1 /* lfs_alloc.c 6.13 85/03/19 */ 2 3 #include "param.h" 4 #include "systm.h" 5 #include "mount.h" 6 #include "fs.h" 7 #include "buf.h" 8 #include "inode.h" 9 #include "dir.h" 10 #include "user.h" 11 #include "quota.h" 12 #include "kernel.h" 13 #include "syslog.h" 14 15 extern u_long hashalloc(); 16 extern ino_t ialloccg(); 17 extern daddr_t alloccg(); 18 extern daddr_t alloccgblk(); 19 extern daddr_t fragextend(); 20 extern daddr_t blkpref(); 21 extern daddr_t mapsearch(); 22 extern int inside[], around[]; 23 extern unsigned char *fragtbl[]; 24 25 /* 26 * Allocate a block in the file system. 27 * 28 * The size of the requested block is given, which must be some 29 * multiple of fs_fsize and <= fs_bsize. 30 * A preference may be optionally specified. If a preference is given 31 * the following hierarchy is used to allocate a block: 32 * 1) allocate the requested block. 33 * 2) allocate a rotationally optimal block in the same cylinder. 34 * 3) allocate a block in the same cylinder group. 35 * 4) quadradically rehash into other cylinder groups, until an 36 * available block is located. 37 * If no block preference is given the following heirarchy is used 38 * to allocate a block: 39 * 1) allocate a block in the cylinder group that contains the 40 * inode for the file. 41 * 2) quadradically rehash into other cylinder groups, until an 42 * available block is located. 43 */ 44 struct buf * 45 alloc(ip, bpref, size) 46 register struct inode *ip; 47 daddr_t bpref; 48 int size; 49 { 50 daddr_t bno; 51 register struct fs *fs; 52 register struct buf *bp; 53 int cg; 54 55 fs = ip->i_fs; 56 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 57 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 58 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 59 panic("alloc: bad size"); 60 } 61 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 62 goto nospace; 63 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 64 goto nospace; 65 #ifdef QUOTA 66 u.u_error = chkdq(ip, (long)btodb(size), 0); 67 if (u.u_error) 68 return (NULL); 69 #endif 70 if (bpref >= fs->fs_size) 71 bpref = 0; 72 if (bpref == 0) 73 cg = itog(fs, ip->i_number); 74 else 75 cg = dtog(fs, bpref); 76 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 77 (u_long (*)())alloccg); 78 if (bno <= 0) 79 goto nospace; 80 ip->i_blocks += btodb(size); 81 ip->i_flag |= IUPD|ICHG; 82 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 83 clrbuf(bp); 84 return (bp); 85 nospace: 86 fserr(fs, "file system full"); 87 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 88 u.u_error = ENOSPC; 89 return (NULL); 90 } 91 92 /* 93 * Reallocate a fragment to a bigger size 94 * 95 * The number and size of the old block is given, and a preference 96 * and new size is also specified. The allocator attempts to extend 97 * the original block. Failing that, the regular block allocator is 98 * invoked to get an appropriate block. 99 */ 100 struct buf * 101 realloccg(ip, bprev, bpref, osize, nsize) 102 register struct inode *ip; 103 daddr_t bprev, bpref; 104 int osize, nsize; 105 { 106 daddr_t bno; 107 register struct fs *fs; 108 register struct buf *bp, *obp; 109 int cg; 110 111 fs = ip->i_fs; 112 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 113 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 114 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 115 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 116 panic("realloccg: bad size"); 117 } 118 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 119 goto nospace; 120 if (bprev == 0) { 121 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 122 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 123 panic("realloccg: bad bprev"); 124 } 125 #ifdef QUOTA 126 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 127 if (u.u_error) 128 return (NULL); 129 #endif 130 cg = dtog(fs, bprev); 131 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 132 if (bno != 0) { 133 do { 134 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 135 if (bp->b_flags & B_ERROR) { 136 brelse(bp); 137 return (NULL); 138 } 139 } while (brealloc(bp, nsize) == 0); 140 bp->b_flags |= B_DONE; 141 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 142 ip->i_blocks += btodb(nsize - osize); 143 ip->i_flag |= IUPD|ICHG; 144 return (bp); 145 } 146 if (bpref >= fs->fs_size) 147 bpref = 0; 148 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, fs->fs_bsize, 149 (u_long (*)())alloccg); 150 if (bno > 0) { 151 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 152 if (obp->b_flags & B_ERROR) { 153 brelse(obp); 154 return (NULL); 155 } 156 bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize); 157 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 158 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 159 if (obp->b_flags & B_DELWRI) { 160 obp->b_flags &= ~B_DELWRI; 161 u.u_ru.ru_oublock--; /* delete charge */ 162 } 163 brelse(obp); 164 free(ip, bprev, (off_t)osize); 165 if (nsize < fs->fs_bsize) 166 free(ip, bno + numfrags(fs, nsize), 167 (off_t)(fs->fs_bsize - nsize)); 168 ip->i_blocks += btodb(nsize - osize); 169 ip->i_flag |= IUPD|ICHG; 170 return (bp); 171 } 172 nospace: 173 /* 174 * no space available 175 */ 176 fserr(fs, "file system full"); 177 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 178 u.u_error = ENOSPC; 179 return (NULL); 180 } 181 182 /* 183 * Allocate an inode in the file system. 184 * 185 * A preference may be optionally specified. If a preference is given 186 * the following hierarchy is used to allocate an inode: 187 * 1) allocate the requested inode. 188 * 2) allocate an inode in the same cylinder group. 189 * 3) quadradically rehash into other cylinder groups, until an 190 * available inode is located. 191 * If no inode preference is given the following heirarchy is used 192 * to allocate an inode: 193 * 1) allocate an inode in cylinder group 0. 194 * 2) quadradically rehash into other cylinder groups, until an 195 * available inode is located. 196 */ 197 struct inode * 198 ialloc(pip, ipref, mode) 199 register struct inode *pip; 200 ino_t ipref; 201 int mode; 202 { 203 ino_t ino; 204 register struct fs *fs; 205 register struct inode *ip; 206 int cg; 207 208 fs = pip->i_fs; 209 if (fs->fs_cstotal.cs_nifree == 0) 210 goto noinodes; 211 #ifdef QUOTA 212 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 213 if (u.u_error) 214 return (NULL); 215 #endif 216 if (ipref >= fs->fs_ncg * fs->fs_ipg) 217 ipref = 0; 218 cg = itog(fs, ipref); 219 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 220 if (ino == 0) 221 goto noinodes; 222 ip = iget(pip->i_dev, pip->i_fs, ino); 223 if (ip == NULL) { 224 ifree(pip, ino, 0); 225 return (NULL); 226 } 227 if (ip->i_mode) { 228 printf("mode = 0%o, inum = %d, fs = %s\n", 229 ip->i_mode, ip->i_number, fs->fs_fsmnt); 230 panic("ialloc: dup alloc"); 231 } 232 if (ip->i_blocks) { /* XXX */ 233 printf("free inode %s/%d had %d blocks\n", 234 fs->fs_fsmnt, ino, ip->i_blocks); 235 ip->i_blocks = 0; 236 } 237 return (ip); 238 noinodes: 239 fserr(fs, "out of inodes"); 240 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 241 u.u_error = ENOSPC; 242 return (NULL); 243 } 244 245 /* 246 * Find a cylinder to place a directory. 247 * 248 * The policy implemented by this algorithm is to select from 249 * among those cylinder groups with above the average number of 250 * free inodes, the one with the smallest number of directories. 251 */ 252 ino_t 253 dirpref(fs) 254 register struct fs *fs; 255 { 256 int cg, minndir, mincg, avgifree; 257 258 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 259 minndir = fs->fs_ipg; 260 mincg = 0; 261 for (cg = 0; cg < fs->fs_ncg; cg++) 262 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 263 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 264 mincg = cg; 265 minndir = fs->fs_cs(fs, cg).cs_ndir; 266 } 267 return ((ino_t)(fs->fs_ipg * mincg)); 268 } 269 270 /* 271 * Select the desired position for the next block in a file. The file is 272 * logically divided into sections. The first section is composed of the 273 * direct blocks. Each additional section contains fs_maxbpg blocks. 274 * 275 * If no blocks have been allocated in the first section, the policy is to 276 * request a block in the same cylinder group as the inode that describes 277 * the file. If no blocks have been allocated in any other section, the 278 * policy is to place the section in a cylinder group with a greater than 279 * average number of free blocks. An appropriate cylinder group is found 280 * by using a rotor that sweeps the cylinder groups. When a new group of 281 * blocks is needed, the sweep begins in the cylinder group following the 282 * cylinder group from which the previous allocation was made. The sweep 283 * continues until a cylinder group with greater than the average number 284 * of free blocks is found. If the allocation is for the first block in an 285 * indirect block, the information on the previous allocation is unavailable; 286 * here a best guess is made based upon the logical block number being 287 * allocated. 288 * 289 * If a section is already partially allocated, the policy is to 290 * contiguously allocate fs_maxcontig blocks. The end of one of these 291 * contiguous blocks and the beginning of the next is physically separated 292 * so that the disk head will be in transit between them for at least 293 * fs_rotdelay milliseconds. This is to allow time for the processor to 294 * schedule another I/O transfer. 295 */ 296 daddr_t 297 blkpref(ip, lbn, indx, bap) 298 struct inode *ip; 299 daddr_t lbn; 300 int indx; 301 daddr_t *bap; 302 { 303 register struct fs *fs; 304 register int cg; 305 int avgbfree, startcg; 306 daddr_t nextblk; 307 308 fs = ip->i_fs; 309 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 310 if (lbn < NDADDR) { 311 cg = itog(fs, ip->i_number); 312 return (fs->fs_fpg * cg + fs->fs_frag); 313 } 314 /* 315 * Find a cylinder with greater than average number of 316 * unused data blocks. 317 */ 318 if (indx == 0 || bap[indx - 1] == 0) 319 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 320 else 321 startcg = dtog(fs, bap[indx - 1]) + 1; 322 startcg %= fs->fs_ncg; 323 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 324 for (cg = startcg; cg < fs->fs_ncg; cg++) 325 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 326 fs->fs_cgrotor = cg; 327 return (fs->fs_fpg * cg + fs->fs_frag); 328 } 329 for (cg = 0; cg <= startcg; cg++) 330 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 331 fs->fs_cgrotor = cg; 332 return (fs->fs_fpg * cg + fs->fs_frag); 333 } 334 return (NULL); 335 } 336 /* 337 * One or more previous blocks have been laid out. If less 338 * than fs_maxcontig previous blocks are contiguous, the 339 * next block is requested contiguously, otherwise it is 340 * requested rotationally delayed by fs_rotdelay milliseconds. 341 */ 342 nextblk = bap[indx - 1] + fs->fs_frag; 343 if (indx > fs->fs_maxcontig && 344 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 345 != nextblk) 346 return (nextblk); 347 if (fs->fs_rotdelay != 0) 348 /* 349 * Here we convert ms of delay to frags as: 350 * (frags) = (ms) * (rev/sec) * (sect/rev) / 351 * ((sect/frag) * (ms/sec)) 352 * then round up to the next block. 353 */ 354 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 355 (NSPF(fs) * 1000), fs->fs_frag); 356 return (nextblk); 357 } 358 359 /* 360 * Implement the cylinder overflow algorithm. 361 * 362 * The policy implemented by this algorithm is: 363 * 1) allocate the block in its requested cylinder group. 364 * 2) quadradically rehash on the cylinder group number. 365 * 3) brute force search for a free block. 366 */ 367 /*VARARGS5*/ 368 u_long 369 hashalloc(ip, cg, pref, size, allocator) 370 struct inode *ip; 371 int cg; 372 long pref; 373 int size; /* size for data blocks, mode for inodes */ 374 u_long (*allocator)(); 375 { 376 register struct fs *fs; 377 long result; 378 int i, icg = cg; 379 380 fs = ip->i_fs; 381 /* 382 * 1: preferred cylinder group 383 */ 384 result = (*allocator)(ip, cg, pref, size); 385 if (result) 386 return (result); 387 /* 388 * 2: quadratic rehash 389 */ 390 for (i = 1; i < fs->fs_ncg; i *= 2) { 391 cg += i; 392 if (cg >= fs->fs_ncg) 393 cg -= fs->fs_ncg; 394 result = (*allocator)(ip, cg, 0, size); 395 if (result) 396 return (result); 397 } 398 /* 399 * 3: brute force search 400 * Note that we start at i == 2, since 0 was checked initially, 401 * and 1 is always checked in the quadratic rehash. 402 */ 403 cg = (icg + 2) % fs->fs_ncg; 404 for (i = 2; i < fs->fs_ncg; i++) { 405 result = (*allocator)(ip, cg, 0, size); 406 if (result) 407 return (result); 408 cg++; 409 if (cg == fs->fs_ncg) 410 cg = 0; 411 } 412 return (NULL); 413 } 414 415 /* 416 * Determine whether a fragment can be extended. 417 * 418 * Check to see if the necessary fragments are available, and 419 * if they are, allocate them. 420 */ 421 daddr_t 422 fragextend(ip, cg, bprev, osize, nsize) 423 struct inode *ip; 424 int cg; 425 long bprev; 426 int osize, nsize; 427 { 428 register struct fs *fs; 429 register struct buf *bp; 430 register struct cg *cgp; 431 long bno; 432 int frags, bbase; 433 int i; 434 435 fs = ip->i_fs; 436 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 437 return (NULL); 438 frags = numfrags(fs, nsize); 439 bbase = fragnum(fs, bprev); 440 if (bbase > fragnum(fs, (bprev + frags - 1))) { 441 /* cannot extend across a block boundry */ 442 return (NULL); 443 } 444 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 445 cgp = bp->b_un.b_cg; 446 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 447 brelse(bp); 448 return (NULL); 449 } 450 cgp->cg_time = time.tv_sec; 451 bno = dtogd(fs, bprev); 452 for (i = numfrags(fs, osize); i < frags; i++) 453 if (isclr(cgp->cg_free, bno + i)) { 454 brelse(bp); 455 return (NULL); 456 } 457 /* 458 * the current fragment can be extended 459 * deduct the count on fragment being extended into 460 * increase the count on the remaining fragment (if any) 461 * allocate the extended piece 462 */ 463 for (i = frags; i < fs->fs_frag - bbase; i++) 464 if (isclr(cgp->cg_free, bno + i)) 465 break; 466 cgp->cg_frsum[i - numfrags(fs, osize)]--; 467 if (i != frags) 468 cgp->cg_frsum[i - frags]++; 469 for (i = numfrags(fs, osize); i < frags; i++) { 470 clrbit(cgp->cg_free, bno + i); 471 cgp->cg_cs.cs_nffree--; 472 fs->fs_cstotal.cs_nffree--; 473 fs->fs_cs(fs, cg).cs_nffree--; 474 } 475 fs->fs_fmod++; 476 bdwrite(bp); 477 return (bprev); 478 } 479 480 /* 481 * Determine whether a block can be allocated. 482 * 483 * Check to see if a block of the apprpriate size is available, 484 * and if it is, allocate it. 485 */ 486 daddr_t 487 alloccg(ip, cg, bpref, size) 488 struct inode *ip; 489 int cg; 490 daddr_t bpref; 491 int size; 492 { 493 register struct fs *fs; 494 register struct buf *bp; 495 register struct cg *cgp; 496 int bno, frags; 497 int allocsiz; 498 register int i; 499 500 fs = ip->i_fs; 501 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 502 return (NULL); 503 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 504 cgp = bp->b_un.b_cg; 505 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 506 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 507 brelse(bp); 508 return (NULL); 509 } 510 cgp->cg_time = time.tv_sec; 511 if (size == fs->fs_bsize) { 512 bno = alloccgblk(fs, cgp, bpref); 513 bdwrite(bp); 514 return (bno); 515 } 516 /* 517 * check to see if any fragments are already available 518 * allocsiz is the size which will be allocated, hacking 519 * it down to a smaller size if necessary 520 */ 521 frags = numfrags(fs, size); 522 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 523 if (cgp->cg_frsum[allocsiz] != 0) 524 break; 525 if (allocsiz == fs->fs_frag) { 526 /* 527 * no fragments were available, so a block will be 528 * allocated, and hacked up 529 */ 530 if (cgp->cg_cs.cs_nbfree == 0) { 531 brelse(bp); 532 return (NULL); 533 } 534 bno = alloccgblk(fs, cgp, bpref); 535 bpref = dtogd(fs, bno); 536 for (i = frags; i < fs->fs_frag; i++) 537 setbit(cgp->cg_free, bpref + i); 538 i = fs->fs_frag - frags; 539 cgp->cg_cs.cs_nffree += i; 540 fs->fs_cstotal.cs_nffree += i; 541 fs->fs_cs(fs, cg).cs_nffree += i; 542 fs->fs_fmod++; 543 cgp->cg_frsum[i]++; 544 bdwrite(bp); 545 return (bno); 546 } 547 bno = mapsearch(fs, cgp, bpref, allocsiz); 548 if (bno < 0) { 549 brelse(bp); 550 return (NULL); 551 } 552 for (i = 0; i < frags; i++) 553 clrbit(cgp->cg_free, bno + i); 554 cgp->cg_cs.cs_nffree -= frags; 555 fs->fs_cstotal.cs_nffree -= frags; 556 fs->fs_cs(fs, cg).cs_nffree -= frags; 557 fs->fs_fmod++; 558 cgp->cg_frsum[allocsiz]--; 559 if (frags != allocsiz) 560 cgp->cg_frsum[allocsiz - frags]++; 561 bdwrite(bp); 562 return (cg * fs->fs_fpg + bno); 563 } 564 565 /* 566 * Allocate a block in a cylinder group. 567 * 568 * This algorithm implements the following policy: 569 * 1) allocate the requested block. 570 * 2) allocate a rotationally optimal block in the same cylinder. 571 * 3) allocate the next available block on the block rotor for the 572 * specified cylinder group. 573 * Note that this routine only allocates fs_bsize blocks; these 574 * blocks may be fragmented by the routine that allocates them. 575 */ 576 daddr_t 577 alloccgblk(fs, cgp, bpref) 578 register struct fs *fs; 579 register struct cg *cgp; 580 daddr_t bpref; 581 { 582 daddr_t bno; 583 int cylno, pos, delta; 584 short *cylbp; 585 register int i; 586 587 if (bpref == 0) { 588 bpref = cgp->cg_rotor; 589 goto norot; 590 } 591 bpref = blknum(fs, bpref); 592 bpref = dtogd(fs, bpref); 593 /* 594 * if the requested block is available, use it 595 */ 596 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 597 bno = bpref; 598 goto gotit; 599 } 600 /* 601 * check for a block available on the same cylinder 602 */ 603 cylno = cbtocylno(fs, bpref); 604 if (cgp->cg_btot[cylno] == 0) 605 goto norot; 606 if (fs->fs_cpc == 0) { 607 /* 608 * block layout info is not available, so just have 609 * to take any block in this cylinder. 610 */ 611 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 612 goto norot; 613 } 614 /* 615 * check the summary information to see if a block is 616 * available in the requested cylinder starting at the 617 * requested rotational position and proceeding around. 618 */ 619 cylbp = cgp->cg_b[cylno]; 620 pos = cbtorpos(fs, bpref); 621 for (i = pos; i < NRPOS; i++) 622 if (cylbp[i] > 0) 623 break; 624 if (i == NRPOS) 625 for (i = 0; i < pos; i++) 626 if (cylbp[i] > 0) 627 break; 628 if (cylbp[i] > 0) { 629 /* 630 * found a rotational position, now find the actual 631 * block. A panic if none is actually there. 632 */ 633 pos = cylno % fs->fs_cpc; 634 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 635 if (fs->fs_postbl[pos][i] == -1) { 636 printf("pos = %d, i = %d, fs = %s\n", 637 pos, i, fs->fs_fsmnt); 638 panic("alloccgblk: cyl groups corrupted"); 639 } 640 for (i = fs->fs_postbl[pos][i];; ) { 641 if (isblock(fs, cgp->cg_free, bno + i)) { 642 bno = blkstofrags(fs, (bno + i)); 643 goto gotit; 644 } 645 delta = fs->fs_rotbl[i]; 646 if (delta <= 0 || delta > MAXBPC - i) 647 break; 648 i += delta; 649 } 650 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 651 panic("alloccgblk: can't find blk in cyl"); 652 } 653 norot: 654 /* 655 * no blocks in the requested cylinder, so take next 656 * available one in this cylinder group. 657 */ 658 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 659 if (bno < 0) 660 return (NULL); 661 cgp->cg_rotor = bno; 662 gotit: 663 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 664 cgp->cg_cs.cs_nbfree--; 665 fs->fs_cstotal.cs_nbfree--; 666 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 667 cylno = cbtocylno(fs, bno); 668 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 669 cgp->cg_btot[cylno]--; 670 fs->fs_fmod++; 671 return (cgp->cg_cgx * fs->fs_fpg + bno); 672 } 673 674 /* 675 * Determine whether an inode can be allocated. 676 * 677 * Check to see if an inode is available, and if it is, 678 * allocate it using the following policy: 679 * 1) allocate the requested inode. 680 * 2) allocate the next available inode after the requested 681 * inode in the specified cylinder group. 682 */ 683 ino_t 684 ialloccg(ip, cg, ipref, mode) 685 struct inode *ip; 686 int cg; 687 daddr_t ipref; 688 int mode; 689 { 690 register struct fs *fs; 691 register struct cg *cgp; 692 struct buf *bp; 693 int start, len, loc, map, i; 694 695 fs = ip->i_fs; 696 if (fs->fs_cs(fs, cg).cs_nifree == 0) 697 return (NULL); 698 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 699 cgp = bp->b_un.b_cg; 700 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 701 cgp->cg_cs.cs_nifree == 0) { 702 brelse(bp); 703 return (NULL); 704 } 705 cgp->cg_time = time.tv_sec; 706 if (ipref) { 707 ipref %= fs->fs_ipg; 708 if (isclr(cgp->cg_iused, ipref)) 709 goto gotit; 710 } 711 start = cgp->cg_irotor / NBBY; 712 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 713 loc = skpc(0xff, len, &cgp->cg_iused[start]); 714 if (loc == 0) { 715 len = start + 1; 716 start = 0; 717 loc = skpc(0xff, len, &cgp->cg_iused[0]); 718 if (loc == 0) { 719 printf("cg = %s, irotor = %d, fs = %s\n", 720 cg, cgp->cg_irotor, fs->fs_fsmnt); 721 panic("ialloccg: map corrupted"); 722 /* NOTREACHED */ 723 } 724 } 725 i = start + len - loc; 726 map = cgp->cg_iused[i]; 727 ipref = i * NBBY; 728 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 729 if ((map & i) == 0) { 730 cgp->cg_irotor = ipref; 731 goto gotit; 732 } 733 } 734 printf("fs = %s\n", fs->fs_fsmnt); 735 panic("ialloccg: block not in map"); 736 /* NOTREACHED */ 737 gotit: 738 setbit(cgp->cg_iused, ipref); 739 cgp->cg_cs.cs_nifree--; 740 fs->fs_cstotal.cs_nifree--; 741 fs->fs_cs(fs, cg).cs_nifree--; 742 fs->fs_fmod++; 743 if ((mode & IFMT) == IFDIR) { 744 cgp->cg_cs.cs_ndir++; 745 fs->fs_cstotal.cs_ndir++; 746 fs->fs_cs(fs, cg).cs_ndir++; 747 } 748 bdwrite(bp); 749 return (cg * fs->fs_ipg + ipref); 750 } 751 752 /* 753 * Free a block or fragment. 754 * 755 * The specified block or fragment is placed back in the 756 * free map. If a fragment is deallocated, a possible 757 * block reassembly is checked. 758 */ 759 free(ip, bno, size) 760 register struct inode *ip; 761 daddr_t bno; 762 off_t size; 763 { 764 register struct fs *fs; 765 register struct cg *cgp; 766 register struct buf *bp; 767 int cg, blk, frags, bbase; 768 register int i; 769 770 fs = ip->i_fs; 771 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 772 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 773 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 774 panic("free: bad size"); 775 } 776 cg = dtog(fs, bno); 777 if (badblock(fs, bno)) { 778 printf("bad block %d, ino %d\n", bno, ip->i_number); 779 return; 780 } 781 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 782 cgp = bp->b_un.b_cg; 783 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 784 brelse(bp); 785 return; 786 } 787 cgp->cg_time = time.tv_sec; 788 bno = dtogd(fs, bno); 789 if (size == fs->fs_bsize) { 790 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 791 printf("dev = 0x%x, block = %d, fs = %s\n", 792 ip->i_dev, bno, fs->fs_fsmnt); 793 panic("free: freeing free block"); 794 } 795 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 796 cgp->cg_cs.cs_nbfree++; 797 fs->fs_cstotal.cs_nbfree++; 798 fs->fs_cs(fs, cg).cs_nbfree++; 799 i = cbtocylno(fs, bno); 800 cgp->cg_b[i][cbtorpos(fs, bno)]++; 801 cgp->cg_btot[i]++; 802 } else { 803 bbase = bno - fragnum(fs, bno); 804 /* 805 * decrement the counts associated with the old frags 806 */ 807 blk = blkmap(fs, cgp->cg_free, bbase); 808 fragacct(fs, blk, cgp->cg_frsum, -1); 809 /* 810 * deallocate the fragment 811 */ 812 frags = numfrags(fs, size); 813 for (i = 0; i < frags; i++) { 814 if (isset(cgp->cg_free, bno + i)) { 815 printf("dev = 0x%x, block = %d, fs = %s\n", 816 ip->i_dev, bno + i, fs->fs_fsmnt); 817 panic("free: freeing free frag"); 818 } 819 setbit(cgp->cg_free, bno + i); 820 } 821 cgp->cg_cs.cs_nffree += i; 822 fs->fs_cstotal.cs_nffree += i; 823 fs->fs_cs(fs, cg).cs_nffree += i; 824 /* 825 * add back in counts associated with the new frags 826 */ 827 blk = blkmap(fs, cgp->cg_free, bbase); 828 fragacct(fs, blk, cgp->cg_frsum, 1); 829 /* 830 * if a complete block has been reassembled, account for it 831 */ 832 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 833 cgp->cg_cs.cs_nffree -= fs->fs_frag; 834 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 835 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 836 cgp->cg_cs.cs_nbfree++; 837 fs->fs_cstotal.cs_nbfree++; 838 fs->fs_cs(fs, cg).cs_nbfree++; 839 i = cbtocylno(fs, bbase); 840 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 841 cgp->cg_btot[i]++; 842 } 843 } 844 fs->fs_fmod++; 845 bdwrite(bp); 846 } 847 848 /* 849 * Free an inode. 850 * 851 * The specified inode is placed back in the free map. 852 */ 853 ifree(ip, ino, mode) 854 struct inode *ip; 855 ino_t ino; 856 int mode; 857 { 858 register struct fs *fs; 859 register struct cg *cgp; 860 register struct buf *bp; 861 int cg; 862 863 fs = ip->i_fs; 864 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 865 printf("dev = 0x%x, ino = %d, fs = %s\n", 866 ip->i_dev, ino, fs->fs_fsmnt); 867 panic("ifree: range"); 868 } 869 cg = itog(fs, ino); 870 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 871 cgp = bp->b_un.b_cg; 872 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 873 brelse(bp); 874 return; 875 } 876 cgp->cg_time = time.tv_sec; 877 ino %= fs->fs_ipg; 878 if (isclr(cgp->cg_iused, ino)) { 879 printf("dev = 0x%x, ino = %d, fs = %s\n", 880 ip->i_dev, ino, fs->fs_fsmnt); 881 panic("ifree: freeing free inode"); 882 } 883 clrbit(cgp->cg_iused, ino); 884 if (ino < cgp->cg_irotor) 885 cgp->cg_irotor = ino; 886 cgp->cg_cs.cs_nifree++; 887 fs->fs_cstotal.cs_nifree++; 888 fs->fs_cs(fs, cg).cs_nifree++; 889 if ((mode & IFMT) == IFDIR) { 890 cgp->cg_cs.cs_ndir--; 891 fs->fs_cstotal.cs_ndir--; 892 fs->fs_cs(fs, cg).cs_ndir--; 893 } 894 fs->fs_fmod++; 895 bdwrite(bp); 896 } 897 898 /* 899 * Find a block of the specified size in the specified cylinder group. 900 * 901 * It is a panic if a request is made to find a block if none are 902 * available. 903 */ 904 daddr_t 905 mapsearch(fs, cgp, bpref, allocsiz) 906 register struct fs *fs; 907 register struct cg *cgp; 908 daddr_t bpref; 909 int allocsiz; 910 { 911 daddr_t bno; 912 int start, len, loc, i; 913 int blk, field, subfield, pos; 914 915 /* 916 * find the fragment by searching through the free block 917 * map for an appropriate bit pattern 918 */ 919 if (bpref) 920 start = dtogd(fs, bpref) / NBBY; 921 else 922 start = cgp->cg_frotor / NBBY; 923 len = howmany(fs->fs_fpg, NBBY) - start; 924 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 925 (caddr_t)fragtbl[fs->fs_frag], 926 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 927 if (loc == 0) { 928 len = start + 1; 929 start = 0; 930 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0], 931 (caddr_t)fragtbl[fs->fs_frag], 932 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 933 if (loc == 0) { 934 printf("start = %d, len = %d, fs = %s\n", 935 start, len, fs->fs_fsmnt); 936 panic("alloccg: map corrupted"); 937 /* NOTREACHED */ 938 } 939 } 940 bno = (start + len - loc) * NBBY; 941 cgp->cg_frotor = bno; 942 /* 943 * found the byte in the map 944 * sift through the bits to find the selected frag 945 */ 946 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 947 blk = blkmap(fs, cgp->cg_free, bno); 948 blk <<= 1; 949 field = around[allocsiz]; 950 subfield = inside[allocsiz]; 951 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 952 if ((blk & field) == subfield) 953 return (bno + pos); 954 field <<= 1; 955 subfield <<= 1; 956 } 957 } 958 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 959 panic("alloccg: block not in map"); 960 return (-1); 961 } 962 963 /* 964 * Fserr prints the name of a file system with an error diagnostic. 965 * 966 * The form of the error message is: 967 * fs: error message 968 */ 969 fserr(fs, cp) 970 struct fs *fs; 971 char *cp; 972 { 973 974 log(KERN_FAIL, "%s: %s\n", fs->fs_fsmnt, cp); 975 } 976