xref: /csrg-svn/sys/ufs/ffs/ffs_alloc.c (revision 53519)
1 /*
2  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ffs_alloc.c	7.34 (Berkeley) 05/14/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/buf.h>
13 #include <sys/proc.h>
14 #include <sys/vnode.h>
15 #include <sys/kernel.h>
16 #include <sys/syslog.h>
17 
18 #include <vm/vm.h>
19 
20 #include <ufs/ufs/quota.h>
21 #include <ufs/ufs/inode.h>
22 
23 #include <ufs/ffs/fs.h>
24 #include <ufs/ffs/ffs_extern.h>
25 
26 extern u_long nextgennumber;
27 
28 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
29 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
30 static ino_t	ffs_dirpref __P((struct fs *));
31 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
32 static void	ffs_fserr __P((struct fs *, u_int, char *));
33 static u_long	ffs_hashalloc
34 		    __P((struct inode *, int, long, int, u_long (*)()));
35 static ino_t	ffs_ialloccg __P((struct inode *, int, daddr_t, int));
36 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
37 
38 /*
39  * Allocate a block in the file system.
40  *
41  * The size of the requested block is given, which must be some
42  * multiple of fs_fsize and <= fs_bsize.
43  * A preference may be optionally specified. If a preference is given
44  * the following hierarchy is used to allocate a block:
45  *   1) allocate the requested block.
46  *   2) allocate a rotationally optimal block in the same cylinder.
47  *   3) allocate a block in the same cylinder group.
48  *   4) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  * If no block preference is given the following heirarchy is used
51  * to allocate a block:
52  *   1) allocate a block in the cylinder group that contains the
53  *      inode for the file.
54  *   2) quadradically rehash into other cylinder groups, until an
55  *      available block is located.
56  */
57 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
58 	register struct inode *ip;
59 	daddr_t lbn, bpref;
60 	int size;
61 	struct ucred *cred;
62 	daddr_t *bnp;
63 {
64 	daddr_t bno;
65 	register struct fs *fs;
66 	register struct buf *bp;
67 	int cg, error;
68 
69 	*bnp = 0;
70 	fs = ip->i_fs;
71 #ifdef DIAGNOSTIC
72 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
73 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
74 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
75 		panic("ffs_alloc: bad size");
76 	}
77 	if (cred == NOCRED)
78 		panic("ffs_alloc: missing credential\n");
79 #endif /* DIAGNOSTIC */
80 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
81 		goto nospace;
82 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
83 		goto nospace;
84 #ifdef QUOTA
85 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
86 		return (error);
87 #endif
88 	if (bpref >= fs->fs_size)
89 		bpref = 0;
90 	if (bpref == 0)
91 		cg = itog(fs, ip->i_number);
92 	else
93 		cg = dtog(fs, bpref);
94 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
95 	    (u_long (*)())ffs_alloccg);
96 	if (bno > 0) {
97 		ip->i_blocks += btodb(size);
98 		ip->i_flag |= IUPD|ICHG;
99 		*bnp = bno;
100 		return (0);
101 	}
102 #ifdef QUOTA
103 	/*
104 	 * Restore user's disk quota because allocation failed.
105 	 */
106 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
107 #endif
108 nospace:
109 	ffs_fserr(fs, cred->cr_uid, "file system full");
110 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
111 	return (ENOSPC);
112 }
113 
114 /*
115  * Reallocate a fragment to a bigger size
116  *
117  * The number and size of the old block is given, and a preference
118  * and new size is also specified. The allocator attempts to extend
119  * the original block. Failing that, the regular block allocator is
120  * invoked to get an appropriate block.
121  */
122 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
123 	register struct inode *ip;
124 	daddr_t lbprev;
125 	daddr_t bpref;
126 	int osize, nsize;
127 	struct ucred *cred;
128 	struct buf **bpp;
129 {
130 	register struct fs *fs;
131 	struct buf *bp, *obp;
132 	int cg, request, error;
133 	daddr_t bprev, bno;
134 
135 	*bpp = 0;
136 	fs = ip->i_fs;
137 #ifdef DIAGNOSTIC
138 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
139 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
140 		printf(
141 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
142 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
143 		panic("ffs_realloccg: bad size");
144 	}
145 	if (cred == NOCRED)
146 		panic("ffs_realloccg: missing credential\n");
147 #endif /* DIAGNOSTIC */
148 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
149 		goto nospace;
150 	if ((bprev = ip->i_db[lbprev]) == 0) {
151 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
152 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
153 		panic("ffs_realloccg: bad bprev");
154 	}
155 	/*
156 	 * Allocate the extra space in the buffer.
157 	 */
158 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
159 		brelse(bp);
160 		return (error);
161 	}
162 #ifdef QUOTA
163 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
164 		brelse(bp);
165 		return (error);
166 	}
167 #endif
168 	/*
169 	 * Check for extension in the existing location.
170 	 */
171 	cg = dtog(fs, bprev);
172 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
173 		if (bp->b_blkno != fsbtodb(fs, bno))
174 			panic("bad blockno");
175 		ip->i_blocks += btodb(nsize - osize);
176 		ip->i_flag |= IUPD|ICHG;
177 		allocbuf(bp, nsize);
178 		bp->b_flags |= B_DONE;
179 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
180 		*bpp = bp;
181 		return (0);
182 	}
183 	/*
184 	 * Allocate a new disk location.
185 	 */
186 	if (bpref >= fs->fs_size)
187 		bpref = 0;
188 	switch ((int)fs->fs_optim) {
189 	case FS_OPTSPACE:
190 		/*
191 		 * Allocate an exact sized fragment. Although this makes
192 		 * best use of space, we will waste time relocating it if
193 		 * the file continues to grow. If the fragmentation is
194 		 * less than half of the minimum free reserve, we choose
195 		 * to begin optimizing for time.
196 		 */
197 		request = nsize;
198 		if (fs->fs_minfree < 5 ||
199 		    fs->fs_cstotal.cs_nffree >
200 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
201 			break;
202 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
203 			fs->fs_fsmnt);
204 		fs->fs_optim = FS_OPTTIME;
205 		break;
206 	case FS_OPTTIME:
207 		/*
208 		 * At this point we have discovered a file that is trying to
209 		 * grow a small fragment to a larger fragment. To save time,
210 		 * we allocate a full sized block, then free the unused portion.
211 		 * If the file continues to grow, the `ffs_fragextend' call
212 		 * above will be able to grow it in place without further
213 		 * copying. If aberrant programs cause disk fragmentation to
214 		 * grow within 2% of the free reserve, we choose to begin
215 		 * optimizing for space.
216 		 */
217 		request = fs->fs_bsize;
218 		if (fs->fs_cstotal.cs_nffree <
219 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
220 			break;
221 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
222 			fs->fs_fsmnt);
223 		fs->fs_optim = FS_OPTSPACE;
224 		break;
225 	default:
226 		printf("dev = 0x%x, optim = %d, fs = %s\n",
227 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
228 		panic("ffs_realloccg: bad optim");
229 		/* NOTREACHED */
230 	}
231 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
232 	    (u_long (*)())ffs_alloccg);
233 	if (bno > 0) {
234 		bp->b_blkno = fsbtodb(fs, bno);
235 		(void) vnode_pager_uncache(ITOV(ip));
236 		ffs_blkfree(ip, bprev, (long)osize);
237 		if (nsize < request)
238 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
239 			    (long)(request - nsize));
240 		ip->i_blocks += btodb(nsize - osize);
241 		ip->i_flag |= IUPD|ICHG;
242 		allocbuf(bp, nsize);
243 		bp->b_flags |= B_DONE;
244 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
245 		*bpp = bp;
246 		return (0);
247 	}
248 #ifdef QUOTA
249 	/*
250 	 * Restore user's disk quota because allocation failed.
251 	 */
252 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
253 #endif
254 	brelse(bp);
255 nospace:
256 	/*
257 	 * no space available
258 	 */
259 	ffs_fserr(fs, cred->cr_uid, "file system full");
260 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
261 	return (ENOSPC);
262 }
263 
264 /*
265  * Allocate an inode in the file system.
266  *
267  * If allocating a directory, use ffs_dirpref to select the inode.
268  * If allocating in a directory, the following hierarchy is followed:
269  *   1) allocate the preferred inode.
270  *   2) allocate an inode in the same cylinder group.
271  *   3) quadradically rehash into other cylinder groups, until an
272  *      available inode is located.
273  * If no inode preference is given the following heirarchy is used
274  * to allocate an inode:
275  *   1) allocate an inode in cylinder group 0.
276  *   2) quadradically rehash into other cylinder groups, until an
277  *      available inode is located.
278  */
279 ffs_valloc (ap)
280 	struct vop_valloc_args *ap;
281 #define pvp (ap->a_pvp)
282 #define mode (ap->a_mode)
283 #define cred (ap->a_cred)
284 #define vpp (ap->a_vpp)
285 {
286 	USES_VOP_VFREE;
287 	USES_VOP_VGET;
288 	register struct inode *pip;
289 	register struct fs *fs;
290 	register struct inode *ip;
291 	ino_t ino, ipref;
292 	int cg, error;
293 
294 	*vpp = NULL;
295 	pip = VTOI(pvp);
296 	fs = pip->i_fs;
297 	if (fs->fs_cstotal.cs_nifree == 0)
298 		goto noinodes;
299 
300 	if ((mode & IFMT) == IFDIR)
301 		ipref = ffs_dirpref(fs);
302 	else
303 		ipref = pip->i_number;
304 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
305 		ipref = 0;
306 	cg = itog(fs, ipref);
307 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_ialloccg);
308 	if (ino == 0)
309 		goto noinodes;
310 	error = FFS_VGET(pvp->v_mount, ino, vpp);
311 	if (error) {
312 		VOP_VFREE(pvp, ino, mode);
313 		return (error);
314 	}
315 	ip = VTOI(*vpp);
316 	if (ip->i_mode) {
317 		printf("mode = 0%o, inum = %d, fs = %s\n",
318 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
319 		panic("ffs_valloc: dup alloc");
320 	}
321 	if (ip->i_blocks) {				/* XXX */
322 		printf("free inode %s/%d had %d blocks\n",
323 		    fs->fs_fsmnt, ino, ip->i_blocks);
324 		ip->i_blocks = 0;
325 	}
326 	ip->i_flags = 0;
327 	/*
328 	 * Set up a new generation number for this inode.
329 	 */
330 	if (++nextgennumber < (u_long)time.tv_sec)
331 		nextgennumber = time.tv_sec;
332 	ip->i_gen = nextgennumber;
333 	return (0);
334 noinodes:
335 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
336 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
337 	return (ENOSPC);
338 }
339 #undef pvp
340 #undef mode
341 #undef cred
342 #undef vpp
343 
344 /*
345  * Find a cylinder to place a directory.
346  *
347  * The policy implemented by this algorithm is to select from
348  * among those cylinder groups with above the average number of
349  * free inodes, the one with the smallest number of directories.
350  */
351 static ino_t
352 ffs_dirpref(fs)
353 	register struct fs *fs;
354 {
355 	int cg, minndir, mincg, avgifree;
356 
357 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
358 	minndir = fs->fs_ipg;
359 	mincg = 0;
360 	for (cg = 0; cg < fs->fs_ncg; cg++)
361 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
362 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
363 			mincg = cg;
364 			minndir = fs->fs_cs(fs, cg).cs_ndir;
365 		}
366 	return ((ino_t)(fs->fs_ipg * mincg));
367 }
368 
369 /*
370  * Select the desired position for the next block in a file.  The file is
371  * logically divided into sections. The first section is composed of the
372  * direct blocks. Each additional section contains fs_maxbpg blocks.
373  *
374  * If no blocks have been allocated in the first section, the policy is to
375  * request a block in the same cylinder group as the inode that describes
376  * the file. If no blocks have been allocated in any other section, the
377  * policy is to place the section in a cylinder group with a greater than
378  * average number of free blocks.  An appropriate cylinder group is found
379  * by using a rotor that sweeps the cylinder groups. When a new group of
380  * blocks is needed, the sweep begins in the cylinder group following the
381  * cylinder group from which the previous allocation was made. The sweep
382  * continues until a cylinder group with greater than the average number
383  * of free blocks is found. If the allocation is for the first block in an
384  * indirect block, the information on the previous allocation is unavailable;
385  * here a best guess is made based upon the logical block number being
386  * allocated.
387  *
388  * If a section is already partially allocated, the policy is to
389  * contiguously allocate fs_maxcontig blocks.  The end of one of these
390  * contiguous blocks and the beginning of the next is physically separated
391  * so that the disk head will be in transit between them for at least
392  * fs_rotdelay milliseconds.  This is to allow time for the processor to
393  * schedule another I/O transfer.
394  */
395 daddr_t
396 ffs_blkpref(ip, lbn, indx, bap)
397 	struct inode *ip;
398 	daddr_t lbn;
399 	int indx;
400 	daddr_t *bap;
401 {
402 	register struct fs *fs;
403 	register int cg;
404 	int avgbfree, startcg;
405 	daddr_t nextblk;
406 
407 	fs = ip->i_fs;
408 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
409 		if (lbn < NDADDR) {
410 			cg = itog(fs, ip->i_number);
411 			return (fs->fs_fpg * cg + fs->fs_frag);
412 		}
413 		/*
414 		 * Find a cylinder with greater than average number of
415 		 * unused data blocks.
416 		 */
417 		if (indx == 0 || bap[indx - 1] == 0)
418 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
419 		else
420 			startcg = dtog(fs, bap[indx - 1]) + 1;
421 		startcg %= fs->fs_ncg;
422 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
423 		for (cg = startcg; cg < fs->fs_ncg; cg++)
424 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
425 				fs->fs_cgrotor = cg;
426 				return (fs->fs_fpg * cg + fs->fs_frag);
427 			}
428 		for (cg = 0; cg <= startcg; cg++)
429 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
430 				fs->fs_cgrotor = cg;
431 				return (fs->fs_fpg * cg + fs->fs_frag);
432 			}
433 		return (NULL);
434 	}
435 	/*
436 	 * One or more previous blocks have been laid out. If less
437 	 * than fs_maxcontig previous blocks are contiguous, the
438 	 * next block is requested contiguously, otherwise it is
439 	 * requested rotationally delayed by fs_rotdelay milliseconds.
440 	 */
441 	nextblk = bap[indx - 1] + fs->fs_frag;
442 	if (indx > fs->fs_maxcontig &&
443 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
444 	    != nextblk)
445 		return (nextblk);
446 	if (fs->fs_rotdelay != 0)
447 		/*
448 		 * Here we convert ms of delay to frags as:
449 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
450 		 *	((sect/frag) * (ms/sec))
451 		 * then round up to the next block.
452 		 */
453 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
454 		    (NSPF(fs) * 1000), fs->fs_frag);
455 	return (nextblk);
456 }
457 
458 /*
459  * Implement the cylinder overflow algorithm.
460  *
461  * The policy implemented by this algorithm is:
462  *   1) allocate the block in its requested cylinder group.
463  *   2) quadradically rehash on the cylinder group number.
464  *   3) brute force search for a free block.
465  */
466 /*VARARGS5*/
467 static u_long
468 ffs_hashalloc(ip, cg, pref, size, allocator)
469 	struct inode *ip;
470 	int cg;
471 	long pref;
472 	int size;	/* size for data blocks, mode for inodes */
473 	u_long (*allocator)();
474 {
475 	register struct fs *fs;
476 	long result;
477 	int i, icg = cg;
478 
479 	fs = ip->i_fs;
480 	/*
481 	 * 1: preferred cylinder group
482 	 */
483 	result = (*allocator)(ip, cg, pref, size);
484 	if (result)
485 		return (result);
486 	/*
487 	 * 2: quadratic rehash
488 	 */
489 	for (i = 1; i < fs->fs_ncg; i *= 2) {
490 		cg += i;
491 		if (cg >= fs->fs_ncg)
492 			cg -= fs->fs_ncg;
493 		result = (*allocator)(ip, cg, 0, size);
494 		if (result)
495 			return (result);
496 	}
497 	/*
498 	 * 3: brute force search
499 	 * Note that we start at i == 2, since 0 was checked initially,
500 	 * and 1 is always checked in the quadratic rehash.
501 	 */
502 	cg = (icg + 2) % fs->fs_ncg;
503 	for (i = 2; i < fs->fs_ncg; i++) {
504 		result = (*allocator)(ip, cg, 0, size);
505 		if (result)
506 			return (result);
507 		cg++;
508 		if (cg == fs->fs_ncg)
509 			cg = 0;
510 	}
511 	return (NULL);
512 }
513 
514 /*
515  * Determine whether a fragment can be extended.
516  *
517  * Check to see if the necessary fragments are available, and
518  * if they are, allocate them.
519  */
520 static daddr_t
521 ffs_fragextend(ip, cg, bprev, osize, nsize)
522 	struct inode *ip;
523 	int cg;
524 	long bprev;
525 	int osize, nsize;
526 {
527 	register struct fs *fs;
528 	register struct cg *cgp;
529 	struct buf *bp;
530 	long bno;
531 	int frags, bbase;
532 	int i, error;
533 
534 	fs = ip->i_fs;
535 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
536 		return (NULL);
537 	frags = numfrags(fs, nsize);
538 	bbase = fragnum(fs, bprev);
539 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
540 		/* cannot extend across a block boundary */
541 		return (NULL);
542 	}
543 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
544 		(int)fs->fs_cgsize, NOCRED, &bp);
545 	if (error) {
546 		brelse(bp);
547 		return (NULL);
548 	}
549 	cgp = bp->b_un.b_cg;
550 	if (!cg_chkmagic(cgp)) {
551 		brelse(bp);
552 		return (NULL);
553 	}
554 	cgp->cg_time = time.tv_sec;
555 	bno = dtogd(fs, bprev);
556 	for (i = numfrags(fs, osize); i < frags; i++)
557 		if (isclr(cg_blksfree(cgp), bno + i)) {
558 			brelse(bp);
559 			return (NULL);
560 		}
561 	/*
562 	 * the current fragment can be extended
563 	 * deduct the count on fragment being extended into
564 	 * increase the count on the remaining fragment (if any)
565 	 * allocate the extended piece
566 	 */
567 	for (i = frags; i < fs->fs_frag - bbase; i++)
568 		if (isclr(cg_blksfree(cgp), bno + i))
569 			break;
570 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
571 	if (i != frags)
572 		cgp->cg_frsum[i - frags]++;
573 	for (i = numfrags(fs, osize); i < frags; i++) {
574 		clrbit(cg_blksfree(cgp), bno + i);
575 		cgp->cg_cs.cs_nffree--;
576 		fs->fs_cstotal.cs_nffree--;
577 		fs->fs_cs(fs, cg).cs_nffree--;
578 	}
579 	fs->fs_fmod = 1;
580 	bdwrite(bp);
581 	return (bprev);
582 }
583 
584 /*
585  * Determine whether a block can be allocated.
586  *
587  * Check to see if a block of the apprpriate size is available,
588  * and if it is, allocate it.
589  */
590 static daddr_t
591 ffs_alloccg(ip, cg, bpref, size)
592 	struct inode *ip;
593 	int cg;
594 	daddr_t bpref;
595 	int size;
596 {
597 	register struct fs *fs;
598 	register struct cg *cgp;
599 	struct buf *bp;
600 	register int i;
601 	int error, bno, frags, allocsiz;
602 
603 	fs = ip->i_fs;
604 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
605 		return (NULL);
606 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
607 		(int)fs->fs_cgsize, NOCRED, &bp);
608 	if (error) {
609 		brelse(bp);
610 		return (NULL);
611 	}
612 	cgp = bp->b_un.b_cg;
613 	if (!cg_chkmagic(cgp) ||
614 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
615 		brelse(bp);
616 		return (NULL);
617 	}
618 	cgp->cg_time = time.tv_sec;
619 	if (size == fs->fs_bsize) {
620 		bno = ffs_alloccgblk(fs, cgp, bpref);
621 		bdwrite(bp);
622 		return (bno);
623 	}
624 	/*
625 	 * check to see if any fragments are already available
626 	 * allocsiz is the size which will be allocated, hacking
627 	 * it down to a smaller size if necessary
628 	 */
629 	frags = numfrags(fs, size);
630 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
631 		if (cgp->cg_frsum[allocsiz] != 0)
632 			break;
633 	if (allocsiz == fs->fs_frag) {
634 		/*
635 		 * no fragments were available, so a block will be
636 		 * allocated, and hacked up
637 		 */
638 		if (cgp->cg_cs.cs_nbfree == 0) {
639 			brelse(bp);
640 			return (NULL);
641 		}
642 		bno = ffs_alloccgblk(fs, cgp, bpref);
643 		bpref = dtogd(fs, bno);
644 		for (i = frags; i < fs->fs_frag; i++)
645 			setbit(cg_blksfree(cgp), bpref + i);
646 		i = fs->fs_frag - frags;
647 		cgp->cg_cs.cs_nffree += i;
648 		fs->fs_cstotal.cs_nffree += i;
649 		fs->fs_cs(fs, cg).cs_nffree += i;
650 		fs->fs_fmod = 1;
651 		cgp->cg_frsum[i]++;
652 		bdwrite(bp);
653 		return (bno);
654 	}
655 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
656 	if (bno < 0) {
657 		brelse(bp);
658 		return (NULL);
659 	}
660 	for (i = 0; i < frags; i++)
661 		clrbit(cg_blksfree(cgp), bno + i);
662 	cgp->cg_cs.cs_nffree -= frags;
663 	fs->fs_cstotal.cs_nffree -= frags;
664 	fs->fs_cs(fs, cg).cs_nffree -= frags;
665 	fs->fs_fmod = 1;
666 	cgp->cg_frsum[allocsiz]--;
667 	if (frags != allocsiz)
668 		cgp->cg_frsum[allocsiz - frags]++;
669 	bdwrite(bp);
670 	return (cg * fs->fs_fpg + bno);
671 }
672 
673 /*
674  * Allocate a block in a cylinder group.
675  *
676  * This algorithm implements the following policy:
677  *   1) allocate the requested block.
678  *   2) allocate a rotationally optimal block in the same cylinder.
679  *   3) allocate the next available block on the block rotor for the
680  *      specified cylinder group.
681  * Note that this routine only allocates fs_bsize blocks; these
682  * blocks may be fragmented by the routine that allocates them.
683  */
684 static daddr_t
685 ffs_alloccgblk(fs, cgp, bpref)
686 	register struct fs *fs;
687 	register struct cg *cgp;
688 	daddr_t bpref;
689 {
690 	daddr_t bno;
691 	int cylno, pos, delta;
692 	short *cylbp;
693 	register int i;
694 
695 	if (bpref == 0) {
696 		bpref = cgp->cg_rotor;
697 		goto norot;
698 	}
699 	bpref = blknum(fs, bpref);
700 	bpref = dtogd(fs, bpref);
701 	/*
702 	 * if the requested block is available, use it
703 	 */
704 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
705 		bno = bpref;
706 		goto gotit;
707 	}
708 	/*
709 	 * check for a block available on the same cylinder
710 	 */
711 	cylno = cbtocylno(fs, bpref);
712 	if (cg_blktot(cgp)[cylno] == 0)
713 		goto norot;
714 	if (fs->fs_cpc == 0) {
715 		/*
716 		 * block layout info is not available, so just have
717 		 * to take any block in this cylinder.
718 		 */
719 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
720 		goto norot;
721 	}
722 	/*
723 	 * check the summary information to see if a block is
724 	 * available in the requested cylinder starting at the
725 	 * requested rotational position and proceeding around.
726 	 */
727 	cylbp = cg_blks(fs, cgp, cylno);
728 	pos = cbtorpos(fs, bpref);
729 	for (i = pos; i < fs->fs_nrpos; i++)
730 		if (cylbp[i] > 0)
731 			break;
732 	if (i == fs->fs_nrpos)
733 		for (i = 0; i < pos; i++)
734 			if (cylbp[i] > 0)
735 				break;
736 	if (cylbp[i] > 0) {
737 		/*
738 		 * found a rotational position, now find the actual
739 		 * block. A panic if none is actually there.
740 		 */
741 		pos = cylno % fs->fs_cpc;
742 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
743 		if (fs_postbl(fs, pos)[i] == -1) {
744 			printf("pos = %d, i = %d, fs = %s\n",
745 			    pos, i, fs->fs_fsmnt);
746 			panic("ffs_alloccgblk: cyl groups corrupted");
747 		}
748 		for (i = fs_postbl(fs, pos)[i];; ) {
749 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
750 				bno = blkstofrags(fs, (bno + i));
751 				goto gotit;
752 			}
753 			delta = fs_rotbl(fs)[i];
754 			if (delta <= 0 ||
755 			    delta + i > fragstoblks(fs, fs->fs_fpg))
756 				break;
757 			i += delta;
758 		}
759 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
760 		panic("ffs_alloccgblk: can't find blk in cyl");
761 	}
762 norot:
763 	/*
764 	 * no blocks in the requested cylinder, so take next
765 	 * available one in this cylinder group.
766 	 */
767 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
768 	if (bno < 0)
769 		return (NULL);
770 	cgp->cg_rotor = bno;
771 gotit:
772 	ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
773 	cgp->cg_cs.cs_nbfree--;
774 	fs->fs_cstotal.cs_nbfree--;
775 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
776 	cylno = cbtocylno(fs, bno);
777 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
778 	cg_blktot(cgp)[cylno]--;
779 	fs->fs_fmod = 1;
780 	return (cgp->cg_cgx * fs->fs_fpg + bno);
781 }
782 
783 /*
784  * Determine whether an inode can be allocated.
785  *
786  * Check to see if an inode is available, and if it is,
787  * allocate it using the following policy:
788  *   1) allocate the requested inode.
789  *   2) allocate the next available inode after the requested
790  *      inode in the specified cylinder group.
791  */
792 static ino_t
793 ffs_ialloccg(ip, cg, ipref, mode)
794 	struct inode *ip;
795 	int cg;
796 	daddr_t ipref;
797 	int mode;
798 {
799 	register struct fs *fs;
800 	register struct cg *cgp;
801 	struct buf *bp;
802 	int error, start, len, loc, map, i;
803 
804 	fs = ip->i_fs;
805 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
806 		return (NULL);
807 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
808 		(int)fs->fs_cgsize, NOCRED, &bp);
809 	if (error) {
810 		brelse(bp);
811 		return (NULL);
812 	}
813 	cgp = bp->b_un.b_cg;
814 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
815 		brelse(bp);
816 		return (NULL);
817 	}
818 	cgp->cg_time = time.tv_sec;
819 	if (ipref) {
820 		ipref %= fs->fs_ipg;
821 		if (isclr(cg_inosused(cgp), ipref))
822 			goto gotit;
823 	}
824 	start = cgp->cg_irotor / NBBY;
825 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
826 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
827 	if (loc == 0) {
828 		len = start + 1;
829 		start = 0;
830 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
831 		if (loc == 0) {
832 			printf("cg = %s, irotor = %d, fs = %s\n",
833 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
834 			panic("ffs_ialloccg: map corrupted");
835 			/* NOTREACHED */
836 		}
837 	}
838 	i = start + len - loc;
839 	map = cg_inosused(cgp)[i];
840 	ipref = i * NBBY;
841 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
842 		if ((map & i) == 0) {
843 			cgp->cg_irotor = ipref;
844 			goto gotit;
845 		}
846 	}
847 	printf("fs = %s\n", fs->fs_fsmnt);
848 	panic("ffs_ialloccg: block not in map");
849 	/* NOTREACHED */
850 gotit:
851 	setbit(cg_inosused(cgp), ipref);
852 	cgp->cg_cs.cs_nifree--;
853 	fs->fs_cstotal.cs_nifree--;
854 	fs->fs_cs(fs, cg).cs_nifree--;
855 	fs->fs_fmod = 1;
856 	if ((mode & IFMT) == IFDIR) {
857 		cgp->cg_cs.cs_ndir++;
858 		fs->fs_cstotal.cs_ndir++;
859 		fs->fs_cs(fs, cg).cs_ndir++;
860 	}
861 	bdwrite(bp);
862 	return (cg * fs->fs_ipg + ipref);
863 }
864 
865 /*
866  * Free a block or fragment.
867  *
868  * The specified block or fragment is placed back in the
869  * free map. If a fragment is deallocated, a possible
870  * block reassembly is checked.
871  */
872 ffs_blkfree(ip, bno, size)
873 	register struct inode *ip;
874 	daddr_t bno;
875 	long size;
876 {
877 	register struct fs *fs;
878 	register struct cg *cgp;
879 	struct buf *bp;
880 	int error, cg, blk, frags, bbase;
881 	register int i;
882 
883 	fs = ip->i_fs;
884 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
885 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
886 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
887 		panic("blkfree: bad size");
888 	}
889 	cg = dtog(fs, bno);
890 	if ((unsigned)bno >= fs->fs_size) {
891 		printf("bad block %d, ino %d\n", bno, ip->i_number);
892 		ffs_fserr(fs, ip->i_uid, "bad block");
893 		return;
894 	}
895 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
896 		(int)fs->fs_cgsize, NOCRED, &bp);
897 	if (error) {
898 		brelse(bp);
899 		return;
900 	}
901 	cgp = bp->b_un.b_cg;
902 	if (!cg_chkmagic(cgp)) {
903 		brelse(bp);
904 		return;
905 	}
906 	cgp->cg_time = time.tv_sec;
907 	bno = dtogd(fs, bno);
908 	if (size == fs->fs_bsize) {
909 		if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
910 			printf("dev = 0x%x, block = %d, fs = %s\n",
911 			    ip->i_dev, bno, fs->fs_fsmnt);
912 			panic("blkfree: freeing free block");
913 		}
914 		ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
915 		cgp->cg_cs.cs_nbfree++;
916 		fs->fs_cstotal.cs_nbfree++;
917 		fs->fs_cs(fs, cg).cs_nbfree++;
918 		i = cbtocylno(fs, bno);
919 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
920 		cg_blktot(cgp)[i]++;
921 	} else {
922 		bbase = bno - fragnum(fs, bno);
923 		/*
924 		 * decrement the counts associated with the old frags
925 		 */
926 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
927 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
928 		/*
929 		 * deallocate the fragment
930 		 */
931 		frags = numfrags(fs, size);
932 		for (i = 0; i < frags; i++) {
933 			if (isset(cg_blksfree(cgp), bno + i)) {
934 				printf("dev = 0x%x, block = %d, fs = %s\n",
935 				    ip->i_dev, bno + i, fs->fs_fsmnt);
936 				panic("blkfree: freeing free frag");
937 			}
938 			setbit(cg_blksfree(cgp), bno + i);
939 		}
940 		cgp->cg_cs.cs_nffree += i;
941 		fs->fs_cstotal.cs_nffree += i;
942 		fs->fs_cs(fs, cg).cs_nffree += i;
943 		/*
944 		 * add back in counts associated with the new frags
945 		 */
946 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
947 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
948 		/*
949 		 * if a complete block has been reassembled, account for it
950 		 */
951 		if (ffs_isblock(fs, cg_blksfree(cgp),
952 		    (daddr_t)fragstoblks(fs, bbase))) {
953 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
954 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
955 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
956 			cgp->cg_cs.cs_nbfree++;
957 			fs->fs_cstotal.cs_nbfree++;
958 			fs->fs_cs(fs, cg).cs_nbfree++;
959 			i = cbtocylno(fs, bbase);
960 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
961 			cg_blktot(cgp)[i]++;
962 		}
963 	}
964 	fs->fs_fmod = 1;
965 	bdwrite(bp);
966 }
967 
968 /*
969  * Free an inode.
970  *
971  * The specified inode is placed back in the free map.
972  */
973 void
974 ffs_vfree (ap)
975 	struct vop_vfree_args *ap;
976 #define pvp (ap->a_pvp)
977 #define ino (ap->a_ino)
978 #define mode (ap->a_mode)
979 {
980 	register struct fs *fs;
981 	register struct cg *cgp;
982 	register struct inode *pip;
983 	struct buf *bp;
984 	int error, cg;
985 
986 	pip = VTOI(pvp);
987 	fs = pip->i_fs;
988 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
989 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
990 		    pip->i_dev, ino, fs->fs_fsmnt);
991 	cg = itog(fs, ino);
992 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
993 		(int)fs->fs_cgsize, NOCRED, &bp);
994 	if (error) {
995 		brelse(bp);
996 		return;
997 	}
998 	cgp = bp->b_un.b_cg;
999 	if (!cg_chkmagic(cgp)) {
1000 		brelse(bp);
1001 		return;
1002 	}
1003 	cgp->cg_time = time.tv_sec;
1004 	ino %= fs->fs_ipg;
1005 	if (isclr(cg_inosused(cgp), ino)) {
1006 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1007 		    pip->i_dev, ino, fs->fs_fsmnt);
1008 		if (fs->fs_ronly == 0)
1009 			panic("ifree: freeing free inode");
1010 	}
1011 	clrbit(cg_inosused(cgp), ino);
1012 	if (ino < cgp->cg_irotor)
1013 		cgp->cg_irotor = ino;
1014 	cgp->cg_cs.cs_nifree++;
1015 	fs->fs_cstotal.cs_nifree++;
1016 	fs->fs_cs(fs, cg).cs_nifree++;
1017 	if ((mode & IFMT) == IFDIR) {
1018 		cgp->cg_cs.cs_ndir--;
1019 		fs->fs_cstotal.cs_ndir--;
1020 		fs->fs_cs(fs, cg).cs_ndir--;
1021 	}
1022 	fs->fs_fmod = 1;
1023 	bdwrite(bp);
1024 }
1025 #undef pvp
1026 #undef ino
1027 #undef mode
1028 
1029 /*
1030  * Find a block of the specified size in the specified cylinder group.
1031  *
1032  * It is a panic if a request is made to find a block if none are
1033  * available.
1034  */
1035 static daddr_t
1036 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1037 	register struct fs *fs;
1038 	register struct cg *cgp;
1039 	daddr_t bpref;
1040 	int allocsiz;
1041 {
1042 	daddr_t bno;
1043 	int start, len, loc, i;
1044 	int blk, field, subfield, pos;
1045 
1046 	/*
1047 	 * find the fragment by searching through the free block
1048 	 * map for an appropriate bit pattern
1049 	 */
1050 	if (bpref)
1051 		start = dtogd(fs, bpref) / NBBY;
1052 	else
1053 		start = cgp->cg_frotor / NBBY;
1054 	len = howmany(fs->fs_fpg, NBBY) - start;
1055 	loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
1056 		(u_char *)fragtbl[fs->fs_frag],
1057 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1058 	if (loc == 0) {
1059 		len = start + 1;
1060 		start = 0;
1061 		loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
1062 			(u_char *)fragtbl[fs->fs_frag],
1063 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1064 		if (loc == 0) {
1065 			printf("start = %d, len = %d, fs = %s\n",
1066 			    start, len, fs->fs_fsmnt);
1067 			panic("ffs_alloccg: map corrupted");
1068 			/* NOTREACHED */
1069 		}
1070 	}
1071 	bno = (start + len - loc) * NBBY;
1072 	cgp->cg_frotor = bno;
1073 	/*
1074 	 * found the byte in the map
1075 	 * sift through the bits to find the selected frag
1076 	 */
1077 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1078 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1079 		blk <<= 1;
1080 		field = around[allocsiz];
1081 		subfield = inside[allocsiz];
1082 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1083 			if ((blk & field) == subfield)
1084 				return (bno + pos);
1085 			field <<= 1;
1086 			subfield <<= 1;
1087 		}
1088 	}
1089 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1090 	panic("ffs_alloccg: block not in map");
1091 	return (-1);
1092 }
1093 
1094 /*
1095  * Fserr prints the name of a file system with an error diagnostic.
1096  *
1097  * The form of the error message is:
1098  *	fs: error message
1099  */
1100 static void
1101 ffs_fserr(fs, uid, cp)
1102 	struct fs *fs;
1103 	u_int uid;
1104 	char *cp;
1105 {
1106 
1107 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1108 }
1109