1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * @(#)ffs_alloc.c 7.12 (Berkeley) 11/12/89 18 */ 19 20 #include "param.h" 21 #include "systm.h" 22 #include "mount.h" 23 #include "buf.h" 24 #include "user.h" 25 #include "vnode.h" 26 #include "kernel.h" 27 #include "syslog.h" 28 #include "cmap.h" 29 #include "../ufs/quota.h" 30 #include "../ufs/inode.h" 31 #include "../ufs/fs.h" 32 33 extern u_long hashalloc(); 34 extern ino_t ialloccg(); 35 extern daddr_t alloccg(); 36 extern daddr_t alloccgblk(); 37 extern daddr_t fragextend(); 38 extern daddr_t blkpref(); 39 extern daddr_t mapsearch(); 40 extern int inside[], around[]; 41 extern unsigned char *fragtbl[]; 42 43 /* 44 * Allocate a block in the file system. 45 * 46 * The size of the requested block is given, which must be some 47 * multiple of fs_fsize and <= fs_bsize. 48 * A preference may be optionally specified. If a preference is given 49 * the following hierarchy is used to allocate a block: 50 * 1) allocate the requested block. 51 * 2) allocate a rotationally optimal block in the same cylinder. 52 * 3) allocate a block in the same cylinder group. 53 * 4) quadradically rehash into other cylinder groups, until an 54 * available block is located. 55 * If no block preference is given the following heirarchy is used 56 * to allocate a block: 57 * 1) allocate a block in the cylinder group that contains the 58 * inode for the file. 59 * 2) quadradically rehash into other cylinder groups, until an 60 * available block is located. 61 */ 62 alloc(ip, bpref, size, bpp, flags) 63 register struct inode *ip; 64 daddr_t bpref; 65 int size; 66 struct buf **bpp; 67 int flags; 68 { 69 daddr_t bno; 70 register struct fs *fs; 71 register struct buf *bp; 72 int cg, error; 73 74 *bpp = 0; 75 fs = ip->i_fs; 76 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 77 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 78 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 79 panic("alloc: bad size"); 80 } 81 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 82 goto nospace; 83 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 84 goto nospace; 85 #ifdef QUOTA 86 if (error = chkdq(ip, (long)btodb(size), 0)) 87 return (error); 88 #endif 89 if (bpref >= fs->fs_size) 90 bpref = 0; 91 if (bpref == 0) 92 cg = itog(fs, ip->i_number); 93 else 94 cg = dtog(fs, bpref); 95 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 96 (u_long (*)())alloccg); 97 if (bno <= 0) 98 goto nospace; 99 ip->i_blocks += btodb(size); 100 ip->i_flag |= IUPD|ICHG; 101 bp = getblk(ip->i_devvp, fsbtodb(fs, bno), size); 102 if (flags & B_CLRBUF) 103 clrbuf(bp); 104 *bpp = bp; 105 return (0); 106 nospace: 107 fserr(fs, "file system full"); 108 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 109 return (ENOSPC); 110 } 111 112 /* 113 * Reallocate a fragment to a bigger size 114 * 115 * The number and size of the old block is given, and a preference 116 * and new size is also specified. The allocator attempts to extend 117 * the original block. Failing that, the regular block allocator is 118 * invoked to get an appropriate block. 119 */ 120 realloccg(ip, bprev, bpref, osize, nsize, bpp) 121 register struct inode *ip; 122 daddr_t bprev, bpref; 123 int osize, nsize; 124 struct buf **bpp; 125 { 126 register struct fs *fs; 127 struct buf *bp, *obp; 128 int cg, request; 129 daddr_t bno, bn; 130 int i, error, count; 131 132 *bpp = 0; 133 fs = ip->i_fs; 134 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 135 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 136 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 137 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 138 panic("realloccg: bad size"); 139 } 140 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 141 goto nospace; 142 if (bprev == 0) { 143 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 144 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 145 panic("realloccg: bad bprev"); 146 } 147 #ifdef QUOTA 148 if (error = chkdq(ip, (long)btodb(nsize - osize), 0)) 149 return (error); 150 #endif 151 cg = dtog(fs, bprev); 152 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 153 if (bno != 0) { 154 do { 155 error = bread(ip->i_devvp, fsbtodb(fs, bno), 156 osize, NOCRED, &bp); 157 if (error) { 158 brelse(bp); 159 return (error); 160 } 161 } while (brealloc(bp, nsize) == 0); 162 bp->b_flags |= B_DONE; 163 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 164 ip->i_blocks += btodb(nsize - osize); 165 ip->i_flag |= IUPD|ICHG; 166 *bpp = bp; 167 return (0); 168 } 169 if (bpref >= fs->fs_size) 170 bpref = 0; 171 switch ((int)fs->fs_optim) { 172 case FS_OPTSPACE: 173 /* 174 * Allocate an exact sized fragment. Although this makes 175 * best use of space, we will waste time relocating it if 176 * the file continues to grow. If the fragmentation is 177 * less than half of the minimum free reserve, we choose 178 * to begin optimizing for time. 179 */ 180 request = nsize; 181 if (fs->fs_minfree < 5 || 182 fs->fs_cstotal.cs_nffree > 183 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 184 break; 185 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 186 fs->fs_fsmnt); 187 fs->fs_optim = FS_OPTTIME; 188 break; 189 case FS_OPTTIME: 190 /* 191 * At this point we have discovered a file that is trying 192 * to grow a small fragment to a larger fragment. To save 193 * time, we allocate a full sized block, then free the 194 * unused portion. If the file continues to grow, the 195 * `fragextend' call above will be able to grow it in place 196 * without further copying. If aberrant programs cause 197 * disk fragmentation to grow within 2% of the free reserve, 198 * we choose to begin optimizing for space. 199 */ 200 request = fs->fs_bsize; 201 if (fs->fs_cstotal.cs_nffree < 202 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 203 break; 204 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 205 fs->fs_fsmnt); 206 fs->fs_optim = FS_OPTSPACE; 207 break; 208 default: 209 printf("dev = 0x%x, optim = %d, fs = %s\n", 210 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 211 panic("realloccg: bad optim"); 212 /* NOTREACHED */ 213 } 214 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 215 (u_long (*)())alloccg); 216 if (bno > 0) { 217 error = bread(ip->i_devvp, fsbtodb(fs, bprev), 218 osize, NOCRED, &obp); 219 if (error) { 220 brelse(obp); 221 return (error); 222 } 223 bn = fsbtodb(fs, bno); 224 bp = getblk(ip->i_devvp, bn, nsize); 225 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 226 count = howmany(osize, CLBYTES); 227 for (i = 0; i < count; i++) 228 munhash(ip->i_devvp, bn + i * CLBYTES / DEV_BSIZE); 229 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 230 if (obp->b_flags & B_DELWRI) { 231 obp->b_flags &= ~B_DELWRI; 232 u.u_ru.ru_oublock--; /* delete charge */ 233 } 234 brelse(obp); 235 blkfree(ip, bprev, (off_t)osize); 236 if (nsize < request) 237 blkfree(ip, bno + numfrags(fs, nsize), 238 (off_t)(request - nsize)); 239 ip->i_blocks += btodb(nsize - osize); 240 ip->i_flag |= IUPD|ICHG; 241 *bpp = bp; 242 return (0); 243 } 244 nospace: 245 /* 246 * no space available 247 */ 248 fserr(fs, "file system full"); 249 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 250 return (ENOSPC); 251 } 252 253 /* 254 * Allocate an inode in the file system. 255 * 256 * A preference may be optionally specified. If a preference is given 257 * the following hierarchy is used to allocate an inode: 258 * 1) allocate the requested inode. 259 * 2) allocate an inode in the same cylinder group. 260 * 3) quadradically rehash into other cylinder groups, until an 261 * available inode is located. 262 * If no inode preference is given the following heirarchy is used 263 * to allocate an inode: 264 * 1) allocate an inode in cylinder group 0. 265 * 2) quadradically rehash into other cylinder groups, until an 266 * available inode is located. 267 */ 268 ialloc(pip, ipref, mode, ipp) 269 register struct inode *pip; 270 ino_t ipref; 271 int mode; 272 struct inode **ipp; 273 { 274 ino_t ino; 275 register struct fs *fs; 276 register struct inode *ip; 277 int cg, error; 278 279 *ipp = 0; 280 fs = pip->i_fs; 281 if (fs->fs_cstotal.cs_nifree == 0) 282 goto noinodes; 283 #ifdef QUOTA 284 if (error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0)) 285 return (error); 286 #endif 287 if (ipref >= fs->fs_ncg * fs->fs_ipg) 288 ipref = 0; 289 cg = itog(fs, ipref); 290 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 291 if (ino == 0) 292 goto noinodes; 293 error = iget(pip, ino, ipp); 294 if (error) { 295 ifree(pip, ino, 0); 296 return (error); 297 } 298 ip = *ipp; 299 if (ip->i_mode) { 300 printf("mode = 0%o, inum = %d, fs = %s\n", 301 ip->i_mode, ip->i_number, fs->fs_fsmnt); 302 panic("ialloc: dup alloc"); 303 } 304 if (ip->i_blocks) { /* XXX */ 305 printf("free inode %s/%d had %d blocks\n", 306 fs->fs_fsmnt, ino, ip->i_blocks); 307 ip->i_blocks = 0; 308 } 309 ip->i_flags = 0; 310 /* 311 * Set up a new generation number for this inode. 312 */ 313 if (++nextgennumber < (u_long)time.tv_sec) 314 nextgennumber = time.tv_sec; 315 ip->i_gen = nextgennumber; 316 return (0); 317 noinodes: 318 fserr(fs, "out of inodes"); 319 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 320 return (ENOSPC); 321 } 322 323 /* 324 * Find a cylinder to place a directory. 325 * 326 * The policy implemented by this algorithm is to select from 327 * among those cylinder groups with above the average number of 328 * free inodes, the one with the smallest number of directories. 329 */ 330 ino_t 331 dirpref(fs) 332 register struct fs *fs; 333 { 334 int cg, minndir, mincg, avgifree; 335 336 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 337 minndir = fs->fs_ipg; 338 mincg = 0; 339 for (cg = 0; cg < fs->fs_ncg; cg++) 340 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 341 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 342 mincg = cg; 343 minndir = fs->fs_cs(fs, cg).cs_ndir; 344 } 345 return ((ino_t)(fs->fs_ipg * mincg)); 346 } 347 348 /* 349 * Select the desired position for the next block in a file. The file is 350 * logically divided into sections. The first section is composed of the 351 * direct blocks. Each additional section contains fs_maxbpg blocks. 352 * 353 * If no blocks have been allocated in the first section, the policy is to 354 * request a block in the same cylinder group as the inode that describes 355 * the file. If no blocks have been allocated in any other section, the 356 * policy is to place the section in a cylinder group with a greater than 357 * average number of free blocks. An appropriate cylinder group is found 358 * by using a rotor that sweeps the cylinder groups. When a new group of 359 * blocks is needed, the sweep begins in the cylinder group following the 360 * cylinder group from which the previous allocation was made. The sweep 361 * continues until a cylinder group with greater than the average number 362 * of free blocks is found. If the allocation is for the first block in an 363 * indirect block, the information on the previous allocation is unavailable; 364 * here a best guess is made based upon the logical block number being 365 * allocated. 366 * 367 * If a section is already partially allocated, the policy is to 368 * contiguously allocate fs_maxcontig blocks. The end of one of these 369 * contiguous blocks and the beginning of the next is physically separated 370 * so that the disk head will be in transit between them for at least 371 * fs_rotdelay milliseconds. This is to allow time for the processor to 372 * schedule another I/O transfer. 373 */ 374 daddr_t 375 blkpref(ip, lbn, indx, bap) 376 struct inode *ip; 377 daddr_t lbn; 378 int indx; 379 daddr_t *bap; 380 { 381 register struct fs *fs; 382 register int cg; 383 int avgbfree, startcg; 384 daddr_t nextblk; 385 386 fs = ip->i_fs; 387 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 388 if (lbn < NDADDR) { 389 cg = itog(fs, ip->i_number); 390 return (fs->fs_fpg * cg + fs->fs_frag); 391 } 392 /* 393 * Find a cylinder with greater than average number of 394 * unused data blocks. 395 */ 396 if (indx == 0 || bap[indx - 1] == 0) 397 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 398 else 399 startcg = dtog(fs, bap[indx - 1]) + 1; 400 startcg %= fs->fs_ncg; 401 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 402 for (cg = startcg; cg < fs->fs_ncg; cg++) 403 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 404 fs->fs_cgrotor = cg; 405 return (fs->fs_fpg * cg + fs->fs_frag); 406 } 407 for (cg = 0; cg <= startcg; cg++) 408 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 409 fs->fs_cgrotor = cg; 410 return (fs->fs_fpg * cg + fs->fs_frag); 411 } 412 return (NULL); 413 } 414 /* 415 * One or more previous blocks have been laid out. If less 416 * than fs_maxcontig previous blocks are contiguous, the 417 * next block is requested contiguously, otherwise it is 418 * requested rotationally delayed by fs_rotdelay milliseconds. 419 */ 420 nextblk = bap[indx - 1] + fs->fs_frag; 421 if (indx > fs->fs_maxcontig && 422 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 423 != nextblk) 424 return (nextblk); 425 if (fs->fs_rotdelay != 0) 426 /* 427 * Here we convert ms of delay to frags as: 428 * (frags) = (ms) * (rev/sec) * (sect/rev) / 429 * ((sect/frag) * (ms/sec)) 430 * then round up to the next block. 431 */ 432 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 433 (NSPF(fs) * 1000), fs->fs_frag); 434 return (nextblk); 435 } 436 437 /* 438 * Implement the cylinder overflow algorithm. 439 * 440 * The policy implemented by this algorithm is: 441 * 1) allocate the block in its requested cylinder group. 442 * 2) quadradically rehash on the cylinder group number. 443 * 3) brute force search for a free block. 444 */ 445 /*VARARGS5*/ 446 u_long 447 hashalloc(ip, cg, pref, size, allocator) 448 struct inode *ip; 449 int cg; 450 long pref; 451 int size; /* size for data blocks, mode for inodes */ 452 u_long (*allocator)(); 453 { 454 register struct fs *fs; 455 long result; 456 int i, icg = cg; 457 458 fs = ip->i_fs; 459 /* 460 * 1: preferred cylinder group 461 */ 462 result = (*allocator)(ip, cg, pref, size); 463 if (result) 464 return (result); 465 /* 466 * 2: quadratic rehash 467 */ 468 for (i = 1; i < fs->fs_ncg; i *= 2) { 469 cg += i; 470 if (cg >= fs->fs_ncg) 471 cg -= fs->fs_ncg; 472 result = (*allocator)(ip, cg, 0, size); 473 if (result) 474 return (result); 475 } 476 /* 477 * 3: brute force search 478 * Note that we start at i == 2, since 0 was checked initially, 479 * and 1 is always checked in the quadratic rehash. 480 */ 481 cg = (icg + 2) % fs->fs_ncg; 482 for (i = 2; i < fs->fs_ncg; i++) { 483 result = (*allocator)(ip, cg, 0, size); 484 if (result) 485 return (result); 486 cg++; 487 if (cg == fs->fs_ncg) 488 cg = 0; 489 } 490 return (NULL); 491 } 492 493 /* 494 * Determine whether a fragment can be extended. 495 * 496 * Check to see if the necessary fragments are available, and 497 * if they are, allocate them. 498 */ 499 daddr_t 500 fragextend(ip, cg, bprev, osize, nsize) 501 struct inode *ip; 502 int cg; 503 long bprev; 504 int osize, nsize; 505 { 506 register struct fs *fs; 507 register struct cg *cgp; 508 struct buf *bp; 509 long bno; 510 int frags, bbase; 511 int i, error; 512 513 fs = ip->i_fs; 514 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 515 return (NULL); 516 frags = numfrags(fs, nsize); 517 bbase = fragnum(fs, bprev); 518 if (bbase > fragnum(fs, (bprev + frags - 1))) { 519 /* cannot extend across a block boundary */ 520 return (NULL); 521 } 522 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 523 (int)fs->fs_cgsize, NOCRED, &bp); 524 if (error) { 525 brelse(bp); 526 return (NULL); 527 } 528 cgp = bp->b_un.b_cg; 529 if (!cg_chkmagic(cgp)) { 530 brelse(bp); 531 return (NULL); 532 } 533 cgp->cg_time = time.tv_sec; 534 bno = dtogd(fs, bprev); 535 for (i = numfrags(fs, osize); i < frags; i++) 536 if (isclr(cg_blksfree(cgp), bno + i)) { 537 brelse(bp); 538 return (NULL); 539 } 540 /* 541 * the current fragment can be extended 542 * deduct the count on fragment being extended into 543 * increase the count on the remaining fragment (if any) 544 * allocate the extended piece 545 */ 546 for (i = frags; i < fs->fs_frag - bbase; i++) 547 if (isclr(cg_blksfree(cgp), bno + i)) 548 break; 549 cgp->cg_frsum[i - numfrags(fs, osize)]--; 550 if (i != frags) 551 cgp->cg_frsum[i - frags]++; 552 for (i = numfrags(fs, osize); i < frags; i++) { 553 clrbit(cg_blksfree(cgp), bno + i); 554 cgp->cg_cs.cs_nffree--; 555 fs->fs_cstotal.cs_nffree--; 556 fs->fs_cs(fs, cg).cs_nffree--; 557 } 558 fs->fs_fmod++; 559 bdwrite(bp); 560 return (bprev); 561 } 562 563 /* 564 * Determine whether a block can be allocated. 565 * 566 * Check to see if a block of the apprpriate size is available, 567 * and if it is, allocate it. 568 */ 569 daddr_t 570 alloccg(ip, cg, bpref, size) 571 struct inode *ip; 572 int cg; 573 daddr_t bpref; 574 int size; 575 { 576 register struct fs *fs; 577 register struct cg *cgp; 578 struct buf *bp; 579 register int i; 580 int error, bno, frags, allocsiz; 581 582 fs = ip->i_fs; 583 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 584 return (NULL); 585 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 586 (int)fs->fs_cgsize, NOCRED, &bp); 587 if (error) { 588 brelse(bp); 589 return (NULL); 590 } 591 cgp = bp->b_un.b_cg; 592 if (!cg_chkmagic(cgp) || 593 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 594 brelse(bp); 595 return (NULL); 596 } 597 cgp->cg_time = time.tv_sec; 598 if (size == fs->fs_bsize) { 599 bno = alloccgblk(fs, cgp, bpref); 600 bdwrite(bp); 601 return (bno); 602 } 603 /* 604 * check to see if any fragments are already available 605 * allocsiz is the size which will be allocated, hacking 606 * it down to a smaller size if necessary 607 */ 608 frags = numfrags(fs, size); 609 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 610 if (cgp->cg_frsum[allocsiz] != 0) 611 break; 612 if (allocsiz == fs->fs_frag) { 613 /* 614 * no fragments were available, so a block will be 615 * allocated, and hacked up 616 */ 617 if (cgp->cg_cs.cs_nbfree == 0) { 618 brelse(bp); 619 return (NULL); 620 } 621 bno = alloccgblk(fs, cgp, bpref); 622 bpref = dtogd(fs, bno); 623 for (i = frags; i < fs->fs_frag; i++) 624 setbit(cg_blksfree(cgp), bpref + i); 625 i = fs->fs_frag - frags; 626 cgp->cg_cs.cs_nffree += i; 627 fs->fs_cstotal.cs_nffree += i; 628 fs->fs_cs(fs, cg).cs_nffree += i; 629 fs->fs_fmod++; 630 cgp->cg_frsum[i]++; 631 bdwrite(bp); 632 return (bno); 633 } 634 bno = mapsearch(fs, cgp, bpref, allocsiz); 635 if (bno < 0) { 636 brelse(bp); 637 return (NULL); 638 } 639 for (i = 0; i < frags; i++) 640 clrbit(cg_blksfree(cgp), bno + i); 641 cgp->cg_cs.cs_nffree -= frags; 642 fs->fs_cstotal.cs_nffree -= frags; 643 fs->fs_cs(fs, cg).cs_nffree -= frags; 644 fs->fs_fmod++; 645 cgp->cg_frsum[allocsiz]--; 646 if (frags != allocsiz) 647 cgp->cg_frsum[allocsiz - frags]++; 648 bdwrite(bp); 649 return (cg * fs->fs_fpg + bno); 650 } 651 652 /* 653 * Allocate a block in a cylinder group. 654 * 655 * This algorithm implements the following policy: 656 * 1) allocate the requested block. 657 * 2) allocate a rotationally optimal block in the same cylinder. 658 * 3) allocate the next available block on the block rotor for the 659 * specified cylinder group. 660 * Note that this routine only allocates fs_bsize blocks; these 661 * blocks may be fragmented by the routine that allocates them. 662 */ 663 daddr_t 664 alloccgblk(fs, cgp, bpref) 665 register struct fs *fs; 666 register struct cg *cgp; 667 daddr_t bpref; 668 { 669 daddr_t bno; 670 int cylno, pos, delta; 671 short *cylbp; 672 register int i; 673 674 if (bpref == 0) { 675 bpref = cgp->cg_rotor; 676 goto norot; 677 } 678 bpref = blknum(fs, bpref); 679 bpref = dtogd(fs, bpref); 680 /* 681 * if the requested block is available, use it 682 */ 683 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 684 bno = bpref; 685 goto gotit; 686 } 687 /* 688 * check for a block available on the same cylinder 689 */ 690 cylno = cbtocylno(fs, bpref); 691 if (cg_blktot(cgp)[cylno] == 0) 692 goto norot; 693 if (fs->fs_cpc == 0) { 694 /* 695 * block layout info is not available, so just have 696 * to take any block in this cylinder. 697 */ 698 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 699 goto norot; 700 } 701 /* 702 * check the summary information to see if a block is 703 * available in the requested cylinder starting at the 704 * requested rotational position and proceeding around. 705 */ 706 cylbp = cg_blks(fs, cgp, cylno); 707 pos = cbtorpos(fs, bpref); 708 for (i = pos; i < fs->fs_nrpos; i++) 709 if (cylbp[i] > 0) 710 break; 711 if (i == fs->fs_nrpos) 712 for (i = 0; i < pos; i++) 713 if (cylbp[i] > 0) 714 break; 715 if (cylbp[i] > 0) { 716 /* 717 * found a rotational position, now find the actual 718 * block. A panic if none is actually there. 719 */ 720 pos = cylno % fs->fs_cpc; 721 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 722 if (fs_postbl(fs, pos)[i] == -1) { 723 printf("pos = %d, i = %d, fs = %s\n", 724 pos, i, fs->fs_fsmnt); 725 panic("alloccgblk: cyl groups corrupted"); 726 } 727 for (i = fs_postbl(fs, pos)[i];; ) { 728 if (isblock(fs, cg_blksfree(cgp), bno + i)) { 729 bno = blkstofrags(fs, (bno + i)); 730 goto gotit; 731 } 732 delta = fs_rotbl(fs)[i]; 733 if (delta <= 0 || 734 delta + i > fragstoblks(fs, fs->fs_fpg)) 735 break; 736 i += delta; 737 } 738 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 739 panic("alloccgblk: can't find blk in cyl"); 740 } 741 norot: 742 /* 743 * no blocks in the requested cylinder, so take next 744 * available one in this cylinder group. 745 */ 746 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 747 if (bno < 0) 748 return (NULL); 749 cgp->cg_rotor = bno; 750 gotit: 751 clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 752 cgp->cg_cs.cs_nbfree--; 753 fs->fs_cstotal.cs_nbfree--; 754 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 755 cylno = cbtocylno(fs, bno); 756 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 757 cg_blktot(cgp)[cylno]--; 758 fs->fs_fmod++; 759 return (cgp->cg_cgx * fs->fs_fpg + bno); 760 } 761 762 /* 763 * Determine whether an inode can be allocated. 764 * 765 * Check to see if an inode is available, and if it is, 766 * allocate it using the following policy: 767 * 1) allocate the requested inode. 768 * 2) allocate the next available inode after the requested 769 * inode in the specified cylinder group. 770 */ 771 ino_t 772 ialloccg(ip, cg, ipref, mode) 773 struct inode *ip; 774 int cg; 775 daddr_t ipref; 776 int mode; 777 { 778 register struct fs *fs; 779 register struct cg *cgp; 780 struct buf *bp; 781 int error, start, len, loc, map, i; 782 783 fs = ip->i_fs; 784 if (fs->fs_cs(fs, cg).cs_nifree == 0) 785 return (NULL); 786 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 787 (int)fs->fs_cgsize, NOCRED, &bp); 788 if (error) { 789 brelse(bp); 790 return (NULL); 791 } 792 cgp = bp->b_un.b_cg; 793 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 794 brelse(bp); 795 return (NULL); 796 } 797 cgp->cg_time = time.tv_sec; 798 if (ipref) { 799 ipref %= fs->fs_ipg; 800 if (isclr(cg_inosused(cgp), ipref)) 801 goto gotit; 802 } 803 start = cgp->cg_irotor / NBBY; 804 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 805 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 806 if (loc == 0) { 807 len = start + 1; 808 start = 0; 809 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 810 if (loc == 0) { 811 printf("cg = %s, irotor = %d, fs = %s\n", 812 cg, cgp->cg_irotor, fs->fs_fsmnt); 813 panic("ialloccg: map corrupted"); 814 /* NOTREACHED */ 815 } 816 } 817 i = start + len - loc; 818 map = cg_inosused(cgp)[i]; 819 ipref = i * NBBY; 820 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 821 if ((map & i) == 0) { 822 cgp->cg_irotor = ipref; 823 goto gotit; 824 } 825 } 826 printf("fs = %s\n", fs->fs_fsmnt); 827 panic("ialloccg: block not in map"); 828 /* NOTREACHED */ 829 gotit: 830 setbit(cg_inosused(cgp), ipref); 831 cgp->cg_cs.cs_nifree--; 832 fs->fs_cstotal.cs_nifree--; 833 fs->fs_cs(fs, cg).cs_nifree--; 834 fs->fs_fmod++; 835 if ((mode & IFMT) == IFDIR) { 836 cgp->cg_cs.cs_ndir++; 837 fs->fs_cstotal.cs_ndir++; 838 fs->fs_cs(fs, cg).cs_ndir++; 839 } 840 bdwrite(bp); 841 return (cg * fs->fs_ipg + ipref); 842 } 843 844 /* 845 * Free a block or fragment. 846 * 847 * The specified block or fragment is placed back in the 848 * free map. If a fragment is deallocated, a possible 849 * block reassembly is checked. 850 */ 851 blkfree(ip, bno, size) 852 register struct inode *ip; 853 daddr_t bno; 854 off_t size; 855 { 856 register struct fs *fs; 857 register struct cg *cgp; 858 struct buf *bp; 859 int error, cg, blk, frags, bbase; 860 register int i; 861 862 fs = ip->i_fs; 863 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 864 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 865 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 866 panic("blkfree: bad size"); 867 } 868 cg = dtog(fs, bno); 869 if (badblock(fs, bno)) { 870 printf("bad block %d, ino %d\n", bno, ip->i_number); 871 return; 872 } 873 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 874 (int)fs->fs_cgsize, NOCRED, &bp); 875 if (error) { 876 brelse(bp); 877 return; 878 } 879 cgp = bp->b_un.b_cg; 880 if (!cg_chkmagic(cgp)) { 881 brelse(bp); 882 return; 883 } 884 cgp->cg_time = time.tv_sec; 885 bno = dtogd(fs, bno); 886 if (size == fs->fs_bsize) { 887 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 888 printf("dev = 0x%x, block = %d, fs = %s\n", 889 ip->i_dev, bno, fs->fs_fsmnt); 890 panic("blkfree: freeing free block"); 891 } 892 setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 893 cgp->cg_cs.cs_nbfree++; 894 fs->fs_cstotal.cs_nbfree++; 895 fs->fs_cs(fs, cg).cs_nbfree++; 896 i = cbtocylno(fs, bno); 897 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 898 cg_blktot(cgp)[i]++; 899 } else { 900 bbase = bno - fragnum(fs, bno); 901 /* 902 * decrement the counts associated with the old frags 903 */ 904 blk = blkmap(fs, cg_blksfree(cgp), bbase); 905 fragacct(fs, blk, cgp->cg_frsum, -1); 906 /* 907 * deallocate the fragment 908 */ 909 frags = numfrags(fs, size); 910 for (i = 0; i < frags; i++) { 911 if (isset(cg_blksfree(cgp), bno + i)) { 912 printf("dev = 0x%x, block = %d, fs = %s\n", 913 ip->i_dev, bno + i, fs->fs_fsmnt); 914 panic("blkfree: freeing free frag"); 915 } 916 setbit(cg_blksfree(cgp), bno + i); 917 } 918 cgp->cg_cs.cs_nffree += i; 919 fs->fs_cstotal.cs_nffree += i; 920 fs->fs_cs(fs, cg).cs_nffree += i; 921 /* 922 * add back in counts associated with the new frags 923 */ 924 blk = blkmap(fs, cg_blksfree(cgp), bbase); 925 fragacct(fs, blk, cgp->cg_frsum, 1); 926 /* 927 * if a complete block has been reassembled, account for it 928 */ 929 if (isblock(fs, cg_blksfree(cgp), 930 (daddr_t)fragstoblks(fs, bbase))) { 931 cgp->cg_cs.cs_nffree -= fs->fs_frag; 932 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 933 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 934 cgp->cg_cs.cs_nbfree++; 935 fs->fs_cstotal.cs_nbfree++; 936 fs->fs_cs(fs, cg).cs_nbfree++; 937 i = cbtocylno(fs, bbase); 938 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 939 cg_blktot(cgp)[i]++; 940 } 941 } 942 fs->fs_fmod++; 943 bdwrite(bp); 944 } 945 946 /* 947 * Free an inode. 948 * 949 * The specified inode is placed back in the free map. 950 */ 951 ifree(ip, ino, mode) 952 struct inode *ip; 953 ino_t ino; 954 int mode; 955 { 956 register struct fs *fs; 957 register struct cg *cgp; 958 struct buf *bp; 959 int error, cg; 960 961 fs = ip->i_fs; 962 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 963 printf("dev = 0x%x, ino = %d, fs = %s\n", 964 ip->i_dev, ino, fs->fs_fsmnt); 965 panic("ifree: range"); 966 } 967 cg = itog(fs, ino); 968 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 969 (int)fs->fs_cgsize, NOCRED, &bp); 970 if (error) { 971 brelse(bp); 972 return; 973 } 974 cgp = bp->b_un.b_cg; 975 if (!cg_chkmagic(cgp)) { 976 brelse(bp); 977 return; 978 } 979 cgp->cg_time = time.tv_sec; 980 ino %= fs->fs_ipg; 981 if (isclr(cg_inosused(cgp), ino)) { 982 printf("dev = 0x%x, ino = %d, fs = %s\n", 983 ip->i_dev, ino, fs->fs_fsmnt); 984 panic("ifree: freeing free inode"); 985 } 986 clrbit(cg_inosused(cgp), ino); 987 if (ino < cgp->cg_irotor) 988 cgp->cg_irotor = ino; 989 cgp->cg_cs.cs_nifree++; 990 fs->fs_cstotal.cs_nifree++; 991 fs->fs_cs(fs, cg).cs_nifree++; 992 if ((mode & IFMT) == IFDIR) { 993 cgp->cg_cs.cs_ndir--; 994 fs->fs_cstotal.cs_ndir--; 995 fs->fs_cs(fs, cg).cs_ndir--; 996 } 997 fs->fs_fmod++; 998 bdwrite(bp); 999 } 1000 1001 /* 1002 * Find a block of the specified size in the specified cylinder group. 1003 * 1004 * It is a panic if a request is made to find a block if none are 1005 * available. 1006 */ 1007 daddr_t 1008 mapsearch(fs, cgp, bpref, allocsiz) 1009 register struct fs *fs; 1010 register struct cg *cgp; 1011 daddr_t bpref; 1012 int allocsiz; 1013 { 1014 daddr_t bno; 1015 int start, len, loc, i; 1016 int blk, field, subfield, pos; 1017 1018 /* 1019 * find the fragment by searching through the free block 1020 * map for an appropriate bit pattern 1021 */ 1022 if (bpref) 1023 start = dtogd(fs, bpref) / NBBY; 1024 else 1025 start = cgp->cg_frotor / NBBY; 1026 len = howmany(fs->fs_fpg, NBBY) - start; 1027 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1028 (u_char *)fragtbl[fs->fs_frag], 1029 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1030 if (loc == 0) { 1031 len = start + 1; 1032 start = 0; 1033 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1034 (u_char *)fragtbl[fs->fs_frag], 1035 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1036 if (loc == 0) { 1037 printf("start = %d, len = %d, fs = %s\n", 1038 start, len, fs->fs_fsmnt); 1039 panic("alloccg: map corrupted"); 1040 /* NOTREACHED */ 1041 } 1042 } 1043 bno = (start + len - loc) * NBBY; 1044 cgp->cg_frotor = bno; 1045 /* 1046 * found the byte in the map 1047 * sift through the bits to find the selected frag 1048 */ 1049 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1050 blk = blkmap(fs, cg_blksfree(cgp), bno); 1051 blk <<= 1; 1052 field = around[allocsiz]; 1053 subfield = inside[allocsiz]; 1054 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1055 if ((blk & field) == subfield) 1056 return (bno + pos); 1057 field <<= 1; 1058 subfield <<= 1; 1059 } 1060 } 1061 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1062 panic("alloccg: block not in map"); 1063 return (-1); 1064 } 1065 1066 /* 1067 * Fserr prints the name of a file system with an error diagnostic. 1068 * 1069 * The form of the error message is: 1070 * fs: error message 1071 */ 1072 fserr(fs, cp) 1073 struct fs *fs; 1074 char *cp; 1075 { 1076 1077 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp); 1078 } 1079