1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)ffs_alloc.c 7.39 (Berkeley) 11/02/92 8 */ 9 10 #include <sys/param.h> 11 #include <sys/systm.h> 12 #include <sys/buf.h> 13 #include <sys/proc.h> 14 #include <sys/vnode.h> 15 #include <sys/mount.h> 16 #include <sys/kernel.h> 17 #include <sys/syslog.h> 18 19 #include <vm/vm.h> 20 21 #include <ufs/ufs/quota.h> 22 #include <ufs/ufs/inode.h> 23 24 #include <ufs/ffs/fs.h> 25 #include <ufs/ffs/ffs_extern.h> 26 27 extern u_long nextgennumber; 28 29 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int)); 30 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t)); 31 static ino_t ffs_dirpref __P((struct fs *)); 32 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 33 static void ffs_fserr __P((struct fs *, u_int, char *)); 34 static u_long ffs_hashalloc 35 __P((struct inode *, int, long, int, u_long (*)())); 36 static ino_t ffs_ialloccg __P((struct inode *, int, daddr_t, int)); 37 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int)); 38 39 /* 40 * Allocate a block in the file system. 41 * 42 * The size of the requested block is given, which must be some 43 * multiple of fs_fsize and <= fs_bsize. 44 * A preference may be optionally specified. If a preference is given 45 * the following hierarchy is used to allocate a block: 46 * 1) allocate the requested block. 47 * 2) allocate a rotationally optimal block in the same cylinder. 48 * 3) allocate a block in the same cylinder group. 49 * 4) quadradically rehash into other cylinder groups, until an 50 * available block is located. 51 * If no block preference is given the following heirarchy is used 52 * to allocate a block: 53 * 1) allocate a block in the cylinder group that contains the 54 * inode for the file. 55 * 2) quadradically rehash into other cylinder groups, until an 56 * available block is located. 57 */ 58 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 59 register struct inode *ip; 60 daddr_t lbn, bpref; 61 int size; 62 struct ucred *cred; 63 daddr_t *bnp; 64 { 65 daddr_t bno; 66 register struct fs *fs; 67 register struct buf *bp; 68 int cg, error; 69 70 *bnp = 0; 71 fs = ip->i_fs; 72 #ifdef DIAGNOSTIC 73 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 74 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 75 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 76 panic("ffs_alloc: bad size"); 77 } 78 if (cred == NOCRED) 79 panic("ffs_alloc: missing credential\n"); 80 #endif /* DIAGNOSTIC */ 81 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 82 goto nospace; 83 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 84 goto nospace; 85 #ifdef QUOTA 86 if (error = chkdq(ip, (long)btodb(size), cred, 0)) 87 return (error); 88 #endif 89 if (bpref >= fs->fs_size) 90 bpref = 0; 91 if (bpref == 0) 92 cg = itog(fs, ip->i_number); 93 else 94 cg = dtog(fs, bpref); 95 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 96 (u_long (*)())ffs_alloccg); 97 if (bno > 0) { 98 ip->i_blocks += btodb(size); 99 ip->i_flag |= IUPD|ICHG; 100 *bnp = bno; 101 return (0); 102 } 103 #ifdef QUOTA 104 /* 105 * Restore user's disk quota because allocation failed. 106 */ 107 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 108 #endif 109 nospace: 110 ffs_fserr(fs, cred->cr_uid, "file system full"); 111 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 112 return (ENOSPC); 113 } 114 115 /* 116 * Reallocate a fragment to a bigger size 117 * 118 * The number and size of the old block is given, and a preference 119 * and new size is also specified. The allocator attempts to extend 120 * the original block. Failing that, the regular block allocator is 121 * invoked to get an appropriate block. 122 */ 123 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 124 register struct inode *ip; 125 daddr_t lbprev; 126 daddr_t bpref; 127 int osize, nsize; 128 struct ucred *cred; 129 struct buf **bpp; 130 { 131 register struct fs *fs; 132 struct buf *bp, *obp; 133 int cg, request, error; 134 daddr_t bprev, bno; 135 136 *bpp = 0; 137 fs = ip->i_fs; 138 #ifdef DIAGNOSTIC 139 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 140 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 141 printf( 142 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 143 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 144 panic("ffs_realloccg: bad size"); 145 } 146 if (cred == NOCRED) 147 panic("ffs_realloccg: missing credential\n"); 148 #endif /* DIAGNOSTIC */ 149 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 150 goto nospace; 151 if ((bprev = ip->i_db[lbprev]) == 0) { 152 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 153 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 154 panic("ffs_realloccg: bad bprev"); 155 } 156 /* 157 * Allocate the extra space in the buffer. 158 */ 159 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) { 160 brelse(bp); 161 return (error); 162 } 163 #ifdef QUOTA 164 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) { 165 brelse(bp); 166 return (error); 167 } 168 #endif 169 /* 170 * Check for extension in the existing location. 171 */ 172 cg = dtog(fs, bprev); 173 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) { 174 if (bp->b_blkno != fsbtodb(fs, bno)) 175 panic("bad blockno"); 176 ip->i_blocks += btodb(nsize - osize); 177 ip->i_flag |= IUPD|ICHG; 178 allocbuf(bp, nsize); 179 bp->b_flags |= B_DONE; 180 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 181 *bpp = bp; 182 return (0); 183 } 184 /* 185 * Allocate a new disk location. 186 */ 187 if (bpref >= fs->fs_size) 188 bpref = 0; 189 switch ((int)fs->fs_optim) { 190 case FS_OPTSPACE: 191 /* 192 * Allocate an exact sized fragment. Although this makes 193 * best use of space, we will waste time relocating it if 194 * the file continues to grow. If the fragmentation is 195 * less than half of the minimum free reserve, we choose 196 * to begin optimizing for time. 197 */ 198 request = nsize; 199 if (fs->fs_minfree < 5 || 200 fs->fs_cstotal.cs_nffree > 201 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 202 break; 203 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 204 fs->fs_fsmnt); 205 fs->fs_optim = FS_OPTTIME; 206 break; 207 case FS_OPTTIME: 208 /* 209 * At this point we have discovered a file that is trying to 210 * grow a small fragment to a larger fragment. To save time, 211 * we allocate a full sized block, then free the unused portion. 212 * If the file continues to grow, the `ffs_fragextend' call 213 * above will be able to grow it in place without further 214 * copying. If aberrant programs cause disk fragmentation to 215 * grow within 2% of the free reserve, we choose to begin 216 * optimizing for space. 217 */ 218 request = fs->fs_bsize; 219 if (fs->fs_cstotal.cs_nffree < 220 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 221 break; 222 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 223 fs->fs_fsmnt); 224 fs->fs_optim = FS_OPTSPACE; 225 break; 226 default: 227 printf("dev = 0x%x, optim = %d, fs = %s\n", 228 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 229 panic("ffs_realloccg: bad optim"); 230 /* NOTREACHED */ 231 } 232 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 233 (u_long (*)())ffs_alloccg); 234 if (bno > 0) { 235 bp->b_blkno = fsbtodb(fs, bno); 236 (void) vnode_pager_uncache(ITOV(ip)); 237 ffs_blkfree(ip, bprev, (long)osize); 238 if (nsize < request) 239 ffs_blkfree(ip, bno + numfrags(fs, nsize), 240 (long)(request - nsize)); 241 ip->i_blocks += btodb(nsize - osize); 242 ip->i_flag |= IUPD|ICHG; 243 allocbuf(bp, nsize); 244 bp->b_flags |= B_DONE; 245 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 246 *bpp = bp; 247 return (0); 248 } 249 #ifdef QUOTA 250 /* 251 * Restore user's disk quota because allocation failed. 252 */ 253 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 254 #endif 255 brelse(bp); 256 nospace: 257 /* 258 * no space available 259 */ 260 ffs_fserr(fs, cred->cr_uid, "file system full"); 261 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 262 return (ENOSPC); 263 } 264 265 /* 266 * Allocate an inode in the file system. 267 * 268 * If allocating a directory, use ffs_dirpref to select the inode. 269 * If allocating in a directory, the following hierarchy is followed: 270 * 1) allocate the preferred inode. 271 * 2) allocate an inode in the same cylinder group. 272 * 3) quadradically rehash into other cylinder groups, until an 273 * available inode is located. 274 * If no inode preference is given the following heirarchy is used 275 * to allocate an inode: 276 * 1) allocate an inode in cylinder group 0. 277 * 2) quadradically rehash into other cylinder groups, until an 278 * available inode is located. 279 */ 280 ffs_valloc(ap) 281 struct vop_valloc_args /* { 282 struct vnode *a_pvp; 283 int a_mode; 284 struct ucred *a_cred; 285 struct vnode **a_vpp; 286 } */ *ap; 287 { 288 register struct vnode *pvp = ap->a_pvp; 289 register struct inode *pip; 290 register struct fs *fs; 291 register struct inode *ip; 292 mode_t mode = ap->a_mode; 293 ino_t ino, ipref; 294 int cg, error; 295 296 *ap->a_vpp = NULL; 297 pip = VTOI(pvp); 298 fs = pip->i_fs; 299 if (fs->fs_cstotal.cs_nifree == 0) 300 goto noinodes; 301 302 if ((mode & IFMT) == IFDIR) 303 ipref = ffs_dirpref(fs); 304 else 305 ipref = pip->i_number; 306 if (ipref >= fs->fs_ncg * fs->fs_ipg) 307 ipref = 0; 308 cg = itog(fs, ipref); 309 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_ialloccg); 310 if (ino == 0) 311 goto noinodes; 312 error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp); 313 if (error) { 314 VOP_VFREE(pvp, ino, mode); 315 return (error); 316 } 317 ip = VTOI(*ap->a_vpp); 318 if (ip->i_mode) { 319 printf("mode = 0%o, inum = %d, fs = %s\n", 320 ip->i_mode, ip->i_number, fs->fs_fsmnt); 321 panic("ffs_valloc: dup alloc"); 322 } 323 if (ip->i_blocks) { /* XXX */ 324 printf("free inode %s/%d had %d blocks\n", 325 fs->fs_fsmnt, ino, ip->i_blocks); 326 ip->i_blocks = 0; 327 } 328 ip->i_flags = 0; 329 /* 330 * Set up a new generation number for this inode. 331 */ 332 if (++nextgennumber < (u_long)time.tv_sec) 333 nextgennumber = time.tv_sec; 334 ip->i_gen = nextgennumber; 335 return (0); 336 noinodes: 337 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes"); 338 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 339 return (ENOSPC); 340 } 341 342 /* 343 * Find a cylinder to place a directory. 344 * 345 * The policy implemented by this algorithm is to select from 346 * among those cylinder groups with above the average number of 347 * free inodes, the one with the smallest number of directories. 348 */ 349 static ino_t 350 ffs_dirpref(fs) 351 register struct fs *fs; 352 { 353 int cg, minndir, mincg, avgifree; 354 355 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 356 minndir = fs->fs_ipg; 357 mincg = 0; 358 for (cg = 0; cg < fs->fs_ncg; cg++) 359 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 360 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 361 mincg = cg; 362 minndir = fs->fs_cs(fs, cg).cs_ndir; 363 } 364 return ((ino_t)(fs->fs_ipg * mincg)); 365 } 366 367 /* 368 * Select the desired position for the next block in a file. The file is 369 * logically divided into sections. The first section is composed of the 370 * direct blocks. Each additional section contains fs_maxbpg blocks. 371 * 372 * If no blocks have been allocated in the first section, the policy is to 373 * request a block in the same cylinder group as the inode that describes 374 * the file. If no blocks have been allocated in any other section, the 375 * policy is to place the section in a cylinder group with a greater than 376 * average number of free blocks. An appropriate cylinder group is found 377 * by using a rotor that sweeps the cylinder groups. When a new group of 378 * blocks is needed, the sweep begins in the cylinder group following the 379 * cylinder group from which the previous allocation was made. The sweep 380 * continues until a cylinder group with greater than the average number 381 * of free blocks is found. If the allocation is for the first block in an 382 * indirect block, the information on the previous allocation is unavailable; 383 * here a best guess is made based upon the logical block number being 384 * allocated. 385 * 386 * If a section is already partially allocated, the policy is to 387 * contiguously allocate fs_maxcontig blocks. The end of one of these 388 * contiguous blocks and the beginning of the next is physically separated 389 * so that the disk head will be in transit between them for at least 390 * fs_rotdelay milliseconds. This is to allow time for the processor to 391 * schedule another I/O transfer. 392 */ 393 daddr_t 394 ffs_blkpref(ip, lbn, indx, bap) 395 struct inode *ip; 396 daddr_t lbn; 397 int indx; 398 daddr_t *bap; 399 { 400 register struct fs *fs; 401 register int cg; 402 int avgbfree, startcg; 403 daddr_t nextblk; 404 405 fs = ip->i_fs; 406 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 407 if (lbn < NDADDR) { 408 cg = itog(fs, ip->i_number); 409 return (fs->fs_fpg * cg + fs->fs_frag); 410 } 411 /* 412 * Find a cylinder with greater than average number of 413 * unused data blocks. 414 */ 415 if (indx == 0 || bap[indx - 1] == 0) 416 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 417 else 418 startcg = dtog(fs, bap[indx - 1]) + 1; 419 startcg %= fs->fs_ncg; 420 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 421 for (cg = startcg; cg < fs->fs_ncg; cg++) 422 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 423 fs->fs_cgrotor = cg; 424 return (fs->fs_fpg * cg + fs->fs_frag); 425 } 426 for (cg = 0; cg <= startcg; cg++) 427 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 428 fs->fs_cgrotor = cg; 429 return (fs->fs_fpg * cg + fs->fs_frag); 430 } 431 return (NULL); 432 } 433 /* 434 * One or more previous blocks have been laid out. If less 435 * than fs_maxcontig previous blocks are contiguous, the 436 * next block is requested contiguously, otherwise it is 437 * requested rotationally delayed by fs_rotdelay milliseconds. 438 */ 439 nextblk = bap[indx - 1] + fs->fs_frag; 440 if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] + 441 blkstofrags(fs, fs->fs_maxcontig) != nextblk) 442 return (nextblk); 443 if (fs->fs_rotdelay != 0) 444 /* 445 * Here we convert ms of delay to frags as: 446 * (frags) = (ms) * (rev/sec) * (sect/rev) / 447 * ((sect/frag) * (ms/sec)) 448 * then round up to the next block. 449 */ 450 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 451 (NSPF(fs) * 1000), fs->fs_frag); 452 return (nextblk); 453 } 454 455 /* 456 * Implement the cylinder overflow algorithm. 457 * 458 * The policy implemented by this algorithm is: 459 * 1) allocate the block in its requested cylinder group. 460 * 2) quadradically rehash on the cylinder group number. 461 * 3) brute force search for a free block. 462 */ 463 /*VARARGS5*/ 464 static u_long 465 ffs_hashalloc(ip, cg, pref, size, allocator) 466 struct inode *ip; 467 int cg; 468 long pref; 469 int size; /* size for data blocks, mode for inodes */ 470 u_long (*allocator)(); 471 { 472 register struct fs *fs; 473 long result; 474 int i, icg = cg; 475 476 fs = ip->i_fs; 477 /* 478 * 1: preferred cylinder group 479 */ 480 result = (*allocator)(ip, cg, pref, size); 481 if (result) 482 return (result); 483 /* 484 * 2: quadratic rehash 485 */ 486 for (i = 1; i < fs->fs_ncg; i *= 2) { 487 cg += i; 488 if (cg >= fs->fs_ncg) 489 cg -= fs->fs_ncg; 490 result = (*allocator)(ip, cg, 0, size); 491 if (result) 492 return (result); 493 } 494 /* 495 * 3: brute force search 496 * Note that we start at i == 2, since 0 was checked initially, 497 * and 1 is always checked in the quadratic rehash. 498 */ 499 cg = (icg + 2) % fs->fs_ncg; 500 for (i = 2; i < fs->fs_ncg; i++) { 501 result = (*allocator)(ip, cg, 0, size); 502 if (result) 503 return (result); 504 cg++; 505 if (cg == fs->fs_ncg) 506 cg = 0; 507 } 508 return (NULL); 509 } 510 511 /* 512 * Determine whether a fragment can be extended. 513 * 514 * Check to see if the necessary fragments are available, and 515 * if they are, allocate them. 516 */ 517 static daddr_t 518 ffs_fragextend(ip, cg, bprev, osize, nsize) 519 struct inode *ip; 520 int cg; 521 long bprev; 522 int osize, nsize; 523 { 524 register struct fs *fs; 525 register struct cg *cgp; 526 struct buf *bp; 527 long bno; 528 int frags, bbase; 529 int i, error; 530 531 fs = ip->i_fs; 532 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 533 return (NULL); 534 frags = numfrags(fs, nsize); 535 bbase = fragnum(fs, bprev); 536 if (bbase > fragnum(fs, (bprev + frags - 1))) { 537 /* cannot extend across a block boundary */ 538 return (NULL); 539 } 540 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 541 (int)fs->fs_cgsize, NOCRED, &bp); 542 if (error) { 543 brelse(bp); 544 return (NULL); 545 } 546 cgp = bp->b_un.b_cg; 547 if (!cg_chkmagic(cgp)) { 548 brelse(bp); 549 return (NULL); 550 } 551 cgp->cg_time = time.tv_sec; 552 bno = dtogd(fs, bprev); 553 for (i = numfrags(fs, osize); i < frags; i++) 554 if (isclr(cg_blksfree(cgp), bno + i)) { 555 brelse(bp); 556 return (NULL); 557 } 558 /* 559 * the current fragment can be extended 560 * deduct the count on fragment being extended into 561 * increase the count on the remaining fragment (if any) 562 * allocate the extended piece 563 */ 564 for (i = frags; i < fs->fs_frag - bbase; i++) 565 if (isclr(cg_blksfree(cgp), bno + i)) 566 break; 567 cgp->cg_frsum[i - numfrags(fs, osize)]--; 568 if (i != frags) 569 cgp->cg_frsum[i - frags]++; 570 for (i = numfrags(fs, osize); i < frags; i++) { 571 clrbit(cg_blksfree(cgp), bno + i); 572 cgp->cg_cs.cs_nffree--; 573 fs->fs_cstotal.cs_nffree--; 574 fs->fs_cs(fs, cg).cs_nffree--; 575 } 576 fs->fs_fmod = 1; 577 bdwrite(bp); 578 return (bprev); 579 } 580 581 /* 582 * Determine whether a block can be allocated. 583 * 584 * Check to see if a block of the apprpriate size is available, 585 * and if it is, allocate it. 586 */ 587 static daddr_t 588 ffs_alloccg(ip, cg, bpref, size) 589 struct inode *ip; 590 int cg; 591 daddr_t bpref; 592 int size; 593 { 594 register struct fs *fs; 595 register struct cg *cgp; 596 struct buf *bp; 597 register int i; 598 int error, bno, frags, allocsiz; 599 600 fs = ip->i_fs; 601 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 602 return (NULL); 603 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 604 (int)fs->fs_cgsize, NOCRED, &bp); 605 if (error) { 606 brelse(bp); 607 return (NULL); 608 } 609 cgp = bp->b_un.b_cg; 610 if (!cg_chkmagic(cgp) || 611 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 612 brelse(bp); 613 return (NULL); 614 } 615 cgp->cg_time = time.tv_sec; 616 if (size == fs->fs_bsize) { 617 bno = ffs_alloccgblk(fs, cgp, bpref); 618 bdwrite(bp); 619 return (bno); 620 } 621 /* 622 * check to see if any fragments are already available 623 * allocsiz is the size which will be allocated, hacking 624 * it down to a smaller size if necessary 625 */ 626 frags = numfrags(fs, size); 627 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 628 if (cgp->cg_frsum[allocsiz] != 0) 629 break; 630 if (allocsiz == fs->fs_frag) { 631 /* 632 * no fragments were available, so a block will be 633 * allocated, and hacked up 634 */ 635 if (cgp->cg_cs.cs_nbfree == 0) { 636 brelse(bp); 637 return (NULL); 638 } 639 bno = ffs_alloccgblk(fs, cgp, bpref); 640 bpref = dtogd(fs, bno); 641 for (i = frags; i < fs->fs_frag; i++) 642 setbit(cg_blksfree(cgp), bpref + i); 643 i = fs->fs_frag - frags; 644 cgp->cg_cs.cs_nffree += i; 645 fs->fs_cstotal.cs_nffree += i; 646 fs->fs_cs(fs, cg).cs_nffree += i; 647 fs->fs_fmod = 1; 648 cgp->cg_frsum[i]++; 649 bdwrite(bp); 650 return (bno); 651 } 652 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 653 if (bno < 0) { 654 brelse(bp); 655 return (NULL); 656 } 657 for (i = 0; i < frags; i++) 658 clrbit(cg_blksfree(cgp), bno + i); 659 cgp->cg_cs.cs_nffree -= frags; 660 fs->fs_cstotal.cs_nffree -= frags; 661 fs->fs_cs(fs, cg).cs_nffree -= frags; 662 fs->fs_fmod = 1; 663 cgp->cg_frsum[allocsiz]--; 664 if (frags != allocsiz) 665 cgp->cg_frsum[allocsiz - frags]++; 666 bdwrite(bp); 667 return (cg * fs->fs_fpg + bno); 668 } 669 670 /* 671 * Allocate a block in a cylinder group. 672 * 673 * This algorithm implements the following policy: 674 * 1) allocate the requested block. 675 * 2) allocate a rotationally optimal block in the same cylinder. 676 * 3) allocate the next available block on the block rotor for the 677 * specified cylinder group. 678 * Note that this routine only allocates fs_bsize blocks; these 679 * blocks may be fragmented by the routine that allocates them. 680 */ 681 static daddr_t 682 ffs_alloccgblk(fs, cgp, bpref) 683 register struct fs *fs; 684 register struct cg *cgp; 685 daddr_t bpref; 686 { 687 daddr_t bno; 688 int cylno, pos, delta; 689 short *cylbp; 690 register int i; 691 692 if (bpref == 0) { 693 bpref = cgp->cg_rotor; 694 goto norot; 695 } 696 bpref = blknum(fs, bpref); 697 bpref = dtogd(fs, bpref); 698 /* 699 * if the requested block is available, use it 700 */ 701 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 702 bno = bpref; 703 goto gotit; 704 } 705 /* 706 * check for a block available on the same cylinder 707 */ 708 cylno = cbtocylno(fs, bpref); 709 if (cg_blktot(cgp)[cylno] == 0) 710 goto norot; 711 if (fs->fs_cpc == 0) { 712 /* 713 * block layout info is not available, so just have 714 * to take any block in this cylinder. 715 */ 716 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 717 goto norot; 718 } 719 /* 720 * check the summary information to see if a block is 721 * available in the requested cylinder starting at the 722 * requested rotational position and proceeding around. 723 */ 724 cylbp = cg_blks(fs, cgp, cylno); 725 pos = cbtorpos(fs, bpref); 726 for (i = pos; i < fs->fs_nrpos; i++) 727 if (cylbp[i] > 0) 728 break; 729 if (i == fs->fs_nrpos) 730 for (i = 0; i < pos; i++) 731 if (cylbp[i] > 0) 732 break; 733 if (cylbp[i] > 0) { 734 /* 735 * found a rotational position, now find the actual 736 * block. A panic if none is actually there. 737 */ 738 pos = cylno % fs->fs_cpc; 739 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 740 if (fs_postbl(fs, pos)[i] == -1) { 741 printf("pos = %d, i = %d, fs = %s\n", 742 pos, i, fs->fs_fsmnt); 743 panic("ffs_alloccgblk: cyl groups corrupted"); 744 } 745 for (i = fs_postbl(fs, pos)[i];; ) { 746 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 747 bno = blkstofrags(fs, (bno + i)); 748 goto gotit; 749 } 750 delta = fs_rotbl(fs)[i]; 751 if (delta <= 0 || 752 delta + i > fragstoblks(fs, fs->fs_fpg)) 753 break; 754 i += delta; 755 } 756 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 757 panic("ffs_alloccgblk: can't find blk in cyl"); 758 } 759 norot: 760 /* 761 * no blocks in the requested cylinder, so take next 762 * available one in this cylinder group. 763 */ 764 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 765 if (bno < 0) 766 return (NULL); 767 cgp->cg_rotor = bno; 768 gotit: 769 ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 770 cgp->cg_cs.cs_nbfree--; 771 fs->fs_cstotal.cs_nbfree--; 772 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 773 cylno = cbtocylno(fs, bno); 774 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 775 cg_blktot(cgp)[cylno]--; 776 fs->fs_fmod = 1; 777 return (cgp->cg_cgx * fs->fs_fpg + bno); 778 } 779 780 /* 781 * Determine whether an inode can be allocated. 782 * 783 * Check to see if an inode is available, and if it is, 784 * allocate it using the following policy: 785 * 1) allocate the requested inode. 786 * 2) allocate the next available inode after the requested 787 * inode in the specified cylinder group. 788 */ 789 static ino_t 790 ffs_ialloccg(ip, cg, ipref, mode) 791 struct inode *ip; 792 int cg; 793 daddr_t ipref; 794 int mode; 795 { 796 register struct fs *fs; 797 register struct cg *cgp; 798 struct buf *bp; 799 int error, start, len, loc, map, i; 800 801 fs = ip->i_fs; 802 if (fs->fs_cs(fs, cg).cs_nifree == 0) 803 return (NULL); 804 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 805 (int)fs->fs_cgsize, NOCRED, &bp); 806 if (error) { 807 brelse(bp); 808 return (NULL); 809 } 810 cgp = bp->b_un.b_cg; 811 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 812 brelse(bp); 813 return (NULL); 814 } 815 cgp->cg_time = time.tv_sec; 816 if (ipref) { 817 ipref %= fs->fs_ipg; 818 if (isclr(cg_inosused(cgp), ipref)) 819 goto gotit; 820 } 821 start = cgp->cg_irotor / NBBY; 822 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 823 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 824 if (loc == 0) { 825 len = start + 1; 826 start = 0; 827 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 828 if (loc == 0) { 829 printf("cg = %s, irotor = %d, fs = %s\n", 830 cg, cgp->cg_irotor, fs->fs_fsmnt); 831 panic("ffs_ialloccg: map corrupted"); 832 /* NOTREACHED */ 833 } 834 } 835 i = start + len - loc; 836 map = cg_inosused(cgp)[i]; 837 ipref = i * NBBY; 838 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 839 if ((map & i) == 0) { 840 cgp->cg_irotor = ipref; 841 goto gotit; 842 } 843 } 844 printf("fs = %s\n", fs->fs_fsmnt); 845 panic("ffs_ialloccg: block not in map"); 846 /* NOTREACHED */ 847 gotit: 848 setbit(cg_inosused(cgp), ipref); 849 cgp->cg_cs.cs_nifree--; 850 fs->fs_cstotal.cs_nifree--; 851 fs->fs_cs(fs, cg).cs_nifree--; 852 fs->fs_fmod = 1; 853 if ((mode & IFMT) == IFDIR) { 854 cgp->cg_cs.cs_ndir++; 855 fs->fs_cstotal.cs_ndir++; 856 fs->fs_cs(fs, cg).cs_ndir++; 857 } 858 bdwrite(bp); 859 return (cg * fs->fs_ipg + ipref); 860 } 861 862 /* 863 * Free a block or fragment. 864 * 865 * The specified block or fragment is placed back in the 866 * free map. If a fragment is deallocated, a possible 867 * block reassembly is checked. 868 */ 869 ffs_blkfree(ip, bno, size) 870 register struct inode *ip; 871 daddr_t bno; 872 long size; 873 { 874 register struct fs *fs; 875 register struct cg *cgp; 876 struct buf *bp; 877 int error, cg, blk, frags, bbase; 878 register int i; 879 880 fs = ip->i_fs; 881 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 882 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 883 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 884 panic("blkfree: bad size"); 885 } 886 cg = dtog(fs, bno); 887 if ((unsigned)bno >= fs->fs_size) { 888 printf("bad block %d, ino %d\n", bno, ip->i_number); 889 ffs_fserr(fs, ip->i_uid, "bad block"); 890 return; 891 } 892 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 893 (int)fs->fs_cgsize, NOCRED, &bp); 894 if (error) { 895 brelse(bp); 896 return; 897 } 898 cgp = bp->b_un.b_cg; 899 if (!cg_chkmagic(cgp)) { 900 brelse(bp); 901 return; 902 } 903 cgp->cg_time = time.tv_sec; 904 bno = dtogd(fs, bno); 905 if (size == fs->fs_bsize) { 906 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 907 printf("dev = 0x%x, block = %d, fs = %s\n", 908 ip->i_dev, bno, fs->fs_fsmnt); 909 panic("blkfree: freeing free block"); 910 } 911 ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 912 cgp->cg_cs.cs_nbfree++; 913 fs->fs_cstotal.cs_nbfree++; 914 fs->fs_cs(fs, cg).cs_nbfree++; 915 i = cbtocylno(fs, bno); 916 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 917 cg_blktot(cgp)[i]++; 918 } else { 919 bbase = bno - fragnum(fs, bno); 920 /* 921 * decrement the counts associated with the old frags 922 */ 923 blk = blkmap(fs, cg_blksfree(cgp), bbase); 924 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 925 /* 926 * deallocate the fragment 927 */ 928 frags = numfrags(fs, size); 929 for (i = 0; i < frags; i++) { 930 if (isset(cg_blksfree(cgp), bno + i)) { 931 printf("dev = 0x%x, block = %d, fs = %s\n", 932 ip->i_dev, bno + i, fs->fs_fsmnt); 933 panic("blkfree: freeing free frag"); 934 } 935 setbit(cg_blksfree(cgp), bno + i); 936 } 937 cgp->cg_cs.cs_nffree += i; 938 fs->fs_cstotal.cs_nffree += i; 939 fs->fs_cs(fs, cg).cs_nffree += i; 940 /* 941 * add back in counts associated with the new frags 942 */ 943 blk = blkmap(fs, cg_blksfree(cgp), bbase); 944 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 945 /* 946 * if a complete block has been reassembled, account for it 947 */ 948 if (ffs_isblock(fs, cg_blksfree(cgp), 949 (daddr_t)fragstoblks(fs, bbase))) { 950 cgp->cg_cs.cs_nffree -= fs->fs_frag; 951 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 952 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 953 cgp->cg_cs.cs_nbfree++; 954 fs->fs_cstotal.cs_nbfree++; 955 fs->fs_cs(fs, cg).cs_nbfree++; 956 i = cbtocylno(fs, bbase); 957 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 958 cg_blktot(cgp)[i]++; 959 } 960 } 961 fs->fs_fmod = 1; 962 bdwrite(bp); 963 } 964 965 /* 966 * Free an inode. 967 * 968 * The specified inode is placed back in the free map. 969 */ 970 int 971 ffs_vfree(ap) 972 struct vop_vfree_args /* { 973 struct vnode *a_pvp; 974 ino_t a_ino; 975 int a_mode; 976 } */ *ap; 977 { 978 register struct fs *fs; 979 register struct cg *cgp; 980 register struct inode *pip; 981 ino_t ino = ap->a_ino; 982 struct buf *bp; 983 int error, cg; 984 985 pip = VTOI(ap->a_pvp); 986 fs = pip->i_fs; 987 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 988 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n", 989 pip->i_dev, ino, fs->fs_fsmnt); 990 cg = itog(fs, ino); 991 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 992 (int)fs->fs_cgsize, NOCRED, &bp); 993 if (error) { 994 brelse(bp); 995 return (0); 996 } 997 cgp = bp->b_un.b_cg; 998 if (!cg_chkmagic(cgp)) { 999 brelse(bp); 1000 return (0); 1001 } 1002 cgp->cg_time = time.tv_sec; 1003 ino %= fs->fs_ipg; 1004 if (isclr(cg_inosused(cgp), ino)) { 1005 printf("dev = 0x%x, ino = %d, fs = %s\n", 1006 pip->i_dev, ino, fs->fs_fsmnt); 1007 if (fs->fs_ronly == 0) 1008 panic("ifree: freeing free inode"); 1009 } 1010 clrbit(cg_inosused(cgp), ino); 1011 if (ino < cgp->cg_irotor) 1012 cgp->cg_irotor = ino; 1013 cgp->cg_cs.cs_nifree++; 1014 fs->fs_cstotal.cs_nifree++; 1015 fs->fs_cs(fs, cg).cs_nifree++; 1016 if ((ap->a_mode & IFMT) == IFDIR) { 1017 cgp->cg_cs.cs_ndir--; 1018 fs->fs_cstotal.cs_ndir--; 1019 fs->fs_cs(fs, cg).cs_ndir--; 1020 } 1021 fs->fs_fmod = 1; 1022 bdwrite(bp); 1023 return (0); 1024 } 1025 1026 /* 1027 * Find a block of the specified size in the specified cylinder group. 1028 * 1029 * It is a panic if a request is made to find a block if none are 1030 * available. 1031 */ 1032 static daddr_t 1033 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1034 register struct fs *fs; 1035 register struct cg *cgp; 1036 daddr_t bpref; 1037 int allocsiz; 1038 { 1039 daddr_t bno; 1040 int start, len, loc, i; 1041 int blk, field, subfield, pos; 1042 1043 /* 1044 * find the fragment by searching through the free block 1045 * map for an appropriate bit pattern 1046 */ 1047 if (bpref) 1048 start = dtogd(fs, bpref) / NBBY; 1049 else 1050 start = cgp->cg_frotor / NBBY; 1051 len = howmany(fs->fs_fpg, NBBY) - start; 1052 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1053 (u_char *)fragtbl[fs->fs_frag], 1054 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1055 if (loc == 0) { 1056 len = start + 1; 1057 start = 0; 1058 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1059 (u_char *)fragtbl[fs->fs_frag], 1060 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1061 if (loc == 0) { 1062 printf("start = %d, len = %d, fs = %s\n", 1063 start, len, fs->fs_fsmnt); 1064 panic("ffs_alloccg: map corrupted"); 1065 /* NOTREACHED */ 1066 } 1067 } 1068 bno = (start + len - loc) * NBBY; 1069 cgp->cg_frotor = bno; 1070 /* 1071 * found the byte in the map 1072 * sift through the bits to find the selected frag 1073 */ 1074 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1075 blk = blkmap(fs, cg_blksfree(cgp), bno); 1076 blk <<= 1; 1077 field = around[allocsiz]; 1078 subfield = inside[allocsiz]; 1079 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1080 if ((blk & field) == subfield) 1081 return (bno + pos); 1082 field <<= 1; 1083 subfield <<= 1; 1084 } 1085 } 1086 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1087 panic("ffs_alloccg: block not in map"); 1088 return (-1); 1089 } 1090 1091 /* 1092 * Fserr prints the name of a file system with an error diagnostic. 1093 * 1094 * The form of the error message is: 1095 * fs: error message 1096 */ 1097 static void 1098 ffs_fserr(fs, uid, cp) 1099 struct fs *fs; 1100 u_int uid; 1101 char *cp; 1102 { 1103 1104 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); 1105 } 1106