1 /* 2 * Copyright (c) 1982 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 * 6 * @(#)ffs_alloc.c 6.18 (Berkeley) 11/11/85 7 */ 8 9 #include "param.h" 10 #include "systm.h" 11 #include "mount.h" 12 #include "fs.h" 13 #include "buf.h" 14 #include "inode.h" 15 #include "dir.h" 16 #include "user.h" 17 #include "quota.h" 18 #include "kernel.h" 19 #include "syslog.h" 20 21 extern u_long hashalloc(); 22 extern ino_t ialloccg(); 23 extern daddr_t alloccg(); 24 extern daddr_t alloccgblk(); 25 extern daddr_t fragextend(); 26 extern daddr_t blkpref(); 27 extern daddr_t mapsearch(); 28 extern int inside[], around[]; 29 extern unsigned char *fragtbl[]; 30 31 /* 32 * Allocate a block in the file system. 33 * 34 * The size of the requested block is given, which must be some 35 * multiple of fs_fsize and <= fs_bsize. 36 * A preference may be optionally specified. If a preference is given 37 * the following hierarchy is used to allocate a block: 38 * 1) allocate the requested block. 39 * 2) allocate a rotationally optimal block in the same cylinder. 40 * 3) allocate a block in the same cylinder group. 41 * 4) quadradically rehash into other cylinder groups, until an 42 * available block is located. 43 * If no block preference is given the following heirarchy is used 44 * to allocate a block: 45 * 1) allocate a block in the cylinder group that contains the 46 * inode for the file. 47 * 2) quadradically rehash into other cylinder groups, until an 48 * available block is located. 49 */ 50 struct buf * 51 alloc(ip, bpref, size) 52 register struct inode *ip; 53 daddr_t bpref; 54 int size; 55 { 56 daddr_t bno; 57 register struct fs *fs; 58 register struct buf *bp; 59 int cg; 60 61 fs = ip->i_fs; 62 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 63 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 64 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 65 panic("alloc: bad size"); 66 } 67 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 68 goto nospace; 69 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 70 goto nospace; 71 #ifdef QUOTA 72 u.u_error = chkdq(ip, (long)btodb(size), 0); 73 if (u.u_error) 74 return (NULL); 75 #endif 76 if (bpref >= fs->fs_size) 77 bpref = 0; 78 if (bpref == 0) 79 cg = itog(fs, ip->i_number); 80 else 81 cg = dtog(fs, bpref); 82 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 83 (u_long (*)())alloccg); 84 if (bno <= 0) 85 goto nospace; 86 ip->i_blocks += btodb(size); 87 ip->i_flag |= IUPD|ICHG; 88 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 89 clrbuf(bp); 90 return (bp); 91 nospace: 92 fserr(fs, "file system full"); 93 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 94 u.u_error = ENOSPC; 95 return (NULL); 96 } 97 98 /* 99 * Reallocate a fragment to a bigger size 100 * 101 * The number and size of the old block is given, and a preference 102 * and new size is also specified. The allocator attempts to extend 103 * the original block. Failing that, the regular block allocator is 104 * invoked to get an appropriate block. 105 */ 106 struct buf * 107 realloccg(ip, bprev, bpref, osize, nsize) 108 register struct inode *ip; 109 daddr_t bprev, bpref; 110 int osize, nsize; 111 { 112 register struct fs *fs; 113 register struct buf *bp, *obp; 114 int cg, request; 115 daddr_t bno, bn; 116 int i, count, s; 117 extern struct cmap *mfind(); 118 119 fs = ip->i_fs; 120 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 121 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 122 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 123 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 124 panic("realloccg: bad size"); 125 } 126 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 127 goto nospace; 128 if (bprev == 0) { 129 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 130 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 131 panic("realloccg: bad bprev"); 132 } 133 #ifdef QUOTA 134 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 135 if (u.u_error) 136 return (NULL); 137 #endif 138 cg = dtog(fs, bprev); 139 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 140 if (bno != 0) { 141 do { 142 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 143 if (bp->b_flags & B_ERROR) { 144 brelse(bp); 145 return (NULL); 146 } 147 } while (brealloc(bp, nsize) == 0); 148 bp->b_flags |= B_DONE; 149 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 150 ip->i_blocks += btodb(nsize - osize); 151 ip->i_flag |= IUPD|ICHG; 152 return (bp); 153 } 154 if (bpref >= fs->fs_size) 155 bpref = 0; 156 switch (fs->fs_optim) { 157 case FS_OPTSPACE: 158 /* 159 * Allocate an exact sized fragment. Although this makes 160 * best use of space, we will waste time relocating it if 161 * the file continues to grow. If the fragmentation is 162 * less than half of the minimum free reserve, we choose 163 * to begin optimizing for time. 164 */ 165 request = nsize; 166 if (fs->fs_minfree < 5 || 167 fs->fs_cstotal.cs_nffree > 168 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 169 break; 170 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 171 fs->fs_fsmnt); 172 fs->fs_optim = FS_OPTTIME; 173 break; 174 case FS_OPTTIME: 175 /* 176 * At this point we have discovered a file that is trying 177 * to grow a small fragment to a larger fragment. To save 178 * time, we allocate a full sized block, then free the 179 * unused portion. If the file continues to grow, the 180 * `fragextend' call above will be able to grow it in place 181 * without further copying. If aberrant programs cause 182 * disk fragmentation to grow within 2% of the free reserve, 183 * we choose to begin optimizing for space. 184 */ 185 request = fs->fs_bsize; 186 if (fs->fs_cstotal.cs_nffree < 187 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 188 break; 189 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 190 fs->fs_fsmnt); 191 fs->fs_optim = FS_OPTSPACE; 192 break; 193 default: 194 printf("dev = 0x%x, optim = %d, fs = %s\n", 195 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 196 panic("realloccg: bad optim"); 197 /* NOTREACHED */ 198 } 199 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 200 (u_long (*)())alloccg); 201 if (bno > 0) { 202 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 203 if (obp->b_flags & B_ERROR) { 204 brelse(obp); 205 return (NULL); 206 } 207 bn = fsbtodb(fs, bno); 208 bp = getblk(ip->i_dev, bn, nsize); 209 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 210 count = howmany(osize, DEV_BSIZE); 211 s = splimp(); 212 for (i = 0; i < count; i += CLBYTES / DEV_BSIZE) 213 if (mfind(ip->i_dev, bn + i)) 214 munhash(ip->i_dev, bn + i); 215 splx(s); 216 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 217 if (obp->b_flags & B_DELWRI) { 218 obp->b_flags &= ~B_DELWRI; 219 u.u_ru.ru_oublock--; /* delete charge */ 220 } 221 brelse(obp); 222 free(ip, bprev, (off_t)osize); 223 if (nsize < request) 224 free(ip, bno + numfrags(fs, nsize), 225 (off_t)(request - nsize)); 226 ip->i_blocks += btodb(nsize - osize); 227 ip->i_flag |= IUPD|ICHG; 228 return (bp); 229 } 230 nospace: 231 /* 232 * no space available 233 */ 234 fserr(fs, "file system full"); 235 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 236 u.u_error = ENOSPC; 237 return (NULL); 238 } 239 240 /* 241 * Allocate an inode in the file system. 242 * 243 * A preference may be optionally specified. If a preference is given 244 * the following hierarchy is used to allocate an inode: 245 * 1) allocate the requested inode. 246 * 2) allocate an inode in the same cylinder group. 247 * 3) quadradically rehash into other cylinder groups, until an 248 * available inode is located. 249 * If no inode preference is given the following heirarchy is used 250 * to allocate an inode: 251 * 1) allocate an inode in cylinder group 0. 252 * 2) quadradically rehash into other cylinder groups, until an 253 * available inode is located. 254 */ 255 struct inode * 256 ialloc(pip, ipref, mode) 257 register struct inode *pip; 258 ino_t ipref; 259 int mode; 260 { 261 ino_t ino; 262 register struct fs *fs; 263 register struct inode *ip; 264 int cg; 265 266 fs = pip->i_fs; 267 if (fs->fs_cstotal.cs_nifree == 0) 268 goto noinodes; 269 #ifdef QUOTA 270 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 271 if (u.u_error) 272 return (NULL); 273 #endif 274 if (ipref >= fs->fs_ncg * fs->fs_ipg) 275 ipref = 0; 276 cg = itog(fs, ipref); 277 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 278 if (ino == 0) 279 goto noinodes; 280 ip = iget(pip->i_dev, pip->i_fs, ino); 281 if (ip == NULL) { 282 ifree(pip, ino, 0); 283 return (NULL); 284 } 285 if (ip->i_mode) { 286 printf("mode = 0%o, inum = %d, fs = %s\n", 287 ip->i_mode, ip->i_number, fs->fs_fsmnt); 288 panic("ialloc: dup alloc"); 289 } 290 if (ip->i_blocks) { /* XXX */ 291 printf("free inode %s/%d had %d blocks\n", 292 fs->fs_fsmnt, ino, ip->i_blocks); 293 ip->i_blocks = 0; 294 } 295 return (ip); 296 noinodes: 297 fserr(fs, "out of inodes"); 298 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 299 u.u_error = ENOSPC; 300 return (NULL); 301 } 302 303 /* 304 * Find a cylinder to place a directory. 305 * 306 * The policy implemented by this algorithm is to select from 307 * among those cylinder groups with above the average number of 308 * free inodes, the one with the smallest number of directories. 309 */ 310 ino_t 311 dirpref(fs) 312 register struct fs *fs; 313 { 314 int cg, minndir, mincg, avgifree; 315 316 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 317 minndir = fs->fs_ipg; 318 mincg = 0; 319 for (cg = 0; cg < fs->fs_ncg; cg++) 320 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 321 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 322 mincg = cg; 323 minndir = fs->fs_cs(fs, cg).cs_ndir; 324 } 325 return ((ino_t)(fs->fs_ipg * mincg)); 326 } 327 328 /* 329 * Select the desired position for the next block in a file. The file is 330 * logically divided into sections. The first section is composed of the 331 * direct blocks. Each additional section contains fs_maxbpg blocks. 332 * 333 * If no blocks have been allocated in the first section, the policy is to 334 * request a block in the same cylinder group as the inode that describes 335 * the file. If no blocks have been allocated in any other section, the 336 * policy is to place the section in a cylinder group with a greater than 337 * average number of free blocks. An appropriate cylinder group is found 338 * by using a rotor that sweeps the cylinder groups. When a new group of 339 * blocks is needed, the sweep begins in the cylinder group following the 340 * cylinder group from which the previous allocation was made. The sweep 341 * continues until a cylinder group with greater than the average number 342 * of free blocks is found. If the allocation is for the first block in an 343 * indirect block, the information on the previous allocation is unavailable; 344 * here a best guess is made based upon the logical block number being 345 * allocated. 346 * 347 * If a section is already partially allocated, the policy is to 348 * contiguously allocate fs_maxcontig blocks. The end of one of these 349 * contiguous blocks and the beginning of the next is physically separated 350 * so that the disk head will be in transit between them for at least 351 * fs_rotdelay milliseconds. This is to allow time for the processor to 352 * schedule another I/O transfer. 353 */ 354 daddr_t 355 blkpref(ip, lbn, indx, bap) 356 struct inode *ip; 357 daddr_t lbn; 358 int indx; 359 daddr_t *bap; 360 { 361 register struct fs *fs; 362 register int cg; 363 int avgbfree, startcg; 364 daddr_t nextblk; 365 366 fs = ip->i_fs; 367 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 368 if (lbn < NDADDR) { 369 cg = itog(fs, ip->i_number); 370 return (fs->fs_fpg * cg + fs->fs_frag); 371 } 372 /* 373 * Find a cylinder with greater than average number of 374 * unused data blocks. 375 */ 376 if (indx == 0 || bap[indx - 1] == 0) 377 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 378 else 379 startcg = dtog(fs, bap[indx - 1]) + 1; 380 startcg %= fs->fs_ncg; 381 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 382 for (cg = startcg; cg < fs->fs_ncg; cg++) 383 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 384 fs->fs_cgrotor = cg; 385 return (fs->fs_fpg * cg + fs->fs_frag); 386 } 387 for (cg = 0; cg <= startcg; cg++) 388 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 389 fs->fs_cgrotor = cg; 390 return (fs->fs_fpg * cg + fs->fs_frag); 391 } 392 return (NULL); 393 } 394 /* 395 * One or more previous blocks have been laid out. If less 396 * than fs_maxcontig previous blocks are contiguous, the 397 * next block is requested contiguously, otherwise it is 398 * requested rotationally delayed by fs_rotdelay milliseconds. 399 */ 400 nextblk = bap[indx - 1] + fs->fs_frag; 401 if (indx > fs->fs_maxcontig && 402 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 403 != nextblk) 404 return (nextblk); 405 if (fs->fs_rotdelay != 0) 406 /* 407 * Here we convert ms of delay to frags as: 408 * (frags) = (ms) * (rev/sec) * (sect/rev) / 409 * ((sect/frag) * (ms/sec)) 410 * then round up to the next block. 411 */ 412 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 413 (NSPF(fs) * 1000), fs->fs_frag); 414 return (nextblk); 415 } 416 417 /* 418 * Implement the cylinder overflow algorithm. 419 * 420 * The policy implemented by this algorithm is: 421 * 1) allocate the block in its requested cylinder group. 422 * 2) quadradically rehash on the cylinder group number. 423 * 3) brute force search for a free block. 424 */ 425 /*VARARGS5*/ 426 u_long 427 hashalloc(ip, cg, pref, size, allocator) 428 struct inode *ip; 429 int cg; 430 long pref; 431 int size; /* size for data blocks, mode for inodes */ 432 u_long (*allocator)(); 433 { 434 register struct fs *fs; 435 long result; 436 int i, icg = cg; 437 438 fs = ip->i_fs; 439 /* 440 * 1: preferred cylinder group 441 */ 442 result = (*allocator)(ip, cg, pref, size); 443 if (result) 444 return (result); 445 /* 446 * 2: quadratic rehash 447 */ 448 for (i = 1; i < fs->fs_ncg; i *= 2) { 449 cg += i; 450 if (cg >= fs->fs_ncg) 451 cg -= fs->fs_ncg; 452 result = (*allocator)(ip, cg, 0, size); 453 if (result) 454 return (result); 455 } 456 /* 457 * 3: brute force search 458 * Note that we start at i == 2, since 0 was checked initially, 459 * and 1 is always checked in the quadratic rehash. 460 */ 461 cg = (icg + 2) % fs->fs_ncg; 462 for (i = 2; i < fs->fs_ncg; i++) { 463 result = (*allocator)(ip, cg, 0, size); 464 if (result) 465 return (result); 466 cg++; 467 if (cg == fs->fs_ncg) 468 cg = 0; 469 } 470 return (NULL); 471 } 472 473 /* 474 * Determine whether a fragment can be extended. 475 * 476 * Check to see if the necessary fragments are available, and 477 * if they are, allocate them. 478 */ 479 daddr_t 480 fragextend(ip, cg, bprev, osize, nsize) 481 struct inode *ip; 482 int cg; 483 long bprev; 484 int osize, nsize; 485 { 486 register struct fs *fs; 487 register struct buf *bp; 488 register struct cg *cgp; 489 long bno; 490 int frags, bbase; 491 int i; 492 493 fs = ip->i_fs; 494 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 495 return (NULL); 496 frags = numfrags(fs, nsize); 497 bbase = fragnum(fs, bprev); 498 if (bbase > fragnum(fs, (bprev + frags - 1))) { 499 /* cannot extend across a block boundry */ 500 return (NULL); 501 } 502 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 503 cgp = bp->b_un.b_cg; 504 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 505 brelse(bp); 506 return (NULL); 507 } 508 cgp->cg_time = time.tv_sec; 509 bno = dtogd(fs, bprev); 510 for (i = numfrags(fs, osize); i < frags; i++) 511 if (isclr(cgp->cg_free, bno + i)) { 512 brelse(bp); 513 return (NULL); 514 } 515 /* 516 * the current fragment can be extended 517 * deduct the count on fragment being extended into 518 * increase the count on the remaining fragment (if any) 519 * allocate the extended piece 520 */ 521 for (i = frags; i < fs->fs_frag - bbase; i++) 522 if (isclr(cgp->cg_free, bno + i)) 523 break; 524 cgp->cg_frsum[i - numfrags(fs, osize)]--; 525 if (i != frags) 526 cgp->cg_frsum[i - frags]++; 527 for (i = numfrags(fs, osize); i < frags; i++) { 528 clrbit(cgp->cg_free, bno + i); 529 cgp->cg_cs.cs_nffree--; 530 fs->fs_cstotal.cs_nffree--; 531 fs->fs_cs(fs, cg).cs_nffree--; 532 } 533 fs->fs_fmod++; 534 bdwrite(bp); 535 return (bprev); 536 } 537 538 /* 539 * Determine whether a block can be allocated. 540 * 541 * Check to see if a block of the apprpriate size is available, 542 * and if it is, allocate it. 543 */ 544 daddr_t 545 alloccg(ip, cg, bpref, size) 546 struct inode *ip; 547 int cg; 548 daddr_t bpref; 549 int size; 550 { 551 register struct fs *fs; 552 register struct buf *bp; 553 register struct cg *cgp; 554 int bno, frags; 555 int allocsiz; 556 register int i; 557 558 fs = ip->i_fs; 559 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 560 return (NULL); 561 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 562 cgp = bp->b_un.b_cg; 563 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 564 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 565 brelse(bp); 566 return (NULL); 567 } 568 cgp->cg_time = time.tv_sec; 569 if (size == fs->fs_bsize) { 570 bno = alloccgblk(fs, cgp, bpref); 571 bdwrite(bp); 572 return (bno); 573 } 574 /* 575 * check to see if any fragments are already available 576 * allocsiz is the size which will be allocated, hacking 577 * it down to a smaller size if necessary 578 */ 579 frags = numfrags(fs, size); 580 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 581 if (cgp->cg_frsum[allocsiz] != 0) 582 break; 583 if (allocsiz == fs->fs_frag) { 584 /* 585 * no fragments were available, so a block will be 586 * allocated, and hacked up 587 */ 588 if (cgp->cg_cs.cs_nbfree == 0) { 589 brelse(bp); 590 return (NULL); 591 } 592 bno = alloccgblk(fs, cgp, bpref); 593 bpref = dtogd(fs, bno); 594 for (i = frags; i < fs->fs_frag; i++) 595 setbit(cgp->cg_free, bpref + i); 596 i = fs->fs_frag - frags; 597 cgp->cg_cs.cs_nffree += i; 598 fs->fs_cstotal.cs_nffree += i; 599 fs->fs_cs(fs, cg).cs_nffree += i; 600 fs->fs_fmod++; 601 cgp->cg_frsum[i]++; 602 bdwrite(bp); 603 return (bno); 604 } 605 bno = mapsearch(fs, cgp, bpref, allocsiz); 606 if (bno < 0) { 607 brelse(bp); 608 return (NULL); 609 } 610 for (i = 0; i < frags; i++) 611 clrbit(cgp->cg_free, bno + i); 612 cgp->cg_cs.cs_nffree -= frags; 613 fs->fs_cstotal.cs_nffree -= frags; 614 fs->fs_cs(fs, cg).cs_nffree -= frags; 615 fs->fs_fmod++; 616 cgp->cg_frsum[allocsiz]--; 617 if (frags != allocsiz) 618 cgp->cg_frsum[allocsiz - frags]++; 619 bdwrite(bp); 620 return (cg * fs->fs_fpg + bno); 621 } 622 623 /* 624 * Allocate a block in a cylinder group. 625 * 626 * This algorithm implements the following policy: 627 * 1) allocate the requested block. 628 * 2) allocate a rotationally optimal block in the same cylinder. 629 * 3) allocate the next available block on the block rotor for the 630 * specified cylinder group. 631 * Note that this routine only allocates fs_bsize blocks; these 632 * blocks may be fragmented by the routine that allocates them. 633 */ 634 daddr_t 635 alloccgblk(fs, cgp, bpref) 636 register struct fs *fs; 637 register struct cg *cgp; 638 daddr_t bpref; 639 { 640 daddr_t bno; 641 int cylno, pos, delta; 642 short *cylbp; 643 register int i; 644 645 if (bpref == 0) { 646 bpref = cgp->cg_rotor; 647 goto norot; 648 } 649 bpref = blknum(fs, bpref); 650 bpref = dtogd(fs, bpref); 651 /* 652 * if the requested block is available, use it 653 */ 654 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 655 bno = bpref; 656 goto gotit; 657 } 658 /* 659 * check for a block available on the same cylinder 660 */ 661 cylno = cbtocylno(fs, bpref); 662 if (cgp->cg_btot[cylno] == 0) 663 goto norot; 664 if (fs->fs_cpc == 0) { 665 /* 666 * block layout info is not available, so just have 667 * to take any block in this cylinder. 668 */ 669 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 670 goto norot; 671 } 672 /* 673 * check the summary information to see if a block is 674 * available in the requested cylinder starting at the 675 * requested rotational position and proceeding around. 676 */ 677 cylbp = cgp->cg_b[cylno]; 678 pos = cbtorpos(fs, bpref); 679 for (i = pos; i < NRPOS; i++) 680 if (cylbp[i] > 0) 681 break; 682 if (i == NRPOS) 683 for (i = 0; i < pos; i++) 684 if (cylbp[i] > 0) 685 break; 686 if (cylbp[i] > 0) { 687 /* 688 * found a rotational position, now find the actual 689 * block. A panic if none is actually there. 690 */ 691 pos = cylno % fs->fs_cpc; 692 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 693 if (fs->fs_postbl[pos][i] == -1) { 694 printf("pos = %d, i = %d, fs = %s\n", 695 pos, i, fs->fs_fsmnt); 696 panic("alloccgblk: cyl groups corrupted"); 697 } 698 for (i = fs->fs_postbl[pos][i];; ) { 699 if (isblock(fs, cgp->cg_free, bno + i)) { 700 bno = blkstofrags(fs, (bno + i)); 701 goto gotit; 702 } 703 delta = fs->fs_rotbl[i]; 704 if (delta <= 0 || delta > MAXBPC - i) 705 break; 706 i += delta; 707 } 708 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 709 panic("alloccgblk: can't find blk in cyl"); 710 } 711 norot: 712 /* 713 * no blocks in the requested cylinder, so take next 714 * available one in this cylinder group. 715 */ 716 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 717 if (bno < 0) 718 return (NULL); 719 cgp->cg_rotor = bno; 720 gotit: 721 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 722 cgp->cg_cs.cs_nbfree--; 723 fs->fs_cstotal.cs_nbfree--; 724 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 725 cylno = cbtocylno(fs, bno); 726 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 727 cgp->cg_btot[cylno]--; 728 fs->fs_fmod++; 729 return (cgp->cg_cgx * fs->fs_fpg + bno); 730 } 731 732 /* 733 * Determine whether an inode can be allocated. 734 * 735 * Check to see if an inode is available, and if it is, 736 * allocate it using the following policy: 737 * 1) allocate the requested inode. 738 * 2) allocate the next available inode after the requested 739 * inode in the specified cylinder group. 740 */ 741 ino_t 742 ialloccg(ip, cg, ipref, mode) 743 struct inode *ip; 744 int cg; 745 daddr_t ipref; 746 int mode; 747 { 748 register struct fs *fs; 749 register struct cg *cgp; 750 struct buf *bp; 751 int start, len, loc, map, i; 752 753 fs = ip->i_fs; 754 if (fs->fs_cs(fs, cg).cs_nifree == 0) 755 return (NULL); 756 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 757 cgp = bp->b_un.b_cg; 758 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 759 cgp->cg_cs.cs_nifree == 0) { 760 brelse(bp); 761 return (NULL); 762 } 763 cgp->cg_time = time.tv_sec; 764 if (ipref) { 765 ipref %= fs->fs_ipg; 766 if (isclr(cgp->cg_iused, ipref)) 767 goto gotit; 768 } 769 start = cgp->cg_irotor / NBBY; 770 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 771 loc = skpc(0xff, len, &cgp->cg_iused[start]); 772 if (loc == 0) { 773 len = start + 1; 774 start = 0; 775 loc = skpc(0xff, len, &cgp->cg_iused[0]); 776 if (loc == 0) { 777 printf("cg = %s, irotor = %d, fs = %s\n", 778 cg, cgp->cg_irotor, fs->fs_fsmnt); 779 panic("ialloccg: map corrupted"); 780 /* NOTREACHED */ 781 } 782 } 783 i = start + len - loc; 784 map = cgp->cg_iused[i]; 785 ipref = i * NBBY; 786 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 787 if ((map & i) == 0) { 788 cgp->cg_irotor = ipref; 789 goto gotit; 790 } 791 } 792 printf("fs = %s\n", fs->fs_fsmnt); 793 panic("ialloccg: block not in map"); 794 /* NOTREACHED */ 795 gotit: 796 setbit(cgp->cg_iused, ipref); 797 cgp->cg_cs.cs_nifree--; 798 fs->fs_cstotal.cs_nifree--; 799 fs->fs_cs(fs, cg).cs_nifree--; 800 fs->fs_fmod++; 801 if ((mode & IFMT) == IFDIR) { 802 cgp->cg_cs.cs_ndir++; 803 fs->fs_cstotal.cs_ndir++; 804 fs->fs_cs(fs, cg).cs_ndir++; 805 } 806 bdwrite(bp); 807 return (cg * fs->fs_ipg + ipref); 808 } 809 810 /* 811 * Free a block or fragment. 812 * 813 * The specified block or fragment is placed back in the 814 * free map. If a fragment is deallocated, a possible 815 * block reassembly is checked. 816 */ 817 free(ip, bno, size) 818 register struct inode *ip; 819 daddr_t bno; 820 off_t size; 821 { 822 register struct fs *fs; 823 register struct cg *cgp; 824 register struct buf *bp; 825 int cg, blk, frags, bbase; 826 register int i; 827 828 fs = ip->i_fs; 829 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 830 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 831 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 832 panic("free: bad size"); 833 } 834 cg = dtog(fs, bno); 835 if (badblock(fs, bno)) { 836 printf("bad block %d, ino %d\n", bno, ip->i_number); 837 return; 838 } 839 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 840 cgp = bp->b_un.b_cg; 841 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 842 brelse(bp); 843 return; 844 } 845 cgp->cg_time = time.tv_sec; 846 bno = dtogd(fs, bno); 847 if (size == fs->fs_bsize) { 848 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 849 printf("dev = 0x%x, block = %d, fs = %s\n", 850 ip->i_dev, bno, fs->fs_fsmnt); 851 panic("free: freeing free block"); 852 } 853 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 854 cgp->cg_cs.cs_nbfree++; 855 fs->fs_cstotal.cs_nbfree++; 856 fs->fs_cs(fs, cg).cs_nbfree++; 857 i = cbtocylno(fs, bno); 858 cgp->cg_b[i][cbtorpos(fs, bno)]++; 859 cgp->cg_btot[i]++; 860 } else { 861 bbase = bno - fragnum(fs, bno); 862 /* 863 * decrement the counts associated with the old frags 864 */ 865 blk = blkmap(fs, cgp->cg_free, bbase); 866 fragacct(fs, blk, cgp->cg_frsum, -1); 867 /* 868 * deallocate the fragment 869 */ 870 frags = numfrags(fs, size); 871 for (i = 0; i < frags; i++) { 872 if (isset(cgp->cg_free, bno + i)) { 873 printf("dev = 0x%x, block = %d, fs = %s\n", 874 ip->i_dev, bno + i, fs->fs_fsmnt); 875 panic("free: freeing free frag"); 876 } 877 setbit(cgp->cg_free, bno + i); 878 } 879 cgp->cg_cs.cs_nffree += i; 880 fs->fs_cstotal.cs_nffree += i; 881 fs->fs_cs(fs, cg).cs_nffree += i; 882 /* 883 * add back in counts associated with the new frags 884 */ 885 blk = blkmap(fs, cgp->cg_free, bbase); 886 fragacct(fs, blk, cgp->cg_frsum, 1); 887 /* 888 * if a complete block has been reassembled, account for it 889 */ 890 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 891 cgp->cg_cs.cs_nffree -= fs->fs_frag; 892 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 893 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 894 cgp->cg_cs.cs_nbfree++; 895 fs->fs_cstotal.cs_nbfree++; 896 fs->fs_cs(fs, cg).cs_nbfree++; 897 i = cbtocylno(fs, bbase); 898 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 899 cgp->cg_btot[i]++; 900 } 901 } 902 fs->fs_fmod++; 903 bdwrite(bp); 904 } 905 906 /* 907 * Free an inode. 908 * 909 * The specified inode is placed back in the free map. 910 */ 911 ifree(ip, ino, mode) 912 struct inode *ip; 913 ino_t ino; 914 int mode; 915 { 916 register struct fs *fs; 917 register struct cg *cgp; 918 register struct buf *bp; 919 int cg; 920 921 fs = ip->i_fs; 922 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 923 printf("dev = 0x%x, ino = %d, fs = %s\n", 924 ip->i_dev, ino, fs->fs_fsmnt); 925 panic("ifree: range"); 926 } 927 cg = itog(fs, ino); 928 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 929 cgp = bp->b_un.b_cg; 930 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 931 brelse(bp); 932 return; 933 } 934 cgp->cg_time = time.tv_sec; 935 ino %= fs->fs_ipg; 936 if (isclr(cgp->cg_iused, ino)) { 937 printf("dev = 0x%x, ino = %d, fs = %s\n", 938 ip->i_dev, ino, fs->fs_fsmnt); 939 panic("ifree: freeing free inode"); 940 } 941 clrbit(cgp->cg_iused, ino); 942 if (ino < cgp->cg_irotor) 943 cgp->cg_irotor = ino; 944 cgp->cg_cs.cs_nifree++; 945 fs->fs_cstotal.cs_nifree++; 946 fs->fs_cs(fs, cg).cs_nifree++; 947 if ((mode & IFMT) == IFDIR) { 948 cgp->cg_cs.cs_ndir--; 949 fs->fs_cstotal.cs_ndir--; 950 fs->fs_cs(fs, cg).cs_ndir--; 951 } 952 fs->fs_fmod++; 953 bdwrite(bp); 954 } 955 956 /* 957 * Find a block of the specified size in the specified cylinder group. 958 * 959 * It is a panic if a request is made to find a block if none are 960 * available. 961 */ 962 daddr_t 963 mapsearch(fs, cgp, bpref, allocsiz) 964 register struct fs *fs; 965 register struct cg *cgp; 966 daddr_t bpref; 967 int allocsiz; 968 { 969 daddr_t bno; 970 int start, len, loc, i; 971 int blk, field, subfield, pos; 972 973 /* 974 * find the fragment by searching through the free block 975 * map for an appropriate bit pattern 976 */ 977 if (bpref) 978 start = dtogd(fs, bpref) / NBBY; 979 else 980 start = cgp->cg_frotor / NBBY; 981 len = howmany(fs->fs_fpg, NBBY) - start; 982 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 983 (caddr_t)fragtbl[fs->fs_frag], 984 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 985 if (loc == 0) { 986 len = start + 1; 987 start = 0; 988 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0], 989 (caddr_t)fragtbl[fs->fs_frag], 990 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 991 if (loc == 0) { 992 printf("start = %d, len = %d, fs = %s\n", 993 start, len, fs->fs_fsmnt); 994 panic("alloccg: map corrupted"); 995 /* NOTREACHED */ 996 } 997 } 998 bno = (start + len - loc) * NBBY; 999 cgp->cg_frotor = bno; 1000 /* 1001 * found the byte in the map 1002 * sift through the bits to find the selected frag 1003 */ 1004 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1005 blk = blkmap(fs, cgp->cg_free, bno); 1006 blk <<= 1; 1007 field = around[allocsiz]; 1008 subfield = inside[allocsiz]; 1009 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1010 if ((blk & field) == subfield) 1011 return (bno + pos); 1012 field <<= 1; 1013 subfield <<= 1; 1014 } 1015 } 1016 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1017 panic("alloccg: block not in map"); 1018 return (-1); 1019 } 1020 1021 /* 1022 * Fserr prints the name of a file system with an error diagnostic. 1023 * 1024 * The form of the error message is: 1025 * fs: error message 1026 */ 1027 fserr(fs, cp) 1028 struct fs *fs; 1029 char *cp; 1030 { 1031 1032 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp); 1033 } 1034