1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)ffs_alloc.c 7.28 (Berkeley) 11/01/91 8 */ 9 10 #include <sys/param.h> 11 #include <sys/systm.h> 12 #include <sys/buf.h> 13 #include <sys/proc.h> 14 #include <sys/vnode.h> 15 #include <sys/kernel.h> 16 #include <sys/syslog.h> 17 18 #include <ufs/ufs/quota.h> 19 #include <ufs/ufs/inode.h> 20 21 #include <ufs/ffs/fs.h> 22 #include <ufs/ffs/ffs_extern.h> 23 24 extern u_long nextgennumber; 25 26 static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int)); 27 static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t)); 28 static ino_t ffs_dirpref __P((struct fs *)); 29 static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int)); 30 static void ffs_fserr __P((struct fs *, u_int, char *)); 31 static u_long ffs_hashalloc 32 __P((struct inode *, int, long, int, u_long (*)())); 33 static ino_t ffs_ialloccg __P((struct inode *, int, daddr_t, int)); 34 static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int)); 35 36 /* 37 * Allocate a block in the file system. 38 * 39 * The size of the requested block is given, which must be some 40 * multiple of fs_fsize and <= fs_bsize. 41 * A preference may be optionally specified. If a preference is given 42 * the following hierarchy is used to allocate a block: 43 * 1) allocate the requested block. 44 * 2) allocate a rotationally optimal block in the same cylinder. 45 * 3) allocate a block in the same cylinder group. 46 * 4) quadradically rehash into other cylinder groups, until an 47 * available block is located. 48 * If no block preference is given the following heirarchy is used 49 * to allocate a block: 50 * 1) allocate a block in the cylinder group that contains the 51 * inode for the file. 52 * 2) quadradically rehash into other cylinder groups, until an 53 * available block is located. 54 */ 55 ffs_alloc(ip, lbn, bpref, size, bnp) 56 register struct inode *ip; 57 daddr_t lbn, bpref; 58 int size; 59 daddr_t *bnp; 60 { 61 daddr_t bno; 62 register struct fs *fs; 63 register struct buf *bp; 64 int cg, error; 65 struct ucred *cred = curproc->p_ucred; /* XXX */ 66 67 *bnp = 0; 68 fs = ip->i_fs; 69 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 70 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 71 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 72 panic("ffs_alloc: bad size"); 73 } 74 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 75 goto nospace; 76 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 77 goto nospace; 78 #ifdef QUOTA 79 if (error = chkdq(ip, (long)btodb(size), cred, 0)) 80 return (error); 81 #endif 82 if (bpref >= fs->fs_size) 83 bpref = 0; 84 if (bpref == 0) 85 cg = itog(fs, ip->i_number); 86 else 87 cg = dtog(fs, bpref); 88 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, 89 (u_long (*)())ffs_alloccg); 90 if (bno > 0) { 91 ip->i_blocks += btodb(size); 92 ip->i_flag |= IUPD|ICHG; 93 *bnp = bno; 94 return (0); 95 } 96 #ifdef QUOTA 97 /* 98 * Restore user's disk quota because allocation failed. 99 */ 100 (void) chkdq(ip, (long)-btodb(size), cred, FORCE); 101 #endif 102 nospace: 103 ffs_fserr(fs, cred->cr_uid, "file system full"); 104 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 105 return (ENOSPC); 106 } 107 108 /* 109 * Reallocate a fragment to a bigger size 110 * 111 * The number and size of the old block is given, and a preference 112 * and new size is also specified. The allocator attempts to extend 113 * the original block. Failing that, the regular block allocator is 114 * invoked to get an appropriate block. 115 */ 116 ffs_realloccg(ip, lbprev, bpref, osize, nsize, bpp) 117 register struct inode *ip; 118 off_t lbprev; 119 daddr_t bpref; 120 int osize, nsize; 121 struct buf **bpp; 122 { 123 register struct fs *fs; 124 struct buf *bp, *obp; 125 int cg, request, error; 126 daddr_t bprev, bno; 127 struct ucred *cred = curproc->p_ucred; /* XXX */ 128 129 *bpp = 0; 130 fs = ip->i_fs; 131 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 132 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 133 printf( 134 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 135 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 136 panic("ffs_realloccg: bad size"); 137 } 138 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 139 goto nospace; 140 if ((bprev = ip->i_db[lbprev]) == 0) { 141 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 142 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 143 panic("ffs_realloccg: bad bprev"); 144 } 145 /* 146 * Allocate the extra space in the buffer. 147 */ 148 if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) { 149 brelse(bp); 150 return (error); 151 } 152 #ifdef QUOTA 153 if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) { 154 brelse(bp); 155 return (error); 156 } 157 #endif 158 /* 159 * Check for extension in the existing location. 160 */ 161 cg = dtog(fs, bprev); 162 if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) { 163 if (bp->b_blkno != fsbtodb(fs, bno)) 164 panic("bad blockno"); 165 ip->i_blocks += btodb(nsize - osize); 166 ip->i_flag |= IUPD|ICHG; 167 allocbuf(bp, nsize); 168 bp->b_flags |= B_DONE; 169 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 170 *bpp = bp; 171 return (0); 172 } 173 /* 174 * Allocate a new disk location. 175 */ 176 if (bpref >= fs->fs_size) 177 bpref = 0; 178 switch ((int)fs->fs_optim) { 179 case FS_OPTSPACE: 180 /* 181 * Allocate an exact sized fragment. Although this makes 182 * best use of space, we will waste time relocating it if 183 * the file continues to grow. If the fragmentation is 184 * less than half of the minimum free reserve, we choose 185 * to begin optimizing for time. 186 */ 187 request = nsize; 188 if (fs->fs_minfree < 5 || 189 fs->fs_cstotal.cs_nffree > 190 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 191 break; 192 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 193 fs->fs_fsmnt); 194 fs->fs_optim = FS_OPTTIME; 195 break; 196 case FS_OPTTIME: 197 /* 198 * At this point we have discovered a file that is trying to 199 * grow a small fragment to a larger fragment. To save time, 200 * we allocate a full sized block, then free the unused portion. 201 * If the file continues to grow, the `ffs_fragextend' call 202 * above will be able to grow it in place without further 203 * copying. If aberrant programs cause disk fragmentation to 204 * grow within 2% of the free reserve, we choose to begin 205 * optimizing for space. 206 */ 207 request = fs->fs_bsize; 208 if (fs->fs_cstotal.cs_nffree < 209 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 210 break; 211 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 212 fs->fs_fsmnt); 213 fs->fs_optim = FS_OPTSPACE; 214 break; 215 default: 216 printf("dev = 0x%x, optim = %d, fs = %s\n", 217 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 218 panic("ffs_realloccg: bad optim"); 219 /* NOTREACHED */ 220 } 221 bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request, 222 (u_long (*)())ffs_alloccg); 223 if (bno > 0) { 224 bp->b_blkno = fsbtodb(fs, bno); 225 (void) vnode_pager_uncache(ITOV(ip)); 226 ffs_blkfree(ip, bprev, (off_t)osize); 227 if (nsize < request) 228 ffs_blkfree(ip, bno + numfrags(fs, nsize), 229 (off_t)(request - nsize)); 230 ip->i_blocks += btodb(nsize - osize); 231 ip->i_flag |= IUPD|ICHG; 232 allocbuf(bp, nsize); 233 bp->b_flags |= B_DONE; 234 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 235 *bpp = bp; 236 return (0); 237 } 238 #ifdef QUOTA 239 /* 240 * Restore user's disk quota because allocation failed. 241 */ 242 (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); 243 #endif 244 brelse(bp); 245 nospace: 246 /* 247 * no space available 248 */ 249 ffs_fserr(fs, cred->cr_uid, "file system full"); 250 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 251 return (ENOSPC); 252 } 253 254 /* 255 * Allocate an inode in the file system. 256 * 257 * If allocating a directory, use ffs_dirpref to select the inode. 258 * If allocating in a directory, the following hierarchy is followed: 259 * 1) allocate the preferred inode. 260 * 2) allocate an inode in the same cylinder group. 261 * 3) quadradically rehash into other cylinder groups, until an 262 * available inode is located. 263 * If no inode preference is given the following heirarchy is used 264 * to allocate an inode: 265 * 1) allocate an inode in cylinder group 0. 266 * 2) quadradically rehash into other cylinder groups, until an 267 * available inode is located. 268 */ 269 ffs_ialloc(pip, mode, cred, ipp) 270 register struct inode *pip; 271 int mode; 272 struct ucred *cred; 273 struct inode **ipp; 274 { 275 register struct fs *fs; 276 register struct inode *ip; 277 ino_t ino, ipref; 278 int cg, error; 279 280 *ipp = NULL; 281 fs = pip->i_fs; 282 if (fs->fs_cstotal.cs_nifree == 0) 283 goto noinodes; 284 285 if ((mode & IFMT) == IFDIR) 286 ipref = ffs_dirpref(pip->i_fs); 287 else 288 ipref = pip->i_number; 289 if (ipref >= fs->fs_ncg * fs->fs_ipg) 290 ipref = 0; 291 cg = itog(fs, ipref); 292 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_ialloccg); 293 if (ino == 0) 294 goto noinodes; 295 error = ffs_iget(pip, ino, ipp); 296 if (error) { 297 ffs_ifree(pip, ino, mode); /* XXX already freed? */ 298 return (error); 299 } 300 ip = *ipp; 301 if (ip->i_mode) { 302 printf("mode = 0%o, inum = %d, fs = %s\n", 303 ip->i_mode, ip->i_number, fs->fs_fsmnt); 304 panic("ffs_ialloc: dup alloc"); 305 } 306 if (ip->i_blocks) { /* XXX */ 307 printf("free inode %s/%d had %d blocks\n", 308 fs->fs_fsmnt, ino, ip->i_blocks); 309 ip->i_blocks = 0; 310 } 311 ip->i_flags = 0; 312 /* 313 * Set up a new generation number for this inode. 314 */ 315 if (++nextgennumber < (u_long)time.tv_sec) 316 nextgennumber = time.tv_sec; 317 ip->i_gen = nextgennumber; 318 return (0); 319 noinodes: 320 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 321 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 322 return (ENOSPC); 323 } 324 325 /* 326 * Find a cylinder to place a directory. 327 * 328 * The policy implemented by this algorithm is to select from 329 * among those cylinder groups with above the average number of 330 * free inodes, the one with the smallest number of directories. 331 */ 332 static ino_t 333 ffs_dirpref(fs) 334 register struct fs *fs; 335 { 336 int cg, minndir, mincg, avgifree; 337 338 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 339 minndir = fs->fs_ipg; 340 mincg = 0; 341 for (cg = 0; cg < fs->fs_ncg; cg++) 342 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 343 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 344 mincg = cg; 345 minndir = fs->fs_cs(fs, cg).cs_ndir; 346 } 347 return ((ino_t)(fs->fs_ipg * mincg)); 348 } 349 350 /* 351 * Select the desired position for the next block in a file. The file is 352 * logically divided into sections. The first section is composed of the 353 * direct blocks. Each additional section contains fs_maxbpg blocks. 354 * 355 * If no blocks have been allocated in the first section, the policy is to 356 * request a block in the same cylinder group as the inode that describes 357 * the file. If no blocks have been allocated in any other section, the 358 * policy is to place the section in a cylinder group with a greater than 359 * average number of free blocks. An appropriate cylinder group is found 360 * by using a rotor that sweeps the cylinder groups. When a new group of 361 * blocks is needed, the sweep begins in the cylinder group following the 362 * cylinder group from which the previous allocation was made. The sweep 363 * continues until a cylinder group with greater than the average number 364 * of free blocks is found. If the allocation is for the first block in an 365 * indirect block, the information on the previous allocation is unavailable; 366 * here a best guess is made based upon the logical block number being 367 * allocated. 368 * 369 * If a section is already partially allocated, the policy is to 370 * contiguously allocate fs_maxcontig blocks. The end of one of these 371 * contiguous blocks and the beginning of the next is physically separated 372 * so that the disk head will be in transit between them for at least 373 * fs_rotdelay milliseconds. This is to allow time for the processor to 374 * schedule another I/O transfer. 375 */ 376 daddr_t 377 ffs_blkpref(ip, lbn, indx, bap) 378 struct inode *ip; 379 daddr_t lbn; 380 int indx; 381 daddr_t *bap; 382 { 383 register struct fs *fs; 384 register int cg; 385 int avgbfree, startcg; 386 daddr_t nextblk; 387 388 fs = ip->i_fs; 389 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 390 if (lbn < NDADDR) { 391 cg = itog(fs, ip->i_number); 392 return (fs->fs_fpg * cg + fs->fs_frag); 393 } 394 /* 395 * Find a cylinder with greater than average number of 396 * unused data blocks. 397 */ 398 if (indx == 0 || bap[indx - 1] == 0) 399 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 400 else 401 startcg = dtog(fs, bap[indx - 1]) + 1; 402 startcg %= fs->fs_ncg; 403 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 404 for (cg = startcg; cg < fs->fs_ncg; cg++) 405 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 406 fs->fs_cgrotor = cg; 407 return (fs->fs_fpg * cg + fs->fs_frag); 408 } 409 for (cg = 0; cg <= startcg; cg++) 410 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 411 fs->fs_cgrotor = cg; 412 return (fs->fs_fpg * cg + fs->fs_frag); 413 } 414 return (NULL); 415 } 416 /* 417 * One or more previous blocks have been laid out. If less 418 * than fs_maxcontig previous blocks are contiguous, the 419 * next block is requested contiguously, otherwise it is 420 * requested rotationally delayed by fs_rotdelay milliseconds. 421 */ 422 nextblk = bap[indx - 1] + fs->fs_frag; 423 if (indx > fs->fs_maxcontig && 424 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 425 != nextblk) 426 return (nextblk); 427 if (fs->fs_rotdelay != 0) 428 /* 429 * Here we convert ms of delay to frags as: 430 * (frags) = (ms) * (rev/sec) * (sect/rev) / 431 * ((sect/frag) * (ms/sec)) 432 * then round up to the next block. 433 */ 434 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 435 (NSPF(fs) * 1000), fs->fs_frag); 436 return (nextblk); 437 } 438 439 /* 440 * Implement the cylinder overflow algorithm. 441 * 442 * The policy implemented by this algorithm is: 443 * 1) allocate the block in its requested cylinder group. 444 * 2) quadradically rehash on the cylinder group number. 445 * 3) brute force search for a free block. 446 */ 447 /*VARARGS5*/ 448 static u_long 449 ffs_hashalloc(ip, cg, pref, size, allocator) 450 struct inode *ip; 451 int cg; 452 long pref; 453 int size; /* size for data blocks, mode for inodes */ 454 u_long (*allocator)(); 455 { 456 register struct fs *fs; 457 long result; 458 int i, icg = cg; 459 460 fs = ip->i_fs; 461 /* 462 * 1: preferred cylinder group 463 */ 464 result = (*allocator)(ip, cg, pref, size); 465 if (result) 466 return (result); 467 /* 468 * 2: quadratic rehash 469 */ 470 for (i = 1; i < fs->fs_ncg; i *= 2) { 471 cg += i; 472 if (cg >= fs->fs_ncg) 473 cg -= fs->fs_ncg; 474 result = (*allocator)(ip, cg, 0, size); 475 if (result) 476 return (result); 477 } 478 /* 479 * 3: brute force search 480 * Note that we start at i == 2, since 0 was checked initially, 481 * and 1 is always checked in the quadratic rehash. 482 */ 483 cg = (icg + 2) % fs->fs_ncg; 484 for (i = 2; i < fs->fs_ncg; i++) { 485 result = (*allocator)(ip, cg, 0, size); 486 if (result) 487 return (result); 488 cg++; 489 if (cg == fs->fs_ncg) 490 cg = 0; 491 } 492 return (NULL); 493 } 494 495 /* 496 * Determine whether a fragment can be extended. 497 * 498 * Check to see if the necessary fragments are available, and 499 * if they are, allocate them. 500 */ 501 static daddr_t 502 ffs_fragextend(ip, cg, bprev, osize, nsize) 503 struct inode *ip; 504 int cg; 505 long bprev; 506 int osize, nsize; 507 { 508 register struct fs *fs; 509 register struct cg *cgp; 510 struct buf *bp; 511 long bno; 512 int frags, bbase; 513 int i, error; 514 515 fs = ip->i_fs; 516 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 517 return (NULL); 518 frags = numfrags(fs, nsize); 519 bbase = fragnum(fs, bprev); 520 if (bbase > fragnum(fs, (bprev + frags - 1))) { 521 /* cannot extend across a block boundary */ 522 return (NULL); 523 } 524 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 525 (int)fs->fs_cgsize, NOCRED, &bp); 526 if (error) { 527 brelse(bp); 528 return (NULL); 529 } 530 cgp = bp->b_un.b_cg; 531 if (!cg_chkmagic(cgp)) { 532 brelse(bp); 533 return (NULL); 534 } 535 cgp->cg_time = time.tv_sec; 536 bno = dtogd(fs, bprev); 537 for (i = numfrags(fs, osize); i < frags; i++) 538 if (isclr(cg_blksfree(cgp), bno + i)) { 539 brelse(bp); 540 return (NULL); 541 } 542 /* 543 * the current fragment can be extended 544 * deduct the count on fragment being extended into 545 * increase the count on the remaining fragment (if any) 546 * allocate the extended piece 547 */ 548 for (i = frags; i < fs->fs_frag - bbase; i++) 549 if (isclr(cg_blksfree(cgp), bno + i)) 550 break; 551 cgp->cg_frsum[i - numfrags(fs, osize)]--; 552 if (i != frags) 553 cgp->cg_frsum[i - frags]++; 554 for (i = numfrags(fs, osize); i < frags; i++) { 555 clrbit(cg_blksfree(cgp), bno + i); 556 cgp->cg_cs.cs_nffree--; 557 fs->fs_cstotal.cs_nffree--; 558 fs->fs_cs(fs, cg).cs_nffree--; 559 } 560 fs->fs_fmod = 1; 561 bdwrite(bp); 562 return (bprev); 563 } 564 565 /* 566 * Determine whether a block can be allocated. 567 * 568 * Check to see if a block of the apprpriate size is available, 569 * and if it is, allocate it. 570 */ 571 daddr_t 572 ffs_alloccg(ip, cg, bpref, size) 573 struct inode *ip; 574 int cg; 575 daddr_t bpref; 576 int size; 577 { 578 register struct fs *fs; 579 register struct cg *cgp; 580 struct buf *bp; 581 register int i; 582 int error, bno, frags, allocsiz; 583 584 fs = ip->i_fs; 585 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 586 return (NULL); 587 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 588 (int)fs->fs_cgsize, NOCRED, &bp); 589 if (error) { 590 brelse(bp); 591 return (NULL); 592 } 593 cgp = bp->b_un.b_cg; 594 if (!cg_chkmagic(cgp) || 595 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 596 brelse(bp); 597 return (NULL); 598 } 599 cgp->cg_time = time.tv_sec; 600 if (size == fs->fs_bsize) { 601 bno = ffs_alloccgblk(fs, cgp, bpref); 602 bdwrite(bp); 603 return (bno); 604 } 605 /* 606 * check to see if any fragments are already available 607 * allocsiz is the size which will be allocated, hacking 608 * it down to a smaller size if necessary 609 */ 610 frags = numfrags(fs, size); 611 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 612 if (cgp->cg_frsum[allocsiz] != 0) 613 break; 614 if (allocsiz == fs->fs_frag) { 615 /* 616 * no fragments were available, so a block will be 617 * allocated, and hacked up 618 */ 619 if (cgp->cg_cs.cs_nbfree == 0) { 620 brelse(bp); 621 return (NULL); 622 } 623 bno = ffs_alloccgblk(fs, cgp, bpref); 624 bpref = dtogd(fs, bno); 625 for (i = frags; i < fs->fs_frag; i++) 626 setbit(cg_blksfree(cgp), bpref + i); 627 i = fs->fs_frag - frags; 628 cgp->cg_cs.cs_nffree += i; 629 fs->fs_cstotal.cs_nffree += i; 630 fs->fs_cs(fs, cg).cs_nffree += i; 631 fs->fs_fmod = 1; 632 cgp->cg_frsum[i]++; 633 bdwrite(bp); 634 return (bno); 635 } 636 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 637 if (bno < 0) { 638 brelse(bp); 639 return (NULL); 640 } 641 for (i = 0; i < frags; i++) 642 clrbit(cg_blksfree(cgp), bno + i); 643 cgp->cg_cs.cs_nffree -= frags; 644 fs->fs_cstotal.cs_nffree -= frags; 645 fs->fs_cs(fs, cg).cs_nffree -= frags; 646 fs->fs_fmod = 1; 647 cgp->cg_frsum[allocsiz]--; 648 if (frags != allocsiz) 649 cgp->cg_frsum[allocsiz - frags]++; 650 bdwrite(bp); 651 return (cg * fs->fs_fpg + bno); 652 } 653 654 /* 655 * Allocate a block in a cylinder group. 656 * 657 * This algorithm implements the following policy: 658 * 1) allocate the requested block. 659 * 2) allocate a rotationally optimal block in the same cylinder. 660 * 3) allocate the next available block on the block rotor for the 661 * specified cylinder group. 662 * Note that this routine only allocates fs_bsize blocks; these 663 * blocks may be fragmented by the routine that allocates them. 664 */ 665 static daddr_t 666 ffs_alloccgblk(fs, cgp, bpref) 667 register struct fs *fs; 668 register struct cg *cgp; 669 daddr_t bpref; 670 { 671 daddr_t bno; 672 int cylno, pos, delta; 673 short *cylbp; 674 register int i; 675 676 if (bpref == 0) { 677 bpref = cgp->cg_rotor; 678 goto norot; 679 } 680 bpref = blknum(fs, bpref); 681 bpref = dtogd(fs, bpref); 682 /* 683 * if the requested block is available, use it 684 */ 685 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 686 bno = bpref; 687 goto gotit; 688 } 689 /* 690 * check for a block available on the same cylinder 691 */ 692 cylno = cbtocylno(fs, bpref); 693 if (cg_blktot(cgp)[cylno] == 0) 694 goto norot; 695 if (fs->fs_cpc == 0) { 696 /* 697 * block layout info is not available, so just have 698 * to take any block in this cylinder. 699 */ 700 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 701 goto norot; 702 } 703 /* 704 * check the summary information to see if a block is 705 * available in the requested cylinder starting at the 706 * requested rotational position and proceeding around. 707 */ 708 cylbp = cg_blks(fs, cgp, cylno); 709 pos = cbtorpos(fs, bpref); 710 for (i = pos; i < fs->fs_nrpos; i++) 711 if (cylbp[i] > 0) 712 break; 713 if (i == fs->fs_nrpos) 714 for (i = 0; i < pos; i++) 715 if (cylbp[i] > 0) 716 break; 717 if (cylbp[i] > 0) { 718 /* 719 * found a rotational position, now find the actual 720 * block. A panic if none is actually there. 721 */ 722 pos = cylno % fs->fs_cpc; 723 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 724 if (fs_postbl(fs, pos)[i] == -1) { 725 printf("pos = %d, i = %d, fs = %s\n", 726 pos, i, fs->fs_fsmnt); 727 panic("ffs_alloccgblk: cyl groups corrupted"); 728 } 729 for (i = fs_postbl(fs, pos)[i];; ) { 730 if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { 731 bno = blkstofrags(fs, (bno + i)); 732 goto gotit; 733 } 734 delta = fs_rotbl(fs)[i]; 735 if (delta <= 0 || 736 delta + i > fragstoblks(fs, fs->fs_fpg)) 737 break; 738 i += delta; 739 } 740 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 741 panic("ffs_alloccgblk: can't find blk in cyl"); 742 } 743 norot: 744 /* 745 * no blocks in the requested cylinder, so take next 746 * available one in this cylinder group. 747 */ 748 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 749 if (bno < 0) 750 return (NULL); 751 cgp->cg_rotor = bno; 752 gotit: 753 ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 754 cgp->cg_cs.cs_nbfree--; 755 fs->fs_cstotal.cs_nbfree--; 756 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 757 cylno = cbtocylno(fs, bno); 758 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 759 cg_blktot(cgp)[cylno]--; 760 fs->fs_fmod = 1; 761 return (cgp->cg_cgx * fs->fs_fpg + bno); 762 } 763 764 /* 765 * Determine whether an inode can be allocated. 766 * 767 * Check to see if an inode is available, and if it is, 768 * allocate it using the following policy: 769 * 1) allocate the requested inode. 770 * 2) allocate the next available inode after the requested 771 * inode in the specified cylinder group. 772 */ 773 static ino_t 774 ffs_ialloccg(ip, cg, ipref, mode) 775 struct inode *ip; 776 int cg; 777 daddr_t ipref; 778 int mode; 779 { 780 register struct fs *fs; 781 register struct cg *cgp; 782 struct buf *bp; 783 int error, start, len, loc, map, i; 784 785 fs = ip->i_fs; 786 if (fs->fs_cs(fs, cg).cs_nifree == 0) 787 return (NULL); 788 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 789 (int)fs->fs_cgsize, NOCRED, &bp); 790 if (error) { 791 brelse(bp); 792 return (NULL); 793 } 794 cgp = bp->b_un.b_cg; 795 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 796 brelse(bp); 797 return (NULL); 798 } 799 cgp->cg_time = time.tv_sec; 800 if (ipref) { 801 ipref %= fs->fs_ipg; 802 if (isclr(cg_inosused(cgp), ipref)) 803 goto gotit; 804 } 805 start = cgp->cg_irotor / NBBY; 806 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 807 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 808 if (loc == 0) { 809 len = start + 1; 810 start = 0; 811 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 812 if (loc == 0) { 813 printf("cg = %s, irotor = %d, fs = %s\n", 814 cg, cgp->cg_irotor, fs->fs_fsmnt); 815 panic("ffs_ialloccg: map corrupted"); 816 /* NOTREACHED */ 817 } 818 } 819 i = start + len - loc; 820 map = cg_inosused(cgp)[i]; 821 ipref = i * NBBY; 822 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 823 if ((map & i) == 0) { 824 cgp->cg_irotor = ipref; 825 goto gotit; 826 } 827 } 828 printf("fs = %s\n", fs->fs_fsmnt); 829 panic("ffs_ialloccg: block not in map"); 830 /* NOTREACHED */ 831 gotit: 832 setbit(cg_inosused(cgp), ipref); 833 cgp->cg_cs.cs_nifree--; 834 fs->fs_cstotal.cs_nifree--; 835 fs->fs_cs(fs, cg).cs_nifree--; 836 fs->fs_fmod = 1; 837 if ((mode & IFMT) == IFDIR) { 838 cgp->cg_cs.cs_ndir++; 839 fs->fs_cstotal.cs_ndir++; 840 fs->fs_cs(fs, cg).cs_ndir++; 841 } 842 bdwrite(bp); 843 return (cg * fs->fs_ipg + ipref); 844 } 845 846 /* 847 * Free a block or fragment. 848 * 849 * The specified block or fragment is placed back in the 850 * free map. If a fragment is deallocated, a possible 851 * block reassembly is checked. 852 */ 853 ffs_blkfree(ip, bno, size) 854 register struct inode *ip; 855 daddr_t bno; 856 off_t size; 857 { 858 register struct fs *fs; 859 register struct cg *cgp; 860 struct buf *bp; 861 int error, cg, blk, frags, bbase; 862 register int i; 863 struct ucred *cred = curproc->p_ucred; /* XXX */ 864 865 fs = ip->i_fs; 866 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 867 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 868 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 869 panic("blkfree: bad size"); 870 } 871 cg = dtog(fs, bno); 872 if ((unsigned)bno >= fs->fs_size) { 873 printf("bad block %d, ino %d\n", bno, ip->i_number); 874 ffs_fserr(fs, cred->cr_uid, "bad block"); 875 return; 876 } 877 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 878 (int)fs->fs_cgsize, NOCRED, &bp); 879 if (error) { 880 brelse(bp); 881 return; 882 } 883 cgp = bp->b_un.b_cg; 884 if (!cg_chkmagic(cgp)) { 885 brelse(bp); 886 return; 887 } 888 cgp->cg_time = time.tv_sec; 889 bno = dtogd(fs, bno); 890 if (size == fs->fs_bsize) { 891 if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 892 printf("dev = 0x%x, block = %d, fs = %s\n", 893 ip->i_dev, bno, fs->fs_fsmnt); 894 panic("blkfree: freeing free block"); 895 } 896 ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 897 cgp->cg_cs.cs_nbfree++; 898 fs->fs_cstotal.cs_nbfree++; 899 fs->fs_cs(fs, cg).cs_nbfree++; 900 i = cbtocylno(fs, bno); 901 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 902 cg_blktot(cgp)[i]++; 903 } else { 904 bbase = bno - fragnum(fs, bno); 905 /* 906 * decrement the counts associated with the old frags 907 */ 908 blk = blkmap(fs, cg_blksfree(cgp), bbase); 909 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 910 /* 911 * deallocate the fragment 912 */ 913 frags = numfrags(fs, size); 914 for (i = 0; i < frags; i++) { 915 if (isset(cg_blksfree(cgp), bno + i)) { 916 printf("dev = 0x%x, block = %d, fs = %s\n", 917 ip->i_dev, bno + i, fs->fs_fsmnt); 918 panic("blkfree: freeing free frag"); 919 } 920 setbit(cg_blksfree(cgp), bno + i); 921 } 922 cgp->cg_cs.cs_nffree += i; 923 fs->fs_cstotal.cs_nffree += i; 924 fs->fs_cs(fs, cg).cs_nffree += i; 925 /* 926 * add back in counts associated with the new frags 927 */ 928 blk = blkmap(fs, cg_blksfree(cgp), bbase); 929 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 930 /* 931 * if a complete block has been reassembled, account for it 932 */ 933 if (ffs_isblock(fs, cg_blksfree(cgp), 934 (daddr_t)fragstoblks(fs, bbase))) { 935 cgp->cg_cs.cs_nffree -= fs->fs_frag; 936 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 937 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 938 cgp->cg_cs.cs_nbfree++; 939 fs->fs_cstotal.cs_nbfree++; 940 fs->fs_cs(fs, cg).cs_nbfree++; 941 i = cbtocylno(fs, bbase); 942 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 943 cg_blktot(cgp)[i]++; 944 } 945 } 946 fs->fs_fmod = 1; 947 bdwrite(bp); 948 } 949 950 /* 951 * Free an inode. 952 * 953 * The specified inode is placed back in the free map. 954 */ 955 void 956 ffs_ifree(pip, ino, mode) 957 struct inode *pip; 958 ino_t ino; 959 int mode; 960 { 961 register struct fs *fs; 962 register struct cg *cgp; 963 struct buf *bp; 964 int error, cg; 965 966 fs = pip->i_fs; 967 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 968 panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n", 969 pip->i_dev, ino, fs->fs_fsmnt); 970 cg = itog(fs, ino); 971 error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 972 (int)fs->fs_cgsize, NOCRED, &bp); 973 if (error) { 974 brelse(bp); 975 return; 976 } 977 cgp = bp->b_un.b_cg; 978 if (!cg_chkmagic(cgp)) { 979 brelse(bp); 980 return; 981 } 982 cgp->cg_time = time.tv_sec; 983 ino %= fs->fs_ipg; 984 if (isclr(cg_inosused(cgp), ino)) { 985 printf("dev = 0x%x, ino = %d, fs = %s\n", 986 pip->i_dev, ino, fs->fs_fsmnt); 987 if (fs->fs_ronly == 0) 988 panic("ifree: freeing free inode"); 989 } 990 clrbit(cg_inosused(cgp), ino); 991 if (ino < cgp->cg_irotor) 992 cgp->cg_irotor = ino; 993 cgp->cg_cs.cs_nifree++; 994 fs->fs_cstotal.cs_nifree++; 995 fs->fs_cs(fs, cg).cs_nifree++; 996 if ((mode & IFMT) == IFDIR) { 997 cgp->cg_cs.cs_ndir--; 998 fs->fs_cstotal.cs_ndir--; 999 fs->fs_cs(fs, cg).cs_ndir--; 1000 } 1001 fs->fs_fmod = 1; 1002 bdwrite(bp); 1003 } 1004 1005 /* 1006 * Find a block of the specified size in the specified cylinder group. 1007 * 1008 * It is a panic if a request is made to find a block if none are 1009 * available. 1010 */ 1011 static daddr_t 1012 ffs_mapsearch(fs, cgp, bpref, allocsiz) 1013 register struct fs *fs; 1014 register struct cg *cgp; 1015 daddr_t bpref; 1016 int allocsiz; 1017 { 1018 daddr_t bno; 1019 int start, len, loc, i; 1020 int blk, field, subfield, pos; 1021 1022 /* 1023 * find the fragment by searching through the free block 1024 * map for an appropriate bit pattern 1025 */ 1026 if (bpref) 1027 start = dtogd(fs, bpref) / NBBY; 1028 else 1029 start = cgp->cg_frotor / NBBY; 1030 len = howmany(fs->fs_fpg, NBBY) - start; 1031 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1032 (u_char *)fragtbl[fs->fs_frag], 1033 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1034 if (loc == 0) { 1035 len = start + 1; 1036 start = 0; 1037 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1038 (u_char *)fragtbl[fs->fs_frag], 1039 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1040 if (loc == 0) { 1041 printf("start = %d, len = %d, fs = %s\n", 1042 start, len, fs->fs_fsmnt); 1043 panic("ffs_alloccg: map corrupted"); 1044 /* NOTREACHED */ 1045 } 1046 } 1047 bno = (start + len - loc) * NBBY; 1048 cgp->cg_frotor = bno; 1049 /* 1050 * found the byte in the map 1051 * sift through the bits to find the selected frag 1052 */ 1053 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1054 blk = blkmap(fs, cg_blksfree(cgp), bno); 1055 blk <<= 1; 1056 field = around[allocsiz]; 1057 subfield = inside[allocsiz]; 1058 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1059 if ((blk & field) == subfield) 1060 return (bno + pos); 1061 field <<= 1; 1062 subfield <<= 1; 1063 } 1064 } 1065 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1066 panic("ffs_alloccg: block not in map"); 1067 return (-1); 1068 } 1069 1070 /* 1071 * Fserr prints the name of a file system with an error diagnostic. 1072 * 1073 * The form of the error message is: 1074 * fs: error message 1075 */ 1076 static void 1077 ffs_fserr(fs, uid, cp) 1078 struct fs *fs; 1079 u_int uid; 1080 char *cp; 1081 { 1082 1083 log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); 1084 } 1085