1 /* lfs_alloc.c 6.9 85/01/10 */ 2 3 #include "param.h" 4 #include "systm.h" 5 #include "mount.h" 6 #include "fs.h" 7 #include "conf.h" 8 #include "buf.h" 9 #include "inode.h" 10 #include "dir.h" 11 #include "user.h" 12 #include "quota.h" 13 #include "kernel.h" 14 15 extern u_long hashalloc(); 16 extern ino_t ialloccg(); 17 extern daddr_t alloccg(); 18 extern daddr_t alloccgblk(); 19 extern daddr_t fragextend(); 20 extern daddr_t blkpref(); 21 extern daddr_t mapsearch(); 22 extern int inside[], around[]; 23 extern unsigned char *fragtbl[]; 24 25 /* 26 * Allocate a block in the file system. 27 * 28 * The size of the requested block is given, which must be some 29 * multiple of fs_fsize and <= fs_bsize. 30 * A preference may be optionally specified. If a preference is given 31 * the following hierarchy is used to allocate a block: 32 * 1) allocate the requested block. 33 * 2) allocate a rotationally optimal block in the same cylinder. 34 * 3) allocate a block in the same cylinder group. 35 * 4) quadradically rehash into other cylinder groups, until an 36 * available block is located. 37 * If no block preference is given the following heirarchy is used 38 * to allocate a block: 39 * 1) allocate a block in the cylinder group that contains the 40 * inode for the file. 41 * 2) quadradically rehash into other cylinder groups, until an 42 * available block is located. 43 */ 44 struct buf * 45 alloc(ip, bpref, size) 46 register struct inode *ip; 47 daddr_t bpref; 48 int size; 49 { 50 daddr_t bno; 51 register struct fs *fs; 52 register struct buf *bp; 53 int cg; 54 55 fs = ip->i_fs; 56 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 57 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 58 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 59 panic("alloc: bad size"); 60 } 61 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 62 goto nospace; 63 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 64 goto nospace; 65 #ifdef QUOTA 66 u.u_error = chkdq(ip, (long)btodb(size), 0); 67 if (u.u_error) 68 return (NULL); 69 #endif 70 if (bpref >= fs->fs_size) 71 bpref = 0; 72 if (bpref == 0) 73 cg = itog(fs, ip->i_number); 74 else 75 cg = dtog(fs, bpref); 76 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 77 (u_long (*)())alloccg); 78 if (bno <= 0) 79 goto nospace; 80 ip->i_blocks += btodb(size); 81 ip->i_flag |= IUPD|ICHG; 82 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 83 clrbuf(bp); 84 return (bp); 85 nospace: 86 fserr(fs, "file system full"); 87 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 88 u.u_error = ENOSPC; 89 return (NULL); 90 } 91 92 /* 93 * Reallocate a fragment to a bigger size 94 * 95 * The number and size of the old block is given, and a preference 96 * and new size is also specified. The allocator attempts to extend 97 * the original block. Failing that, the regular block allocator is 98 * invoked to get an appropriate block. 99 */ 100 struct buf * 101 realloccg(ip, bprev, bpref, osize, nsize) 102 register struct inode *ip; 103 daddr_t bprev, bpref; 104 int osize, nsize; 105 { 106 daddr_t bno; 107 register struct fs *fs; 108 register struct buf *bp, *obp; 109 int cg; 110 111 fs = ip->i_fs; 112 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 113 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 114 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 115 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 116 panic("realloccg: bad size"); 117 } 118 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 119 goto nospace; 120 if (bprev == 0) { 121 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 122 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 123 panic("realloccg: bad bprev"); 124 } 125 #ifdef QUOTA 126 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 127 if (u.u_error) 128 return (NULL); 129 #endif 130 cg = dtog(fs, bprev); 131 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 132 if (bno != 0) { 133 do { 134 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 135 if (bp->b_flags & B_ERROR) { 136 brelse(bp); 137 return (NULL); 138 } 139 } while (brealloc(bp, nsize) == 0); 140 bp->b_flags |= B_DONE; 141 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 142 ip->i_blocks += btodb(nsize - osize); 143 ip->i_flag |= IUPD|ICHG; 144 return (bp); 145 } 146 if (bpref >= fs->fs_size) 147 bpref = 0; 148 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, nsize, 149 (u_long (*)())alloccg); 150 if (bno > 0) { 151 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 152 if (obp->b_flags & B_ERROR) { 153 brelse(obp); 154 return (NULL); 155 } 156 bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize); 157 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 158 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 159 if (obp->b_flags & B_DELWRI) { 160 obp->b_flags &= ~B_DELWRI; 161 u.u_ru.ru_oublock--; /* delete charge */ 162 } 163 brelse(obp); 164 free(ip, bprev, (off_t)osize); 165 ip->i_blocks += btodb(nsize - osize); 166 ip->i_flag |= IUPD|ICHG; 167 return (bp); 168 } 169 nospace: 170 /* 171 * no space available 172 */ 173 fserr(fs, "file system full"); 174 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 175 u.u_error = ENOSPC; 176 return (NULL); 177 } 178 179 /* 180 * Allocate an inode in the file system. 181 * 182 * A preference may be optionally specified. If a preference is given 183 * the following hierarchy is used to allocate an inode: 184 * 1) allocate the requested inode. 185 * 2) allocate an inode in the same cylinder group. 186 * 3) quadradically rehash into other cylinder groups, until an 187 * available inode is located. 188 * If no inode preference is given the following heirarchy is used 189 * to allocate an inode: 190 * 1) allocate an inode in cylinder group 0. 191 * 2) quadradically rehash into other cylinder groups, until an 192 * available inode is located. 193 */ 194 struct inode * 195 ialloc(pip, ipref, mode) 196 register struct inode *pip; 197 ino_t ipref; 198 int mode; 199 { 200 ino_t ino; 201 register struct fs *fs; 202 register struct inode *ip; 203 int cg; 204 205 fs = pip->i_fs; 206 if (fs->fs_cstotal.cs_nifree == 0) 207 goto noinodes; 208 #ifdef QUOTA 209 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 210 if (u.u_error) 211 return (NULL); 212 #endif 213 if (ipref >= fs->fs_ncg * fs->fs_ipg) 214 ipref = 0; 215 cg = itog(fs, ipref); 216 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 217 if (ino == 0) 218 goto noinodes; 219 ip = iget(pip->i_dev, pip->i_fs, ino); 220 if (ip == NULL) { 221 ifree(pip, ino, 0); 222 return (NULL); 223 } 224 if (ip->i_mode) { 225 printf("mode = 0%o, inum = %d, fs = %s\n", 226 ip->i_mode, ip->i_number, fs->fs_fsmnt); 227 panic("ialloc: dup alloc"); 228 } 229 if (ip->i_blocks) { /* XXX */ 230 printf("free inode %s/%d had %d blocks\n", 231 fs->fs_fsmnt, ino, ip->i_blocks); 232 ip->i_blocks = 0; 233 } 234 return (ip); 235 noinodes: 236 fserr(fs, "out of inodes"); 237 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 238 u.u_error = ENOSPC; 239 return (NULL); 240 } 241 242 /* 243 * Find a cylinder to place a directory. 244 * 245 * The policy implemented by this algorithm is to select from 246 * among those cylinder groups with above the average number of 247 * free inodes, the one with the smallest number of directories. 248 */ 249 ino_t 250 dirpref(fs) 251 register struct fs *fs; 252 { 253 int cg, minndir, mincg, avgifree; 254 255 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 256 minndir = fs->fs_ipg; 257 mincg = 0; 258 for (cg = 0; cg < fs->fs_ncg; cg++) 259 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 260 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 261 mincg = cg; 262 minndir = fs->fs_cs(fs, cg).cs_ndir; 263 } 264 return ((ino_t)(fs->fs_ipg * mincg)); 265 } 266 267 /* 268 * Select the desired position for the next block in a file. The file is 269 * logically divided into sections. The first section is composed of the 270 * direct blocks. Each additional section contains fs_maxbpg blocks. 271 * 272 * If no blocks have been allocated in the first section, the policy is to 273 * request a block in the same cylinder group as the inode that describes 274 * the file. If no blocks have been allocated in any other section, the 275 * policy is to place the section in a cylinder group with a greater than 276 * average number of free blocks. An appropriate cylinder group is found 277 * by using a rotor that sweeps the cylinder groups. When a new group of 278 * blocks is needed, the sweep begins in the cylinder group following the 279 * cylinder group from which the previous allocation was made. The sweep 280 * continues until a cylinder group with greater than the average number 281 * of free blocks is found. If the allocation is for the first block in an 282 * indirect block, the information on the previous allocation is unavailable; 283 * here a best guess is made based upon the logical block number being 284 * allocated. 285 * 286 * If a section is already partially allocated, the policy is to 287 * contiguously allocate fs_maxcontig blocks. The end of one of these 288 * contiguous blocks and the beginning of the next is physically separated 289 * so that the disk head will be in transit between them for at least 290 * fs_rotdelay milliseconds. This is to allow time for the processor to 291 * schedule another I/O transfer. 292 */ 293 daddr_t 294 blkpref(ip, lbn, indx, bap) 295 struct inode *ip; 296 daddr_t lbn; 297 int indx; 298 daddr_t *bap; 299 { 300 register struct fs *fs; 301 register int cg; 302 int avgbfree, startcg; 303 daddr_t nextblk; 304 305 fs = ip->i_fs; 306 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 307 if (lbn < NDADDR) { 308 cg = itog(fs, ip->i_number); 309 return (fs->fs_fpg * cg + fs->fs_frag); 310 } 311 /* 312 * Find a cylinder with greater than average number of 313 * unused data blocks. 314 */ 315 if (indx == 0 || bap[indx - 1] == 0) 316 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 317 else 318 startcg = dtog(fs, bap[indx - 1]) + 1; 319 startcg %= fs->fs_ncg; 320 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 321 for (cg = startcg; cg < fs->fs_ncg; cg++) 322 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 323 fs->fs_cgrotor = cg; 324 return (fs->fs_fpg * cg + fs->fs_frag); 325 } 326 for (cg = 0; cg <= startcg; cg++) 327 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 328 fs->fs_cgrotor = cg; 329 return (fs->fs_fpg * cg + fs->fs_frag); 330 } 331 return (NULL); 332 } 333 /* 334 * One or more previous blocks have been laid out. If less 335 * than fs_maxcontig previous blocks are contiguous, the 336 * next block is requested contiguously, otherwise it is 337 * requested rotationally delayed by fs_rotdelay milliseconds. 338 */ 339 nextblk = bap[indx - 1] + fs->fs_frag; 340 if (indx > fs->fs_maxcontig && 341 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 342 != nextblk) 343 return (nextblk); 344 if (fs->fs_rotdelay != 0) 345 /* 346 * Here we convert ms of delay to frags as: 347 * (frags) = (ms) * (rev/sec) * (sect/rev) / 348 * ((sect/frag) * (ms/sec)) 349 * then round up to the next block. 350 */ 351 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 352 (NSPF(fs) * 1000), fs->fs_frag); 353 return (nextblk); 354 } 355 356 /* 357 * Implement the cylinder overflow algorithm. 358 * 359 * The policy implemented by this algorithm is: 360 * 1) allocate the block in its requested cylinder group. 361 * 2) quadradically rehash on the cylinder group number. 362 * 3) brute force search for a free block. 363 */ 364 /*VARARGS5*/ 365 u_long 366 hashalloc(ip, cg, pref, size, allocator) 367 struct inode *ip; 368 int cg; 369 long pref; 370 int size; /* size for data blocks, mode for inodes */ 371 u_long (*allocator)(); 372 { 373 register struct fs *fs; 374 long result; 375 int i, icg = cg; 376 377 fs = ip->i_fs; 378 /* 379 * 1: preferred cylinder group 380 */ 381 result = (*allocator)(ip, cg, pref, size); 382 if (result) 383 return (result); 384 /* 385 * 2: quadratic rehash 386 */ 387 for (i = 1; i < fs->fs_ncg; i *= 2) { 388 cg += i; 389 if (cg >= fs->fs_ncg) 390 cg -= fs->fs_ncg; 391 result = (*allocator)(ip, cg, 0, size); 392 if (result) 393 return (result); 394 } 395 /* 396 * 3: brute force search 397 * Note that we start at i == 2, since 0 was checked initially, 398 * and 1 is always checked in the quadratic rehash. 399 */ 400 cg = (icg + 2) % fs->fs_ncg; 401 for (i = 2; i < fs->fs_ncg; i++) { 402 result = (*allocator)(ip, cg, 0, size); 403 if (result) 404 return (result); 405 cg++; 406 if (cg == fs->fs_ncg) 407 cg = 0; 408 } 409 return (NULL); 410 } 411 412 /* 413 * Determine whether a fragment can be extended. 414 * 415 * Check to see if the necessary fragments are available, and 416 * if they are, allocate them. 417 */ 418 daddr_t 419 fragextend(ip, cg, bprev, osize, nsize) 420 struct inode *ip; 421 int cg; 422 long bprev; 423 int osize, nsize; 424 { 425 register struct fs *fs; 426 register struct buf *bp; 427 register struct cg *cgp; 428 long bno; 429 int frags, bbase; 430 int i; 431 432 fs = ip->i_fs; 433 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 434 return (NULL); 435 frags = numfrags(fs, nsize); 436 bbase = fragnum(fs, bprev); 437 if (bbase > fragnum(fs, (bprev + frags - 1))) { 438 /* cannot extend across a block boundry */ 439 return (NULL); 440 } 441 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 442 cgp = bp->b_un.b_cg; 443 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 444 brelse(bp); 445 return (NULL); 446 } 447 cgp->cg_time = time.tv_sec; 448 bno = dtogd(fs, bprev); 449 for (i = numfrags(fs, osize); i < frags; i++) 450 if (isclr(cgp->cg_free, bno + i)) { 451 brelse(bp); 452 return (NULL); 453 } 454 /* 455 * the current fragment can be extended 456 * deduct the count on fragment being extended into 457 * increase the count on the remaining fragment (if any) 458 * allocate the extended piece 459 */ 460 for (i = frags; i < fs->fs_frag - bbase; i++) 461 if (isclr(cgp->cg_free, bno + i)) 462 break; 463 cgp->cg_frsum[i - numfrags(fs, osize)]--; 464 if (i != frags) 465 cgp->cg_frsum[i - frags]++; 466 for (i = numfrags(fs, osize); i < frags; i++) { 467 clrbit(cgp->cg_free, bno + i); 468 cgp->cg_cs.cs_nffree--; 469 fs->fs_cstotal.cs_nffree--; 470 fs->fs_cs(fs, cg).cs_nffree--; 471 } 472 fs->fs_fmod++; 473 bdwrite(bp); 474 return (bprev); 475 } 476 477 /* 478 * Determine whether a block can be allocated. 479 * 480 * Check to see if a block of the apprpriate size is available, 481 * and if it is, allocate it. 482 */ 483 daddr_t 484 alloccg(ip, cg, bpref, size) 485 struct inode *ip; 486 int cg; 487 daddr_t bpref; 488 int size; 489 { 490 register struct fs *fs; 491 register struct buf *bp; 492 register struct cg *cgp; 493 int bno, frags; 494 int allocsiz; 495 register int i; 496 497 fs = ip->i_fs; 498 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 499 return (NULL); 500 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 501 cgp = bp->b_un.b_cg; 502 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 503 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 504 brelse(bp); 505 return (NULL); 506 } 507 cgp->cg_time = time.tv_sec; 508 if (size == fs->fs_bsize) { 509 bno = alloccgblk(fs, cgp, bpref); 510 bdwrite(bp); 511 return (bno); 512 } 513 /* 514 * check to see if any fragments are already available 515 * allocsiz is the size which will be allocated, hacking 516 * it down to a smaller size if necessary 517 */ 518 frags = numfrags(fs, size); 519 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 520 if (cgp->cg_frsum[allocsiz] != 0) 521 break; 522 if (allocsiz == fs->fs_frag) { 523 /* 524 * no fragments were available, so a block will be 525 * allocated, and hacked up 526 */ 527 if (cgp->cg_cs.cs_nbfree == 0) { 528 brelse(bp); 529 return (NULL); 530 } 531 bno = alloccgblk(fs, cgp, bpref); 532 bpref = dtogd(fs, bno); 533 for (i = frags; i < fs->fs_frag; i++) 534 setbit(cgp->cg_free, bpref + i); 535 i = fs->fs_frag - frags; 536 cgp->cg_cs.cs_nffree += i; 537 fs->fs_cstotal.cs_nffree += i; 538 fs->fs_cs(fs, cg).cs_nffree += i; 539 fs->fs_fmod++; 540 cgp->cg_frsum[i]++; 541 bdwrite(bp); 542 return (bno); 543 } 544 bno = mapsearch(fs, cgp, bpref, allocsiz); 545 if (bno < 0) { 546 brelse(bp); 547 return (NULL); 548 } 549 for (i = 0; i < frags; i++) 550 clrbit(cgp->cg_free, bno + i); 551 cgp->cg_cs.cs_nffree -= frags; 552 fs->fs_cstotal.cs_nffree -= frags; 553 fs->fs_cs(fs, cg).cs_nffree -= frags; 554 fs->fs_fmod++; 555 cgp->cg_frsum[allocsiz]--; 556 if (frags != allocsiz) 557 cgp->cg_frsum[allocsiz - frags]++; 558 bdwrite(bp); 559 return (cg * fs->fs_fpg + bno); 560 } 561 562 /* 563 * Allocate a block in a cylinder group. 564 * 565 * This algorithm implements the following policy: 566 * 1) allocate the requested block. 567 * 2) allocate a rotationally optimal block in the same cylinder. 568 * 3) allocate the next available block on the block rotor for the 569 * specified cylinder group. 570 * Note that this routine only allocates fs_bsize blocks; these 571 * blocks may be fragmented by the routine that allocates them. 572 */ 573 daddr_t 574 alloccgblk(fs, cgp, bpref) 575 register struct fs *fs; 576 register struct cg *cgp; 577 daddr_t bpref; 578 { 579 daddr_t bno; 580 int cylno, pos, delta; 581 short *cylbp; 582 register int i; 583 584 if (bpref == 0) { 585 bpref = cgp->cg_rotor; 586 goto norot; 587 } 588 bpref = blknum(fs, bpref); 589 bpref = dtogd(fs, bpref); 590 /* 591 * if the requested block is available, use it 592 */ 593 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 594 bno = bpref; 595 goto gotit; 596 } 597 /* 598 * check for a block available on the same cylinder 599 */ 600 cylno = cbtocylno(fs, bpref); 601 if (cgp->cg_btot[cylno] == 0) 602 goto norot; 603 if (fs->fs_cpc == 0) { 604 /* 605 * block layout info is not available, so just have 606 * to take any block in this cylinder. 607 */ 608 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 609 goto norot; 610 } 611 /* 612 * check the summary information to see if a block is 613 * available in the requested cylinder starting at the 614 * requested rotational position and proceeding around. 615 */ 616 cylbp = cgp->cg_b[cylno]; 617 pos = cbtorpos(fs, bpref); 618 for (i = pos; i < NRPOS; i++) 619 if (cylbp[i] > 0) 620 break; 621 if (i == NRPOS) 622 for (i = 0; i < pos; i++) 623 if (cylbp[i] > 0) 624 break; 625 if (cylbp[i] > 0) { 626 /* 627 * found a rotational position, now find the actual 628 * block. A panic if none is actually there. 629 */ 630 pos = cylno % fs->fs_cpc; 631 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 632 if (fs->fs_postbl[pos][i] == -1) { 633 printf("pos = %d, i = %d, fs = %s\n", 634 pos, i, fs->fs_fsmnt); 635 panic("alloccgblk: cyl groups corrupted"); 636 } 637 for (i = fs->fs_postbl[pos][i];; ) { 638 if (isblock(fs, cgp->cg_free, bno + i)) { 639 bno = blkstofrags(fs, (bno + i)); 640 goto gotit; 641 } 642 delta = fs->fs_rotbl[i]; 643 if (delta <= 0 || delta > MAXBPC - i) 644 break; 645 i += delta; 646 } 647 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 648 panic("alloccgblk: can't find blk in cyl"); 649 } 650 norot: 651 /* 652 * no blocks in the requested cylinder, so take next 653 * available one in this cylinder group. 654 */ 655 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 656 if (bno < 0) 657 return (NULL); 658 cgp->cg_rotor = bno; 659 gotit: 660 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 661 cgp->cg_cs.cs_nbfree--; 662 fs->fs_cstotal.cs_nbfree--; 663 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 664 cylno = cbtocylno(fs, bno); 665 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 666 cgp->cg_btot[cylno]--; 667 fs->fs_fmod++; 668 return (cgp->cg_cgx * fs->fs_fpg + bno); 669 } 670 671 /* 672 * Determine whether an inode can be allocated. 673 * 674 * Check to see if an inode is available, and if it is, 675 * allocate it using the following policy: 676 * 1) allocate the requested inode. 677 * 2) allocate the next available inode after the requested 678 * inode in the specified cylinder group. 679 */ 680 ino_t 681 ialloccg(ip, cg, ipref, mode) 682 struct inode *ip; 683 int cg; 684 daddr_t ipref; 685 int mode; 686 { 687 register struct fs *fs; 688 register struct cg *cgp; 689 struct buf *bp; 690 int start, len, loc, map, i; 691 692 fs = ip->i_fs; 693 if (fs->fs_cs(fs, cg).cs_nifree == 0) 694 return (NULL); 695 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 696 cgp = bp->b_un.b_cg; 697 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 698 cgp->cg_cs.cs_nifree == 0) { 699 brelse(bp); 700 return (NULL); 701 } 702 cgp->cg_time = time.tv_sec; 703 if (ipref) { 704 ipref %= fs->fs_ipg; 705 if (isclr(cgp->cg_iused, ipref)) 706 goto gotit; 707 } 708 start = cgp->cg_irotor / NBBY; 709 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 710 loc = skpc(0xff, len, &cgp->cg_iused[start]); 711 if (loc == 0) { 712 printf("cg = %s, irotor = %d, fs = %s\n", 713 cg, cgp->cg_irotor, fs->fs_fsmnt); 714 panic("ialloccg: map corrupted"); 715 /* NOTREACHED */ 716 } 717 i = start + len - loc; 718 map = cgp->cg_iused[i]; 719 ipref = i * NBBY; 720 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 721 if ((map & i) == 0) { 722 cgp->cg_irotor = ipref; 723 goto gotit; 724 } 725 } 726 printf("fs = %s\n", fs->fs_fsmnt); 727 panic("ialloccg: block not in map"); 728 /* NOTREACHED */ 729 gotit: 730 setbit(cgp->cg_iused, ipref); 731 cgp->cg_cs.cs_nifree--; 732 fs->fs_cstotal.cs_nifree--; 733 fs->fs_cs(fs, cg).cs_nifree--; 734 fs->fs_fmod++; 735 if ((mode & IFMT) == IFDIR) { 736 cgp->cg_cs.cs_ndir++; 737 fs->fs_cstotal.cs_ndir++; 738 fs->fs_cs(fs, cg).cs_ndir++; 739 } 740 bdwrite(bp); 741 return (cg * fs->fs_ipg + ipref); 742 } 743 744 /* 745 * Free a block or fragment. 746 * 747 * The specified block or fragment is placed back in the 748 * free map. If a fragment is deallocated, a possible 749 * block reassembly is checked. 750 */ 751 free(ip, bno, size) 752 register struct inode *ip; 753 daddr_t bno; 754 off_t size; 755 { 756 register struct fs *fs; 757 register struct cg *cgp; 758 register struct buf *bp; 759 int cg, blk, frags, bbase; 760 register int i; 761 762 fs = ip->i_fs; 763 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 764 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 765 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 766 panic("free: bad size"); 767 } 768 cg = dtog(fs, bno); 769 if (badblock(fs, bno)) { 770 printf("bad block %d, ino %d\n", bno, ip->i_number); 771 return; 772 } 773 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 774 cgp = bp->b_un.b_cg; 775 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 776 brelse(bp); 777 return; 778 } 779 cgp->cg_time = time.tv_sec; 780 bno = dtogd(fs, bno); 781 if (size == fs->fs_bsize) { 782 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 783 printf("dev = 0x%x, block = %d, fs = %s\n", 784 ip->i_dev, bno, fs->fs_fsmnt); 785 panic("free: freeing free block"); 786 } 787 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 788 cgp->cg_cs.cs_nbfree++; 789 fs->fs_cstotal.cs_nbfree++; 790 fs->fs_cs(fs, cg).cs_nbfree++; 791 i = cbtocylno(fs, bno); 792 cgp->cg_b[i][cbtorpos(fs, bno)]++; 793 cgp->cg_btot[i]++; 794 } else { 795 bbase = bno - fragnum(fs, bno); 796 /* 797 * decrement the counts associated with the old frags 798 */ 799 blk = blkmap(fs, cgp->cg_free, bbase); 800 fragacct(fs, blk, cgp->cg_frsum, -1); 801 /* 802 * deallocate the fragment 803 */ 804 frags = numfrags(fs, size); 805 for (i = 0; i < frags; i++) { 806 if (isset(cgp->cg_free, bno + i)) { 807 printf("dev = 0x%x, block = %d, fs = %s\n", 808 ip->i_dev, bno + i, fs->fs_fsmnt); 809 panic("free: freeing free frag"); 810 } 811 setbit(cgp->cg_free, bno + i); 812 } 813 cgp->cg_cs.cs_nffree += i; 814 fs->fs_cstotal.cs_nffree += i; 815 fs->fs_cs(fs, cg).cs_nffree += i; 816 /* 817 * add back in counts associated with the new frags 818 */ 819 blk = blkmap(fs, cgp->cg_free, bbase); 820 fragacct(fs, blk, cgp->cg_frsum, 1); 821 /* 822 * if a complete block has been reassembled, account for it 823 */ 824 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 825 cgp->cg_cs.cs_nffree -= fs->fs_frag; 826 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 827 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 828 cgp->cg_cs.cs_nbfree++; 829 fs->fs_cstotal.cs_nbfree++; 830 fs->fs_cs(fs, cg).cs_nbfree++; 831 i = cbtocylno(fs, bbase); 832 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 833 cgp->cg_btot[i]++; 834 } 835 } 836 fs->fs_fmod++; 837 bdwrite(bp); 838 } 839 840 /* 841 * Free an inode. 842 * 843 * The specified inode is placed back in the free map. 844 */ 845 ifree(ip, ino, mode) 846 struct inode *ip; 847 ino_t ino; 848 int mode; 849 { 850 register struct fs *fs; 851 register struct cg *cgp; 852 register struct buf *bp; 853 int cg; 854 855 fs = ip->i_fs; 856 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 857 printf("dev = 0x%x, ino = %d, fs = %s\n", 858 ip->i_dev, ino, fs->fs_fsmnt); 859 panic("ifree: range"); 860 } 861 cg = itog(fs, ino); 862 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 863 cgp = bp->b_un.b_cg; 864 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 865 brelse(bp); 866 return; 867 } 868 cgp->cg_time = time.tv_sec; 869 ino %= fs->fs_ipg; 870 if (isclr(cgp->cg_iused, ino)) { 871 printf("dev = 0x%x, ino = %d, fs = %s\n", 872 ip->i_dev, ino, fs->fs_fsmnt); 873 panic("ifree: freeing free inode"); 874 } 875 clrbit(cgp->cg_iused, ino); 876 if (ino < cgp->cg_irotor) 877 cgp->cg_irotor = ino; 878 cgp->cg_cs.cs_nifree++; 879 fs->fs_cstotal.cs_nifree++; 880 fs->fs_cs(fs, cg).cs_nifree++; 881 if ((mode & IFMT) == IFDIR) { 882 cgp->cg_cs.cs_ndir--; 883 fs->fs_cstotal.cs_ndir--; 884 fs->fs_cs(fs, cg).cs_ndir--; 885 } 886 fs->fs_fmod++; 887 bdwrite(bp); 888 } 889 890 /* 891 * Find a block of the specified size in the specified cylinder group. 892 * 893 * It is a panic if a request is made to find a block if none are 894 * available. 895 */ 896 daddr_t 897 mapsearch(fs, cgp, bpref, allocsiz) 898 register struct fs *fs; 899 register struct cg *cgp; 900 daddr_t bpref; 901 int allocsiz; 902 { 903 daddr_t bno; 904 int start, len, loc, i; 905 int blk, field, subfield, pos; 906 907 /* 908 * find the fragment by searching through the free block 909 * map for an appropriate bit pattern 910 */ 911 if (bpref) 912 start = dtogd(fs, bpref) / NBBY; 913 else 914 start = cgp->cg_frotor / NBBY; 915 len = howmany(fs->fs_fpg, NBBY) - start; 916 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 917 (caddr_t)fragtbl[fs->fs_frag], 918 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 919 if (loc == 0) { 920 len = start + 1; 921 start = 0; 922 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 923 (caddr_t)fragtbl[fs->fs_frag], 924 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 925 if (loc == 0) { 926 printf("start = %d, len = %d, fs = %s\n", 927 start, len, fs->fs_fsmnt); 928 panic("alloccg: map corrupted"); 929 return (-1); 930 } 931 } 932 bno = (start + len - loc) * NBBY; 933 cgp->cg_frotor = bno; 934 /* 935 * found the byte in the map 936 * sift through the bits to find the selected frag 937 */ 938 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 939 blk = blkmap(fs, cgp->cg_free, bno); 940 blk <<= 1; 941 field = around[allocsiz]; 942 subfield = inside[allocsiz]; 943 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 944 if ((blk & field) == subfield) 945 return (bno + pos); 946 field <<= 1; 947 subfield <<= 1; 948 } 949 } 950 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 951 panic("alloccg: block not in map"); 952 return (-1); 953 } 954 955 /* 956 * Fserr prints the name of a file system with an error diagnostic. 957 * 958 * The form of the error message is: 959 * fs: error message 960 */ 961 fserr(fs, cp) 962 struct fs *fs; 963 char *cp; 964 { 965 966 printf("%s: %s\n", fs->fs_fsmnt, cp); 967 } 968