1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)ffs_alloc.c 7.36 (Berkeley) 05/15/92 8 */ 9 10 #include <sys/param.h> 11 #include <sys/systm.h> 12 #include <sys/buf.h> 13 #include <sys/proc.h> 14 #include <sys/vnode.h> 15 #include <sys/kernel.h> 16 #include <sys/syslog.h> 17 18 #include <vm/vm.h> 19 20 #include <ufs/ufs/quota.h> 21 #include <ufs/ufs/inode.h> 22 23 #include <ufs/ffs/fs.h> 24 #include <ufs/ffs/ffs_extern.h> 25 26 extern u_long nextgennumber; 27 28 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int)); 29 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t)); 30 static ino_t ffs_dirpref __P((struct fs *)); 31 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 32 static void ffs_fserr __P((struct fs *, u_int, char *)); 33 static u_long ffs_hashalloc 34 __P((struct inode *, int, long, int, u_long (*)())); 35 static ino_t ffs_ialloccg __P((struct inode *, int, daddr_t, int)); 36 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int)); 37 38 /* 39 * Allocate a block in the file system. 40 * 41 * The size of the requested block is given, which must be some 42 * multiple of fs_fsize and <= fs_bsize. 43 * A preference may be optionally specified. If a preference is given 44 * the following hierarchy is used to allocate a block: 45 * 1) allocate the requested block. 46 * 2) allocate a rotationally optimal block in the same cylinder. 47 * 3) allocate a block in the same cylinder group. 48 * 4) quadradically rehash into other cylinder groups, until an 49 * available block is located. 50 * If no block preference is given the following heirarchy is used 51 * to allocate a block: 52 * 1) allocate a block in the cylinder group that contains the 53 * inode for the file. 54 * 2) quadradically rehash into other cylinder groups, until an 55 * available block is located. 56 */ 57 ffs_alloc(ip, lbn, bpref, size, cred, bnp) 58 register struct inode *ip; 59 daddr_t lbn, bpref; 60 int size; 61 struct ucred *cred; 62 daddr_t *bnp; 63 { 64 daddr_t bno; 65 register struct fs *fs; 66 register struct buf *bp; 67 int cg, error; 68 69 *bnp = 0; 70 fs = ip->i_fs; 71 #ifdef DIAGNOSTIC 72 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 73 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 74 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 75 panic("ffs_alloc: bad size"); 76 } 77 if (cred == NOCRED) 78 panic("ffs_alloc: missing credential\n"); 79 #endif /* DIAGNOSTIC */ 80 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 81 goto nospace; 82 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 83 goto nospace; 84 #ifdef QUOTA 85 if (error = chkdq(ip, (long)btodb(size), cred, 0)) 86 return (error); 87 #endif 88 if (bpref >= fs->fs_size) 89 bpref = 0; 90 if (bpref == 0) 91 cg = itog(fs, ip->i_number); 92 else 93 cg = dtog(fs, bpref); 94 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 95 (u_long (*)())ffs_alloccg); 96 if (bno > 0) { 97 ip->i_blocks += btodb(size); 98 ip->i_flag |= IUPD|ICHG; 99 *bnp = bno; 100 return (0); 101 } 102 #ifdef QUOTA 103 /* 104 * Restore user's disk quota because allocation failed. 105 */ 106 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 107 #endif 108 nospace: 109 ffs_fserr(fs, cred->cr_uid, "file system full"); 110 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 111 return (ENOSPC); 112 } 113 114 /* 115 * Reallocate a fragment to a bigger size 116 * 117 * The number and size of the old block is given, and a preference 118 * and new size is also specified. The allocator attempts to extend 119 * the original block. Failing that, the regular block allocator is 120 * invoked to get an appropriate block. 121 */ 122 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp) 123 register struct inode *ip; 124 daddr_t lbprev; 125 daddr_t bpref; 126 int osize, nsize; 127 struct ucred *cred; 128 struct buf **bpp; 129 { 130 register struct fs *fs; 131 struct buf *bp, *obp; 132 int cg, request, error; 133 daddr_t bprev, bno; 134 135 *bpp = 0; 136 fs = ip->i_fs; 137 #ifdef DIAGNOSTIC 138 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 139 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 140 printf( 141 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 142 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 143 panic("ffs_realloccg: bad size"); 144 } 145 if (cred == NOCRED) 146 panic("ffs_realloccg: missing credential\n"); 147 #endif /* DIAGNOSTIC */ 148 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 149 goto nospace; 150 if ((bprev = ip->i_db[lbprev]) == 0) { 151 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 152 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 153 panic("ffs_realloccg: bad bprev"); 154 } 155 /* 156 * Allocate the extra space in the buffer. 157 */ 158 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) { 159 brelse(bp); 160 return (error); 161 } 162 #ifdef QUOTA 163 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) { 164 brelse(bp); 165 return (error); 166 } 167 #endif 168 /* 169 * Check for extension in the existing location. 170 */ 171 cg = dtog(fs, bprev); 172 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) { 173 if (bp->b_blkno != fsbtodb(fs, bno)) 174 panic("bad blockno"); 175 ip->i_blocks += btodb(nsize - osize); 176 ip->i_flag |= IUPD|ICHG; 177 allocbuf(bp, nsize); 178 bp->b_flags |= B_DONE; 179 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 180 *bpp = bp; 181 return (0); 182 } 183 /* 184 * Allocate a new disk location. 185 */ 186 if (bpref >= fs->fs_size) 187 bpref = 0; 188 switch ((int)fs->fs_optim) { 189 case FS_OPTSPACE: 190 /* 191 * Allocate an exact sized fragment. Although this makes 192 * best use of space, we will waste time relocating it if 193 * the file continues to grow. If the fragmentation is 194 * less than half of the minimum free reserve, we choose 195 * to begin optimizing for time. 196 */ 197 request = nsize; 198 if (fs->fs_minfree < 5 || 199 fs->fs_cstotal.cs_nffree > 200 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 201 break; 202 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 203 fs->fs_fsmnt); 204 fs->fs_optim = FS_OPTTIME; 205 break; 206 case FS_OPTTIME: 207 /* 208 * At this point we have discovered a file that is trying to 209 * grow a small fragment to a larger fragment. To save time, 210 * we allocate a full sized block, then free the unused portion. 211 * If the file continues to grow, the `ffs_fragextend' call 212 * above will be able to grow it in place without further 213 * copying. If aberrant programs cause disk fragmentation to 214 * grow within 2% of the free reserve, we choose to begin 215 * optimizing for space. 216 */ 217 request = fs->fs_bsize; 218 if (fs->fs_cstotal.cs_nffree < 219 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 220 break; 221 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 222 fs->fs_fsmnt); 223 fs->fs_optim = FS_OPTSPACE; 224 break; 225 default: 226 printf("dev = 0x%x, optim = %d, fs = %s\n", 227 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 228 panic("ffs_realloccg: bad optim"); 229 /* NOTREACHED */ 230 } 231 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 232 (u_long (*)())ffs_alloccg); 233 if (bno > 0) { 234 bp->b_blkno = fsbtodb(fs, bno); 235 (void) vnode_pager_uncache(ITOV(ip)); 236 ffs_blkfree(ip, bprev, (long)osize); 237 if (nsize < request) 238 ffs_blkfree(ip, bno + numfrags(fs, nsize), 239 (long)(request - nsize)); 240 ip->i_blocks += btodb(nsize - osize); 241 ip->i_flag |= IUPD|ICHG; 242 allocbuf(bp, nsize); 243 bp->b_flags |= B_DONE; 244 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 245 *bpp = bp; 246 return (0); 247 } 248 #ifdef QUOTA 249 /* 250 * Restore user's disk quota because allocation failed. 251 */ 252 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 253 #endif 254 brelse(bp); 255 nospace: 256 /* 257 * no space available 258 */ 259 ffs_fserr(fs, cred->cr_uid, "file system full"); 260 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 261 return (ENOSPC); 262 } 263 264 /* 265 * Allocate an inode in the file system. 266 * 267 * If allocating a directory, use ffs_dirpref to select the inode. 268 * If allocating in a directory, the following hierarchy is followed: 269 * 1) allocate the preferred inode. 270 * 2) allocate an inode in the same cylinder group. 271 * 3) quadradically rehash into other cylinder groups, until an 272 * available inode is located. 273 * If no inode preference is given the following heirarchy is used 274 * to allocate an inode: 275 * 1) allocate an inode in cylinder group 0. 276 * 2) quadradically rehash into other cylinder groups, until an 277 * available inode is located. 278 */ 279 ffs_valloc (ap) 280 struct vop_valloc_args *ap; 281 { 282 USES_VOP_VFREE; 283 USES_VOP_VGET; 284 register struct inode *pip; 285 register struct fs *fs; 286 register struct inode *ip; 287 ino_t ino, ipref; 288 int cg, error; 289 290 *ap->a_vpp = NULL; 291 pip = VTOI(ap->a_pvp); 292 fs = pip->i_fs; 293 if (fs->fs_cstotal.cs_nifree == 0) 294 goto noinodes; 295 296 if ((ap->a_mode & IFMT) == IFDIR) 297 ipref = ffs_dirpref(fs); 298 else 299 ipref = pip->i_number; 300 if (ipref >= fs->fs_ncg * fs->fs_ipg) 301 ipref = 0; 302 cg = itog(fs, ipref); 303 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, ap->a_mode, ffs_ialloccg); 304 if (ino == 0) 305 goto noinodes; 306 error = FFS_VGET(ap->a_pvp->v_mount, ino, ap->a_vpp); 307 if (error) { 308 VOP_VFREE(ap->a_pvp, ino, ap->a_mode); 309 return (error); 310 } 311 ip = VTOI(*ap->a_vpp); 312 if (ip->i_mode) { 313 printf("ap->a_mode = 0%o, inum = %d, fs = %s\n", 314 ip->i_mode, ip->i_number, fs->fs_fsmnt); 315 panic("ffs_valloc: dup alloc"); 316 } 317 if (ip->i_blocks) { /* XXX */ 318 printf("free inode %s/%d had %d blocks\n", 319 fs->fs_fsmnt, ino, ip->i_blocks); 320 ip->i_blocks = 0; 321 } 322 ip->i_flags = 0; 323 /* 324 * Set up a new generation number for this inode. 325 */ 326 if (++nextgennumber < (u_long)time.tv_sec) 327 nextgennumber = time.tv_sec; 328 ip->i_gen = nextgennumber; 329 return (0); 330 noinodes: 331 ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes"); 332 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 333 return (ENOSPC); 334 } 335 336 /* 337 * Find a cylinder to place a directory. 338 * 339 * The policy implemented by this algorithm is to select from 340 * among those cylinder groups with above the average number of 341 * free inodes, the one with the smallest number of directories. 342 */ 343 static ino_t 344 ffs_dirpref(fs) 345 register struct fs *fs; 346 { 347 int cg, minndir, mincg, avgifree; 348 349 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 350 minndir = fs->fs_ipg; 351 mincg = 0; 352 for (cg = 0; cg < fs->fs_ncg; cg++) 353 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 354 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 355 mincg = cg; 356 minndir = fs->fs_cs(fs, cg).cs_ndir; 357 } 358 return ((ino_t)(fs->fs_ipg * mincg)); 359 } 360 361 /* 362 * Select the desired position for the next block in a file. The file is 363 * logically divided into sections. The first section is composed of the 364 * direct blocks. Each additional section contains fs_maxbpg blocks. 365 * 366 * If no blocks have been allocated in the first section, the policy is to 367 * request a block in the same cylinder group as the inode that describes 368 * the file. If no blocks have been allocated in any other section, the 369 * policy is to place the section in a cylinder group with a greater than 370 * average number of free blocks. An appropriate cylinder group is found 371 * by using a rotor that sweeps the cylinder groups. When a new group of 372 * blocks is needed, the sweep begins in the cylinder group following the 373 * cylinder group from which the previous allocation was made. The sweep 374 * continues until a cylinder group with greater than the average number 375 * of free blocks is found. If the allocation is for the first block in an 376 * indirect block, the information on the previous allocation is unavailable; 377 * here a best guess is made based upon the logical block number being 378 * allocated. 379 * 380 * If a section is already partially allocated, the policy is to 381 * contiguously allocate fs_maxcontig blocks. The end of one of these 382 * contiguous blocks and the beginning of the next is physically separated 383 * so that the disk head will be in transit between them for at least 384 * fs_rotdelay milliseconds. This is to allow time for the processor to 385 * schedule another I/O transfer. 386 */ 387 daddr_t 388 ffs_blkpref(ip, lbn, indx, bap) 389 struct inode *ip; 390 daddr_t lbn; 391 int indx; 392 daddr_t *bap; 393 { 394 register struct fs *fs; 395 register int cg; 396 int avgbfree, startcg; 397 daddr_t nextblk; 398 399 fs = ip->i_fs; 400 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 401 if (lbn < NDADDR) { 402 cg = itog(fs, ip->i_number); 403 return (fs->fs_fpg * cg + fs->fs_frag); 404 } 405 /* 406 * Find a cylinder with greater than average number of 407 * unused data blocks. 408 */ 409 if (indx == 0 || bap[indx - 1] == 0) 410 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 411 else 412 startcg = dtog(fs, bap[indx - 1]) + 1; 413 startcg %= fs->fs_ncg; 414 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 415 for (cg = startcg; cg < fs->fs_ncg; cg++) 416 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 417 fs->fs_cgrotor = cg; 418 return (fs->fs_fpg * cg + fs->fs_frag); 419 } 420 for (cg = 0; cg <= startcg; cg++) 421 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 422 fs->fs_cgrotor = cg; 423 return (fs->fs_fpg * cg + fs->fs_frag); 424 } 425 return (NULL); 426 } 427 /* 428 * One or more previous blocks have been laid out. If less 429 * than fs_maxcontig previous blocks are contiguous, the 430 * next block is requested contiguously, otherwise it is 431 * requested rotationally delayed by fs_rotdelay milliseconds. 432 */ 433 nextblk = bap[indx - 1] + fs->fs_frag; 434 if (indx > fs->fs_maxcontig && 435 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 436 != nextblk) 437 return (nextblk); 438 if (fs->fs_rotdelay != 0) 439 /* 440 * Here we convert ms of delay to frags as: 441 * (frags) = (ms) * (rev/sec) * (sect/rev) / 442 * ((sect/frag) * (ms/sec)) 443 * then round up to the next block. 444 */ 445 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 446 (NSPF(fs) * 1000), fs->fs_frag); 447 return (nextblk); 448 } 449 450 /* 451 * Implement the cylinder overflow algorithm. 452 * 453 * The policy implemented by this algorithm is: 454 * 1) allocate the block in its requested cylinder group. 455 * 2) quadradically rehash on the cylinder group number. 456 * 3) brute force search for a free block. 457 */ 458 /*VARARGS5*/ 459 static u_long 460 ffs_hashalloc(ip, cg, pref, size, allocator) 461 struct inode *ip; 462 int cg; 463 long pref; 464 int size; /* size for data blocks, mode for inodes */ 465 u_long (*allocator)(); 466 { 467 register struct fs *fs; 468 long result; 469 int i, icg = cg; 470 471 fs = ip->i_fs; 472 /* 473 * 1: preferred cylinder group 474 */ 475 result = (*allocator)(ip, cg, pref, size); 476 if (result) 477 return (result); 478 /* 479 * 2: quadratic rehash 480 */ 481 for (i = 1; i < fs->fs_ncg; i *= 2) { 482 cg += i; 483 if (cg >= fs->fs_ncg) 484 cg -= fs->fs_ncg; 485 result = (*allocator)(ip, cg, 0, size); 486 if (result) 487 return (result); 488 } 489 /* 490 * 3: brute force search 491 * Note that we start at i == 2, since 0 was checked initially, 492 * and 1 is always checked in the quadratic rehash. 493 */ 494 cg = (icg + 2) % fs->fs_ncg; 495 for (i = 2; i < fs->fs_ncg; i++) { 496 result = (*allocator)(ip, cg, 0, size); 497 if (result) 498 return (result); 499 cg++; 500 if (cg == fs->fs_ncg) 501 cg = 0; 502 } 503 return (NULL); 504 } 505 506 /* 507 * Determine whether a fragment can be extended. 508 * 509 * Check to see if the necessary fragments are available, and 510 * if they are, allocate them. 511 */ 512 static daddr_t 513 ffs_fragextend(ip, cg, bprev, osize, nsize) 514 struct inode *ip; 515 int cg; 516 long bprev; 517 int osize, nsize; 518 { 519 register struct fs *fs; 520 register struct cg *cgp; 521 struct buf *bp; 522 long bno; 523 int frags, bbase; 524 int i, error; 525 526 fs = ip->i_fs; 527 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 528 return (NULL); 529 frags = numfrags(fs, nsize); 530 bbase = fragnum(fs, bprev); 531 if (bbase > fragnum(fs, (bprev + frags - 1))) { 532 /* cannot extend across a block boundary */ 533 return (NULL); 534 } 535 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 536 (int)fs->fs_cgsize, NOCRED, &bp); 537 if (error) { 538 brelse(bp); 539 return (NULL); 540 } 541 cgp = bp->b_un.b_cg; 542 if (!cg_chkmagic(cgp)) { 543 brelse(bp); 544 return (NULL); 545 } 546 cgp->cg_time = time.tv_sec; 547 bno = dtogd(fs, bprev); 548 for (i = numfrags(fs, osize); i < frags; i++) 549 if (isclr(cg_blksfree(cgp), bno + i)) { 550 brelse(bp); 551 return (NULL); 552 } 553 /* 554 * the current fragment can be extended 555 * deduct the count on fragment being extended into 556 * increase the count on the remaining fragment (if any) 557 * allocate the extended piece 558 */ 559 for (i = frags; i < fs->fs_frag - bbase; i++) 560 if (isclr(cg_blksfree(cgp), bno + i)) 561 break; 562 cgp->cg_frsum[i - numfrags(fs, osize)]--; 563 if (i != frags) 564 cgp->cg_frsum[i - frags]++; 565 for (i = numfrags(fs, osize); i < frags; i++) { 566 clrbit(cg_blksfree(cgp), bno + i); 567 cgp->cg_cs.cs_nffree--; 568 fs->fs_cstotal.cs_nffree--; 569 fs->fs_cs(fs, cg).cs_nffree--; 570 } 571 fs->fs_fmod = 1; 572 bdwrite(bp); 573 return (bprev); 574 } 575 576 /* 577 * Determine whether a block can be allocated. 578 * 579 * Check to see if a block of the apprpriate size is available, 580 * and if it is, allocate it. 581 */ 582 static daddr_t 583 ffs_alloccg(ip, cg, bpref, size) 584 struct inode *ip; 585 int cg; 586 daddr_t bpref; 587 int size; 588 { 589 register struct fs *fs; 590 register struct cg *cgp; 591 struct buf *bp; 592 register int i; 593 int error, bno, frags, allocsiz; 594 595 fs = ip->i_fs; 596 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 597 return (NULL); 598 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 599 (int)fs->fs_cgsize, NOCRED, &bp); 600 if (error) { 601 brelse(bp); 602 return (NULL); 603 } 604 cgp = bp->b_un.b_cg; 605 if (!cg_chkmagic(cgp) || 606 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 607 brelse(bp); 608 return (NULL); 609 } 610 cgp->cg_time = time.tv_sec; 611 if (size == fs->fs_bsize) { 612 bno = ffs_alloccgblk(fs, cgp, bpref); 613 bdwrite(bp); 614 return (bno); 615 } 616 /* 617 * check to see if any fragments are already available 618 * allocsiz is the size which will be allocated, hacking 619 * it down to a smaller size if necessary 620 */ 621 frags = numfrags(fs, size); 622 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 623 if (cgp->cg_frsum[allocsiz] != 0) 624 break; 625 if (allocsiz == fs->fs_frag) { 626 /* 627 * no fragments were available, so a block will be 628 * allocated, and hacked up 629 */ 630 if (cgp->cg_cs.cs_nbfree == 0) { 631 brelse(bp); 632 return (NULL); 633 } 634 bno = ffs_alloccgblk(fs, cgp, bpref); 635 bpref = dtogd(fs, bno); 636 for (i = frags; i < fs->fs_frag; i++) 637 setbit(cg_blksfree(cgp), bpref + i); 638 i = fs->fs_frag - frags; 639 cgp->cg_cs.cs_nffree += i; 640 fs->fs_cstotal.cs_nffree += i; 641 fs->fs_cs(fs, cg).cs_nffree += i; 642 fs->fs_fmod = 1; 643 cgp->cg_frsum[i]++; 644 bdwrite(bp); 645 return (bno); 646 } 647 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 648 if (bno < 0) { 649 brelse(bp); 650 return (NULL); 651 } 652 for (i = 0; i < frags; i++) 653 clrbit(cg_blksfree(cgp), bno + i); 654 cgp->cg_cs.cs_nffree -= frags; 655 fs->fs_cstotal.cs_nffree -= frags; 656 fs->fs_cs(fs, cg).cs_nffree -= frags; 657 fs->fs_fmod = 1; 658 cgp->cg_frsum[allocsiz]--; 659 if (frags != allocsiz) 660 cgp->cg_frsum[allocsiz - frags]++; 661 bdwrite(bp); 662 return (cg * fs->fs_fpg + bno); 663 } 664 665 /* 666 * Allocate a block in a cylinder group. 667 * 668 * This algorithm implements the following policy: 669 * 1) allocate the requested block. 670 * 2) allocate a rotationally optimal block in the same cylinder. 671 * 3) allocate the next available block on the block rotor for the 672 * specified cylinder group. 673 * Note that this routine only allocates fs_bsize blocks; these 674 * blocks may be fragmented by the routine that allocates them. 675 */ 676 static daddr_t 677 ffs_alloccgblk(fs, cgp, bpref) 678 register struct fs *fs; 679 register struct cg *cgp; 680 daddr_t bpref; 681 { 682 daddr_t bno; 683 int cylno, pos, delta; 684 short *cylbp; 685 register int i; 686 687 if (bpref == 0) { 688 bpref = cgp->cg_rotor; 689 goto norot; 690 } 691 bpref = blknum(fs, bpref); 692 bpref = dtogd(fs, bpref); 693 /* 694 * if the requested block is available, use it 695 */ 696 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 697 bno = bpref; 698 goto gotit; 699 } 700 /* 701 * check for a block available on the same cylinder 702 */ 703 cylno = cbtocylno(fs, bpref); 704 if (cg_blktot(cgp)[cylno] == 0) 705 goto norot; 706 if (fs->fs_cpc == 0) { 707 /* 708 * block layout info is not available, so just have 709 * to take any block in this cylinder. 710 */ 711 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 712 goto norot; 713 } 714 /* 715 * check the summary information to see if a block is 716 * available in the requested cylinder starting at the 717 * requested rotational position and proceeding around. 718 */ 719 cylbp = cg_blks(fs, cgp, cylno); 720 pos = cbtorpos(fs, bpref); 721 for (i = pos; i < fs->fs_nrpos; i++) 722 if (cylbp[i] > 0) 723 break; 724 if (i == fs->fs_nrpos) 725 for (i = 0; i < pos; i++) 726 if (cylbp[i] > 0) 727 break; 728 if (cylbp[i] > 0) { 729 /* 730 * found a rotational position, now find the actual 731 * block. A panic if none is actually there. 732 */ 733 pos = cylno % fs->fs_cpc; 734 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 735 if (fs_postbl(fs, pos)[i] == -1) { 736 printf("pos = %d, i = %d, fs = %s\n", 737 pos, i, fs->fs_fsmnt); 738 panic("ffs_alloccgblk: cyl groups corrupted"); 739 } 740 for (i = fs_postbl(fs, pos)[i];; ) { 741 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 742 bno = blkstofrags(fs, (bno + i)); 743 goto gotit; 744 } 745 delta = fs_rotbl(fs)[i]; 746 if (delta <= 0 || 747 delta + i > fragstoblks(fs, fs->fs_fpg)) 748 break; 749 i += delta; 750 } 751 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 752 panic("ffs_alloccgblk: can't find blk in cyl"); 753 } 754 norot: 755 /* 756 * no blocks in the requested cylinder, so take next 757 * available one in this cylinder group. 758 */ 759 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 760 if (bno < 0) 761 return (NULL); 762 cgp->cg_rotor = bno; 763 gotit: 764 ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 765 cgp->cg_cs.cs_nbfree--; 766 fs->fs_cstotal.cs_nbfree--; 767 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 768 cylno = cbtocylno(fs, bno); 769 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 770 cg_blktot(cgp)[cylno]--; 771 fs->fs_fmod = 1; 772 return (cgp->cg_cgx * fs->fs_fpg + bno); 773 } 774 775 /* 776 * Determine whether an inode can be allocated. 777 * 778 * Check to see if an inode is available, and if it is, 779 * allocate it using the following policy: 780 * 1) allocate the requested inode. 781 * 2) allocate the next available inode after the requested 782 * inode in the specified cylinder group. 783 */ 784 static ino_t 785 ffs_ialloccg(ip, cg, ipref, mode) 786 struct inode *ip; 787 int cg; 788 daddr_t ipref; 789 int mode; 790 { 791 register struct fs *fs; 792 register struct cg *cgp; 793 struct buf *bp; 794 int error, start, len, loc, map, i; 795 796 fs = ip->i_fs; 797 if (fs->fs_cs(fs, cg).cs_nifree == 0) 798 return (NULL); 799 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 800 (int)fs->fs_cgsize, NOCRED, &bp); 801 if (error) { 802 brelse(bp); 803 return (NULL); 804 } 805 cgp = bp->b_un.b_cg; 806 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 807 brelse(bp); 808 return (NULL); 809 } 810 cgp->cg_time = time.tv_sec; 811 if (ipref) { 812 ipref %= fs->fs_ipg; 813 if (isclr(cg_inosused(cgp), ipref)) 814 goto gotit; 815 } 816 start = cgp->cg_irotor / NBBY; 817 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 818 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 819 if (loc == 0) { 820 len = start + 1; 821 start = 0; 822 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 823 if (loc == 0) { 824 printf("cg = %s, irotor = %d, fs = %s\n", 825 cg, cgp->cg_irotor, fs->fs_fsmnt); 826 panic("ffs_ialloccg: map corrupted"); 827 /* NOTREACHED */ 828 } 829 } 830 i = start + len - loc; 831 map = cg_inosused(cgp)[i]; 832 ipref = i * NBBY; 833 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 834 if ((map & i) == 0) { 835 cgp->cg_irotor = ipref; 836 goto gotit; 837 } 838 } 839 printf("fs = %s\n", fs->fs_fsmnt); 840 panic("ffs_ialloccg: block not in map"); 841 /* NOTREACHED */ 842 gotit: 843 setbit(cg_inosused(cgp), ipref); 844 cgp->cg_cs.cs_nifree--; 845 fs->fs_cstotal.cs_nifree--; 846 fs->fs_cs(fs, cg).cs_nifree--; 847 fs->fs_fmod = 1; 848 if ((mode & IFMT) == IFDIR) { 849 cgp->cg_cs.cs_ndir++; 850 fs->fs_cstotal.cs_ndir++; 851 fs->fs_cs(fs, cg).cs_ndir++; 852 } 853 bdwrite(bp); 854 return (cg * fs->fs_ipg + ipref); 855 } 856 857 /* 858 * Free a block or fragment. 859 * 860 * The specified block or fragment is placed back in the 861 * free map. If a fragment is deallocated, a possible 862 * block reassembly is checked. 863 */ 864 ffs_blkfree(ip, bno, size) 865 register struct inode *ip; 866 daddr_t bno; 867 long size; 868 { 869 register struct fs *fs; 870 register struct cg *cgp; 871 struct buf *bp; 872 int error, cg, blk, frags, bbase; 873 register int i; 874 875 fs = ip->i_fs; 876 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 877 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 878 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 879 panic("blkfree: bad size"); 880 } 881 cg = dtog(fs, bno); 882 if ((unsigned)bno >= fs->fs_size) { 883 printf("bad block %d, ino %d\n", bno, ip->i_number); 884 ffs_fserr(fs, ip->i_uid, "bad block"); 885 return; 886 } 887 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 888 (int)fs->fs_cgsize, NOCRED, &bp); 889 if (error) { 890 brelse(bp); 891 return; 892 } 893 cgp = bp->b_un.b_cg; 894 if (!cg_chkmagic(cgp)) { 895 brelse(bp); 896 return; 897 } 898 cgp->cg_time = time.tv_sec; 899 bno = dtogd(fs, bno); 900 if (size == fs->fs_bsize) { 901 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 902 printf("dev = 0x%x, block = %d, fs = %s\n", 903 ip->i_dev, bno, fs->fs_fsmnt); 904 panic("blkfree: freeing free block"); 905 } 906 ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 907 cgp->cg_cs.cs_nbfree++; 908 fs->fs_cstotal.cs_nbfree++; 909 fs->fs_cs(fs, cg).cs_nbfree++; 910 i = cbtocylno(fs, bno); 911 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 912 cg_blktot(cgp)[i]++; 913 } else { 914 bbase = bno - fragnum(fs, bno); 915 /* 916 * decrement the counts associated with the old frags 917 */ 918 blk = blkmap(fs, cg_blksfree(cgp), bbase); 919 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 920 /* 921 * deallocate the fragment 922 */ 923 frags = numfrags(fs, size); 924 for (i = 0; i < frags; i++) { 925 if (isset(cg_blksfree(cgp), bno + i)) { 926 printf("dev = 0x%x, block = %d, fs = %s\n", 927 ip->i_dev, bno + i, fs->fs_fsmnt); 928 panic("blkfree: freeing free frag"); 929 } 930 setbit(cg_blksfree(cgp), bno + i); 931 } 932 cgp->cg_cs.cs_nffree += i; 933 fs->fs_cstotal.cs_nffree += i; 934 fs->fs_cs(fs, cg).cs_nffree += i; 935 /* 936 * add back in counts associated with the new frags 937 */ 938 blk = blkmap(fs, cg_blksfree(cgp), bbase); 939 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 940 /* 941 * if a complete block has been reassembled, account for it 942 */ 943 if (ffs_isblock(fs, cg_blksfree(cgp), 944 (daddr_t)fragstoblks(fs, bbase))) { 945 cgp->cg_cs.cs_nffree -= fs->fs_frag; 946 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 947 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 948 cgp->cg_cs.cs_nbfree++; 949 fs->fs_cstotal.cs_nbfree++; 950 fs->fs_cs(fs, cg).cs_nbfree++; 951 i = cbtocylno(fs, bbase); 952 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 953 cg_blktot(cgp)[i]++; 954 } 955 } 956 fs->fs_fmod = 1; 957 bdwrite(bp); 958 } 959 960 /* 961 * Free an inode. 962 * 963 * The specified inode is placed back in the free map. 964 */ 965 int 966 ffs_vfree (ap) 967 struct vop_vfree_args *ap; 968 { 969 register struct fs *fs; 970 register struct cg *cgp; 971 register struct inode *pip; 972 struct buf *bp; 973 int error, cg; 974 975 pip = VTOI(ap->a_pvp); 976 fs = pip->i_fs; 977 if ((u_int)ap->a_ino >= fs->fs_ipg * fs->fs_ncg) 978 panic("ifree: range: dev = 0x%x, ap->a_ino = %d, fs = %s\n", 979 pip->i_dev, ap->a_ino, fs->fs_fsmnt); 980 cg = itog(fs, ap->a_ino); 981 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 982 (int)fs->fs_cgsize, NOCRED, &bp); 983 if (error) { 984 brelse(bp); 985 return (0); 986 } 987 cgp = bp->b_un.b_cg; 988 if (!cg_chkmagic(cgp)) { 989 brelse(bp); 990 return (0); 991 } 992 cgp->cg_time = time.tv_sec; 993 ap->a_ino %= fs->fs_ipg; 994 if (isclr(cg_inosused(cgp), ap->a_ino)) { 995 printf("dev = 0x%x, ap->a_ino = %d, fs = %s\n", 996 pip->i_dev, ap->a_ino, fs->fs_fsmnt); 997 if (fs->fs_ronly == 0) 998 panic("ifree: freeing free inode"); 999 } 1000 clrbit(cg_inosused(cgp), ap->a_ino); 1001 if (ap->a_ino < cgp->cg_irotor) 1002 cgp->cg_irotor = ap->a_ino; 1003 cgp->cg_cs.cs_nifree++; 1004 fs->fs_cstotal.cs_nifree++; 1005 fs->fs_cs(fs, cg).cs_nifree++; 1006 if ((ap->a_mode & IFMT) == IFDIR) { 1007 cgp->cg_cs.cs_ndir--; 1008 fs->fs_cstotal.cs_ndir--; 1009 fs->fs_cs(fs, cg).cs_ndir--; 1010 } 1011 fs->fs_fmod = 1; 1012 bdwrite(bp); 1013 return (0); 1014 } 1015 1016 /* 1017 * Find a block of the specified size in the specified cylinder group. 1018 * 1019 * It is a panic if a request is made to find a block if none are 1020 * available. 1021 */ 1022 static daddr_t 1023 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1024 register struct fs *fs; 1025 register struct cg *cgp; 1026 daddr_t bpref; 1027 int allocsiz; 1028 { 1029 daddr_t bno; 1030 int start, len, loc, i; 1031 int blk, field, subfield, pos; 1032 1033 /* 1034 * find the fragment by searching through the free block 1035 * map for an appropriate bit pattern 1036 */ 1037 if (bpref) 1038 start = dtogd(fs, bpref) / NBBY; 1039 else 1040 start = cgp->cg_frotor / NBBY; 1041 len = howmany(fs->fs_fpg, NBBY) - start; 1042 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1043 (u_char *)fragtbl[fs->fs_frag], 1044 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1045 if (loc == 0) { 1046 len = start + 1; 1047 start = 0; 1048 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1049 (u_char *)fragtbl[fs->fs_frag], 1050 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1051 if (loc == 0) { 1052 printf("start = %d, len = %d, fs = %s\n", 1053 start, len, fs->fs_fsmnt); 1054 panic("ffs_alloccg: map corrupted"); 1055 /* NOTREACHED */ 1056 } 1057 } 1058 bno = (start + len - loc) * NBBY; 1059 cgp->cg_frotor = bno; 1060 /* 1061 * found the byte in the map 1062 * sift through the bits to find the selected frag 1063 */ 1064 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1065 blk = blkmap(fs, cg_blksfree(cgp), bno); 1066 blk <<= 1; 1067 field = around[allocsiz]; 1068 subfield = inside[allocsiz]; 1069 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1070 if ((blk & field) == subfield) 1071 return (bno + pos); 1072 field <<= 1; 1073 subfield <<= 1; 1074 } 1075 } 1076 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1077 panic("ffs_alloccg: block not in map"); 1078 return (-1); 1079 } 1080 1081 /* 1082 * Fserr prints the name of a file system with an error diagnostic. 1083 * 1084 * The form of the error message is: 1085 * fs: error message 1086 */ 1087 static void 1088 ffs_fserr(fs, uid, cp) 1089 struct fs *fs; 1090 u_int uid; 1091 char *cp; 1092 { 1093 1094 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); 1095 } 1096