1 /* lfs_alloc.c 6.5 84/08/29 */ 2 3 #include "param.h" 4 #include "systm.h" 5 #include "mount.h" 6 #include "fs.h" 7 #include "conf.h" 8 #include "buf.h" 9 #include "inode.h" 10 #include "dir.h" 11 #include "user.h" 12 #include "quota.h" 13 #include "kernel.h" 14 15 extern u_long hashalloc(); 16 extern ino_t ialloccg(); 17 extern daddr_t alloccg(); 18 extern daddr_t alloccgblk(); 19 extern daddr_t fragextend(); 20 extern daddr_t blkpref(); 21 extern daddr_t mapsearch(); 22 extern int inside[], around[]; 23 extern unsigned char *fragtbl[]; 24 25 /* 26 * Allocate a block in the file system. 27 * 28 * The size of the requested block is given, which must be some 29 * multiple of fs_fsize and <= fs_bsize. 30 * A preference may be optionally specified. If a preference is given 31 * the following hierarchy is used to allocate a block: 32 * 1) allocate the requested block. 33 * 2) allocate a rotationally optimal block in the same cylinder. 34 * 3) allocate a block in the same cylinder group. 35 * 4) quadradically rehash into other cylinder groups, until an 36 * available block is located. 37 * If no block preference is given the following heirarchy is used 38 * to allocate a block: 39 * 1) allocate a block in the cylinder group that contains the 40 * inode for the file. 41 * 2) quadradically rehash into other cylinder groups, until an 42 * available block is located. 43 */ 44 struct buf * 45 alloc(ip, bpref, size) 46 register struct inode *ip; 47 daddr_t bpref; 48 int size; 49 { 50 daddr_t bno; 51 register struct fs *fs; 52 register struct buf *bp; 53 int cg; 54 55 fs = ip->i_fs; 56 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 57 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 58 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 59 panic("alloc: bad size"); 60 } 61 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 62 goto nospace; 63 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 64 goto nospace; 65 #ifdef QUOTA 66 u.u_error = chkdq(ip, (long)btodb(size), 0); 67 if (u.u_error) 68 return (NULL); 69 #endif 70 if (bpref >= fs->fs_size) 71 bpref = 0; 72 if (bpref == 0) 73 cg = itog(fs, ip->i_number); 74 else 75 cg = dtog(fs, bpref); 76 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 77 (u_long (*)())alloccg); 78 if (bno <= 0) 79 goto nospace; 80 ip->i_blocks += btodb(size); 81 ip->i_flag |= IUPD|ICHG; 82 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 83 clrbuf(bp); 84 return (bp); 85 nospace: 86 fserr(fs, "file system full"); 87 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 88 u.u_error = ENOSPC; 89 return (NULL); 90 } 91 92 /* 93 * Reallocate a fragment to a bigger size 94 * 95 * The number and size of the old block is given, and a preference 96 * and new size is also specified. The allocator attempts to extend 97 * the original block. Failing that, the regular block allocator is 98 * invoked to get an appropriate block. 99 */ 100 struct buf * 101 realloccg(ip, bprev, bpref, osize, nsize) 102 register struct inode *ip; 103 daddr_t bprev, bpref; 104 int osize, nsize; 105 { 106 daddr_t bno; 107 register struct fs *fs; 108 register struct buf *bp, *obp; 109 int cg; 110 111 fs = ip->i_fs; 112 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 113 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 114 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 115 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 116 panic("realloccg: bad size"); 117 } 118 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 119 goto nospace; 120 if (bprev == 0) { 121 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 122 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 123 panic("realloccg: bad bprev"); 124 } 125 #ifdef QUOTA 126 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 127 if (u.u_error) 128 return (NULL); 129 #endif 130 cg = dtog(fs, bprev); 131 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 132 if (bno != 0) { 133 do { 134 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 135 if (bp->b_flags & B_ERROR) { 136 brelse(bp); 137 return (NULL); 138 } 139 } while (brealloc(bp, nsize) == 0); 140 bp->b_flags |= B_DONE; 141 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 142 ip->i_blocks += btodb(nsize - osize); 143 ip->i_flag |= IUPD|ICHG; 144 return (bp); 145 } 146 if (bpref >= fs->fs_size) 147 bpref = 0; 148 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, nsize, 149 (u_long (*)())alloccg); 150 if (bno > 0) { 151 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 152 if (obp->b_flags & B_ERROR) { 153 brelse(obp); 154 return (NULL); 155 } 156 bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize); 157 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 158 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 159 brelse(obp); 160 free(ip, bprev, (off_t)osize); 161 ip->i_blocks += btodb(nsize - osize); 162 ip->i_flag |= IUPD|ICHG; 163 return (bp); 164 } 165 nospace: 166 /* 167 * no space available 168 */ 169 fserr(fs, "file system full"); 170 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 171 u.u_error = ENOSPC; 172 return (NULL); 173 } 174 175 /* 176 * Allocate an inode in the file system. 177 * 178 * A preference may be optionally specified. If a preference is given 179 * the following hierarchy is used to allocate an inode: 180 * 1) allocate the requested inode. 181 * 2) allocate an inode in the same cylinder group. 182 * 3) quadradically rehash into other cylinder groups, until an 183 * available inode is located. 184 * If no inode preference is given the following heirarchy is used 185 * to allocate an inode: 186 * 1) allocate an inode in cylinder group 0. 187 * 2) quadradically rehash into other cylinder groups, until an 188 * available inode is located. 189 */ 190 struct inode * 191 ialloc(pip, ipref, mode) 192 register struct inode *pip; 193 ino_t ipref; 194 int mode; 195 { 196 ino_t ino; 197 register struct fs *fs; 198 register struct inode *ip; 199 int cg; 200 201 fs = pip->i_fs; 202 if (fs->fs_cstotal.cs_nifree == 0) 203 goto noinodes; 204 #ifdef QUOTA 205 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 206 if (u.u_error) 207 return (NULL); 208 #endif 209 if (ipref >= fs->fs_ncg * fs->fs_ipg) 210 ipref = 0; 211 cg = itog(fs, ipref); 212 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 213 if (ino == 0) 214 goto noinodes; 215 ip = iget(pip->i_dev, pip->i_fs, ino); 216 if (ip == NULL) { 217 ifree(pip, ino, 0); 218 return (NULL); 219 } 220 if (ip->i_mode) { 221 printf("mode = 0%o, inum = %d, fs = %s\n", 222 ip->i_mode, ip->i_number, fs->fs_fsmnt); 223 panic("ialloc: dup alloc"); 224 } 225 if (ip->i_blocks) { /* XXX */ 226 printf("free inode %s/%d had %d blocks\n", 227 fs->fs_fsmnt, ino, ip->i_blocks); 228 ip->i_blocks = 0; 229 } 230 return (ip); 231 noinodes: 232 fserr(fs, "out of inodes"); 233 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 234 u.u_error = ENOSPC; 235 return (NULL); 236 } 237 238 /* 239 * Find a cylinder to place a directory. 240 * 241 * The policy implemented by this algorithm is to select from 242 * among those cylinder groups with above the average number of 243 * free inodes, the one with the smallest number of directories. 244 */ 245 ino_t 246 dirpref(fs) 247 register struct fs *fs; 248 { 249 int cg, minndir, mincg, avgifree; 250 251 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 252 minndir = fs->fs_ipg; 253 mincg = 0; 254 for (cg = 0; cg < fs->fs_ncg; cg++) 255 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 256 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 257 mincg = cg; 258 minndir = fs->fs_cs(fs, cg).cs_ndir; 259 } 260 return ((ino_t)(fs->fs_ipg * mincg)); 261 } 262 263 /* 264 * Select the desired position for the next block in a file. The file is 265 * logically divided into sections. The first section is composed of the 266 * direct blocks. Each additional section contains fs_maxbpg blocks. 267 * 268 * If no blocks have been allocated in the first section, the policy is to 269 * request a block in the same cylinder group as the inode that describes 270 * the file. If no blocks have been allocated in any other section, the 271 * policy is to place the section in a cylinder group with a greater than 272 * average number of free blocks. An appropriate cylinder group is found 273 * by maintaining a rotor that sweeps the cylinder groups. When a new 274 * group of blocks is needed, the rotor is advanced until a cylinder group 275 * with greater than the average number of free blocks is found. 276 * 277 * If a section is already partially allocated, the policy is to 278 * contiguously allocate fs_maxcontig blocks. The end of one of these 279 * contiguous blocks and the beginning of the next is physically separated 280 * so that the disk head will be in transit between them for at least 281 * fs_rotdelay milliseconds. This is to allow time for the processor to 282 * schedule another I/O transfer. 283 */ 284 daddr_t 285 blkpref(ip, lbn, indx, bap) 286 struct inode *ip; 287 daddr_t lbn; 288 int indx; 289 daddr_t *bap; 290 { 291 register struct fs *fs; 292 int cg, avgbfree; 293 daddr_t nextblk; 294 295 fs = ip->i_fs; 296 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 297 if (lbn < NDADDR) { 298 cg = itog(fs, ip->i_number); 299 return (fs->fs_fpg * cg + fs->fs_frag); 300 } 301 /* 302 * Find a cylinder with greater than average number of 303 * unused data blocks. 304 */ 305 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 306 for (cg = fs->fs_cgrotor + 1; cg < fs->fs_ncg; cg++) 307 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 308 fs->fs_cgrotor = cg; 309 return (fs->fs_fpg * cg + fs->fs_frag); 310 } 311 for (cg = 0; cg <= fs->fs_cgrotor; cg++) 312 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 313 fs->fs_cgrotor = cg; 314 return (fs->fs_fpg * cg + fs->fs_frag); 315 } 316 return (NULL); 317 } 318 /* 319 * One or more previous blocks have been laid out. If less 320 * than fs_maxcontig previous blocks are contiguous, the 321 * next block is requested contiguously, otherwise it is 322 * requested rotationally delayed by fs_rotdelay milliseconds. 323 */ 324 nextblk = bap[indx - 1] + fs->fs_frag; 325 if (indx > fs->fs_maxcontig && 326 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 327 != nextblk) 328 return (nextblk); 329 if (fs->fs_rotdelay != 0) 330 /* 331 * Here we convert ms of delay to frags as: 332 * (frags) = (ms) * (rev/sec) * (sect/rev) / 333 * ((sect/frag) * (ms/sec)) 334 * then round up to the next block. 335 */ 336 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 337 (NSPF(fs) * 1000), fs->fs_frag); 338 return (nextblk); 339 } 340 341 /* 342 * Implement the cylinder overflow algorithm. 343 * 344 * The policy implemented by this algorithm is: 345 * 1) allocate the block in its requested cylinder group. 346 * 2) quadradically rehash on the cylinder group number. 347 * 3) brute force search for a free block. 348 */ 349 /*VARARGS5*/ 350 u_long 351 hashalloc(ip, cg, pref, size, allocator) 352 struct inode *ip; 353 int cg; 354 long pref; 355 int size; /* size for data blocks, mode for inodes */ 356 u_long (*allocator)(); 357 { 358 register struct fs *fs; 359 long result; 360 int i, icg = cg; 361 362 fs = ip->i_fs; 363 /* 364 * 1: preferred cylinder group 365 */ 366 result = (*allocator)(ip, cg, pref, size); 367 if (result) 368 return (result); 369 /* 370 * 2: quadratic rehash 371 */ 372 for (i = 1; i < fs->fs_ncg; i *= 2) { 373 cg += i; 374 if (cg >= fs->fs_ncg) 375 cg -= fs->fs_ncg; 376 result = (*allocator)(ip, cg, 0, size); 377 if (result) 378 return (result); 379 } 380 /* 381 * 3: brute force search 382 * Note that we start at i == 2, since 0 was checked initially, 383 * and 1 is always checked in the quadratic rehash. 384 */ 385 cg = (icg + 2) % fs->fs_ncg; 386 for (i = 2; i < fs->fs_ncg; i++) { 387 result = (*allocator)(ip, cg, 0, size); 388 if (result) 389 return (result); 390 cg++; 391 if (cg == fs->fs_ncg) 392 cg = 0; 393 } 394 return (NULL); 395 } 396 397 /* 398 * Determine whether a fragment can be extended. 399 * 400 * Check to see if the necessary fragments are available, and 401 * if they are, allocate them. 402 */ 403 daddr_t 404 fragextend(ip, cg, bprev, osize, nsize) 405 struct inode *ip; 406 int cg; 407 long bprev; 408 int osize, nsize; 409 { 410 register struct fs *fs; 411 register struct buf *bp; 412 register struct cg *cgp; 413 long bno; 414 int frags, bbase; 415 int i; 416 417 fs = ip->i_fs; 418 if (fs->fs_cs(fs, cg).cs_nffree < nsize - osize) 419 return (NULL); 420 frags = numfrags(fs, nsize); 421 bbase = fragoff(fs, bprev); 422 if (bbase > (bprev + frags - 1) % fs->fs_frag) { 423 /* cannot extend across a block boundry */ 424 return (NULL); 425 } 426 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 427 cgp = bp->b_un.b_cg; 428 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 429 brelse(bp); 430 return (NULL); 431 } 432 cgp->cg_time = time.tv_sec; 433 bno = dtogd(fs, bprev); 434 for (i = numfrags(fs, osize); i < frags; i++) 435 if (isclr(cgp->cg_free, bno + i)) { 436 brelse(bp); 437 return (NULL); 438 } 439 /* 440 * the current fragment can be extended 441 * deduct the count on fragment being extended into 442 * increase the count on the remaining fragment (if any) 443 * allocate the extended piece 444 */ 445 for (i = frags; i < fs->fs_frag - bbase; i++) 446 if (isclr(cgp->cg_free, bno + i)) 447 break; 448 cgp->cg_frsum[i - numfrags(fs, osize)]--; 449 if (i != frags) 450 cgp->cg_frsum[i - frags]++; 451 for (i = numfrags(fs, osize); i < frags; i++) { 452 clrbit(cgp->cg_free, bno + i); 453 cgp->cg_cs.cs_nffree--; 454 fs->fs_cstotal.cs_nffree--; 455 fs->fs_cs(fs, cg).cs_nffree--; 456 } 457 fs->fs_fmod++; 458 bdwrite(bp); 459 return (bprev); 460 } 461 462 /* 463 * Determine whether a block can be allocated. 464 * 465 * Check to see if a block of the apprpriate size is available, 466 * and if it is, allocate it. 467 */ 468 daddr_t 469 alloccg(ip, cg, bpref, size) 470 struct inode *ip; 471 int cg; 472 daddr_t bpref; 473 int size; 474 { 475 register struct fs *fs; 476 register struct buf *bp; 477 register struct cg *cgp; 478 int bno, frags; 479 int allocsiz; 480 register int i; 481 482 fs = ip->i_fs; 483 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 484 return (NULL); 485 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 486 cgp = bp->b_un.b_cg; 487 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 488 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 489 brelse(bp); 490 return (NULL); 491 } 492 cgp->cg_time = time.tv_sec; 493 if (size == fs->fs_bsize) { 494 bno = alloccgblk(fs, cgp, bpref); 495 bdwrite(bp); 496 return (bno); 497 } 498 /* 499 * check to see if any fragments are already available 500 * allocsiz is the size which will be allocated, hacking 501 * it down to a smaller size if necessary 502 */ 503 frags = numfrags(fs, size); 504 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 505 if (cgp->cg_frsum[allocsiz] != 0) 506 break; 507 if (allocsiz == fs->fs_frag) { 508 /* 509 * no fragments were available, so a block will be 510 * allocated, and hacked up 511 */ 512 if (cgp->cg_cs.cs_nbfree == 0) { 513 brelse(bp); 514 return (NULL); 515 } 516 bno = alloccgblk(fs, cgp, bpref); 517 bpref = dtogd(fs, bno); 518 for (i = frags; i < fs->fs_frag; i++) 519 setbit(cgp->cg_free, bpref + i); 520 i = fs->fs_frag - frags; 521 cgp->cg_cs.cs_nffree += i; 522 fs->fs_cstotal.cs_nffree += i; 523 fs->fs_cs(fs, cg).cs_nffree += i; 524 fs->fs_fmod++; 525 cgp->cg_frsum[i]++; 526 bdwrite(bp); 527 return (bno); 528 } 529 bno = mapsearch(fs, cgp, bpref, allocsiz); 530 if (bno < 0) { 531 brelse(bp); 532 return (NULL); 533 } 534 for (i = 0; i < frags; i++) 535 clrbit(cgp->cg_free, bno + i); 536 cgp->cg_cs.cs_nffree -= frags; 537 fs->fs_cstotal.cs_nffree -= frags; 538 fs->fs_cs(fs, cg).cs_nffree -= frags; 539 fs->fs_fmod++; 540 cgp->cg_frsum[allocsiz]--; 541 if (frags != allocsiz) 542 cgp->cg_frsum[allocsiz - frags]++; 543 bdwrite(bp); 544 return (cg * fs->fs_fpg + bno); 545 } 546 547 /* 548 * Allocate a block in a cylinder group. 549 * 550 * This algorithm implements the following policy: 551 * 1) allocate the requested block. 552 * 2) allocate a rotationally optimal block in the same cylinder. 553 * 3) allocate the next available block on the block rotor for the 554 * specified cylinder group. 555 * Note that this routine only allocates fs_bsize blocks; these 556 * blocks may be fragmented by the routine that allocates them. 557 */ 558 daddr_t 559 alloccgblk(fs, cgp, bpref) 560 register struct fs *fs; 561 register struct cg *cgp; 562 daddr_t bpref; 563 { 564 daddr_t bno; 565 int cylno, pos, delta; 566 short *cylbp; 567 register int i; 568 569 if (bpref == 0) { 570 bpref = cgp->cg_rotor; 571 goto norot; 572 } 573 bpref &= ~(fs->fs_frag - 1); 574 bpref = dtogd(fs, bpref); 575 /* 576 * if the requested block is available, use it 577 */ 578 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 579 bno = bpref; 580 goto gotit; 581 } 582 /* 583 * check for a block available on the same cylinder 584 */ 585 cylno = cbtocylno(fs, bpref); 586 if (cgp->cg_btot[cylno] == 0) 587 goto norot; 588 if (fs->fs_cpc == 0) { 589 /* 590 * block layout info is not available, so just have 591 * to take any block in this cylinder. 592 */ 593 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 594 goto norot; 595 } 596 /* 597 * check the summary information to see if a block is 598 * available in the requested cylinder starting at the 599 * requested rotational position and proceeding around. 600 */ 601 cylbp = cgp->cg_b[cylno]; 602 pos = cbtorpos(fs, bpref); 603 for (i = pos; i < NRPOS; i++) 604 if (cylbp[i] > 0) 605 break; 606 if (i == NRPOS) 607 for (i = 0; i < pos; i++) 608 if (cylbp[i] > 0) 609 break; 610 if (cylbp[i] > 0) { 611 /* 612 * found a rotational position, now find the actual 613 * block. A panic if none is actually there. 614 */ 615 pos = cylno % fs->fs_cpc; 616 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 617 if (fs->fs_postbl[pos][i] == -1) { 618 printf("pos = %d, i = %d, fs = %s\n", 619 pos, i, fs->fs_fsmnt); 620 panic("alloccgblk: cyl groups corrupted"); 621 } 622 for (i = fs->fs_postbl[pos][i];; ) { 623 if (isblock(fs, cgp->cg_free, bno + i)) { 624 bno = blkstofrags(fs, (bno + i)); 625 goto gotit; 626 } 627 delta = fs->fs_rotbl[i]; 628 if (delta <= 0 || delta > MAXBPC - i) 629 break; 630 i += delta; 631 } 632 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 633 panic("alloccgblk: can't find blk in cyl"); 634 } 635 norot: 636 /* 637 * no blocks in the requested cylinder, so take next 638 * available one in this cylinder group. 639 */ 640 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 641 if (bno < 0) 642 return (NULL); 643 cgp->cg_rotor = bno; 644 gotit: 645 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 646 cgp->cg_cs.cs_nbfree--; 647 fs->fs_cstotal.cs_nbfree--; 648 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 649 cylno = cbtocylno(fs, bno); 650 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 651 cgp->cg_btot[cylno]--; 652 fs->fs_fmod++; 653 return (cgp->cg_cgx * fs->fs_fpg + bno); 654 } 655 656 /* 657 * Determine whether an inode can be allocated. 658 * 659 * Check to see if an inode is available, and if it is, 660 * allocate it using the following policy: 661 * 1) allocate the requested inode. 662 * 2) allocate the next available inode after the requested 663 * inode in the specified cylinder group. 664 */ 665 ino_t 666 ialloccg(ip, cg, ipref, mode) 667 struct inode *ip; 668 int cg; 669 daddr_t ipref; 670 int mode; 671 { 672 register struct fs *fs; 673 register struct cg *cgp; 674 struct buf *bp; 675 int start, len, loc, map, i; 676 677 fs = ip->i_fs; 678 if (fs->fs_cs(fs, cg).cs_nifree == 0) 679 return (NULL); 680 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 681 cgp = bp->b_un.b_cg; 682 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 683 cgp->cg_cs.cs_nifree == 0) { 684 brelse(bp); 685 return (NULL); 686 } 687 cgp->cg_time = time.tv_sec; 688 if (ipref) { 689 ipref %= fs->fs_ipg; 690 if (isclr(cgp->cg_iused, ipref)) 691 goto gotit; 692 } 693 start = cgp->cg_irotor / NBBY; 694 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 695 loc = skpc(0xff, len, &cgp->cg_iused[start]); 696 if (loc == 0) { 697 printf("cg = %s, irotor = %d, fs = %s\n", 698 cg, cgp->cg_irotor, fs->fs_fsmnt); 699 panic("ialloccg: map corrupted"); 700 /* NOTREACHED */ 701 } 702 i = start + len - loc; 703 map = cgp->cg_iused[i]; 704 ipref = i * NBBY; 705 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 706 if ((map & i) == 0) { 707 cgp->cg_irotor = ipref; 708 goto gotit; 709 } 710 } 711 printf("fs = %s\n", fs->fs_fsmnt); 712 panic("ialloccg: block not in map"); 713 /* NOTREACHED */ 714 gotit: 715 setbit(cgp->cg_iused, ipref); 716 cgp->cg_cs.cs_nifree--; 717 fs->fs_cstotal.cs_nifree--; 718 fs->fs_cs(fs, cg).cs_nifree--; 719 fs->fs_fmod++; 720 if ((mode & IFMT) == IFDIR) { 721 cgp->cg_cs.cs_ndir++; 722 fs->fs_cstotal.cs_ndir++; 723 fs->fs_cs(fs, cg).cs_ndir++; 724 } 725 bdwrite(bp); 726 return (cg * fs->fs_ipg + ipref); 727 } 728 729 /* 730 * Free a block or fragment. 731 * 732 * The specified block or fragment is placed back in the 733 * free map. If a fragment is deallocated, a possible 734 * block reassembly is checked. 735 */ 736 free(ip, bno, size) 737 register struct inode *ip; 738 daddr_t bno; 739 off_t size; 740 { 741 register struct fs *fs; 742 register struct cg *cgp; 743 register struct buf *bp; 744 int cg, blk, frags, bbase; 745 register int i; 746 747 fs = ip->i_fs; 748 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 749 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 750 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 751 panic("free: bad size"); 752 } 753 cg = dtog(fs, bno); 754 if (badblock(fs, bno)) { 755 printf("bad block %d, ino %d\n", bno, ip->i_number); 756 return; 757 } 758 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 759 cgp = bp->b_un.b_cg; 760 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 761 brelse(bp); 762 return; 763 } 764 cgp->cg_time = time.tv_sec; 765 bno = dtogd(fs, bno); 766 if (size == fs->fs_bsize) { 767 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 768 printf("dev = 0x%x, block = %d, fs = %s\n", 769 ip->i_dev, bno, fs->fs_fsmnt); 770 panic("free: freeing free block"); 771 } 772 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 773 cgp->cg_cs.cs_nbfree++; 774 fs->fs_cstotal.cs_nbfree++; 775 fs->fs_cs(fs, cg).cs_nbfree++; 776 i = cbtocylno(fs, bno); 777 cgp->cg_b[i][cbtorpos(fs, bno)]++; 778 cgp->cg_btot[i]++; 779 } else { 780 bbase = bno - (bno % fs->fs_frag); 781 /* 782 * decrement the counts associated with the old frags 783 */ 784 blk = blkmap(fs, cgp->cg_free, bbase); 785 fragacct(fs, blk, cgp->cg_frsum, -1); 786 /* 787 * deallocate the fragment 788 */ 789 frags = numfrags(fs, size); 790 for (i = 0; i < frags; i++) { 791 if (isset(cgp->cg_free, bno + i)) { 792 printf("dev = 0x%x, block = %d, fs = %s\n", 793 ip->i_dev, bno + i, fs->fs_fsmnt); 794 panic("free: freeing free frag"); 795 } 796 setbit(cgp->cg_free, bno + i); 797 } 798 cgp->cg_cs.cs_nffree += i; 799 fs->fs_cstotal.cs_nffree += i; 800 fs->fs_cs(fs, cg).cs_nffree += i; 801 /* 802 * add back in counts associated with the new frags 803 */ 804 blk = blkmap(fs, cgp->cg_free, bbase); 805 fragacct(fs, blk, cgp->cg_frsum, 1); 806 /* 807 * if a complete block has been reassembled, account for it 808 */ 809 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 810 cgp->cg_cs.cs_nffree -= fs->fs_frag; 811 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 812 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 813 cgp->cg_cs.cs_nbfree++; 814 fs->fs_cstotal.cs_nbfree++; 815 fs->fs_cs(fs, cg).cs_nbfree++; 816 i = cbtocylno(fs, bbase); 817 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 818 cgp->cg_btot[i]++; 819 } 820 } 821 fs->fs_fmod++; 822 bdwrite(bp); 823 } 824 825 /* 826 * Free an inode. 827 * 828 * The specified inode is placed back in the free map. 829 */ 830 ifree(ip, ino, mode) 831 struct inode *ip; 832 ino_t ino; 833 int mode; 834 { 835 register struct fs *fs; 836 register struct cg *cgp; 837 register struct buf *bp; 838 int cg; 839 840 fs = ip->i_fs; 841 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 842 printf("dev = 0x%x, ino = %d, fs = %s\n", 843 ip->i_dev, ino, fs->fs_fsmnt); 844 panic("ifree: range"); 845 } 846 cg = itog(fs, ino); 847 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 848 cgp = bp->b_un.b_cg; 849 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 850 brelse(bp); 851 return; 852 } 853 cgp->cg_time = time.tv_sec; 854 ino %= fs->fs_ipg; 855 if (isclr(cgp->cg_iused, ino)) { 856 printf("dev = 0x%x, ino = %d, fs = %s\n", 857 ip->i_dev, ino, fs->fs_fsmnt); 858 panic("ifree: freeing free inode"); 859 } 860 clrbit(cgp->cg_iused, ino); 861 if (ino < cgp->cg_irotor) 862 cgp->cg_irotor = ino; 863 cgp->cg_cs.cs_nifree++; 864 fs->fs_cstotal.cs_nifree++; 865 fs->fs_cs(fs, cg).cs_nifree++; 866 if ((mode & IFMT) == IFDIR) { 867 cgp->cg_cs.cs_ndir--; 868 fs->fs_cstotal.cs_ndir--; 869 fs->fs_cs(fs, cg).cs_ndir--; 870 } 871 fs->fs_fmod++; 872 bdwrite(bp); 873 } 874 875 /* 876 * Find a block of the specified size in the specified cylinder group. 877 * 878 * It is a panic if a request is made to find a block if none are 879 * available. 880 */ 881 daddr_t 882 mapsearch(fs, cgp, bpref, allocsiz) 883 register struct fs *fs; 884 register struct cg *cgp; 885 daddr_t bpref; 886 int allocsiz; 887 { 888 daddr_t bno; 889 int start, len, loc, i; 890 int blk, field, subfield, pos; 891 892 /* 893 * find the fragment by searching through the free block 894 * map for an appropriate bit pattern 895 */ 896 if (bpref) 897 start = dtogd(fs, bpref) / NBBY; 898 else 899 start = cgp->cg_frotor / NBBY; 900 len = howmany(fs->fs_fpg, NBBY) - start; 901 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 902 (caddr_t)fragtbl[fs->fs_frag], 903 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 904 if (loc == 0) { 905 len = start + 1; 906 start = 0; 907 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 908 (caddr_t)fragtbl[fs->fs_frag], 909 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 910 if (loc == 0) { 911 printf("start = %d, len = %d, fs = %s\n", 912 start, len, fs->fs_fsmnt); 913 panic("alloccg: map corrupted"); 914 return (-1); 915 } 916 } 917 bno = (start + len - loc) * NBBY; 918 cgp->cg_frotor = bno; 919 /* 920 * found the byte in the map 921 * sift through the bits to find the selected frag 922 */ 923 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 924 blk = blkmap(fs, cgp->cg_free, bno); 925 blk <<= 1; 926 field = around[allocsiz]; 927 subfield = inside[allocsiz]; 928 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 929 if ((blk & field) == subfield) 930 return (bno + pos); 931 field <<= 1; 932 subfield <<= 1; 933 } 934 } 935 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 936 panic("alloccg: block not in map"); 937 return (-1); 938 } 939 940 /* 941 * Fserr prints the name of a file system with an error diagnostic. 942 * 943 * The form of the error message is: 944 * fs: error message 945 */ 946 fserr(fs, cp) 947 struct fs *fs; 948 char *cp; 949 { 950 951 printf("%s: %s\n", fs->fs_fsmnt, cp); 952 } 953