xref: /csrg-svn/sys/ufs/ffs/ffs_alloc.c (revision 56665)
1 /*
2  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ffs_alloc.c	7.39 (Berkeley) 11/02/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/buf.h>
13 #include <sys/proc.h>
14 #include <sys/vnode.h>
15 #include <sys/mount.h>
16 #include <sys/kernel.h>
17 #include <sys/syslog.h>
18 
19 #include <vm/vm.h>
20 
21 #include <ufs/ufs/quota.h>
22 #include <ufs/ufs/inode.h>
23 
24 #include <ufs/ffs/fs.h>
25 #include <ufs/ffs/ffs_extern.h>
26 
27 extern u_long nextgennumber;
28 
29 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
30 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
31 static ino_t	ffs_dirpref __P((struct fs *));
32 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
33 static void	ffs_fserr __P((struct fs *, u_int, char *));
34 static u_long	ffs_hashalloc
35 		    __P((struct inode *, int, long, int, u_long (*)()));
36 static ino_t	ffs_ialloccg __P((struct inode *, int, daddr_t, int));
37 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
38 
39 /*
40  * Allocate a block in the file system.
41  *
42  * The size of the requested block is given, which must be some
43  * multiple of fs_fsize and <= fs_bsize.
44  * A preference may be optionally specified. If a preference is given
45  * the following hierarchy is used to allocate a block:
46  *   1) allocate the requested block.
47  *   2) allocate a rotationally optimal block in the same cylinder.
48  *   3) allocate a block in the same cylinder group.
49  *   4) quadradically rehash into other cylinder groups, until an
50  *      available block is located.
51  * If no block preference is given the following heirarchy is used
52  * to allocate a block:
53  *   1) allocate a block in the cylinder group that contains the
54  *      inode for the file.
55  *   2) quadradically rehash into other cylinder groups, until an
56  *      available block is located.
57  */
58 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
59 	register struct inode *ip;
60 	daddr_t lbn, bpref;
61 	int size;
62 	struct ucred *cred;
63 	daddr_t *bnp;
64 {
65 	daddr_t bno;
66 	register struct fs *fs;
67 	register struct buf *bp;
68 	int cg, error;
69 
70 	*bnp = 0;
71 	fs = ip->i_fs;
72 #ifdef DIAGNOSTIC
73 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
74 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
75 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
76 		panic("ffs_alloc: bad size");
77 	}
78 	if (cred == NOCRED)
79 		panic("ffs_alloc: missing credential\n");
80 #endif /* DIAGNOSTIC */
81 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
82 		goto nospace;
83 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
84 		goto nospace;
85 #ifdef QUOTA
86 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
87 		return (error);
88 #endif
89 	if (bpref >= fs->fs_size)
90 		bpref = 0;
91 	if (bpref == 0)
92 		cg = itog(fs, ip->i_number);
93 	else
94 		cg = dtog(fs, bpref);
95 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
96 	    (u_long (*)())ffs_alloccg);
97 	if (bno > 0) {
98 		ip->i_blocks += btodb(size);
99 		ip->i_flag |= IUPD|ICHG;
100 		*bnp = bno;
101 		return (0);
102 	}
103 #ifdef QUOTA
104 	/*
105 	 * Restore user's disk quota because allocation failed.
106 	 */
107 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
108 #endif
109 nospace:
110 	ffs_fserr(fs, cred->cr_uid, "file system full");
111 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
112 	return (ENOSPC);
113 }
114 
115 /*
116  * Reallocate a fragment to a bigger size
117  *
118  * The number and size of the old block is given, and a preference
119  * and new size is also specified. The allocator attempts to extend
120  * the original block. Failing that, the regular block allocator is
121  * invoked to get an appropriate block.
122  */
123 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
124 	register struct inode *ip;
125 	daddr_t lbprev;
126 	daddr_t bpref;
127 	int osize, nsize;
128 	struct ucred *cred;
129 	struct buf **bpp;
130 {
131 	register struct fs *fs;
132 	struct buf *bp, *obp;
133 	int cg, request, error;
134 	daddr_t bprev, bno;
135 
136 	*bpp = 0;
137 	fs = ip->i_fs;
138 #ifdef DIAGNOSTIC
139 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
140 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
141 		printf(
142 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
143 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
144 		panic("ffs_realloccg: bad size");
145 	}
146 	if (cred == NOCRED)
147 		panic("ffs_realloccg: missing credential\n");
148 #endif /* DIAGNOSTIC */
149 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
150 		goto nospace;
151 	if ((bprev = ip->i_db[lbprev]) == 0) {
152 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
153 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
154 		panic("ffs_realloccg: bad bprev");
155 	}
156 	/*
157 	 * Allocate the extra space in the buffer.
158 	 */
159 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
160 		brelse(bp);
161 		return (error);
162 	}
163 #ifdef QUOTA
164 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
165 		brelse(bp);
166 		return (error);
167 	}
168 #endif
169 	/*
170 	 * Check for extension in the existing location.
171 	 */
172 	cg = dtog(fs, bprev);
173 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
174 		if (bp->b_blkno != fsbtodb(fs, bno))
175 			panic("bad blockno");
176 		ip->i_blocks += btodb(nsize - osize);
177 		ip->i_flag |= IUPD|ICHG;
178 		allocbuf(bp, nsize);
179 		bp->b_flags |= B_DONE;
180 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
181 		*bpp = bp;
182 		return (0);
183 	}
184 	/*
185 	 * Allocate a new disk location.
186 	 */
187 	if (bpref >= fs->fs_size)
188 		bpref = 0;
189 	switch ((int)fs->fs_optim) {
190 	case FS_OPTSPACE:
191 		/*
192 		 * Allocate an exact sized fragment. Although this makes
193 		 * best use of space, we will waste time relocating it if
194 		 * the file continues to grow. If the fragmentation is
195 		 * less than half of the minimum free reserve, we choose
196 		 * to begin optimizing for time.
197 		 */
198 		request = nsize;
199 		if (fs->fs_minfree < 5 ||
200 		    fs->fs_cstotal.cs_nffree >
201 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
202 			break;
203 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
204 			fs->fs_fsmnt);
205 		fs->fs_optim = FS_OPTTIME;
206 		break;
207 	case FS_OPTTIME:
208 		/*
209 		 * At this point we have discovered a file that is trying to
210 		 * grow a small fragment to a larger fragment. To save time,
211 		 * we allocate a full sized block, then free the unused portion.
212 		 * If the file continues to grow, the `ffs_fragextend' call
213 		 * above will be able to grow it in place without further
214 		 * copying. If aberrant programs cause disk fragmentation to
215 		 * grow within 2% of the free reserve, we choose to begin
216 		 * optimizing for space.
217 		 */
218 		request = fs->fs_bsize;
219 		if (fs->fs_cstotal.cs_nffree <
220 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
221 			break;
222 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
223 			fs->fs_fsmnt);
224 		fs->fs_optim = FS_OPTSPACE;
225 		break;
226 	default:
227 		printf("dev = 0x%x, optim = %d, fs = %s\n",
228 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
229 		panic("ffs_realloccg: bad optim");
230 		/* NOTREACHED */
231 	}
232 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
233 	    (u_long (*)())ffs_alloccg);
234 	if (bno > 0) {
235 		bp->b_blkno = fsbtodb(fs, bno);
236 		(void) vnode_pager_uncache(ITOV(ip));
237 		ffs_blkfree(ip, bprev, (long)osize);
238 		if (nsize < request)
239 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
240 			    (long)(request - nsize));
241 		ip->i_blocks += btodb(nsize - osize);
242 		ip->i_flag |= IUPD|ICHG;
243 		allocbuf(bp, nsize);
244 		bp->b_flags |= B_DONE;
245 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
246 		*bpp = bp;
247 		return (0);
248 	}
249 #ifdef QUOTA
250 	/*
251 	 * Restore user's disk quota because allocation failed.
252 	 */
253 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
254 #endif
255 	brelse(bp);
256 nospace:
257 	/*
258 	 * no space available
259 	 */
260 	ffs_fserr(fs, cred->cr_uid, "file system full");
261 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
262 	return (ENOSPC);
263 }
264 
265 /*
266  * Allocate an inode in the file system.
267  *
268  * If allocating a directory, use ffs_dirpref to select the inode.
269  * If allocating in a directory, the following hierarchy is followed:
270  *   1) allocate the preferred inode.
271  *   2) allocate an inode in the same cylinder group.
272  *   3) quadradically rehash into other cylinder groups, until an
273  *      available inode is located.
274  * If no inode preference is given the following heirarchy is used
275  * to allocate an inode:
276  *   1) allocate an inode in cylinder group 0.
277  *   2) quadradically rehash into other cylinder groups, until an
278  *      available inode is located.
279  */
280 ffs_valloc(ap)
281 	struct vop_valloc_args /* {
282 		struct vnode *a_pvp;
283 		int a_mode;
284 		struct ucred *a_cred;
285 		struct vnode **a_vpp;
286 	} */ *ap;
287 {
288 	register struct vnode *pvp = ap->a_pvp;
289 	register struct inode *pip;
290 	register struct fs *fs;
291 	register struct inode *ip;
292 	mode_t mode = ap->a_mode;
293 	ino_t ino, ipref;
294 	int cg, error;
295 
296 	*ap->a_vpp = NULL;
297 	pip = VTOI(pvp);
298 	fs = pip->i_fs;
299 	if (fs->fs_cstotal.cs_nifree == 0)
300 		goto noinodes;
301 
302 	if ((mode & IFMT) == IFDIR)
303 		ipref = ffs_dirpref(fs);
304 	else
305 		ipref = pip->i_number;
306 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
307 		ipref = 0;
308 	cg = itog(fs, ipref);
309 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_ialloccg);
310 	if (ino == 0)
311 		goto noinodes;
312 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
313 	if (error) {
314 		VOP_VFREE(pvp, ino, mode);
315 		return (error);
316 	}
317 	ip = VTOI(*ap->a_vpp);
318 	if (ip->i_mode) {
319 		printf("mode = 0%o, inum = %d, fs = %s\n",
320 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
321 		panic("ffs_valloc: dup alloc");
322 	}
323 	if (ip->i_blocks) {				/* XXX */
324 		printf("free inode %s/%d had %d blocks\n",
325 		    fs->fs_fsmnt, ino, ip->i_blocks);
326 		ip->i_blocks = 0;
327 	}
328 	ip->i_flags = 0;
329 	/*
330 	 * Set up a new generation number for this inode.
331 	 */
332 	if (++nextgennumber < (u_long)time.tv_sec)
333 		nextgennumber = time.tv_sec;
334 	ip->i_gen = nextgennumber;
335 	return (0);
336 noinodes:
337 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
338 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
339 	return (ENOSPC);
340 }
341 
342 /*
343  * Find a cylinder to place a directory.
344  *
345  * The policy implemented by this algorithm is to select from
346  * among those cylinder groups with above the average number of
347  * free inodes, the one with the smallest number of directories.
348  */
349 static ino_t
350 ffs_dirpref(fs)
351 	register struct fs *fs;
352 {
353 	int cg, minndir, mincg, avgifree;
354 
355 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
356 	minndir = fs->fs_ipg;
357 	mincg = 0;
358 	for (cg = 0; cg < fs->fs_ncg; cg++)
359 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
360 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
361 			mincg = cg;
362 			minndir = fs->fs_cs(fs, cg).cs_ndir;
363 		}
364 	return ((ino_t)(fs->fs_ipg * mincg));
365 }
366 
367 /*
368  * Select the desired position for the next block in a file.  The file is
369  * logically divided into sections. The first section is composed of the
370  * direct blocks. Each additional section contains fs_maxbpg blocks.
371  *
372  * If no blocks have been allocated in the first section, the policy is to
373  * request a block in the same cylinder group as the inode that describes
374  * the file. If no blocks have been allocated in any other section, the
375  * policy is to place the section in a cylinder group with a greater than
376  * average number of free blocks.  An appropriate cylinder group is found
377  * by using a rotor that sweeps the cylinder groups. When a new group of
378  * blocks is needed, the sweep begins in the cylinder group following the
379  * cylinder group from which the previous allocation was made. The sweep
380  * continues until a cylinder group with greater than the average number
381  * of free blocks is found. If the allocation is for the first block in an
382  * indirect block, the information on the previous allocation is unavailable;
383  * here a best guess is made based upon the logical block number being
384  * allocated.
385  *
386  * If a section is already partially allocated, the policy is to
387  * contiguously allocate fs_maxcontig blocks.  The end of one of these
388  * contiguous blocks and the beginning of the next is physically separated
389  * so that the disk head will be in transit between them for at least
390  * fs_rotdelay milliseconds.  This is to allow time for the processor to
391  * schedule another I/O transfer.
392  */
393 daddr_t
394 ffs_blkpref(ip, lbn, indx, bap)
395 	struct inode *ip;
396 	daddr_t lbn;
397 	int indx;
398 	daddr_t *bap;
399 {
400 	register struct fs *fs;
401 	register int cg;
402 	int avgbfree, startcg;
403 	daddr_t nextblk;
404 
405 	fs = ip->i_fs;
406 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
407 		if (lbn < NDADDR) {
408 			cg = itog(fs, ip->i_number);
409 			return (fs->fs_fpg * cg + fs->fs_frag);
410 		}
411 		/*
412 		 * Find a cylinder with greater than average number of
413 		 * unused data blocks.
414 		 */
415 		if (indx == 0 || bap[indx - 1] == 0)
416 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
417 		else
418 			startcg = dtog(fs, bap[indx - 1]) + 1;
419 		startcg %= fs->fs_ncg;
420 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
421 		for (cg = startcg; cg < fs->fs_ncg; cg++)
422 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
423 				fs->fs_cgrotor = cg;
424 				return (fs->fs_fpg * cg + fs->fs_frag);
425 			}
426 		for (cg = 0; cg <= startcg; cg++)
427 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
428 				fs->fs_cgrotor = cg;
429 				return (fs->fs_fpg * cg + fs->fs_frag);
430 			}
431 		return (NULL);
432 	}
433 	/*
434 	 * One or more previous blocks have been laid out. If less
435 	 * than fs_maxcontig previous blocks are contiguous, the
436 	 * next block is requested contiguously, otherwise it is
437 	 * requested rotationally delayed by fs_rotdelay milliseconds.
438 	 */
439 	nextblk = bap[indx - 1] + fs->fs_frag;
440 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
441 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
442 		return (nextblk);
443 	if (fs->fs_rotdelay != 0)
444 		/*
445 		 * Here we convert ms of delay to frags as:
446 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
447 		 *	((sect/frag) * (ms/sec))
448 		 * then round up to the next block.
449 		 */
450 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
451 		    (NSPF(fs) * 1000), fs->fs_frag);
452 	return (nextblk);
453 }
454 
455 /*
456  * Implement the cylinder overflow algorithm.
457  *
458  * The policy implemented by this algorithm is:
459  *   1) allocate the block in its requested cylinder group.
460  *   2) quadradically rehash on the cylinder group number.
461  *   3) brute force search for a free block.
462  */
463 /*VARARGS5*/
464 static u_long
465 ffs_hashalloc(ip, cg, pref, size, allocator)
466 	struct inode *ip;
467 	int cg;
468 	long pref;
469 	int size;	/* size for data blocks, mode for inodes */
470 	u_long (*allocator)();
471 {
472 	register struct fs *fs;
473 	long result;
474 	int i, icg = cg;
475 
476 	fs = ip->i_fs;
477 	/*
478 	 * 1: preferred cylinder group
479 	 */
480 	result = (*allocator)(ip, cg, pref, size);
481 	if (result)
482 		return (result);
483 	/*
484 	 * 2: quadratic rehash
485 	 */
486 	for (i = 1; i < fs->fs_ncg; i *= 2) {
487 		cg += i;
488 		if (cg >= fs->fs_ncg)
489 			cg -= fs->fs_ncg;
490 		result = (*allocator)(ip, cg, 0, size);
491 		if (result)
492 			return (result);
493 	}
494 	/*
495 	 * 3: brute force search
496 	 * Note that we start at i == 2, since 0 was checked initially,
497 	 * and 1 is always checked in the quadratic rehash.
498 	 */
499 	cg = (icg + 2) % fs->fs_ncg;
500 	for (i = 2; i < fs->fs_ncg; i++) {
501 		result = (*allocator)(ip, cg, 0, size);
502 		if (result)
503 			return (result);
504 		cg++;
505 		if (cg == fs->fs_ncg)
506 			cg = 0;
507 	}
508 	return (NULL);
509 }
510 
511 /*
512  * Determine whether a fragment can be extended.
513  *
514  * Check to see if the necessary fragments are available, and
515  * if they are, allocate them.
516  */
517 static daddr_t
518 ffs_fragextend(ip, cg, bprev, osize, nsize)
519 	struct inode *ip;
520 	int cg;
521 	long bprev;
522 	int osize, nsize;
523 {
524 	register struct fs *fs;
525 	register struct cg *cgp;
526 	struct buf *bp;
527 	long bno;
528 	int frags, bbase;
529 	int i, error;
530 
531 	fs = ip->i_fs;
532 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
533 		return (NULL);
534 	frags = numfrags(fs, nsize);
535 	bbase = fragnum(fs, bprev);
536 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
537 		/* cannot extend across a block boundary */
538 		return (NULL);
539 	}
540 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
541 		(int)fs->fs_cgsize, NOCRED, &bp);
542 	if (error) {
543 		brelse(bp);
544 		return (NULL);
545 	}
546 	cgp = bp->b_un.b_cg;
547 	if (!cg_chkmagic(cgp)) {
548 		brelse(bp);
549 		return (NULL);
550 	}
551 	cgp->cg_time = time.tv_sec;
552 	bno = dtogd(fs, bprev);
553 	for (i = numfrags(fs, osize); i < frags; i++)
554 		if (isclr(cg_blksfree(cgp), bno + i)) {
555 			brelse(bp);
556 			return (NULL);
557 		}
558 	/*
559 	 * the current fragment can be extended
560 	 * deduct the count on fragment being extended into
561 	 * increase the count on the remaining fragment (if any)
562 	 * allocate the extended piece
563 	 */
564 	for (i = frags; i < fs->fs_frag - bbase; i++)
565 		if (isclr(cg_blksfree(cgp), bno + i))
566 			break;
567 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
568 	if (i != frags)
569 		cgp->cg_frsum[i - frags]++;
570 	for (i = numfrags(fs, osize); i < frags; i++) {
571 		clrbit(cg_blksfree(cgp), bno + i);
572 		cgp->cg_cs.cs_nffree--;
573 		fs->fs_cstotal.cs_nffree--;
574 		fs->fs_cs(fs, cg).cs_nffree--;
575 	}
576 	fs->fs_fmod = 1;
577 	bdwrite(bp);
578 	return (bprev);
579 }
580 
581 /*
582  * Determine whether a block can be allocated.
583  *
584  * Check to see if a block of the apprpriate size is available,
585  * and if it is, allocate it.
586  */
587 static daddr_t
588 ffs_alloccg(ip, cg, bpref, size)
589 	struct inode *ip;
590 	int cg;
591 	daddr_t bpref;
592 	int size;
593 {
594 	register struct fs *fs;
595 	register struct cg *cgp;
596 	struct buf *bp;
597 	register int i;
598 	int error, bno, frags, allocsiz;
599 
600 	fs = ip->i_fs;
601 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
602 		return (NULL);
603 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
604 		(int)fs->fs_cgsize, NOCRED, &bp);
605 	if (error) {
606 		brelse(bp);
607 		return (NULL);
608 	}
609 	cgp = bp->b_un.b_cg;
610 	if (!cg_chkmagic(cgp) ||
611 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
612 		brelse(bp);
613 		return (NULL);
614 	}
615 	cgp->cg_time = time.tv_sec;
616 	if (size == fs->fs_bsize) {
617 		bno = ffs_alloccgblk(fs, cgp, bpref);
618 		bdwrite(bp);
619 		return (bno);
620 	}
621 	/*
622 	 * check to see if any fragments are already available
623 	 * allocsiz is the size which will be allocated, hacking
624 	 * it down to a smaller size if necessary
625 	 */
626 	frags = numfrags(fs, size);
627 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
628 		if (cgp->cg_frsum[allocsiz] != 0)
629 			break;
630 	if (allocsiz == fs->fs_frag) {
631 		/*
632 		 * no fragments were available, so a block will be
633 		 * allocated, and hacked up
634 		 */
635 		if (cgp->cg_cs.cs_nbfree == 0) {
636 			brelse(bp);
637 			return (NULL);
638 		}
639 		bno = ffs_alloccgblk(fs, cgp, bpref);
640 		bpref = dtogd(fs, bno);
641 		for (i = frags; i < fs->fs_frag; i++)
642 			setbit(cg_blksfree(cgp), bpref + i);
643 		i = fs->fs_frag - frags;
644 		cgp->cg_cs.cs_nffree += i;
645 		fs->fs_cstotal.cs_nffree += i;
646 		fs->fs_cs(fs, cg).cs_nffree += i;
647 		fs->fs_fmod = 1;
648 		cgp->cg_frsum[i]++;
649 		bdwrite(bp);
650 		return (bno);
651 	}
652 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
653 	if (bno < 0) {
654 		brelse(bp);
655 		return (NULL);
656 	}
657 	for (i = 0; i < frags; i++)
658 		clrbit(cg_blksfree(cgp), bno + i);
659 	cgp->cg_cs.cs_nffree -= frags;
660 	fs->fs_cstotal.cs_nffree -= frags;
661 	fs->fs_cs(fs, cg).cs_nffree -= frags;
662 	fs->fs_fmod = 1;
663 	cgp->cg_frsum[allocsiz]--;
664 	if (frags != allocsiz)
665 		cgp->cg_frsum[allocsiz - frags]++;
666 	bdwrite(bp);
667 	return (cg * fs->fs_fpg + bno);
668 }
669 
670 /*
671  * Allocate a block in a cylinder group.
672  *
673  * This algorithm implements the following policy:
674  *   1) allocate the requested block.
675  *   2) allocate a rotationally optimal block in the same cylinder.
676  *   3) allocate the next available block on the block rotor for the
677  *      specified cylinder group.
678  * Note that this routine only allocates fs_bsize blocks; these
679  * blocks may be fragmented by the routine that allocates them.
680  */
681 static daddr_t
682 ffs_alloccgblk(fs, cgp, bpref)
683 	register struct fs *fs;
684 	register struct cg *cgp;
685 	daddr_t bpref;
686 {
687 	daddr_t bno;
688 	int cylno, pos, delta;
689 	short *cylbp;
690 	register int i;
691 
692 	if (bpref == 0) {
693 		bpref = cgp->cg_rotor;
694 		goto norot;
695 	}
696 	bpref = blknum(fs, bpref);
697 	bpref = dtogd(fs, bpref);
698 	/*
699 	 * if the requested block is available, use it
700 	 */
701 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
702 		bno = bpref;
703 		goto gotit;
704 	}
705 	/*
706 	 * check for a block available on the same cylinder
707 	 */
708 	cylno = cbtocylno(fs, bpref);
709 	if (cg_blktot(cgp)[cylno] == 0)
710 		goto norot;
711 	if (fs->fs_cpc == 0) {
712 		/*
713 		 * block layout info is not available, so just have
714 		 * to take any block in this cylinder.
715 		 */
716 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
717 		goto norot;
718 	}
719 	/*
720 	 * check the summary information to see if a block is
721 	 * available in the requested cylinder starting at the
722 	 * requested rotational position and proceeding around.
723 	 */
724 	cylbp = cg_blks(fs, cgp, cylno);
725 	pos = cbtorpos(fs, bpref);
726 	for (i = pos; i < fs->fs_nrpos; i++)
727 		if (cylbp[i] > 0)
728 			break;
729 	if (i == fs->fs_nrpos)
730 		for (i = 0; i < pos; i++)
731 			if (cylbp[i] > 0)
732 				break;
733 	if (cylbp[i] > 0) {
734 		/*
735 		 * found a rotational position, now find the actual
736 		 * block. A panic if none is actually there.
737 		 */
738 		pos = cylno % fs->fs_cpc;
739 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
740 		if (fs_postbl(fs, pos)[i] == -1) {
741 			printf("pos = %d, i = %d, fs = %s\n",
742 			    pos, i, fs->fs_fsmnt);
743 			panic("ffs_alloccgblk: cyl groups corrupted");
744 		}
745 		for (i = fs_postbl(fs, pos)[i];; ) {
746 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
747 				bno = blkstofrags(fs, (bno + i));
748 				goto gotit;
749 			}
750 			delta = fs_rotbl(fs)[i];
751 			if (delta <= 0 ||
752 			    delta + i > fragstoblks(fs, fs->fs_fpg))
753 				break;
754 			i += delta;
755 		}
756 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
757 		panic("ffs_alloccgblk: can't find blk in cyl");
758 	}
759 norot:
760 	/*
761 	 * no blocks in the requested cylinder, so take next
762 	 * available one in this cylinder group.
763 	 */
764 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
765 	if (bno < 0)
766 		return (NULL);
767 	cgp->cg_rotor = bno;
768 gotit:
769 	ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
770 	cgp->cg_cs.cs_nbfree--;
771 	fs->fs_cstotal.cs_nbfree--;
772 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
773 	cylno = cbtocylno(fs, bno);
774 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
775 	cg_blktot(cgp)[cylno]--;
776 	fs->fs_fmod = 1;
777 	return (cgp->cg_cgx * fs->fs_fpg + bno);
778 }
779 
780 /*
781  * Determine whether an inode can be allocated.
782  *
783  * Check to see if an inode is available, and if it is,
784  * allocate it using the following policy:
785  *   1) allocate the requested inode.
786  *   2) allocate the next available inode after the requested
787  *      inode in the specified cylinder group.
788  */
789 static ino_t
790 ffs_ialloccg(ip, cg, ipref, mode)
791 	struct inode *ip;
792 	int cg;
793 	daddr_t ipref;
794 	int mode;
795 {
796 	register struct fs *fs;
797 	register struct cg *cgp;
798 	struct buf *bp;
799 	int error, start, len, loc, map, i;
800 
801 	fs = ip->i_fs;
802 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
803 		return (NULL);
804 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
805 		(int)fs->fs_cgsize, NOCRED, &bp);
806 	if (error) {
807 		brelse(bp);
808 		return (NULL);
809 	}
810 	cgp = bp->b_un.b_cg;
811 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
812 		brelse(bp);
813 		return (NULL);
814 	}
815 	cgp->cg_time = time.tv_sec;
816 	if (ipref) {
817 		ipref %= fs->fs_ipg;
818 		if (isclr(cg_inosused(cgp), ipref))
819 			goto gotit;
820 	}
821 	start = cgp->cg_irotor / NBBY;
822 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
823 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
824 	if (loc == 0) {
825 		len = start + 1;
826 		start = 0;
827 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
828 		if (loc == 0) {
829 			printf("cg = %s, irotor = %d, fs = %s\n",
830 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
831 			panic("ffs_ialloccg: map corrupted");
832 			/* NOTREACHED */
833 		}
834 	}
835 	i = start + len - loc;
836 	map = cg_inosused(cgp)[i];
837 	ipref = i * NBBY;
838 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
839 		if ((map & i) == 0) {
840 			cgp->cg_irotor = ipref;
841 			goto gotit;
842 		}
843 	}
844 	printf("fs = %s\n", fs->fs_fsmnt);
845 	panic("ffs_ialloccg: block not in map");
846 	/* NOTREACHED */
847 gotit:
848 	setbit(cg_inosused(cgp), ipref);
849 	cgp->cg_cs.cs_nifree--;
850 	fs->fs_cstotal.cs_nifree--;
851 	fs->fs_cs(fs, cg).cs_nifree--;
852 	fs->fs_fmod = 1;
853 	if ((mode & IFMT) == IFDIR) {
854 		cgp->cg_cs.cs_ndir++;
855 		fs->fs_cstotal.cs_ndir++;
856 		fs->fs_cs(fs, cg).cs_ndir++;
857 	}
858 	bdwrite(bp);
859 	return (cg * fs->fs_ipg + ipref);
860 }
861 
862 /*
863  * Free a block or fragment.
864  *
865  * The specified block or fragment is placed back in the
866  * free map. If a fragment is deallocated, a possible
867  * block reassembly is checked.
868  */
869 ffs_blkfree(ip, bno, size)
870 	register struct inode *ip;
871 	daddr_t bno;
872 	long size;
873 {
874 	register struct fs *fs;
875 	register struct cg *cgp;
876 	struct buf *bp;
877 	int error, cg, blk, frags, bbase;
878 	register int i;
879 
880 	fs = ip->i_fs;
881 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
882 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
883 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
884 		panic("blkfree: bad size");
885 	}
886 	cg = dtog(fs, bno);
887 	if ((unsigned)bno >= fs->fs_size) {
888 		printf("bad block %d, ino %d\n", bno, ip->i_number);
889 		ffs_fserr(fs, ip->i_uid, "bad block");
890 		return;
891 	}
892 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
893 		(int)fs->fs_cgsize, NOCRED, &bp);
894 	if (error) {
895 		brelse(bp);
896 		return;
897 	}
898 	cgp = bp->b_un.b_cg;
899 	if (!cg_chkmagic(cgp)) {
900 		brelse(bp);
901 		return;
902 	}
903 	cgp->cg_time = time.tv_sec;
904 	bno = dtogd(fs, bno);
905 	if (size == fs->fs_bsize) {
906 		if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
907 			printf("dev = 0x%x, block = %d, fs = %s\n",
908 			    ip->i_dev, bno, fs->fs_fsmnt);
909 			panic("blkfree: freeing free block");
910 		}
911 		ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
912 		cgp->cg_cs.cs_nbfree++;
913 		fs->fs_cstotal.cs_nbfree++;
914 		fs->fs_cs(fs, cg).cs_nbfree++;
915 		i = cbtocylno(fs, bno);
916 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
917 		cg_blktot(cgp)[i]++;
918 	} else {
919 		bbase = bno - fragnum(fs, bno);
920 		/*
921 		 * decrement the counts associated with the old frags
922 		 */
923 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
924 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
925 		/*
926 		 * deallocate the fragment
927 		 */
928 		frags = numfrags(fs, size);
929 		for (i = 0; i < frags; i++) {
930 			if (isset(cg_blksfree(cgp), bno + i)) {
931 				printf("dev = 0x%x, block = %d, fs = %s\n",
932 				    ip->i_dev, bno + i, fs->fs_fsmnt);
933 				panic("blkfree: freeing free frag");
934 			}
935 			setbit(cg_blksfree(cgp), bno + i);
936 		}
937 		cgp->cg_cs.cs_nffree += i;
938 		fs->fs_cstotal.cs_nffree += i;
939 		fs->fs_cs(fs, cg).cs_nffree += i;
940 		/*
941 		 * add back in counts associated with the new frags
942 		 */
943 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
944 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
945 		/*
946 		 * if a complete block has been reassembled, account for it
947 		 */
948 		if (ffs_isblock(fs, cg_blksfree(cgp),
949 		    (daddr_t)fragstoblks(fs, bbase))) {
950 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
951 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
952 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
953 			cgp->cg_cs.cs_nbfree++;
954 			fs->fs_cstotal.cs_nbfree++;
955 			fs->fs_cs(fs, cg).cs_nbfree++;
956 			i = cbtocylno(fs, bbase);
957 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
958 			cg_blktot(cgp)[i]++;
959 		}
960 	}
961 	fs->fs_fmod = 1;
962 	bdwrite(bp);
963 }
964 
965 /*
966  * Free an inode.
967  *
968  * The specified inode is placed back in the free map.
969  */
970 int
971 ffs_vfree(ap)
972 	struct vop_vfree_args /* {
973 		struct vnode *a_pvp;
974 		ino_t a_ino;
975 		int a_mode;
976 	} */ *ap;
977 {
978 	register struct fs *fs;
979 	register struct cg *cgp;
980 	register struct inode *pip;
981 	ino_t ino = ap->a_ino;
982 	struct buf *bp;
983 	int error, cg;
984 
985 	pip = VTOI(ap->a_pvp);
986 	fs = pip->i_fs;
987 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
988 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
989 		    pip->i_dev, ino, fs->fs_fsmnt);
990 	cg = itog(fs, ino);
991 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
992 		(int)fs->fs_cgsize, NOCRED, &bp);
993 	if (error) {
994 		brelse(bp);
995 		return (0);
996 	}
997 	cgp = bp->b_un.b_cg;
998 	if (!cg_chkmagic(cgp)) {
999 		brelse(bp);
1000 		return (0);
1001 	}
1002 	cgp->cg_time = time.tv_sec;
1003 	ino %= fs->fs_ipg;
1004 	if (isclr(cg_inosused(cgp), ino)) {
1005 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1006 		    pip->i_dev, ino, fs->fs_fsmnt);
1007 		if (fs->fs_ronly == 0)
1008 			panic("ifree: freeing free inode");
1009 	}
1010 	clrbit(cg_inosused(cgp), ino);
1011 	if (ino < cgp->cg_irotor)
1012 		cgp->cg_irotor = ino;
1013 	cgp->cg_cs.cs_nifree++;
1014 	fs->fs_cstotal.cs_nifree++;
1015 	fs->fs_cs(fs, cg).cs_nifree++;
1016 	if ((ap->a_mode & IFMT) == IFDIR) {
1017 		cgp->cg_cs.cs_ndir--;
1018 		fs->fs_cstotal.cs_ndir--;
1019 		fs->fs_cs(fs, cg).cs_ndir--;
1020 	}
1021 	fs->fs_fmod = 1;
1022 	bdwrite(bp);
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Find a block of the specified size in the specified cylinder group.
1028  *
1029  * It is a panic if a request is made to find a block if none are
1030  * available.
1031  */
1032 static daddr_t
1033 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1034 	register struct fs *fs;
1035 	register struct cg *cgp;
1036 	daddr_t bpref;
1037 	int allocsiz;
1038 {
1039 	daddr_t bno;
1040 	int start, len, loc, i;
1041 	int blk, field, subfield, pos;
1042 
1043 	/*
1044 	 * find the fragment by searching through the free block
1045 	 * map for an appropriate bit pattern
1046 	 */
1047 	if (bpref)
1048 		start = dtogd(fs, bpref) / NBBY;
1049 	else
1050 		start = cgp->cg_frotor / NBBY;
1051 	len = howmany(fs->fs_fpg, NBBY) - start;
1052 	loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
1053 		(u_char *)fragtbl[fs->fs_frag],
1054 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1055 	if (loc == 0) {
1056 		len = start + 1;
1057 		start = 0;
1058 		loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
1059 			(u_char *)fragtbl[fs->fs_frag],
1060 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1061 		if (loc == 0) {
1062 			printf("start = %d, len = %d, fs = %s\n",
1063 			    start, len, fs->fs_fsmnt);
1064 			panic("ffs_alloccg: map corrupted");
1065 			/* NOTREACHED */
1066 		}
1067 	}
1068 	bno = (start + len - loc) * NBBY;
1069 	cgp->cg_frotor = bno;
1070 	/*
1071 	 * found the byte in the map
1072 	 * sift through the bits to find the selected frag
1073 	 */
1074 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1075 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1076 		blk <<= 1;
1077 		field = around[allocsiz];
1078 		subfield = inside[allocsiz];
1079 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1080 			if ((blk & field) == subfield)
1081 				return (bno + pos);
1082 			field <<= 1;
1083 			subfield <<= 1;
1084 		}
1085 	}
1086 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1087 	panic("ffs_alloccg: block not in map");
1088 	return (-1);
1089 }
1090 
1091 /*
1092  * Fserr prints the name of a file system with an error diagnostic.
1093  *
1094  * The form of the error message is:
1095  *	fs: error message
1096  */
1097 static void
1098 ffs_fserr(fs, uid, cp)
1099 	struct fs *fs;
1100 	u_int uid;
1101 	char *cp;
1102 {
1103 
1104 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1105 }
1106