1 /* 2 * Copyright (c) 1982 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)ffs_alloc.c 6.19 (Berkeley) 02/19/86 7 */ 8 9 #include "param.h" 10 #include "systm.h" 11 #include "mount.h" 12 #include "fs.h" 13 #include "buf.h" 14 #include "inode.h" 15 #include "dir.h" 16 #include "user.h" 17 #include "quota.h" 18 #include "kernel.h" 19 #include "syslog.h" 20 #include "cmap.h" 21 22 extern u_long hashalloc(); 23 extern ino_t ialloccg(); 24 extern daddr_t alloccg(); 25 extern daddr_t alloccgblk(); 26 extern daddr_t fragextend(); 27 extern daddr_t blkpref(); 28 extern daddr_t mapsearch(); 29 extern int inside[], around[]; 30 extern unsigned char *fragtbl[]; 31 32 /* 33 * Allocate a block in the file system. 34 * 35 * The size of the requested block is given, which must be some 36 * multiple of fs_fsize and <= fs_bsize. 37 * A preference may be optionally specified. If a preference is given 38 * the following hierarchy is used to allocate a block: 39 * 1) allocate the requested block. 40 * 2) allocate a rotationally optimal block in the same cylinder. 41 * 3) allocate a block in the same cylinder group. 42 * 4) quadradically rehash into other cylinder groups, until an 43 * available block is located. 44 * If no block preference is given the following heirarchy is used 45 * to allocate a block: 46 * 1) allocate a block in the cylinder group that contains the 47 * inode for the file. 48 * 2) quadradically rehash into other cylinder groups, until an 49 * available block is located. 50 */ 51 struct buf * 52 alloc(ip, bpref, size) 53 register struct inode *ip; 54 daddr_t bpref; 55 int size; 56 { 57 daddr_t bno; 58 register struct fs *fs; 59 register struct buf *bp; 60 int cg; 61 62 fs = ip->i_fs; 63 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 64 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 65 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 66 panic("alloc: bad size"); 67 } 68 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 69 goto nospace; 70 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 71 goto nospace; 72 #ifdef QUOTA 73 u.u_error = chkdq(ip, (long)btodb(size), 0); 74 if (u.u_error) 75 return (NULL); 76 #endif 77 if (bpref >= fs->fs_size) 78 bpref = 0; 79 if (bpref == 0) 80 cg = itog(fs, ip->i_number); 81 else 82 cg = dtog(fs, bpref); 83 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 84 (u_long (*)())alloccg); 85 if (bno <= 0) 86 goto nospace; 87 ip->i_blocks += btodb(size); 88 ip->i_flag |= IUPD|ICHG; 89 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 90 clrbuf(bp); 91 return (bp); 92 nospace: 93 fserr(fs, "file system full"); 94 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 95 u.u_error = ENOSPC; 96 return (NULL); 97 } 98 99 /* 100 * Reallocate a fragment to a bigger size 101 * 102 * The number and size of the old block is given, and a preference 103 * and new size is also specified. The allocator attempts to extend 104 * the original block. Failing that, the regular block allocator is 105 * invoked to get an appropriate block. 106 */ 107 struct buf * 108 realloccg(ip, bprev, bpref, osize, nsize) 109 register struct inode *ip; 110 daddr_t bprev, bpref; 111 int osize, nsize; 112 { 113 register struct fs *fs; 114 register struct buf *bp, *obp; 115 int cg, request; 116 daddr_t bno, bn; 117 int i, count, s; 118 extern struct cmap *mfind(); 119 120 fs = ip->i_fs; 121 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 122 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 123 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 124 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 125 panic("realloccg: bad size"); 126 } 127 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 128 goto nospace; 129 if (bprev == 0) { 130 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 131 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 132 panic("realloccg: bad bprev"); 133 } 134 #ifdef QUOTA 135 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 136 if (u.u_error) 137 return (NULL); 138 #endif 139 cg = dtog(fs, bprev); 140 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 141 if (bno != 0) { 142 do { 143 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 144 if (bp->b_flags & B_ERROR) { 145 brelse(bp); 146 return (NULL); 147 } 148 } while (brealloc(bp, nsize) == 0); 149 bp->b_flags |= B_DONE; 150 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 151 ip->i_blocks += btodb(nsize - osize); 152 ip->i_flag |= IUPD|ICHG; 153 return (bp); 154 } 155 if (bpref >= fs->fs_size) 156 bpref = 0; 157 switch ((int)fs->fs_optim) { 158 case FS_OPTSPACE: 159 /* 160 * Allocate an exact sized fragment. Although this makes 161 * best use of space, we will waste time relocating it if 162 * the file continues to grow. If the fragmentation is 163 * less than half of the minimum free reserve, we choose 164 * to begin optimizing for time. 165 */ 166 request = nsize; 167 if (fs->fs_minfree < 5 || 168 fs->fs_cstotal.cs_nffree > 169 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 170 break; 171 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 172 fs->fs_fsmnt); 173 fs->fs_optim = FS_OPTTIME; 174 break; 175 case FS_OPTTIME: 176 /* 177 * At this point we have discovered a file that is trying 178 * to grow a small fragment to a larger fragment. To save 179 * time, we allocate a full sized block, then free the 180 * unused portion. If the file continues to grow, the 181 * `fragextend' call above will be able to grow it in place 182 * without further copying. If aberrant programs cause 183 * disk fragmentation to grow within 2% of the free reserve, 184 * we choose to begin optimizing for space. 185 */ 186 request = fs->fs_bsize; 187 if (fs->fs_cstotal.cs_nffree < 188 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 189 break; 190 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 191 fs->fs_fsmnt); 192 fs->fs_optim = FS_OPTSPACE; 193 break; 194 default: 195 printf("dev = 0x%x, optim = %d, fs = %s\n", 196 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 197 panic("realloccg: bad optim"); 198 /* NOTREACHED */ 199 } 200 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 201 (u_long (*)())alloccg); 202 if (bno > 0) { 203 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 204 if (obp->b_flags & B_ERROR) { 205 brelse(obp); 206 return (NULL); 207 } 208 bn = fsbtodb(fs, bno); 209 bp = getblk(ip->i_dev, bn, nsize); 210 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 211 count = howmany(osize, DEV_BSIZE); 212 s = splimp(); 213 for (i = 0; i < count; i += CLBYTES / DEV_BSIZE) 214 if (mfind(ip->i_dev, bn + i)) 215 munhash(ip->i_dev, bn + i); 216 splx(s); 217 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 218 if (obp->b_flags & B_DELWRI) { 219 obp->b_flags &= ~B_DELWRI; 220 u.u_ru.ru_oublock--; /* delete charge */ 221 } 222 brelse(obp); 223 free(ip, bprev, (off_t)osize); 224 if (nsize < request) 225 free(ip, bno + numfrags(fs, nsize), 226 (off_t)(request - nsize)); 227 ip->i_blocks += btodb(nsize - osize); 228 ip->i_flag |= IUPD|ICHG; 229 return (bp); 230 } 231 nospace: 232 /* 233 * no space available 234 */ 235 fserr(fs, "file system full"); 236 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 237 u.u_error = ENOSPC; 238 return (NULL); 239 } 240 241 /* 242 * Allocate an inode in the file system. 243 * 244 * A preference may be optionally specified. If a preference is given 245 * the following hierarchy is used to allocate an inode: 246 * 1) allocate the requested inode. 247 * 2) allocate an inode in the same cylinder group. 248 * 3) quadradically rehash into other cylinder groups, until an 249 * available inode is located. 250 * If no inode preference is given the following heirarchy is used 251 * to allocate an inode: 252 * 1) allocate an inode in cylinder group 0. 253 * 2) quadradically rehash into other cylinder groups, until an 254 * available inode is located. 255 */ 256 struct inode * 257 ialloc(pip, ipref, mode) 258 register struct inode *pip; 259 ino_t ipref; 260 int mode; 261 { 262 ino_t ino; 263 register struct fs *fs; 264 register struct inode *ip; 265 int cg; 266 267 fs = pip->i_fs; 268 if (fs->fs_cstotal.cs_nifree == 0) 269 goto noinodes; 270 #ifdef QUOTA 271 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 272 if (u.u_error) 273 return (NULL); 274 #endif 275 if (ipref >= fs->fs_ncg * fs->fs_ipg) 276 ipref = 0; 277 cg = itog(fs, ipref); 278 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 279 if (ino == 0) 280 goto noinodes; 281 ip = iget(pip->i_dev, pip->i_fs, ino); 282 if (ip == NULL) { 283 ifree(pip, ino, 0); 284 return (NULL); 285 } 286 if (ip->i_mode) { 287 printf("mode = 0%o, inum = %d, fs = %s\n", 288 ip->i_mode, ip->i_number, fs->fs_fsmnt); 289 panic("ialloc: dup alloc"); 290 } 291 if (ip->i_blocks) { /* XXX */ 292 printf("free inode %s/%d had %d blocks\n", 293 fs->fs_fsmnt, ino, ip->i_blocks); 294 ip->i_blocks = 0; 295 } 296 return (ip); 297 noinodes: 298 fserr(fs, "out of inodes"); 299 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 300 u.u_error = ENOSPC; 301 return (NULL); 302 } 303 304 /* 305 * Find a cylinder to place a directory. 306 * 307 * The policy implemented by this algorithm is to select from 308 * among those cylinder groups with above the average number of 309 * free inodes, the one with the smallest number of directories. 310 */ 311 ino_t 312 dirpref(fs) 313 register struct fs *fs; 314 { 315 int cg, minndir, mincg, avgifree; 316 317 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 318 minndir = fs->fs_ipg; 319 mincg = 0; 320 for (cg = 0; cg < fs->fs_ncg; cg++) 321 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 322 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 323 mincg = cg; 324 minndir = fs->fs_cs(fs, cg).cs_ndir; 325 } 326 return ((ino_t)(fs->fs_ipg * mincg)); 327 } 328 329 /* 330 * Select the desired position for the next block in a file. The file is 331 * logically divided into sections. The first section is composed of the 332 * direct blocks. Each additional section contains fs_maxbpg blocks. 333 * 334 * If no blocks have been allocated in the first section, the policy is to 335 * request a block in the same cylinder group as the inode that describes 336 * the file. If no blocks have been allocated in any other section, the 337 * policy is to place the section in a cylinder group with a greater than 338 * average number of free blocks. An appropriate cylinder group is found 339 * by using a rotor that sweeps the cylinder groups. When a new group of 340 * blocks is needed, the sweep begins in the cylinder group following the 341 * cylinder group from which the previous allocation was made. The sweep 342 * continues until a cylinder group with greater than the average number 343 * of free blocks is found. If the allocation is for the first block in an 344 * indirect block, the information on the previous allocation is unavailable; 345 * here a best guess is made based upon the logical block number being 346 * allocated. 347 * 348 * If a section is already partially allocated, the policy is to 349 * contiguously allocate fs_maxcontig blocks. The end of one of these 350 * contiguous blocks and the beginning of the next is physically separated 351 * so that the disk head will be in transit between them for at least 352 * fs_rotdelay milliseconds. This is to allow time for the processor to 353 * schedule another I/O transfer. 354 */ 355 daddr_t 356 blkpref(ip, lbn, indx, bap) 357 struct inode *ip; 358 daddr_t lbn; 359 int indx; 360 daddr_t *bap; 361 { 362 register struct fs *fs; 363 register int cg; 364 int avgbfree, startcg; 365 daddr_t nextblk; 366 367 fs = ip->i_fs; 368 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 369 if (lbn < NDADDR) { 370 cg = itog(fs, ip->i_number); 371 return (fs->fs_fpg * cg + fs->fs_frag); 372 } 373 /* 374 * Find a cylinder with greater than average number of 375 * unused data blocks. 376 */ 377 if (indx == 0 || bap[indx - 1] == 0) 378 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 379 else 380 startcg = dtog(fs, bap[indx - 1]) + 1; 381 startcg %= fs->fs_ncg; 382 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 383 for (cg = startcg; cg < fs->fs_ncg; cg++) 384 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 385 fs->fs_cgrotor = cg; 386 return (fs->fs_fpg * cg + fs->fs_frag); 387 } 388 for (cg = 0; cg <= startcg; cg++) 389 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 390 fs->fs_cgrotor = cg; 391 return (fs->fs_fpg * cg + fs->fs_frag); 392 } 393 return (NULL); 394 } 395 /* 396 * One or more previous blocks have been laid out. If less 397 * than fs_maxcontig previous blocks are contiguous, the 398 * next block is requested contiguously, otherwise it is 399 * requested rotationally delayed by fs_rotdelay milliseconds. 400 */ 401 nextblk = bap[indx - 1] + fs->fs_frag; 402 if (indx > fs->fs_maxcontig && 403 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 404 != nextblk) 405 return (nextblk); 406 if (fs->fs_rotdelay != 0) 407 /* 408 * Here we convert ms of delay to frags as: 409 * (frags) = (ms) * (rev/sec) * (sect/rev) / 410 * ((sect/frag) * (ms/sec)) 411 * then round up to the next block. 412 */ 413 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 414 (NSPF(fs) * 1000), fs->fs_frag); 415 return (nextblk); 416 } 417 418 /* 419 * Implement the cylinder overflow algorithm. 420 * 421 * The policy implemented by this algorithm is: 422 * 1) allocate the block in its requested cylinder group. 423 * 2) quadradically rehash on the cylinder group number. 424 * 3) brute force search for a free block. 425 */ 426 /*VARARGS5*/ 427 u_long 428 hashalloc(ip, cg, pref, size, allocator) 429 struct inode *ip; 430 int cg; 431 long pref; 432 int size; /* size for data blocks, mode for inodes */ 433 u_long (*allocator)(); 434 { 435 register struct fs *fs; 436 long result; 437 int i, icg = cg; 438 439 fs = ip->i_fs; 440 /* 441 * 1: preferred cylinder group 442 */ 443 result = (*allocator)(ip, cg, pref, size); 444 if (result) 445 return (result); 446 /* 447 * 2: quadratic rehash 448 */ 449 for (i = 1; i < fs->fs_ncg; i *= 2) { 450 cg += i; 451 if (cg >= fs->fs_ncg) 452 cg -= fs->fs_ncg; 453 result = (*allocator)(ip, cg, 0, size); 454 if (result) 455 return (result); 456 } 457 /* 458 * 3: brute force search 459 * Note that we start at i == 2, since 0 was checked initially, 460 * and 1 is always checked in the quadratic rehash. 461 */ 462 cg = (icg + 2) % fs->fs_ncg; 463 for (i = 2; i < fs->fs_ncg; i++) { 464 result = (*allocator)(ip, cg, 0, size); 465 if (result) 466 return (result); 467 cg++; 468 if (cg == fs->fs_ncg) 469 cg = 0; 470 } 471 return (NULL); 472 } 473 474 /* 475 * Determine whether a fragment can be extended. 476 * 477 * Check to see if the necessary fragments are available, and 478 * if they are, allocate them. 479 */ 480 daddr_t 481 fragextend(ip, cg, bprev, osize, nsize) 482 struct inode *ip; 483 int cg; 484 long bprev; 485 int osize, nsize; 486 { 487 register struct fs *fs; 488 register struct buf *bp; 489 register struct cg *cgp; 490 long bno; 491 int frags, bbase; 492 int i; 493 494 fs = ip->i_fs; 495 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 496 return (NULL); 497 frags = numfrags(fs, nsize); 498 bbase = fragnum(fs, bprev); 499 if (bbase > fragnum(fs, (bprev + frags - 1))) { 500 /* cannot extend across a block boundry */ 501 return (NULL); 502 } 503 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 504 cgp = bp->b_un.b_cg; 505 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 506 brelse(bp); 507 return (NULL); 508 } 509 cgp->cg_time = time.tv_sec; 510 bno = dtogd(fs, bprev); 511 for (i = numfrags(fs, osize); i < frags; i++) 512 if (isclr(cgp->cg_free, bno + i)) { 513 brelse(bp); 514 return (NULL); 515 } 516 /* 517 * the current fragment can be extended 518 * deduct the count on fragment being extended into 519 * increase the count on the remaining fragment (if any) 520 * allocate the extended piece 521 */ 522 for (i = frags; i < fs->fs_frag - bbase; i++) 523 if (isclr(cgp->cg_free, bno + i)) 524 break; 525 cgp->cg_frsum[i - numfrags(fs, osize)]--; 526 if (i != frags) 527 cgp->cg_frsum[i - frags]++; 528 for (i = numfrags(fs, osize); i < frags; i++) { 529 clrbit(cgp->cg_free, bno + i); 530 cgp->cg_cs.cs_nffree--; 531 fs->fs_cstotal.cs_nffree--; 532 fs->fs_cs(fs, cg).cs_nffree--; 533 } 534 fs->fs_fmod++; 535 bdwrite(bp); 536 return (bprev); 537 } 538 539 /* 540 * Determine whether a block can be allocated. 541 * 542 * Check to see if a block of the apprpriate size is available, 543 * and if it is, allocate it. 544 */ 545 daddr_t 546 alloccg(ip, cg, bpref, size) 547 struct inode *ip; 548 int cg; 549 daddr_t bpref; 550 int size; 551 { 552 register struct fs *fs; 553 register struct buf *bp; 554 register struct cg *cgp; 555 int bno, frags; 556 int allocsiz; 557 register int i; 558 559 fs = ip->i_fs; 560 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 561 return (NULL); 562 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 563 cgp = bp->b_un.b_cg; 564 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 565 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 566 brelse(bp); 567 return (NULL); 568 } 569 cgp->cg_time = time.tv_sec; 570 if (size == fs->fs_bsize) { 571 bno = alloccgblk(fs, cgp, bpref); 572 bdwrite(bp); 573 return (bno); 574 } 575 /* 576 * check to see if any fragments are already available 577 * allocsiz is the size which will be allocated, hacking 578 * it down to a smaller size if necessary 579 */ 580 frags = numfrags(fs, size); 581 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 582 if (cgp->cg_frsum[allocsiz] != 0) 583 break; 584 if (allocsiz == fs->fs_frag) { 585 /* 586 * no fragments were available, so a block will be 587 * allocated, and hacked up 588 */ 589 if (cgp->cg_cs.cs_nbfree == 0) { 590 brelse(bp); 591 return (NULL); 592 } 593 bno = alloccgblk(fs, cgp, bpref); 594 bpref = dtogd(fs, bno); 595 for (i = frags; i < fs->fs_frag; i++) 596 setbit(cgp->cg_free, bpref + i); 597 i = fs->fs_frag - frags; 598 cgp->cg_cs.cs_nffree += i; 599 fs->fs_cstotal.cs_nffree += i; 600 fs->fs_cs(fs, cg).cs_nffree += i; 601 fs->fs_fmod++; 602 cgp->cg_frsum[i]++; 603 bdwrite(bp); 604 return (bno); 605 } 606 bno = mapsearch(fs, cgp, bpref, allocsiz); 607 if (bno < 0) { 608 brelse(bp); 609 return (NULL); 610 } 611 for (i = 0; i < frags; i++) 612 clrbit(cgp->cg_free, bno + i); 613 cgp->cg_cs.cs_nffree -= frags; 614 fs->fs_cstotal.cs_nffree -= frags; 615 fs->fs_cs(fs, cg).cs_nffree -= frags; 616 fs->fs_fmod++; 617 cgp->cg_frsum[allocsiz]--; 618 if (frags != allocsiz) 619 cgp->cg_frsum[allocsiz - frags]++; 620 bdwrite(bp); 621 return (cg * fs->fs_fpg + bno); 622 } 623 624 /* 625 * Allocate a block in a cylinder group. 626 * 627 * This algorithm implements the following policy: 628 * 1) allocate the requested block. 629 * 2) allocate a rotationally optimal block in the same cylinder. 630 * 3) allocate the next available block on the block rotor for the 631 * specified cylinder group. 632 * Note that this routine only allocates fs_bsize blocks; these 633 * blocks may be fragmented by the routine that allocates them. 634 */ 635 daddr_t 636 alloccgblk(fs, cgp, bpref) 637 register struct fs *fs; 638 register struct cg *cgp; 639 daddr_t bpref; 640 { 641 daddr_t bno; 642 int cylno, pos, delta; 643 short *cylbp; 644 register int i; 645 646 if (bpref == 0) { 647 bpref = cgp->cg_rotor; 648 goto norot; 649 } 650 bpref = blknum(fs, bpref); 651 bpref = dtogd(fs, bpref); 652 /* 653 * if the requested block is available, use it 654 */ 655 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 656 bno = bpref; 657 goto gotit; 658 } 659 /* 660 * check for a block available on the same cylinder 661 */ 662 cylno = cbtocylno(fs, bpref); 663 if (cgp->cg_btot[cylno] == 0) 664 goto norot; 665 if (fs->fs_cpc == 0) { 666 /* 667 * block layout info is not available, so just have 668 * to take any block in this cylinder. 669 */ 670 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 671 goto norot; 672 } 673 /* 674 * check the summary information to see if a block is 675 * available in the requested cylinder starting at the 676 * requested rotational position and proceeding around. 677 */ 678 cylbp = cgp->cg_b[cylno]; 679 pos = cbtorpos(fs, bpref); 680 for (i = pos; i < NRPOS; i++) 681 if (cylbp[i] > 0) 682 break; 683 if (i == NRPOS) 684 for (i = 0; i < pos; i++) 685 if (cylbp[i] > 0) 686 break; 687 if (cylbp[i] > 0) { 688 /* 689 * found a rotational position, now find the actual 690 * block. A panic if none is actually there. 691 */ 692 pos = cylno % fs->fs_cpc; 693 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 694 if (fs->fs_postbl[pos][i] == -1) { 695 printf("pos = %d, i = %d, fs = %s\n", 696 pos, i, fs->fs_fsmnt); 697 panic("alloccgblk: cyl groups corrupted"); 698 } 699 for (i = fs->fs_postbl[pos][i];; ) { 700 if (isblock(fs, cgp->cg_free, bno + i)) { 701 bno = blkstofrags(fs, (bno + i)); 702 goto gotit; 703 } 704 delta = fs->fs_rotbl[i]; 705 if (delta <= 0 || delta > MAXBPC - i) 706 break; 707 i += delta; 708 } 709 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 710 panic("alloccgblk: can't find blk in cyl"); 711 } 712 norot: 713 /* 714 * no blocks in the requested cylinder, so take next 715 * available one in this cylinder group. 716 */ 717 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 718 if (bno < 0) 719 return (NULL); 720 cgp->cg_rotor = bno; 721 gotit: 722 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 723 cgp->cg_cs.cs_nbfree--; 724 fs->fs_cstotal.cs_nbfree--; 725 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 726 cylno = cbtocylno(fs, bno); 727 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 728 cgp->cg_btot[cylno]--; 729 fs->fs_fmod++; 730 return (cgp->cg_cgx * fs->fs_fpg + bno); 731 } 732 733 /* 734 * Determine whether an inode can be allocated. 735 * 736 * Check to see if an inode is available, and if it is, 737 * allocate it using the following policy: 738 * 1) allocate the requested inode. 739 * 2) allocate the next available inode after the requested 740 * inode in the specified cylinder group. 741 */ 742 ino_t 743 ialloccg(ip, cg, ipref, mode) 744 struct inode *ip; 745 int cg; 746 daddr_t ipref; 747 int mode; 748 { 749 register struct fs *fs; 750 register struct cg *cgp; 751 struct buf *bp; 752 int start, len, loc, map, i; 753 754 fs = ip->i_fs; 755 if (fs->fs_cs(fs, cg).cs_nifree == 0) 756 return (NULL); 757 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 758 cgp = bp->b_un.b_cg; 759 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 760 cgp->cg_cs.cs_nifree == 0) { 761 brelse(bp); 762 return (NULL); 763 } 764 cgp->cg_time = time.tv_sec; 765 if (ipref) { 766 ipref %= fs->fs_ipg; 767 if (isclr(cgp->cg_iused, ipref)) 768 goto gotit; 769 } 770 start = cgp->cg_irotor / NBBY; 771 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 772 loc = skpc(0xff, len, &cgp->cg_iused[start]); 773 if (loc == 0) { 774 len = start + 1; 775 start = 0; 776 loc = skpc(0xff, len, &cgp->cg_iused[0]); 777 if (loc == 0) { 778 printf("cg = %s, irotor = %d, fs = %s\n", 779 cg, cgp->cg_irotor, fs->fs_fsmnt); 780 panic("ialloccg: map corrupted"); 781 /* NOTREACHED */ 782 } 783 } 784 i = start + len - loc; 785 map = cgp->cg_iused[i]; 786 ipref = i * NBBY; 787 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 788 if ((map & i) == 0) { 789 cgp->cg_irotor = ipref; 790 goto gotit; 791 } 792 } 793 printf("fs = %s\n", fs->fs_fsmnt); 794 panic("ialloccg: block not in map"); 795 /* NOTREACHED */ 796 gotit: 797 setbit(cgp->cg_iused, ipref); 798 cgp->cg_cs.cs_nifree--; 799 fs->fs_cstotal.cs_nifree--; 800 fs->fs_cs(fs, cg).cs_nifree--; 801 fs->fs_fmod++; 802 if ((mode & IFMT) == IFDIR) { 803 cgp->cg_cs.cs_ndir++; 804 fs->fs_cstotal.cs_ndir++; 805 fs->fs_cs(fs, cg).cs_ndir++; 806 } 807 bdwrite(bp); 808 return (cg * fs->fs_ipg + ipref); 809 } 810 811 /* 812 * Free a block or fragment. 813 * 814 * The specified block or fragment is placed back in the 815 * free map. If a fragment is deallocated, a possible 816 * block reassembly is checked. 817 */ 818 free(ip, bno, size) 819 register struct inode *ip; 820 daddr_t bno; 821 off_t size; 822 { 823 register struct fs *fs; 824 register struct cg *cgp; 825 register struct buf *bp; 826 int cg, blk, frags, bbase; 827 register int i; 828 829 fs = ip->i_fs; 830 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 831 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 832 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 833 panic("free: bad size"); 834 } 835 cg = dtog(fs, bno); 836 if (badblock(fs, bno)) { 837 printf("bad block %d, ino %d\n", bno, ip->i_number); 838 return; 839 } 840 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 841 cgp = bp->b_un.b_cg; 842 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 843 brelse(bp); 844 return; 845 } 846 cgp->cg_time = time.tv_sec; 847 bno = dtogd(fs, bno); 848 if (size == fs->fs_bsize) { 849 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 850 printf("dev = 0x%x, block = %d, fs = %s\n", 851 ip->i_dev, bno, fs->fs_fsmnt); 852 panic("free: freeing free block"); 853 } 854 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 855 cgp->cg_cs.cs_nbfree++; 856 fs->fs_cstotal.cs_nbfree++; 857 fs->fs_cs(fs, cg).cs_nbfree++; 858 i = cbtocylno(fs, bno); 859 cgp->cg_b[i][cbtorpos(fs, bno)]++; 860 cgp->cg_btot[i]++; 861 } else { 862 bbase = bno - fragnum(fs, bno); 863 /* 864 * decrement the counts associated with the old frags 865 */ 866 blk = blkmap(fs, cgp->cg_free, bbase); 867 fragacct(fs, blk, cgp->cg_frsum, -1); 868 /* 869 * deallocate the fragment 870 */ 871 frags = numfrags(fs, size); 872 for (i = 0; i < frags; i++) { 873 if (isset(cgp->cg_free, bno + i)) { 874 printf("dev = 0x%x, block = %d, fs = %s\n", 875 ip->i_dev, bno + i, fs->fs_fsmnt); 876 panic("free: freeing free frag"); 877 } 878 setbit(cgp->cg_free, bno + i); 879 } 880 cgp->cg_cs.cs_nffree += i; 881 fs->fs_cstotal.cs_nffree += i; 882 fs->fs_cs(fs, cg).cs_nffree += i; 883 /* 884 * add back in counts associated with the new frags 885 */ 886 blk = blkmap(fs, cgp->cg_free, bbase); 887 fragacct(fs, blk, cgp->cg_frsum, 1); 888 /* 889 * if a complete block has been reassembled, account for it 890 */ 891 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 892 cgp->cg_cs.cs_nffree -= fs->fs_frag; 893 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 894 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 895 cgp->cg_cs.cs_nbfree++; 896 fs->fs_cstotal.cs_nbfree++; 897 fs->fs_cs(fs, cg).cs_nbfree++; 898 i = cbtocylno(fs, bbase); 899 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 900 cgp->cg_btot[i]++; 901 } 902 } 903 fs->fs_fmod++; 904 bdwrite(bp); 905 } 906 907 /* 908 * Free an inode. 909 * 910 * The specified inode is placed back in the free map. 911 */ 912 ifree(ip, ino, mode) 913 struct inode *ip; 914 ino_t ino; 915 int mode; 916 { 917 register struct fs *fs; 918 register struct cg *cgp; 919 register struct buf *bp; 920 int cg; 921 922 fs = ip->i_fs; 923 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 924 printf("dev = 0x%x, ino = %d, fs = %s\n", 925 ip->i_dev, ino, fs->fs_fsmnt); 926 panic("ifree: range"); 927 } 928 cg = itog(fs, ino); 929 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 930 cgp = bp->b_un.b_cg; 931 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 932 brelse(bp); 933 return; 934 } 935 cgp->cg_time = time.tv_sec; 936 ino %= fs->fs_ipg; 937 if (isclr(cgp->cg_iused, ino)) { 938 printf("dev = 0x%x, ino = %d, fs = %s\n", 939 ip->i_dev, ino, fs->fs_fsmnt); 940 panic("ifree: freeing free inode"); 941 } 942 clrbit(cgp->cg_iused, ino); 943 if (ino < cgp->cg_irotor) 944 cgp->cg_irotor = ino; 945 cgp->cg_cs.cs_nifree++; 946 fs->fs_cstotal.cs_nifree++; 947 fs->fs_cs(fs, cg).cs_nifree++; 948 if ((mode & IFMT) == IFDIR) { 949 cgp->cg_cs.cs_ndir--; 950 fs->fs_cstotal.cs_ndir--; 951 fs->fs_cs(fs, cg).cs_ndir--; 952 } 953 fs->fs_fmod++; 954 bdwrite(bp); 955 } 956 957 /* 958 * Find a block of the specified size in the specified cylinder group. 959 * 960 * It is a panic if a request is made to find a block if none are 961 * available. 962 */ 963 daddr_t 964 mapsearch(fs, cgp, bpref, allocsiz) 965 register struct fs *fs; 966 register struct cg *cgp; 967 daddr_t bpref; 968 int allocsiz; 969 { 970 daddr_t bno; 971 int start, len, loc, i; 972 int blk, field, subfield, pos; 973 974 /* 975 * find the fragment by searching through the free block 976 * map for an appropriate bit pattern 977 */ 978 if (bpref) 979 start = dtogd(fs, bpref) / NBBY; 980 else 981 start = cgp->cg_frotor / NBBY; 982 len = howmany(fs->fs_fpg, NBBY) - start; 983 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 984 (caddr_t)fragtbl[fs->fs_frag], 985 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 986 if (loc == 0) { 987 len = start + 1; 988 start = 0; 989 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0], 990 (caddr_t)fragtbl[fs->fs_frag], 991 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 992 if (loc == 0) { 993 printf("start = %d, len = %d, fs = %s\n", 994 start, len, fs->fs_fsmnt); 995 panic("alloccg: map corrupted"); 996 /* NOTREACHED */ 997 } 998 } 999 bno = (start + len - loc) * NBBY; 1000 cgp->cg_frotor = bno; 1001 /* 1002 * found the byte in the map 1003 * sift through the bits to find the selected frag 1004 */ 1005 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1006 blk = blkmap(fs, cgp->cg_free, bno); 1007 blk <<= 1; 1008 field = around[allocsiz]; 1009 subfield = inside[allocsiz]; 1010 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1011 if ((blk & field) == subfield) 1012 return (bno + pos); 1013 field <<= 1; 1014 subfield <<= 1; 1015 } 1016 } 1017 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1018 panic("alloccg: block not in map"); 1019 return (-1); 1020 } 1021 1022 /* 1023 * Fserr prints the name of a file system with an error diagnostic. 1024 * 1025 * The form of the error message is: 1026 * fs: error message 1027 */ 1028 fserr(fs, cp) 1029 struct fs *fs; 1030 char *cp; 1031 { 1032 1033 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp); 1034 } 1035