xref: /csrg-svn/sys/ufs/ffs/ffs_alloc.c (revision 23394)
1 /*
2  * Copyright (c) 1982 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)ffs_alloc.c	6.14 (Berkeley) 06/08/85
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "mount.h"
12 #include "fs.h"
13 #include "buf.h"
14 #include "inode.h"
15 #include "dir.h"
16 #include "user.h"
17 #include "quota.h"
18 #include "kernel.h"
19 #include "syslog.h"
20 
21 extern u_long		hashalloc();
22 extern ino_t		ialloccg();
23 extern daddr_t		alloccg();
24 extern daddr_t		alloccgblk();
25 extern daddr_t		fragextend();
26 extern daddr_t		blkpref();
27 extern daddr_t		mapsearch();
28 extern int		inside[], around[];
29 extern unsigned char	*fragtbl[];
30 
31 /*
32  * Allocate a block in the file system.
33  *
34  * The size of the requested block is given, which must be some
35  * multiple of fs_fsize and <= fs_bsize.
36  * A preference may be optionally specified. If a preference is given
37  * the following hierarchy is used to allocate a block:
38  *   1) allocate the requested block.
39  *   2) allocate a rotationally optimal block in the same cylinder.
40  *   3) allocate a block in the same cylinder group.
41  *   4) quadradically rehash into other cylinder groups, until an
42  *      available block is located.
43  * If no block preference is given the following heirarchy is used
44  * to allocate a block:
45  *   1) allocate a block in the cylinder group that contains the
46  *      inode for the file.
47  *   2) quadradically rehash into other cylinder groups, until an
48  *      available block is located.
49  */
50 struct buf *
51 alloc(ip, bpref, size)
52 	register struct inode *ip;
53 	daddr_t bpref;
54 	int size;
55 {
56 	daddr_t bno;
57 	register struct fs *fs;
58 	register struct buf *bp;
59 	int cg;
60 
61 	fs = ip->i_fs;
62 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
63 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
64 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
65 		panic("alloc: bad size");
66 	}
67 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
68 		goto nospace;
69 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
70 		goto nospace;
71 #ifdef QUOTA
72 	u.u_error = chkdq(ip, (long)btodb(size), 0);
73 	if (u.u_error)
74 		return (NULL);
75 #endif
76 	if (bpref >= fs->fs_size)
77 		bpref = 0;
78 	if (bpref == 0)
79 		cg = itog(fs, ip->i_number);
80 	else
81 		cg = dtog(fs, bpref);
82 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
83 		(u_long (*)())alloccg);
84 	if (bno <= 0)
85 		goto nospace;
86 	ip->i_blocks += btodb(size);
87 	ip->i_flag |= IUPD|ICHG;
88 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
89 	clrbuf(bp);
90 	return (bp);
91 nospace:
92 	fserr(fs, "file system full");
93 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
94 	u.u_error = ENOSPC;
95 	return (NULL);
96 }
97 
98 /*
99  * Reallocate a fragment to a bigger size
100  *
101  * The number and size of the old block is given, and a preference
102  * and new size is also specified. The allocator attempts to extend
103  * the original block. Failing that, the regular block allocator is
104  * invoked to get an appropriate block.
105  */
106 struct buf *
107 realloccg(ip, bprev, bpref, osize, nsize)
108 	register struct inode *ip;
109 	daddr_t bprev, bpref;
110 	int osize, nsize;
111 {
112 	daddr_t bno;
113 	register struct fs *fs;
114 	register struct buf *bp, *obp;
115 	int cg;
116 
117 	fs = ip->i_fs;
118 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
119 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
120 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
121 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
122 		panic("realloccg: bad size");
123 	}
124 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
125 		goto nospace;
126 	if (bprev == 0) {
127 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
128 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
129 		panic("realloccg: bad bprev");
130 	}
131 #ifdef QUOTA
132 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
133 	if (u.u_error)
134 		return (NULL);
135 #endif
136 	cg = dtog(fs, bprev);
137 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
138 	if (bno != 0) {
139 		do {
140 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
141 			if (bp->b_flags & B_ERROR) {
142 				brelse(bp);
143 				return (NULL);
144 			}
145 		} while (brealloc(bp, nsize) == 0);
146 		bp->b_flags |= B_DONE;
147 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
148 		ip->i_blocks += btodb(nsize - osize);
149 		ip->i_flag |= IUPD|ICHG;
150 		return (bp);
151 	}
152 	if (bpref >= fs->fs_size)
153 		bpref = 0;
154 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, fs->fs_bsize,
155 		(u_long (*)())alloccg);
156 	if (bno > 0) {
157 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
158 		if (obp->b_flags & B_ERROR) {
159 			brelse(obp);
160 			return (NULL);
161 		}
162 		bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize);
163 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
164 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
165 		if (obp->b_flags & B_DELWRI) {
166 			obp->b_flags &= ~B_DELWRI;
167 			u.u_ru.ru_oublock--;		/* delete charge */
168 		}
169 		brelse(obp);
170 		free(ip, bprev, (off_t)osize);
171 		if (nsize < fs->fs_bsize)
172 			free(ip, bno + numfrags(fs, nsize),
173 				(off_t)(fs->fs_bsize - nsize));
174 		ip->i_blocks += btodb(nsize - osize);
175 		ip->i_flag |= IUPD|ICHG;
176 		return (bp);
177 	}
178 nospace:
179 	/*
180 	 * no space available
181 	 */
182 	fserr(fs, "file system full");
183 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
184 	u.u_error = ENOSPC;
185 	return (NULL);
186 }
187 
188 /*
189  * Allocate an inode in the file system.
190  *
191  * A preference may be optionally specified. If a preference is given
192  * the following hierarchy is used to allocate an inode:
193  *   1) allocate the requested inode.
194  *   2) allocate an inode in the same cylinder group.
195  *   3) quadradically rehash into other cylinder groups, until an
196  *      available inode is located.
197  * If no inode preference is given the following heirarchy is used
198  * to allocate an inode:
199  *   1) allocate an inode in cylinder group 0.
200  *   2) quadradically rehash into other cylinder groups, until an
201  *      available inode is located.
202  */
203 struct inode *
204 ialloc(pip, ipref, mode)
205 	register struct inode *pip;
206 	ino_t ipref;
207 	int mode;
208 {
209 	ino_t ino;
210 	register struct fs *fs;
211 	register struct inode *ip;
212 	int cg;
213 
214 	fs = pip->i_fs;
215 	if (fs->fs_cstotal.cs_nifree == 0)
216 		goto noinodes;
217 #ifdef QUOTA
218 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
219 	if (u.u_error)
220 		return (NULL);
221 #endif
222 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
223 		ipref = 0;
224 	cg = itog(fs, ipref);
225 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
226 	if (ino == 0)
227 		goto noinodes;
228 	ip = iget(pip->i_dev, pip->i_fs, ino);
229 	if (ip == NULL) {
230 		ifree(pip, ino, 0);
231 		return (NULL);
232 	}
233 	if (ip->i_mode) {
234 		printf("mode = 0%o, inum = %d, fs = %s\n",
235 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
236 		panic("ialloc: dup alloc");
237 	}
238 	if (ip->i_blocks) {				/* XXX */
239 		printf("free inode %s/%d had %d blocks\n",
240 		    fs->fs_fsmnt, ino, ip->i_blocks);
241 		ip->i_blocks = 0;
242 	}
243 	return (ip);
244 noinodes:
245 	fserr(fs, "out of inodes");
246 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
247 	u.u_error = ENOSPC;
248 	return (NULL);
249 }
250 
251 /*
252  * Find a cylinder to place a directory.
253  *
254  * The policy implemented by this algorithm is to select from
255  * among those cylinder groups with above the average number of
256  * free inodes, the one with the smallest number of directories.
257  */
258 ino_t
259 dirpref(fs)
260 	register struct fs *fs;
261 {
262 	int cg, minndir, mincg, avgifree;
263 
264 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
265 	minndir = fs->fs_ipg;
266 	mincg = 0;
267 	for (cg = 0; cg < fs->fs_ncg; cg++)
268 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
269 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
270 			mincg = cg;
271 			minndir = fs->fs_cs(fs, cg).cs_ndir;
272 		}
273 	return ((ino_t)(fs->fs_ipg * mincg));
274 }
275 
276 /*
277  * Select the desired position for the next block in a file.  The file is
278  * logically divided into sections. The first section is composed of the
279  * direct blocks. Each additional section contains fs_maxbpg blocks.
280  *
281  * If no blocks have been allocated in the first section, the policy is to
282  * request a block in the same cylinder group as the inode that describes
283  * the file. If no blocks have been allocated in any other section, the
284  * policy is to place the section in a cylinder group with a greater than
285  * average number of free blocks.  An appropriate cylinder group is found
286  * by using a rotor that sweeps the cylinder groups. When a new group of
287  * blocks is needed, the sweep begins in the cylinder group following the
288  * cylinder group from which the previous allocation was made. The sweep
289  * continues until a cylinder group with greater than the average number
290  * of free blocks is found. If the allocation is for the first block in an
291  * indirect block, the information on the previous allocation is unavailable;
292  * here a best guess is made based upon the logical block number being
293  * allocated.
294  *
295  * If a section is already partially allocated, the policy is to
296  * contiguously allocate fs_maxcontig blocks.  The end of one of these
297  * contiguous blocks and the beginning of the next is physically separated
298  * so that the disk head will be in transit between them for at least
299  * fs_rotdelay milliseconds.  This is to allow time for the processor to
300  * schedule another I/O transfer.
301  */
302 daddr_t
303 blkpref(ip, lbn, indx, bap)
304 	struct inode *ip;
305 	daddr_t lbn;
306 	int indx;
307 	daddr_t *bap;
308 {
309 	register struct fs *fs;
310 	register int cg;
311 	int avgbfree, startcg;
312 	daddr_t nextblk;
313 
314 	fs = ip->i_fs;
315 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
316 		if (lbn < NDADDR) {
317 			cg = itog(fs, ip->i_number);
318 			return (fs->fs_fpg * cg + fs->fs_frag);
319 		}
320 		/*
321 		 * Find a cylinder with greater than average number of
322 		 * unused data blocks.
323 		 */
324 		if (indx == 0 || bap[indx - 1] == 0)
325 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
326 		else
327 			startcg = dtog(fs, bap[indx - 1]) + 1;
328 		startcg %= fs->fs_ncg;
329 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
330 		for (cg = startcg; cg < fs->fs_ncg; cg++)
331 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
332 				fs->fs_cgrotor = cg;
333 				return (fs->fs_fpg * cg + fs->fs_frag);
334 			}
335 		for (cg = 0; cg <= startcg; cg++)
336 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
337 				fs->fs_cgrotor = cg;
338 				return (fs->fs_fpg * cg + fs->fs_frag);
339 			}
340 		return (NULL);
341 	}
342 	/*
343 	 * One or more previous blocks have been laid out. If less
344 	 * than fs_maxcontig previous blocks are contiguous, the
345 	 * next block is requested contiguously, otherwise it is
346 	 * requested rotationally delayed by fs_rotdelay milliseconds.
347 	 */
348 	nextblk = bap[indx - 1] + fs->fs_frag;
349 	if (indx > fs->fs_maxcontig &&
350 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
351 	    != nextblk)
352 		return (nextblk);
353 	if (fs->fs_rotdelay != 0)
354 		/*
355 		 * Here we convert ms of delay to frags as:
356 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
357 		 *	((sect/frag) * (ms/sec))
358 		 * then round up to the next block.
359 		 */
360 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
361 		    (NSPF(fs) * 1000), fs->fs_frag);
362 	return (nextblk);
363 }
364 
365 /*
366  * Implement the cylinder overflow algorithm.
367  *
368  * The policy implemented by this algorithm is:
369  *   1) allocate the block in its requested cylinder group.
370  *   2) quadradically rehash on the cylinder group number.
371  *   3) brute force search for a free block.
372  */
373 /*VARARGS5*/
374 u_long
375 hashalloc(ip, cg, pref, size, allocator)
376 	struct inode *ip;
377 	int cg;
378 	long pref;
379 	int size;	/* size for data blocks, mode for inodes */
380 	u_long (*allocator)();
381 {
382 	register struct fs *fs;
383 	long result;
384 	int i, icg = cg;
385 
386 	fs = ip->i_fs;
387 	/*
388 	 * 1: preferred cylinder group
389 	 */
390 	result = (*allocator)(ip, cg, pref, size);
391 	if (result)
392 		return (result);
393 	/*
394 	 * 2: quadratic rehash
395 	 */
396 	for (i = 1; i < fs->fs_ncg; i *= 2) {
397 		cg += i;
398 		if (cg >= fs->fs_ncg)
399 			cg -= fs->fs_ncg;
400 		result = (*allocator)(ip, cg, 0, size);
401 		if (result)
402 			return (result);
403 	}
404 	/*
405 	 * 3: brute force search
406 	 * Note that we start at i == 2, since 0 was checked initially,
407 	 * and 1 is always checked in the quadratic rehash.
408 	 */
409 	cg = (icg + 2) % fs->fs_ncg;
410 	for (i = 2; i < fs->fs_ncg; i++) {
411 		result = (*allocator)(ip, cg, 0, size);
412 		if (result)
413 			return (result);
414 		cg++;
415 		if (cg == fs->fs_ncg)
416 			cg = 0;
417 	}
418 	return (NULL);
419 }
420 
421 /*
422  * Determine whether a fragment can be extended.
423  *
424  * Check to see if the necessary fragments are available, and
425  * if they are, allocate them.
426  */
427 daddr_t
428 fragextend(ip, cg, bprev, osize, nsize)
429 	struct inode *ip;
430 	int cg;
431 	long bprev;
432 	int osize, nsize;
433 {
434 	register struct fs *fs;
435 	register struct buf *bp;
436 	register struct cg *cgp;
437 	long bno;
438 	int frags, bbase;
439 	int i;
440 
441 	fs = ip->i_fs;
442 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
443 		return (NULL);
444 	frags = numfrags(fs, nsize);
445 	bbase = fragnum(fs, bprev);
446 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
447 		/* cannot extend across a block boundry */
448 		return (NULL);
449 	}
450 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
451 	cgp = bp->b_un.b_cg;
452 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
453 		brelse(bp);
454 		return (NULL);
455 	}
456 	cgp->cg_time = time.tv_sec;
457 	bno = dtogd(fs, bprev);
458 	for (i = numfrags(fs, osize); i < frags; i++)
459 		if (isclr(cgp->cg_free, bno + i)) {
460 			brelse(bp);
461 			return (NULL);
462 		}
463 	/*
464 	 * the current fragment can be extended
465 	 * deduct the count on fragment being extended into
466 	 * increase the count on the remaining fragment (if any)
467 	 * allocate the extended piece
468 	 */
469 	for (i = frags; i < fs->fs_frag - bbase; i++)
470 		if (isclr(cgp->cg_free, bno + i))
471 			break;
472 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
473 	if (i != frags)
474 		cgp->cg_frsum[i - frags]++;
475 	for (i = numfrags(fs, osize); i < frags; i++) {
476 		clrbit(cgp->cg_free, bno + i);
477 		cgp->cg_cs.cs_nffree--;
478 		fs->fs_cstotal.cs_nffree--;
479 		fs->fs_cs(fs, cg).cs_nffree--;
480 	}
481 	fs->fs_fmod++;
482 	bdwrite(bp);
483 	return (bprev);
484 }
485 
486 /*
487  * Determine whether a block can be allocated.
488  *
489  * Check to see if a block of the apprpriate size is available,
490  * and if it is, allocate it.
491  */
492 daddr_t
493 alloccg(ip, cg, bpref, size)
494 	struct inode *ip;
495 	int cg;
496 	daddr_t bpref;
497 	int size;
498 {
499 	register struct fs *fs;
500 	register struct buf *bp;
501 	register struct cg *cgp;
502 	int bno, frags;
503 	int allocsiz;
504 	register int i;
505 
506 	fs = ip->i_fs;
507 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
508 		return (NULL);
509 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
510 	cgp = bp->b_un.b_cg;
511 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
512 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
513 		brelse(bp);
514 		return (NULL);
515 	}
516 	cgp->cg_time = time.tv_sec;
517 	if (size == fs->fs_bsize) {
518 		bno = alloccgblk(fs, cgp, bpref);
519 		bdwrite(bp);
520 		return (bno);
521 	}
522 	/*
523 	 * check to see if any fragments are already available
524 	 * allocsiz is the size which will be allocated, hacking
525 	 * it down to a smaller size if necessary
526 	 */
527 	frags = numfrags(fs, size);
528 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
529 		if (cgp->cg_frsum[allocsiz] != 0)
530 			break;
531 	if (allocsiz == fs->fs_frag) {
532 		/*
533 		 * no fragments were available, so a block will be
534 		 * allocated, and hacked up
535 		 */
536 		if (cgp->cg_cs.cs_nbfree == 0) {
537 			brelse(bp);
538 			return (NULL);
539 		}
540 		bno = alloccgblk(fs, cgp, bpref);
541 		bpref = dtogd(fs, bno);
542 		for (i = frags; i < fs->fs_frag; i++)
543 			setbit(cgp->cg_free, bpref + i);
544 		i = fs->fs_frag - frags;
545 		cgp->cg_cs.cs_nffree += i;
546 		fs->fs_cstotal.cs_nffree += i;
547 		fs->fs_cs(fs, cg).cs_nffree += i;
548 		fs->fs_fmod++;
549 		cgp->cg_frsum[i]++;
550 		bdwrite(bp);
551 		return (bno);
552 	}
553 	bno = mapsearch(fs, cgp, bpref, allocsiz);
554 	if (bno < 0) {
555 		brelse(bp);
556 		return (NULL);
557 	}
558 	for (i = 0; i < frags; i++)
559 		clrbit(cgp->cg_free, bno + i);
560 	cgp->cg_cs.cs_nffree -= frags;
561 	fs->fs_cstotal.cs_nffree -= frags;
562 	fs->fs_cs(fs, cg).cs_nffree -= frags;
563 	fs->fs_fmod++;
564 	cgp->cg_frsum[allocsiz]--;
565 	if (frags != allocsiz)
566 		cgp->cg_frsum[allocsiz - frags]++;
567 	bdwrite(bp);
568 	return (cg * fs->fs_fpg + bno);
569 }
570 
571 /*
572  * Allocate a block in a cylinder group.
573  *
574  * This algorithm implements the following policy:
575  *   1) allocate the requested block.
576  *   2) allocate a rotationally optimal block in the same cylinder.
577  *   3) allocate the next available block on the block rotor for the
578  *      specified cylinder group.
579  * Note that this routine only allocates fs_bsize blocks; these
580  * blocks may be fragmented by the routine that allocates them.
581  */
582 daddr_t
583 alloccgblk(fs, cgp, bpref)
584 	register struct fs *fs;
585 	register struct cg *cgp;
586 	daddr_t bpref;
587 {
588 	daddr_t bno;
589 	int cylno, pos, delta;
590 	short *cylbp;
591 	register int i;
592 
593 	if (bpref == 0) {
594 		bpref = cgp->cg_rotor;
595 		goto norot;
596 	}
597 	bpref = blknum(fs, bpref);
598 	bpref = dtogd(fs, bpref);
599 	/*
600 	 * if the requested block is available, use it
601 	 */
602 	if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
603 		bno = bpref;
604 		goto gotit;
605 	}
606 	/*
607 	 * check for a block available on the same cylinder
608 	 */
609 	cylno = cbtocylno(fs, bpref);
610 	if (cgp->cg_btot[cylno] == 0)
611 		goto norot;
612 	if (fs->fs_cpc == 0) {
613 		/*
614 		 * block layout info is not available, so just have
615 		 * to take any block in this cylinder.
616 		 */
617 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
618 		goto norot;
619 	}
620 	/*
621 	 * check the summary information to see if a block is
622 	 * available in the requested cylinder starting at the
623 	 * requested rotational position and proceeding around.
624 	 */
625 	cylbp = cgp->cg_b[cylno];
626 	pos = cbtorpos(fs, bpref);
627 	for (i = pos; i < NRPOS; i++)
628 		if (cylbp[i] > 0)
629 			break;
630 	if (i == NRPOS)
631 		for (i = 0; i < pos; i++)
632 			if (cylbp[i] > 0)
633 				break;
634 	if (cylbp[i] > 0) {
635 		/*
636 		 * found a rotational position, now find the actual
637 		 * block. A panic if none is actually there.
638 		 */
639 		pos = cylno % fs->fs_cpc;
640 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
641 		if (fs->fs_postbl[pos][i] == -1) {
642 			printf("pos = %d, i = %d, fs = %s\n",
643 			    pos, i, fs->fs_fsmnt);
644 			panic("alloccgblk: cyl groups corrupted");
645 		}
646 		for (i = fs->fs_postbl[pos][i];; ) {
647 			if (isblock(fs, cgp->cg_free, bno + i)) {
648 				bno = blkstofrags(fs, (bno + i));
649 				goto gotit;
650 			}
651 			delta = fs->fs_rotbl[i];
652 			if (delta <= 0 || delta > MAXBPC - i)
653 				break;
654 			i += delta;
655 		}
656 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
657 		panic("alloccgblk: can't find blk in cyl");
658 	}
659 norot:
660 	/*
661 	 * no blocks in the requested cylinder, so take next
662 	 * available one in this cylinder group.
663 	 */
664 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
665 	if (bno < 0)
666 		return (NULL);
667 	cgp->cg_rotor = bno;
668 gotit:
669 	clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
670 	cgp->cg_cs.cs_nbfree--;
671 	fs->fs_cstotal.cs_nbfree--;
672 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
673 	cylno = cbtocylno(fs, bno);
674 	cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
675 	cgp->cg_btot[cylno]--;
676 	fs->fs_fmod++;
677 	return (cgp->cg_cgx * fs->fs_fpg + bno);
678 }
679 
680 /*
681  * Determine whether an inode can be allocated.
682  *
683  * Check to see if an inode is available, and if it is,
684  * allocate it using the following policy:
685  *   1) allocate the requested inode.
686  *   2) allocate the next available inode after the requested
687  *      inode in the specified cylinder group.
688  */
689 ino_t
690 ialloccg(ip, cg, ipref, mode)
691 	struct inode *ip;
692 	int cg;
693 	daddr_t ipref;
694 	int mode;
695 {
696 	register struct fs *fs;
697 	register struct cg *cgp;
698 	struct buf *bp;
699 	int start, len, loc, map, i;
700 
701 	fs = ip->i_fs;
702 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
703 		return (NULL);
704 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
705 	cgp = bp->b_un.b_cg;
706 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
707 	    cgp->cg_cs.cs_nifree == 0) {
708 		brelse(bp);
709 		return (NULL);
710 	}
711 	cgp->cg_time = time.tv_sec;
712 	if (ipref) {
713 		ipref %= fs->fs_ipg;
714 		if (isclr(cgp->cg_iused, ipref))
715 			goto gotit;
716 	}
717 	start = cgp->cg_irotor / NBBY;
718 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
719 	loc = skpc(0xff, len, &cgp->cg_iused[start]);
720 	if (loc == 0) {
721 		len = start + 1;
722 		start = 0;
723 		loc = skpc(0xff, len, &cgp->cg_iused[0]);
724 		if (loc == 0) {
725 			printf("cg = %s, irotor = %d, fs = %s\n",
726 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
727 			panic("ialloccg: map corrupted");
728 			/* NOTREACHED */
729 		}
730 	}
731 	i = start + len - loc;
732 	map = cgp->cg_iused[i];
733 	ipref = i * NBBY;
734 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
735 		if ((map & i) == 0) {
736 			cgp->cg_irotor = ipref;
737 			goto gotit;
738 		}
739 	}
740 	printf("fs = %s\n", fs->fs_fsmnt);
741 	panic("ialloccg: block not in map");
742 	/* NOTREACHED */
743 gotit:
744 	setbit(cgp->cg_iused, ipref);
745 	cgp->cg_cs.cs_nifree--;
746 	fs->fs_cstotal.cs_nifree--;
747 	fs->fs_cs(fs, cg).cs_nifree--;
748 	fs->fs_fmod++;
749 	if ((mode & IFMT) == IFDIR) {
750 		cgp->cg_cs.cs_ndir++;
751 		fs->fs_cstotal.cs_ndir++;
752 		fs->fs_cs(fs, cg).cs_ndir++;
753 	}
754 	bdwrite(bp);
755 	return (cg * fs->fs_ipg + ipref);
756 }
757 
758 /*
759  * Free a block or fragment.
760  *
761  * The specified block or fragment is placed back in the
762  * free map. If a fragment is deallocated, a possible
763  * block reassembly is checked.
764  */
765 free(ip, bno, size)
766 	register struct inode *ip;
767 	daddr_t bno;
768 	off_t size;
769 {
770 	register struct fs *fs;
771 	register struct cg *cgp;
772 	register struct buf *bp;
773 	int cg, blk, frags, bbase;
774 	register int i;
775 
776 	fs = ip->i_fs;
777 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
778 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
779 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
780 		panic("free: bad size");
781 	}
782 	cg = dtog(fs, bno);
783 	if (badblock(fs, bno)) {
784 		printf("bad block %d, ino %d\n", bno, ip->i_number);
785 		return;
786 	}
787 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
788 	cgp = bp->b_un.b_cg;
789 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
790 		brelse(bp);
791 		return;
792 	}
793 	cgp->cg_time = time.tv_sec;
794 	bno = dtogd(fs, bno);
795 	if (size == fs->fs_bsize) {
796 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
797 			printf("dev = 0x%x, block = %d, fs = %s\n",
798 			    ip->i_dev, bno, fs->fs_fsmnt);
799 			panic("free: freeing free block");
800 		}
801 		setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
802 		cgp->cg_cs.cs_nbfree++;
803 		fs->fs_cstotal.cs_nbfree++;
804 		fs->fs_cs(fs, cg).cs_nbfree++;
805 		i = cbtocylno(fs, bno);
806 		cgp->cg_b[i][cbtorpos(fs, bno)]++;
807 		cgp->cg_btot[i]++;
808 	} else {
809 		bbase = bno - fragnum(fs, bno);
810 		/*
811 		 * decrement the counts associated with the old frags
812 		 */
813 		blk = blkmap(fs, cgp->cg_free, bbase);
814 		fragacct(fs, blk, cgp->cg_frsum, -1);
815 		/*
816 		 * deallocate the fragment
817 		 */
818 		frags = numfrags(fs, size);
819 		for (i = 0; i < frags; i++) {
820 			if (isset(cgp->cg_free, bno + i)) {
821 				printf("dev = 0x%x, block = %d, fs = %s\n",
822 				    ip->i_dev, bno + i, fs->fs_fsmnt);
823 				panic("free: freeing free frag");
824 			}
825 			setbit(cgp->cg_free, bno + i);
826 		}
827 		cgp->cg_cs.cs_nffree += i;
828 		fs->fs_cstotal.cs_nffree += i;
829 		fs->fs_cs(fs, cg).cs_nffree += i;
830 		/*
831 		 * add back in counts associated with the new frags
832 		 */
833 		blk = blkmap(fs, cgp->cg_free, bbase);
834 		fragacct(fs, blk, cgp->cg_frsum, 1);
835 		/*
836 		 * if a complete block has been reassembled, account for it
837 		 */
838 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
839 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
840 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
841 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
842 			cgp->cg_cs.cs_nbfree++;
843 			fs->fs_cstotal.cs_nbfree++;
844 			fs->fs_cs(fs, cg).cs_nbfree++;
845 			i = cbtocylno(fs, bbase);
846 			cgp->cg_b[i][cbtorpos(fs, bbase)]++;
847 			cgp->cg_btot[i]++;
848 		}
849 	}
850 	fs->fs_fmod++;
851 	bdwrite(bp);
852 }
853 
854 /*
855  * Free an inode.
856  *
857  * The specified inode is placed back in the free map.
858  */
859 ifree(ip, ino, mode)
860 	struct inode *ip;
861 	ino_t ino;
862 	int mode;
863 {
864 	register struct fs *fs;
865 	register struct cg *cgp;
866 	register struct buf *bp;
867 	int cg;
868 
869 	fs = ip->i_fs;
870 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
871 		printf("dev = 0x%x, ino = %d, fs = %s\n",
872 		    ip->i_dev, ino, fs->fs_fsmnt);
873 		panic("ifree: range");
874 	}
875 	cg = itog(fs, ino);
876 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
877 	cgp = bp->b_un.b_cg;
878 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
879 		brelse(bp);
880 		return;
881 	}
882 	cgp->cg_time = time.tv_sec;
883 	ino %= fs->fs_ipg;
884 	if (isclr(cgp->cg_iused, ino)) {
885 		printf("dev = 0x%x, ino = %d, fs = %s\n",
886 		    ip->i_dev, ino, fs->fs_fsmnt);
887 		panic("ifree: freeing free inode");
888 	}
889 	clrbit(cgp->cg_iused, ino);
890 	if (ino < cgp->cg_irotor)
891 		cgp->cg_irotor = ino;
892 	cgp->cg_cs.cs_nifree++;
893 	fs->fs_cstotal.cs_nifree++;
894 	fs->fs_cs(fs, cg).cs_nifree++;
895 	if ((mode & IFMT) == IFDIR) {
896 		cgp->cg_cs.cs_ndir--;
897 		fs->fs_cstotal.cs_ndir--;
898 		fs->fs_cs(fs, cg).cs_ndir--;
899 	}
900 	fs->fs_fmod++;
901 	bdwrite(bp);
902 }
903 
904 /*
905  * Find a block of the specified size in the specified cylinder group.
906  *
907  * It is a panic if a request is made to find a block if none are
908  * available.
909  */
910 daddr_t
911 mapsearch(fs, cgp, bpref, allocsiz)
912 	register struct fs *fs;
913 	register struct cg *cgp;
914 	daddr_t bpref;
915 	int allocsiz;
916 {
917 	daddr_t bno;
918 	int start, len, loc, i;
919 	int blk, field, subfield, pos;
920 
921 	/*
922 	 * find the fragment by searching through the free block
923 	 * map for an appropriate bit pattern
924 	 */
925 	if (bpref)
926 		start = dtogd(fs, bpref) / NBBY;
927 	else
928 		start = cgp->cg_frotor / NBBY;
929 	len = howmany(fs->fs_fpg, NBBY) - start;
930 	loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
931 		(caddr_t)fragtbl[fs->fs_frag],
932 		(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
933 	if (loc == 0) {
934 		len = start + 1;
935 		start = 0;
936 		loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
937 			(caddr_t)fragtbl[fs->fs_frag],
938 			(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
939 		if (loc == 0) {
940 			printf("start = %d, len = %d, fs = %s\n",
941 			    start, len, fs->fs_fsmnt);
942 			panic("alloccg: map corrupted");
943 			/* NOTREACHED */
944 		}
945 	}
946 	bno = (start + len - loc) * NBBY;
947 	cgp->cg_frotor = bno;
948 	/*
949 	 * found the byte in the map
950 	 * sift through the bits to find the selected frag
951 	 */
952 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
953 		blk = blkmap(fs, cgp->cg_free, bno);
954 		blk <<= 1;
955 		field = around[allocsiz];
956 		subfield = inside[allocsiz];
957 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
958 			if ((blk & field) == subfield)
959 				return (bno + pos);
960 			field <<= 1;
961 			subfield <<= 1;
962 		}
963 	}
964 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
965 	panic("alloccg: block not in map");
966 	return (-1);
967 }
968 
969 /*
970  * Fserr prints the name of a file system with an error diagnostic.
971  *
972  * The form of the error message is:
973  *	fs: error message
974  */
975 fserr(fs, cp)
976 	struct fs *fs;
977 	char *cp;
978 {
979 
980 	log(KERN_FAIL, "%s: %s\n", fs->fs_fsmnt, cp);
981 }
982