1033 		loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
1034 			(caddr_t)fragtbl[fs->fs_frag],
1035 			(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1036 		if (loc == 0) {
1037 			printf("start = %d, len = %d, fs = %s\n",
1038 			    start, len, fs->fs_fsmnt);
1039 			panic("alloccg: map corrupted");
1040 			/* NOTREACHED */
1041 		}
1042 	}
1043 	bno = (start + len - loc) * NBBY;
1044 	cgp->cg_frotor = bno;
1045 	/*
1046 	 * found the byte in the map
1047 	 * sift through the bits to find the selected frag
1048 	 */
1049 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1050 		blk = blkmap(fs, cgp->cg_free, bno);
1051 		blk <<= 1;
1052 		field = around[allocsiz];
1053 		subfield = inside[allocsiz];
1054 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1055 			if ((blk & field) == subfield)
1056 				return (bno + pos);
1057 			field <<= 1;
1058 			subfield <<= 1;
1059 		}
1060 	}
1061 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1062 	panic("alloccg: block not in map");
1063 	return (-1);
1064 }
1065 
1066 /*
1067  * Fserr prints the name of a file system with an error diagnostic.
1068  *
1069  * The form of the error message is:
1070  *	fs: error message
1071  */
1072 fserr(fs, cp)
1073 	struct fs *fs;
1074 	char *cp;
1075 {
1076 
1077 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1078 }
1079