xref: /csrg-svn/sys/ufs/lfs/lfs_alloc.c (revision 29113)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)lfs_alloc.c	7.1 (Berkeley) 06/05/86
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "mount.h"
12 #include "fs.h"
13 #include "buf.h"
14 #include "inode.h"
15 #include "dir.h"
16 #include "user.h"
17 #include "quota.h"
18 #include "kernel.h"
19 #include "syslog.h"
20 #include "cmap.h"
21 
22 extern u_long		hashalloc();
23 extern ino_t		ialloccg();
24 extern daddr_t		alloccg();
25 extern daddr_t		alloccgblk();
26 extern daddr_t		fragextend();
27 extern daddr_t		blkpref();
28 extern daddr_t		mapsearch();
29 extern int		inside[], around[];
30 extern unsigned char	*fragtbl[];
31 
32 /*
33  * Allocate a block in the file system.
34  *
35  * The size of the requested block is given, which must be some
36  * multiple of fs_fsize and <= fs_bsize.
37  * A preference may be optionally specified. If a preference is given
38  * the following hierarchy is used to allocate a block:
39  *   1) allocate the requested block.
40  *   2) allocate a rotationally optimal block in the same cylinder.
41  *   3) allocate a block in the same cylinder group.
42  *   4) quadradically rehash into other cylinder groups, until an
43  *      available block is located.
44  * If no block preference is given the following heirarchy is used
45  * to allocate a block:
46  *   1) allocate a block in the cylinder group that contains the
47  *      inode for the file.
48  *   2) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  */
51 struct buf *
52 alloc(ip, bpref, size)
53 	register struct inode *ip;
54 	daddr_t bpref;
55 	int size;
56 {
57 	daddr_t bno;
58 	register struct fs *fs;
59 	register struct buf *bp;
60 	int cg;
61 
62 	fs = ip->i_fs;
63 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
64 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
65 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
66 		panic("alloc: bad size");
67 	}
68 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
69 		goto nospace;
70 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
71 		goto nospace;
72 #ifdef QUOTA
73 	u.u_error = chkdq(ip, (long)btodb(size), 0);
74 	if (u.u_error)
75 		return (NULL);
76 #endif
77 	if (bpref >= fs->fs_size)
78 		bpref = 0;
79 	if (bpref == 0)
80 		cg = itog(fs, ip->i_number);
81 	else
82 		cg = dtog(fs, bpref);
83 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
84 		(u_long (*)())alloccg);
85 	if (bno <= 0)
86 		goto nospace;
87 	ip->i_blocks += btodb(size);
88 	ip->i_flag |= IUPD|ICHG;
89 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
90 	clrbuf(bp);
91 	return (bp);
92 nospace:
93 	fserr(fs, "file system full");
94 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
95 	u.u_error = ENOSPC;
96 	return (NULL);
97 }
98 
99 /*
100  * Reallocate a fragment to a bigger size
101  *
102  * The number and size of the old block is given, and a preference
103  * and new size is also specified. The allocator attempts to extend
104  * the original block. Failing that, the regular block allocator is
105  * invoked to get an appropriate block.
106  */
107 struct buf *
108 realloccg(ip, bprev, bpref, osize, nsize)
109 	register struct inode *ip;
110 	daddr_t bprev, bpref;
111 	int osize, nsize;
112 {
113 	register struct fs *fs;
114 	register struct buf *bp, *obp;
115 	int cg, request;
116 	daddr_t bno, bn;
117 	int i, count, s;
118 	extern struct cmap *mfind();
119 
120 	fs = ip->i_fs;
121 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
122 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
123 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
124 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
125 		panic("realloccg: bad size");
126 	}
127 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
128 		goto nospace;
129 	if (bprev == 0) {
130 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
131 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
132 		panic("realloccg: bad bprev");
133 	}
134 #ifdef QUOTA
135 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
136 	if (u.u_error)
137 		return (NULL);
138 #endif
139 	cg = dtog(fs, bprev);
140 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
141 	if (bno != 0) {
142 		do {
143 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
144 			if (bp->b_flags & B_ERROR) {
145 				brelse(bp);
146 				return (NULL);
147 			}
148 		} while (brealloc(bp, nsize) == 0);
149 		bp->b_flags |= B_DONE;
150 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
151 		ip->i_blocks += btodb(nsize - osize);
152 		ip->i_flag |= IUPD|ICHG;
153 		return (bp);
154 	}
155 	if (bpref >= fs->fs_size)
156 		bpref = 0;
157 	switch ((int)fs->fs_optim) {
158 	case FS_OPTSPACE:
159 		/*
160 		 * Allocate an exact sized fragment. Although this makes
161 		 * best use of space, we will waste time relocating it if
162 		 * the file continues to grow. If the fragmentation is
163 		 * less than half of the minimum free reserve, we choose
164 		 * to begin optimizing for time.
165 		 */
166 		request = nsize;
167 		if (fs->fs_minfree < 5 ||
168 		    fs->fs_cstotal.cs_nffree >
169 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
170 			break;
171 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
172 			fs->fs_fsmnt);
173 		fs->fs_optim = FS_OPTTIME;
174 		break;
175 	case FS_OPTTIME:
176 		/*
177 		 * At this point we have discovered a file that is trying
178 		 * to grow a small fragment to a larger fragment. To save
179 		 * time, we allocate a full sized block, then free the
180 		 * unused portion. If the file continues to grow, the
181 		 * `fragextend' call above will be able to grow it in place
182 		 * without further copying. If aberrant programs cause
183 		 * disk fragmentation to grow within 2% of the free reserve,
184 		 * we choose to begin optimizing for space.
185 		 */
186 		request = fs->fs_bsize;
187 		if (fs->fs_cstotal.cs_nffree <
188 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
189 			break;
190 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
191 			fs->fs_fsmnt);
192 		fs->fs_optim = FS_OPTSPACE;
193 		break;
194 	default:
195 		printf("dev = 0x%x, optim = %d, fs = %s\n",
196 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
197 		panic("realloccg: bad optim");
198 		/* NOTREACHED */
199 	}
200 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
201 		(u_long (*)())alloccg);
202 	if (bno > 0) {
203 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
204 		if (obp->b_flags & B_ERROR) {
205 			brelse(obp);
206 			return (NULL);
207 		}
208 		bn = fsbtodb(fs, bno);
209 		bp = getblk(ip->i_dev, bn, nsize);
210 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
211 		count = howmany(osize, DEV_BSIZE);
212 		s = splimp();
213 		for (i = 0; i < count; i += CLBYTES / DEV_BSIZE)
214 			if (mfind(ip->i_dev, bn + i))
215 				munhash(ip->i_dev, bn + i);
216 		splx(s);
217 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
218 		if (obp->b_flags & B_DELWRI) {
219 			obp->b_flags &= ~B_DELWRI;
220 			u.u_ru.ru_oublock--;		/* delete charge */
221 		}
222 		brelse(obp);
223 		free(ip, bprev, (off_t)osize);
224 		if (nsize < request)
225 			free(ip, bno + numfrags(fs, nsize),
226 				(off_t)(request - nsize));
227 		ip->i_blocks += btodb(nsize - osize);
228 		ip->i_flag |= IUPD|ICHG;
229 		return (bp);
230 	}
231 nospace:
232 	/*
233 	 * no space available
234 	 */
235 	fserr(fs, "file system full");
236 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
237 	u.u_error = ENOSPC;
238 	return (NULL);
239 }
240 
241 /*
242  * Allocate an inode in the file system.
243  *
244  * A preference may be optionally specified. If a preference is given
245  * the following hierarchy is used to allocate an inode:
246  *   1) allocate the requested inode.
247  *   2) allocate an inode in the same cylinder group.
248  *   3) quadradically rehash into other cylinder groups, until an
249  *      available inode is located.
250  * If no inode preference is given the following heirarchy is used
251  * to allocate an inode:
252  *   1) allocate an inode in cylinder group 0.
253  *   2) quadradically rehash into other cylinder groups, until an
254  *      available inode is located.
255  */
256 struct inode *
257 ialloc(pip, ipref, mode)
258 	register struct inode *pip;
259 	ino_t ipref;
260 	int mode;
261 {
262 	ino_t ino;
263 	register struct fs *fs;
264 	register struct inode *ip;
265 	int cg;
266 
267 	fs = pip->i_fs;
268 	if (fs->fs_cstotal.cs_nifree == 0)
269 		goto noinodes;
270 #ifdef QUOTA
271 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
272 	if (u.u_error)
273 		return (NULL);
274 #endif
275 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
276 		ipref = 0;
277 	cg = itog(fs, ipref);
278 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
279 	if (ino == 0)
280 		goto noinodes;
281 	ip = iget(pip->i_dev, pip->i_fs, ino);
282 	if (ip == NULL) {
283 		ifree(pip, ino, 0);
284 		return (NULL);
285 	}
286 	if (ip->i_mode) {
287 		printf("mode = 0%o, inum = %d, fs = %s\n",
288 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
289 		panic("ialloc: dup alloc");
290 	}
291 	if (ip->i_blocks) {				/* XXX */
292 		printf("free inode %s/%d had %d blocks\n",
293 		    fs->fs_fsmnt, ino, ip->i_blocks);
294 		ip->i_blocks = 0;
295 	}
296 	return (ip);
297 noinodes:
298 	fserr(fs, "out of inodes");
299 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
300 	u.u_error = ENOSPC;
301 	return (NULL);
302 }
303 
304 /*
305  * Find a cylinder to place a directory.
306  *
307  * The policy implemented by this algorithm is to select from
308  * among those cylinder groups with above the average number of
309  * free inodes, the one with the smallest number of directories.
310  */
311 ino_t
312 dirpref(fs)
313 	register struct fs *fs;
314 {
315 	int cg, minndir, mincg, avgifree;
316 
317 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
318 	minndir = fs->fs_ipg;
319 	mincg = 0;
320 	for (cg = 0; cg < fs->fs_ncg; cg++)
321 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
322 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
323 			mincg = cg;
324 			minndir = fs->fs_cs(fs, cg).cs_ndir;
325 		}
326 	return ((ino_t)(fs->fs_ipg * mincg));
327 }
328 
329 /*
330  * Select the desired position for the next block in a file.  The file is
331  * logically divided into sections. The first section is composed of the
332  * direct blocks. Each additional section contains fs_maxbpg blocks.
333  *
334  * If no blocks have been allocated in the first section, the policy is to
335  * request a block in the same cylinder group as the inode that describes
336  * the file. If no blocks have been allocated in any other section, the
337  * policy is to place the section in a cylinder group with a greater than
338  * average number of free blocks.  An appropriate cylinder group is found
339  * by using a rotor that sweeps the cylinder groups. When a new group of
340  * blocks is needed, the sweep begins in the cylinder group following the
341  * cylinder group from which the previous allocation was made. The sweep
342  * continues until a cylinder group with greater than the average number
343  * of free blocks is found. If the allocation is for the first block in an
344  * indirect block, the information on the previous allocation is unavailable;
345  * here a best guess is made based upon the logical block number being
346  * allocated.
347  *
348  * If a section is already partially allocated, the policy is to
349  * contiguously allocate fs_maxcontig blocks.  The end of one of these
350  * contiguous blocks and the beginning of the next is physically separated
351  * so that the disk head will be in transit between them for at least
352  * fs_rotdelay milliseconds.  This is to allow time for the processor to
353  * schedule another I/O transfer.
354  */
355 daddr_t
356 blkpref(ip, lbn, indx, bap)
357 	struct inode *ip;
358 	daddr_t lbn;
359 	int indx;
360 	daddr_t *bap;
361 {
362 	register struct fs *fs;
363 	register int cg;
364 	int avgbfree, startcg;
365 	daddr_t nextblk;
366 
367 	fs = ip->i_fs;
368 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
369 		if (lbn < NDADDR) {
370 			cg = itog(fs, ip->i_number);
371 			return (fs->fs_fpg * cg + fs->fs_frag);
372 		}
373 		/*
374 		 * Find a cylinder with greater than average number of
375 		 * unused data blocks.
376 		 */
377 		if (indx == 0 || bap[indx - 1] == 0)
378 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
379 		else
380 			startcg = dtog(fs, bap[indx - 1]) + 1;
381 		startcg %= fs->fs_ncg;
382 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
383 		for (cg = startcg; cg < fs->fs_ncg; cg++)
384 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
385 				fs->fs_cgrotor = cg;
386 				return (fs->fs_fpg * cg + fs->fs_frag);
387 			}
388 		for (cg = 0; cg <= startcg; cg++)
389 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
390 				fs->fs_cgrotor = cg;
391 				return (fs->fs_fpg * cg + fs->fs_frag);
392 			}
393 		return (NULL);
394 	}
395 	/*
396 	 * One or more previous blocks have been laid out. If less
397 	 * than fs_maxcontig previous blocks are contiguous, the
398 	 * next block is requested contiguously, otherwise it is
399 	 * requested rotationally delayed by fs_rotdelay milliseconds.
400 	 */
401 	nextblk = bap[indx - 1] + fs->fs_frag;
402 	if (indx > fs->fs_maxcontig &&
403 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
404 	    != nextblk)
405 		return (nextblk);
406 	if (fs->fs_rotdelay != 0)
407 		/*
408 		 * Here we convert ms of delay to frags as:
409 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
410 		 *	((sect/frag) * (ms/sec))
411 		 * then round up to the next block.
412 		 */
413 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
414 		    (NSPF(fs) * 1000), fs->fs_frag);
415 	return (nextblk);
416 }
417 
418 /*
419  * Implement the cylinder overflow algorithm.
420  *
421  * The policy implemented by this algorithm is:
422  *   1) allocate the block in its requested cylinder group.
423  *   2) quadradically rehash on the cylinder group number.
424  *   3) brute force search for a free block.
425  */
426 /*VARARGS5*/
427 u_long
428 hashalloc(ip, cg, pref, size, allocator)
429 	struct inode *ip;
430 	int cg;
431 	long pref;
432 	int size;	/* size for data blocks, mode for inodes */
433 	u_long (*allocator)();
434 {
435 	register struct fs *fs;
436 	long result;
437 	int i, icg = cg;
438 
439 	fs = ip->i_fs;
440 	/*
441 	 * 1: preferred cylinder group
442 	 */
443 	result = (*allocator)(ip, cg, pref, size);
444 	if (result)
445 		return (result);
446 	/*
447 	 * 2: quadratic rehash
448 	 */
449 	for (i = 1; i < fs->fs_ncg; i *= 2) {
450 		cg += i;
451 		if (cg >= fs->fs_ncg)
452 			cg -= fs->fs_ncg;
453 		result = (*allocator)(ip, cg, 0, size);
454 		if (result)
455 			return (result);
456 	}
457 	/*
458 	 * 3: brute force search
459 	 * Note that we start at i == 2, since 0 was checked initially,
460 	 * and 1 is always checked in the quadratic rehash.
461 	 */
462 	cg = (icg + 2) % fs->fs_ncg;
463 	for (i = 2; i < fs->fs_ncg; i++) {
464 		result = (*allocator)(ip, cg, 0, size);
465 		if (result)
466 			return (result);
467 		cg++;
468 		if (cg == fs->fs_ncg)
469 			cg = 0;
470 	}
471 	return (NULL);
472 }
473 
474 /*
475  * Determine whether a fragment can be extended.
476  *
477  * Check to see if the necessary fragments are available, and
478  * if they are, allocate them.
479  */
480 daddr_t
481 fragextend(ip, cg, bprev, osize, nsize)
482 	struct inode *ip;
483 	int cg;
484 	long bprev;
485 	int osize, nsize;
486 {
487 	register struct fs *fs;
488 	register struct buf *bp;
489 	register struct cg *cgp;
490 	long bno;
491 	int frags, bbase;
492 	int i;
493 
494 	fs = ip->i_fs;
495 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
496 		return (NULL);
497 	frags = numfrags(fs, nsize);
498 	bbase = fragnum(fs, bprev);
499 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
500 		/* cannot extend across a block boundry */
501 		return (NULL);
502 	}
503 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
504 	cgp = bp->b_un.b_cg;
505 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
506 		brelse(bp);
507 		return (NULL);
508 	}
509 	cgp->cg_time = time.tv_sec;
510 	bno = dtogd(fs, bprev);
511 	for (i = numfrags(fs, osize); i < frags; i++)
512 		if (isclr(cgp->cg_free, bno + i)) {
513 			brelse(bp);
514 			return (NULL);
515 		}
516 	/*
517 	 * the current fragment can be extended
518 	 * deduct the count on fragment being extended into
519 	 * increase the count on the remaining fragment (if any)
520 	 * allocate the extended piece
521 	 */
522 	for (i = frags; i < fs->fs_frag - bbase; i++)
523 		if (isclr(cgp->cg_free, bno + i))
524 			break;
525 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
526 	if (i != frags)
527 		cgp->cg_frsum[i - frags]++;
528 	for (i = numfrags(fs, osize); i < frags; i++) {
529 		clrbit(cgp->cg_free, bno + i);
530 		cgp->cg_cs.cs_nffree--;
531 		fs->fs_cstotal.cs_nffree--;
532 		fs->fs_cs(fs, cg).cs_nffree--;
533 	}
534 	fs->fs_fmod++;
535 	bdwrite(bp);
536 	return (bprev);
537 }
538 
539 /*
540  * Determine whether a block can be allocated.
541  *
542  * Check to see if a block of the apprpriate size is available,
543  * and if it is, allocate it.
544  */
545 daddr_t
546 alloccg(ip, cg, bpref, size)
547 	struct inode *ip;
548 	int cg;
549 	daddr_t bpref;
550 	int size;
551 {
552 	register struct fs *fs;
553 	register struct buf *bp;
554 	register struct cg *cgp;
555 	int bno, frags;
556 	int allocsiz;
557 	register int i;
558 
559 	fs = ip->i_fs;
560 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
561 		return (NULL);
562 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
563 	cgp = bp->b_un.b_cg;
564 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
565 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
566 		brelse(bp);
567 		return (NULL);
568 	}
569 	cgp->cg_time = time.tv_sec;
570 	if (size == fs->fs_bsize) {
571 		bno = alloccgblk(fs, cgp, bpref);
572 		bdwrite(bp);
573 		return (bno);
574 	}
575 	/*
576 	 * check to see if any fragments are already available
577 	 * allocsiz is the size which will be allocated, hacking
578 	 * it down to a smaller size if necessary
579 	 */
580 	frags = numfrags(fs, size);
581 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
582 		if (cgp->cg_frsum[allocsiz] != 0)
583 			break;
584 	if (allocsiz == fs->fs_frag) {
585 		/*
586 		 * no fragments were available, so a block will be
587 		 * allocated, and hacked up
588 		 */
589 		if (cgp->cg_cs.cs_nbfree == 0) {
590 			brelse(bp);
591 			return (NULL);
592 		}
593 		bno = alloccgblk(fs, cgp, bpref);
594 		bpref = dtogd(fs, bno);
595 		for (i = frags; i < fs->fs_frag; i++)
596 			setbit(cgp->cg_free, bpref + i);
597 		i = fs->fs_frag - frags;
598 		cgp->cg_cs.cs_nffree += i;
599 		fs->fs_cstotal.cs_nffree += i;
600 		fs->fs_cs(fs, cg).cs_nffree += i;
601 		fs->fs_fmod++;
602 		cgp->cg_frsum[i]++;
603 		bdwrite(bp);
604 		return (bno);
605 	}
606 	bno = mapsearch(fs, cgp, bpref, allocsiz);
607 	if (bno < 0) {
608 		brelse(bp);
609 		return (NULL);
610 	}
611 	for (i = 0; i < frags; i++)
612 		clrbit(cgp->cg_free, bno + i);
613 	cgp->cg_cs.cs_nffree -= frags;
614 	fs->fs_cstotal.cs_nffree -= frags;
615 	fs->fs_cs(fs, cg).cs_nffree -= frags;
616 	fs->fs_fmod++;
617 	cgp->cg_frsum[allocsiz]--;
618 	if (frags != allocsiz)
619 		cgp->cg_frsum[allocsiz - frags]++;
620 	bdwrite(bp);
621 	return (cg * fs->fs_fpg + bno);
622 }
623 
624 /*
625  * Allocate a block in a cylinder group.
626  *
627  * This algorithm implements the following policy:
628  *   1) allocate the requested block.
629  *   2) allocate a rotationally optimal block in the same cylinder.
630  *   3) allocate the next available block on the block rotor for the
631  *      specified cylinder group.
632  * Note that this routine only allocates fs_bsize blocks; these
633  * blocks may be fragmented by the routine that allocates them.
634  */
635 daddr_t
636 alloccgblk(fs, cgp, bpref)
637 	register struct fs *fs;
638 	register struct cg *cgp;
639 	daddr_t bpref;
640 {
641 	daddr_t bno;
642 	int cylno, pos, delta;
643 	short *cylbp;
644 	register int i;
645 
646 	if (bpref == 0) {
647 		bpref = cgp->cg_rotor;
648 		goto norot;
649 	}
650 	bpref = blknum(fs, bpref);
651 	bpref = dtogd(fs, bpref);
652 	/*
653 	 * if the requested block is available, use it
654 	 */
655 	if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
656 		bno = bpref;
657 		goto gotit;
658 	}
659 	/*
660 	 * check for a block available on the same cylinder
661 	 */
662 	cylno = cbtocylno(fs, bpref);
663 	if (cgp->cg_btot[cylno] == 0)
664 		goto norot;
665 	if (fs->fs_cpc == 0) {
666 		/*
667 		 * block layout info is not available, so just have
668 		 * to take any block in this cylinder.
669 		 */
670 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
671 		goto norot;
672 	}
673 	/*
674 	 * check the summary information to see if a block is
675 	 * available in the requested cylinder starting at the
676 	 * requested rotational position and proceeding around.
677 	 */
678 	cylbp = cgp->cg_b[cylno];
679 	pos = cbtorpos(fs, bpref);
680 	for (i = pos; i < NRPOS; i++)
681 		if (cylbp[i] > 0)
682 			break;
683 	if (i == NRPOS)
684 		for (i = 0; i < pos; i++)
685 			if (cylbp[i] > 0)
686 				break;
687 	if (cylbp[i] > 0) {
688 		/*
689 		 * found a rotational position, now find the actual
690 		 * block. A panic if none is actually there.
691 		 */
692 		pos = cylno % fs->fs_cpc;
693 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
694 		if (fs->fs_postbl[pos][i] == -1) {
695 			printf("pos = %d, i = %d, fs = %s\n",
696 			    pos, i, fs->fs_fsmnt);
697 			panic("alloccgblk: cyl groups corrupted");
698 		}
699 		for (i = fs->fs_postbl[pos][i];; ) {
700 			if (isblock(fs, cgp->cg_free, bno + i)) {
701 				bno = blkstofrags(fs, (bno + i));
702 				goto gotit;
703 			}
704 			delta = fs->fs_rotbl[i];
705 			if (delta <= 0 || delta > MAXBPC - i)
706 				break;
707 			i += delta;
708 		}
709 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
710 		panic("alloccgblk: can't find blk in cyl");
711 	}
712 norot:
713 	/*
714 	 * no blocks in the requested cylinder, so take next
715 	 * available one in this cylinder group.
716 	 */
717 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
718 	if (bno < 0)
719 		return (NULL);
720 	cgp->cg_rotor = bno;
721 gotit:
722 	clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
723 	cgp->cg_cs.cs_nbfree--;
724 	fs->fs_cstotal.cs_nbfree--;
725 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
726 	cylno = cbtocylno(fs, bno);
727 	cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
728 	cgp->cg_btot[cylno]--;
729 	fs->fs_fmod++;
730 	return (cgp->cg_cgx * fs->fs_fpg + bno);
731 }
732 
733 /*
734  * Determine whether an inode can be allocated.
735  *
736  * Check to see if an inode is available, and if it is,
737  * allocate it using the following policy:
738  *   1) allocate the requested inode.
739  *   2) allocate the next available inode after the requested
740  *      inode in the specified cylinder group.
741  */
742 ino_t
743 ialloccg(ip, cg, ipref, mode)
744 	struct inode *ip;
745 	int cg;
746 	daddr_t ipref;
747 	int mode;
748 {
749 	register struct fs *fs;
750 	register struct cg *cgp;
751 	struct buf *bp;
752 	int start, len, loc, map, i;
753 
754 	fs = ip->i_fs;
755 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
756 		return (NULL);
757 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
758 	cgp = bp->b_un.b_cg;
759 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
760 	    cgp->cg_cs.cs_nifree == 0) {
761 		brelse(bp);
762 		return (NULL);
763 	}
764 	cgp->cg_time = time.tv_sec;
765 	if (ipref) {
766 		ipref %= fs->fs_ipg;
767 		if (isclr(cgp->cg_iused, ipref))
768 			goto gotit;
769 	}
770 	start = cgp->cg_irotor / NBBY;
771 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
772 	loc = skpc(0xff, len, &cgp->cg_iused[start]);
773 	if (loc == 0) {
774 		len = start + 1;
775 		start = 0;
776 		loc = skpc(0xff, len, &cgp->cg_iused[0]);
777 		if (loc == 0) {
778 			printf("cg = %s, irotor = %d, fs = %s\n",
779 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
780 			panic("ialloccg: map corrupted");
781 			/* NOTREACHED */
782 		}
783 	}
784 	i = start + len - loc;
785 	map = cgp->cg_iused[i];
786 	ipref = i * NBBY;
787 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
788 		if ((map & i) == 0) {
789 			cgp->cg_irotor = ipref;
790 			goto gotit;
791 		}
792 	}
793 	printf("fs = %s\n", fs->fs_fsmnt);
794 	panic("ialloccg: block not in map");
795 	/* NOTREACHED */
796 gotit:
797 	setbit(cgp->cg_iused, ipref);
798 	cgp->cg_cs.cs_nifree--;
799 	fs->fs_cstotal.cs_nifree--;
800 	fs->fs_cs(fs, cg).cs_nifree--;
801 	fs->fs_fmod++;
802 	if ((mode & IFMT) == IFDIR) {
803 		cgp->cg_cs.cs_ndir++;
804 		fs->fs_cstotal.cs_ndir++;
805 		fs->fs_cs(fs, cg).cs_ndir++;
806 	}
807 	bdwrite(bp);
808 	return (cg * fs->fs_ipg + ipref);
809 }
810 
811 /*
812  * Free a block or fragment.
813  *
814  * The specified block or fragment is placed back in the
815  * free map. If a fragment is deallocated, a possible
816  * block reassembly is checked.
817  */
818 free(ip, bno, size)
819 	register struct inode *ip;
820 	daddr_t bno;
821 	off_t size;
822 {
823 	register struct fs *fs;
824 	register struct cg *cgp;
825 	register struct buf *bp;
826 	int cg, blk, frags, bbase;
827 	register int i;
828 
829 	fs = ip->i_fs;
830 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
831 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
832 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
833 		panic("free: bad size");
834 	}
835 	cg = dtog(fs, bno);
836 	if (badblock(fs, bno)) {
837 		printf("bad block %d, ino %d\n", bno, ip->i_number);
838 		return;
839 	}
840 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
841 	cgp = bp->b_un.b_cg;
842 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
843 		brelse(bp);
844 		return;
845 	}
846 	cgp->cg_time = time.tv_sec;
847 	bno = dtogd(fs, bno);
848 	if (size == fs->fs_bsize) {
849 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
850 			printf("dev = 0x%x, block = %d, fs = %s\n",
851 			    ip->i_dev, bno, fs->fs_fsmnt);
852 			panic("free: freeing free block");
853 		}
854 		setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
855 		cgp->cg_cs.cs_nbfree++;
856 		fs->fs_cstotal.cs_nbfree++;
857 		fs->fs_cs(fs, cg).cs_nbfree++;
858 		i = cbtocylno(fs, bno);
859 		cgp->cg_b[i][cbtorpos(fs, bno)]++;
860 		cgp->cg_btot[i]++;
861 	} else {
862 		bbase = bno - fragnum(fs, bno);
863 		/*
864 		 * decrement the counts associated with the old frags
865 		 */
866 		blk = blkmap(fs, cgp->cg_free, bbase);
867 		fragacct(fs, blk, cgp->cg_frsum, -1);
868 		/*
869 		 * deallocate the fragment
870 		 */
871 		frags = numfrags(fs, size);
872 		for (i = 0; i < frags; i++) {
873 			if (isset(cgp->cg_free, bno + i)) {
874 				printf("dev = 0x%x, block = %d, fs = %s\n",
875 				    ip->i_dev, bno + i, fs->fs_fsmnt);
876 				panic("free: freeing free frag");
877 			}
878 			setbit(cgp->cg_free, bno + i);
879 		}
880 		cgp->cg_cs.cs_nffree += i;
881 		fs->fs_cstotal.cs_nffree += i;
882 		fs->fs_cs(fs, cg).cs_nffree += i;
883 		/*
884 		 * add back in counts associated with the new frags
885 		 */
886 		blk = blkmap(fs, cgp->cg_free, bbase);
887 		fragacct(fs, blk, cgp->cg_frsum, 1);
888 		/*
889 		 * if a complete block has been reassembled, account for it
890 		 */
891 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
892 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
893 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
894 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
895 			cgp->cg_cs.cs_nbfree++;
896 			fs->fs_cstotal.cs_nbfree++;
897 			fs->fs_cs(fs, cg).cs_nbfree++;
898 			i = cbtocylno(fs, bbase);
899 			cgp->cg_b[i][cbtorpos(fs, bbase)]++;
900 			cgp->cg_btot[i]++;
901 		}
902 	}
903 	fs->fs_fmod++;
904 	bdwrite(bp);
905 }
906 
907 /*
908  * Free an inode.
909  *
910  * The specified inode is placed back in the free map.
911  */
912 ifree(ip, ino, mode)
913 	struct inode *ip;
914 	ino_t ino;
915 	int mode;
916 {
917 	register struct fs *fs;
918 	register struct cg *cgp;
919 	register struct buf *bp;
920 	int cg;
921 
922 	fs = ip->i_fs;
923 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
924 		printf("dev = 0x%x, ino = %d, fs = %s\n",
925 		    ip->i_dev, ino, fs->fs_fsmnt);
926 		panic("ifree: range");
927 	}
928 	cg = itog(fs, ino);
929 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
930 	cgp = bp->b_un.b_cg;
931 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
932 		brelse(bp);
933 		return;
934 	}
935 	cgp->cg_time = time.tv_sec;
936 	ino %= fs->fs_ipg;
937 	if (isclr(cgp->cg_iused, ino)) {
938 		printf("dev = 0x%x, ino = %d, fs = %s\n",
939 		    ip->i_dev, ino, fs->fs_fsmnt);
940 		panic("ifree: freeing free inode");
941 	}
942 	clrbit(cgp->cg_iused, ino);
943 	if (ino < cgp->cg_irotor)
944 		cgp->cg_irotor = ino;
945 	cgp->cg_cs.cs_nifree++;
946 	fs->fs_cstotal.cs_nifree++;
947 	fs->fs_cs(fs, cg).cs_nifree++;
948 	if ((mode & IFMT) == IFDIR) {
949 		cgp->cg_cs.cs_ndir--;
950 		fs->fs_cstotal.cs_ndir--;
951 		fs->fs_cs(fs, cg).cs_ndir--;
952 	}
953 	fs->fs_fmod++;
954 	bdwrite(bp);
955 }
956 
957 /*
958  * Find a block of the specified size in the specified cylinder group.
959  *
960  * It is a panic if a request is made to find a block if none are
961  * available.
962  */
963 daddr_t
964 mapsearch(fs, cgp, bpref, allocsiz)
965 	register struct fs *fs;
966 	register struct cg *cgp;
967 	daddr_t bpref;
968 	int allocsiz;
969 {
970 	daddr_t bno;
971 	int start, len, loc, i;
972 	int blk, field, subfield, pos;
973 
974 	/*
975 	 * find the fragment by searching through the free block
976 	 * map for an appropriate bit pattern
977 	 */
978 	if (bpref)
979 		start = dtogd(fs, bpref) / NBBY;
980 	else
981 		start = cgp->cg_frotor / NBBY;
982 	len = howmany(fs->fs_fpg, NBBY) - start;
983 	loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
984 		(caddr_t)fragtbl[fs->fs_frag],
985 		(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
986 	if (loc == 0) {
987 		len = start + 1;
988 		start = 0;
989 		loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
990 			(caddr_t)fragtbl[fs->fs_frag],
991 			(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
992 		if (loc == 0) {
993 			printf("start = %d, len = %d, fs = %s\n",
994 			    start, len, fs->fs_fsmnt);
995 			panic("alloccg: map corrupted");
996 			/* NOTREACHED */
997 		}
998 	}
999 	bno = (start + len - loc) * NBBY;
1000 	cgp->cg_frotor = bno;
1001 	/*
1002 	 * found the byte in the map
1003 	 * sift through the bits to find the selected frag
1004 	 */
1005 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1006 		blk = blkmap(fs, cgp->cg_free, bno);
1007 		blk <<= 1;
1008 		field = around[allocsiz];
1009 		subfield = inside[allocsiz];
1010 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1011 			if ((blk & field) == subfield)
1012 				return (bno + pos);
1013 			field <<= 1;
1014 			subfield <<= 1;
1015 		}
1016 	}
1017 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1018 	panic("alloccg: block not in map");
1019 	return (-1);
1020 }
1021 
1022 /*
1023  * Fserr prints the name of a file system with an error diagnostic.
1024  *
1025  * The form of the error message is:
1026  *	fs: error message
1027  */
1028 fserr(fs, cp)
1029 	struct fs *fs;
1030 	char *cp;
1031 {
1032 
1033 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1034 }
1035