1 /* ffs_alloc.c 6.12 85/03/12 */ 2 3 #include "param.h" 4 #include "systm.h" 5 #include "mount.h" 6 #include "fs.h" 7 #include "conf.h" 8 #include "buf.h" 9 #include "inode.h" 10 #include "dir.h" 11 #include "user.h" 12 #include "quota.h" 13 #include "kernel.h" 14 #include "syslog.h" 15 16 extern u_long hashalloc(); 17 extern ino_t ialloccg(); 18 extern daddr_t alloccg(); 19 extern daddr_t alloccgblk(); 20 extern daddr_t fragextend(); 21 extern daddr_t blkpref(); 22 extern daddr_t mapsearch(); 23 extern int inside[], around[]; 24 extern unsigned char *fragtbl[]; 25 26 /* 27 * Allocate a block in the file system. 28 * 29 * The size of the requested block is given, which must be some 30 * multiple of fs_fsize and <= fs_bsize. 31 * A preference may be optionally specified. If a preference is given 32 * the following hierarchy is used to allocate a block: 33 * 1) allocate the requested block. 34 * 2) allocate a rotationally optimal block in the same cylinder. 35 * 3) allocate a block in the same cylinder group. 36 * 4) quadradically rehash into other cylinder groups, until an 37 * available block is located. 38 * If no block preference is given the following heirarchy is used 39 * to allocate a block: 40 * 1) allocate a block in the cylinder group that contains the 41 * inode for the file. 42 * 2) quadradically rehash into other cylinder groups, until an 43 * available block is located. 44 */ 45 struct buf * 46 alloc(ip, bpref, size) 47 register struct inode *ip; 48 daddr_t bpref; 49 int size; 50 { 51 daddr_t bno; 52 register struct fs *fs; 53 register struct buf *bp; 54 int cg; 55 56 fs = ip->i_fs; 57 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 58 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 59 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 60 panic("alloc: bad size"); 61 } 62 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 63 goto nospace; 64 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 65 goto nospace; 66 #ifdef QUOTA 67 u.u_error = chkdq(ip, (long)btodb(size), 0); 68 if (u.u_error) 69 return (NULL); 70 #endif 71 if (bpref >= fs->fs_size) 72 bpref = 0; 73 if (bpref == 0) 74 cg = itog(fs, ip->i_number); 75 else 76 cg = dtog(fs, bpref); 77 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 78 (u_long (*)())alloccg); 79 if (bno <= 0) 80 goto nospace; 81 ip->i_blocks += btodb(size); 82 ip->i_flag |= IUPD|ICHG; 83 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size); 84 clrbuf(bp); 85 return (bp); 86 nospace: 87 fserr(fs, "file system full"); 88 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 89 u.u_error = ENOSPC; 90 return (NULL); 91 } 92 93 /* 94 * Reallocate a fragment to a bigger size 95 * 96 * The number and size of the old block is given, and a preference 97 * and new size is also specified. The allocator attempts to extend 98 * the original block. Failing that, the regular block allocator is 99 * invoked to get an appropriate block. 100 */ 101 struct buf * 102 realloccg(ip, bprev, bpref, osize, nsize) 103 register struct inode *ip; 104 daddr_t bprev, bpref; 105 int osize, nsize; 106 { 107 daddr_t bno; 108 register struct fs *fs; 109 register struct buf *bp, *obp; 110 int cg; 111 112 fs = ip->i_fs; 113 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 114 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 115 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 116 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 117 panic("realloccg: bad size"); 118 } 119 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 120 goto nospace; 121 if (bprev == 0) { 122 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 123 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 124 panic("realloccg: bad bprev"); 125 } 126 #ifdef QUOTA 127 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0); 128 if (u.u_error) 129 return (NULL); 130 #endif 131 cg = dtog(fs, bprev); 132 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 133 if (bno != 0) { 134 do { 135 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize); 136 if (bp->b_flags & B_ERROR) { 137 brelse(bp); 138 return (NULL); 139 } 140 } while (brealloc(bp, nsize) == 0); 141 bp->b_flags |= B_DONE; 142 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 143 ip->i_blocks += btodb(nsize - osize); 144 ip->i_flag |= IUPD|ICHG; 145 return (bp); 146 } 147 if (bpref >= fs->fs_size) 148 bpref = 0; 149 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, fs->fs_bsize, 150 (u_long (*)())alloccg); 151 if (bno > 0) { 152 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize); 153 if (obp->b_flags & B_ERROR) { 154 brelse(obp); 155 return (NULL); 156 } 157 bp = getblk(ip->i_dev, fsbtodb(fs, bno), nsize); 158 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 159 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 160 if (obp->b_flags & B_DELWRI) { 161 obp->b_flags &= ~B_DELWRI; 162 u.u_ru.ru_oublock--; /* delete charge */ 163 } 164 brelse(obp); 165 free(ip, bprev, (off_t)osize); 166 if (nsize < fs->fs_bsize) 167 free(ip, bno + numfrags(fs, nsize), 168 (off_t)(fs->fs_bsize - nsize)); 169 ip->i_blocks += btodb(nsize - osize); 170 ip->i_flag |= IUPD|ICHG; 171 return (bp); 172 } 173 nospace: 174 /* 175 * no space available 176 */ 177 fserr(fs, "file system full"); 178 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 179 u.u_error = ENOSPC; 180 return (NULL); 181 } 182 183 /* 184 * Allocate an inode in the file system. 185 * 186 * A preference may be optionally specified. If a preference is given 187 * the following hierarchy is used to allocate an inode: 188 * 1) allocate the requested inode. 189 * 2) allocate an inode in the same cylinder group. 190 * 3) quadradically rehash into other cylinder groups, until an 191 * available inode is located. 192 * If no inode preference is given the following heirarchy is used 193 * to allocate an inode: 194 * 1) allocate an inode in cylinder group 0. 195 * 2) quadradically rehash into other cylinder groups, until an 196 * available inode is located. 197 */ 198 struct inode * 199 ialloc(pip, ipref, mode) 200 register struct inode *pip; 201 ino_t ipref; 202 int mode; 203 { 204 ino_t ino; 205 register struct fs *fs; 206 register struct inode *ip; 207 int cg; 208 209 fs = pip->i_fs; 210 if (fs->fs_cstotal.cs_nifree == 0) 211 goto noinodes; 212 #ifdef QUOTA 213 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0); 214 if (u.u_error) 215 return (NULL); 216 #endif 217 if (ipref >= fs->fs_ncg * fs->fs_ipg) 218 ipref = 0; 219 cg = itog(fs, ipref); 220 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 221 if (ino == 0) 222 goto noinodes; 223 ip = iget(pip->i_dev, pip->i_fs, ino); 224 if (ip == NULL) { 225 ifree(pip, ino, 0); 226 return (NULL); 227 } 228 if (ip->i_mode) { 229 printf("mode = 0%o, inum = %d, fs = %s\n", 230 ip->i_mode, ip->i_number, fs->fs_fsmnt); 231 panic("ialloc: dup alloc"); 232 } 233 if (ip->i_blocks) { /* XXX */ 234 printf("free inode %s/%d had %d blocks\n", 235 fs->fs_fsmnt, ino, ip->i_blocks); 236 ip->i_blocks = 0; 237 } 238 return (ip); 239 noinodes: 240 fserr(fs, "out of inodes"); 241 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 242 u.u_error = ENOSPC; 243 return (NULL); 244 } 245 246 /* 247 * Find a cylinder to place a directory. 248 * 249 * The policy implemented by this algorithm is to select from 250 * among those cylinder groups with above the average number of 251 * free inodes, the one with the smallest number of directories. 252 */ 253 ino_t 254 dirpref(fs) 255 register struct fs *fs; 256 { 257 int cg, minndir, mincg, avgifree; 258 259 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 260 minndir = fs->fs_ipg; 261 mincg = 0; 262 for (cg = 0; cg < fs->fs_ncg; cg++) 263 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 264 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 265 mincg = cg; 266 minndir = fs->fs_cs(fs, cg).cs_ndir; 267 } 268 return ((ino_t)(fs->fs_ipg * mincg)); 269 } 270 271 /* 272 * Select the desired position for the next block in a file. The file is 273 * logically divided into sections. The first section is composed of the 274 * direct blocks. Each additional section contains fs_maxbpg blocks. 275 * 276 * If no blocks have been allocated in the first section, the policy is to 277 * request a block in the same cylinder group as the inode that describes 278 * the file. If no blocks have been allocated in any other section, the 279 * policy is to place the section in a cylinder group with a greater than 280 * average number of free blocks. An appropriate cylinder group is found 281 * by using a rotor that sweeps the cylinder groups. When a new group of 282 * blocks is needed, the sweep begins in the cylinder group following the 283 * cylinder group from which the previous allocation was made. The sweep 284 * continues until a cylinder group with greater than the average number 285 * of free blocks is found. If the allocation is for the first block in an 286 * indirect block, the information on the previous allocation is unavailable; 287 * here a best guess is made based upon the logical block number being 288 * allocated. 289 * 290 * If a section is already partially allocated, the policy is to 291 * contiguously allocate fs_maxcontig blocks. The end of one of these 292 * contiguous blocks and the beginning of the next is physically separated 293 * so that the disk head will be in transit between them for at least 294 * fs_rotdelay milliseconds. This is to allow time for the processor to 295 * schedule another I/O transfer. 296 */ 297 daddr_t 298 blkpref(ip, lbn, indx, bap) 299 struct inode *ip; 300 daddr_t lbn; 301 int indx; 302 daddr_t *bap; 303 { 304 register struct fs *fs; 305 register int cg; 306 int avgbfree, startcg; 307 daddr_t nextblk; 308 309 fs = ip->i_fs; 310 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 311 if (lbn < NDADDR) { 312 cg = itog(fs, ip->i_number); 313 return (fs->fs_fpg * cg + fs->fs_frag); 314 } 315 /* 316 * Find a cylinder with greater than average number of 317 * unused data blocks. 318 */ 319 if (indx == 0 || bap[indx - 1] == 0) 320 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 321 else 322 startcg = dtog(fs, bap[indx - 1]) + 1; 323 startcg %= fs->fs_ncg; 324 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 325 for (cg = startcg; cg < fs->fs_ncg; cg++) 326 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 327 fs->fs_cgrotor = cg; 328 return (fs->fs_fpg * cg + fs->fs_frag); 329 } 330 for (cg = 0; cg <= startcg; cg++) 331 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 332 fs->fs_cgrotor = cg; 333 return (fs->fs_fpg * cg + fs->fs_frag); 334 } 335 return (NULL); 336 } 337 /* 338 * One or more previous blocks have been laid out. If less 339 * than fs_maxcontig previous blocks are contiguous, the 340 * next block is requested contiguously, otherwise it is 341 * requested rotationally delayed by fs_rotdelay milliseconds. 342 */ 343 nextblk = bap[indx - 1] + fs->fs_frag; 344 if (indx > fs->fs_maxcontig && 345 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 346 != nextblk) 347 return (nextblk); 348 if (fs->fs_rotdelay != 0) 349 /* 350 * Here we convert ms of delay to frags as: 351 * (frags) = (ms) * (rev/sec) * (sect/rev) / 352 * ((sect/frag) * (ms/sec)) 353 * then round up to the next block. 354 */ 355 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 356 (NSPF(fs) * 1000), fs->fs_frag); 357 return (nextblk); 358 } 359 360 /* 361 * Implement the cylinder overflow algorithm. 362 * 363 * The policy implemented by this algorithm is: 364 * 1) allocate the block in its requested cylinder group. 365 * 2) quadradically rehash on the cylinder group number. 366 * 3) brute force search for a free block. 367 */ 368 /*VARARGS5*/ 369 u_long 370 hashalloc(ip, cg, pref, size, allocator) 371 struct inode *ip; 372 int cg; 373 long pref; 374 int size; /* size for data blocks, mode for inodes */ 375 u_long (*allocator)(); 376 { 377 register struct fs *fs; 378 long result; 379 int i, icg = cg; 380 381 fs = ip->i_fs; 382 /* 383 * 1: preferred cylinder group 384 */ 385 result = (*allocator)(ip, cg, pref, size); 386 if (result) 387 return (result); 388 /* 389 * 2: quadratic rehash 390 */ 391 for (i = 1; i < fs->fs_ncg; i *= 2) { 392 cg += i; 393 if (cg >= fs->fs_ncg) 394 cg -= fs->fs_ncg; 395 result = (*allocator)(ip, cg, 0, size); 396 if (result) 397 return (result); 398 } 399 /* 400 * 3: brute force search 401 * Note that we start at i == 2, since 0 was checked initially, 402 * and 1 is always checked in the quadratic rehash. 403 */ 404 cg = (icg + 2) % fs->fs_ncg; 405 for (i = 2; i < fs->fs_ncg; i++) { 406 result = (*allocator)(ip, cg, 0, size); 407 if (result) 408 return (result); 409 cg++; 410 if (cg == fs->fs_ncg) 411 cg = 0; 412 } 413 return (NULL); 414 } 415 416 /* 417 * Determine whether a fragment can be extended. 418 * 419 * Check to see if the necessary fragments are available, and 420 * if they are, allocate them. 421 */ 422 daddr_t 423 fragextend(ip, cg, bprev, osize, nsize) 424 struct inode *ip; 425 int cg; 426 long bprev; 427 int osize, nsize; 428 { 429 register struct fs *fs; 430 register struct buf *bp; 431 register struct cg *cgp; 432 long bno; 433 int frags, bbase; 434 int i; 435 436 fs = ip->i_fs; 437 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 438 return (NULL); 439 frags = numfrags(fs, nsize); 440 bbase = fragnum(fs, bprev); 441 if (bbase > fragnum(fs, (bprev + frags - 1))) { 442 /* cannot extend across a block boundry */ 443 return (NULL); 444 } 445 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 446 cgp = bp->b_un.b_cg; 447 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 448 brelse(bp); 449 return (NULL); 450 } 451 cgp->cg_time = time.tv_sec; 452 bno = dtogd(fs, bprev); 453 for (i = numfrags(fs, osize); i < frags; i++) 454 if (isclr(cgp->cg_free, bno + i)) { 455 brelse(bp); 456 return (NULL); 457 } 458 /* 459 * the current fragment can be extended 460 * deduct the count on fragment being extended into 461 * increase the count on the remaining fragment (if any) 462 * allocate the extended piece 463 */ 464 for (i = frags; i < fs->fs_frag - bbase; i++) 465 if (isclr(cgp->cg_free, bno + i)) 466 break; 467 cgp->cg_frsum[i - numfrags(fs, osize)]--; 468 if (i != frags) 469 cgp->cg_frsum[i - frags]++; 470 for (i = numfrags(fs, osize); i < frags; i++) { 471 clrbit(cgp->cg_free, bno + i); 472 cgp->cg_cs.cs_nffree--; 473 fs->fs_cstotal.cs_nffree--; 474 fs->fs_cs(fs, cg).cs_nffree--; 475 } 476 fs->fs_fmod++; 477 bdwrite(bp); 478 return (bprev); 479 } 480 481 /* 482 * Determine whether a block can be allocated. 483 * 484 * Check to see if a block of the apprpriate size is available, 485 * and if it is, allocate it. 486 */ 487 daddr_t 488 alloccg(ip, cg, bpref, size) 489 struct inode *ip; 490 int cg; 491 daddr_t bpref; 492 int size; 493 { 494 register struct fs *fs; 495 register struct buf *bp; 496 register struct cg *cgp; 497 int bno, frags; 498 int allocsiz; 499 register int i; 500 501 fs = ip->i_fs; 502 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 503 return (NULL); 504 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 505 cgp = bp->b_un.b_cg; 506 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 507 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 508 brelse(bp); 509 return (NULL); 510 } 511 cgp->cg_time = time.tv_sec; 512 if (size == fs->fs_bsize) { 513 bno = alloccgblk(fs, cgp, bpref); 514 bdwrite(bp); 515 return (bno); 516 } 517 /* 518 * check to see if any fragments are already available 519 * allocsiz is the size which will be allocated, hacking 520 * it down to a smaller size if necessary 521 */ 522 frags = numfrags(fs, size); 523 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 524 if (cgp->cg_frsum[allocsiz] != 0) 525 break; 526 if (allocsiz == fs->fs_frag) { 527 /* 528 * no fragments were available, so a block will be 529 * allocated, and hacked up 530 */ 531 if (cgp->cg_cs.cs_nbfree == 0) { 532 brelse(bp); 533 return (NULL); 534 } 535 bno = alloccgblk(fs, cgp, bpref); 536 bpref = dtogd(fs, bno); 537 for (i = frags; i < fs->fs_frag; i++) 538 setbit(cgp->cg_free, bpref + i); 539 i = fs->fs_frag - frags; 540 cgp->cg_cs.cs_nffree += i; 541 fs->fs_cstotal.cs_nffree += i; 542 fs->fs_cs(fs, cg).cs_nffree += i; 543 fs->fs_fmod++; 544 cgp->cg_frsum[i]++; 545 bdwrite(bp); 546 return (bno); 547 } 548 bno = mapsearch(fs, cgp, bpref, allocsiz); 549 if (bno < 0) { 550 brelse(bp); 551 return (NULL); 552 } 553 for (i = 0; i < frags; i++) 554 clrbit(cgp->cg_free, bno + i); 555 cgp->cg_cs.cs_nffree -= frags; 556 fs->fs_cstotal.cs_nffree -= frags; 557 fs->fs_cs(fs, cg).cs_nffree -= frags; 558 fs->fs_fmod++; 559 cgp->cg_frsum[allocsiz]--; 560 if (frags != allocsiz) 561 cgp->cg_frsum[allocsiz - frags]++; 562 bdwrite(bp); 563 return (cg * fs->fs_fpg + bno); 564 } 565 566 /* 567 * Allocate a block in a cylinder group. 568 * 569 * This algorithm implements the following policy: 570 * 1) allocate the requested block. 571 * 2) allocate a rotationally optimal block in the same cylinder. 572 * 3) allocate the next available block on the block rotor for the 573 * specified cylinder group. 574 * Note that this routine only allocates fs_bsize blocks; these 575 * blocks may be fragmented by the routine that allocates them. 576 */ 577 daddr_t 578 alloccgblk(fs, cgp, bpref) 579 register struct fs *fs; 580 register struct cg *cgp; 581 daddr_t bpref; 582 { 583 daddr_t bno; 584 int cylno, pos, delta; 585 short *cylbp; 586 register int i; 587 588 if (bpref == 0) { 589 bpref = cgp->cg_rotor; 590 goto norot; 591 } 592 bpref = blknum(fs, bpref); 593 bpref = dtogd(fs, bpref); 594 /* 595 * if the requested block is available, use it 596 */ 597 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) { 598 bno = bpref; 599 goto gotit; 600 } 601 /* 602 * check for a block available on the same cylinder 603 */ 604 cylno = cbtocylno(fs, bpref); 605 if (cgp->cg_btot[cylno] == 0) 606 goto norot; 607 if (fs->fs_cpc == 0) { 608 /* 609 * block layout info is not available, so just have 610 * to take any block in this cylinder. 611 */ 612 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 613 goto norot; 614 } 615 /* 616 * check the summary information to see if a block is 617 * available in the requested cylinder starting at the 618 * requested rotational position and proceeding around. 619 */ 620 cylbp = cgp->cg_b[cylno]; 621 pos = cbtorpos(fs, bpref); 622 for (i = pos; i < NRPOS; i++) 623 if (cylbp[i] > 0) 624 break; 625 if (i == NRPOS) 626 for (i = 0; i < pos; i++) 627 if (cylbp[i] > 0) 628 break; 629 if (cylbp[i] > 0) { 630 /* 631 * found a rotational position, now find the actual 632 * block. A panic if none is actually there. 633 */ 634 pos = cylno % fs->fs_cpc; 635 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 636 if (fs->fs_postbl[pos][i] == -1) { 637 printf("pos = %d, i = %d, fs = %s\n", 638 pos, i, fs->fs_fsmnt); 639 panic("alloccgblk: cyl groups corrupted"); 640 } 641 for (i = fs->fs_postbl[pos][i];; ) { 642 if (isblock(fs, cgp->cg_free, bno + i)) { 643 bno = blkstofrags(fs, (bno + i)); 644 goto gotit; 645 } 646 delta = fs->fs_rotbl[i]; 647 if (delta <= 0 || delta > MAXBPC - i) 648 break; 649 i += delta; 650 } 651 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 652 panic("alloccgblk: can't find blk in cyl"); 653 } 654 norot: 655 /* 656 * no blocks in the requested cylinder, so take next 657 * available one in this cylinder group. 658 */ 659 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 660 if (bno < 0) 661 return (NULL); 662 cgp->cg_rotor = bno; 663 gotit: 664 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno)); 665 cgp->cg_cs.cs_nbfree--; 666 fs->fs_cstotal.cs_nbfree--; 667 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 668 cylno = cbtocylno(fs, bno); 669 cgp->cg_b[cylno][cbtorpos(fs, bno)]--; 670 cgp->cg_btot[cylno]--; 671 fs->fs_fmod++; 672 return (cgp->cg_cgx * fs->fs_fpg + bno); 673 } 674 675 /* 676 * Determine whether an inode can be allocated. 677 * 678 * Check to see if an inode is available, and if it is, 679 * allocate it using the following policy: 680 * 1) allocate the requested inode. 681 * 2) allocate the next available inode after the requested 682 * inode in the specified cylinder group. 683 */ 684 ino_t 685 ialloccg(ip, cg, ipref, mode) 686 struct inode *ip; 687 int cg; 688 daddr_t ipref; 689 int mode; 690 { 691 register struct fs *fs; 692 register struct cg *cgp; 693 struct buf *bp; 694 int start, len, loc, map, i; 695 696 fs = ip->i_fs; 697 if (fs->fs_cs(fs, cg).cs_nifree == 0) 698 return (NULL); 699 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 700 cgp = bp->b_un.b_cg; 701 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC || 702 cgp->cg_cs.cs_nifree == 0) { 703 brelse(bp); 704 return (NULL); 705 } 706 cgp->cg_time = time.tv_sec; 707 if (ipref) { 708 ipref %= fs->fs_ipg; 709 if (isclr(cgp->cg_iused, ipref)) 710 goto gotit; 711 } 712 start = cgp->cg_irotor / NBBY; 713 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 714 loc = skpc(0xff, len, &cgp->cg_iused[start]); 715 if (loc == 0) { 716 len = start + 1; 717 start = 0; 718 loc = skpc(0xff, len, &cgp->cg_iused[0]); 719 if (loc == 0) { 720 printf("cg = %s, irotor = %d, fs = %s\n", 721 cg, cgp->cg_irotor, fs->fs_fsmnt); 722 panic("ialloccg: map corrupted"); 723 /* NOTREACHED */ 724 } 725 } 726 i = start + len - loc; 727 map = cgp->cg_iused[i]; 728 ipref = i * NBBY; 729 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 730 if ((map & i) == 0) { 731 cgp->cg_irotor = ipref; 732 goto gotit; 733 } 734 } 735 printf("fs = %s\n", fs->fs_fsmnt); 736 panic("ialloccg: block not in map"); 737 /* NOTREACHED */ 738 gotit: 739 setbit(cgp->cg_iused, ipref); 740 cgp->cg_cs.cs_nifree--; 741 fs->fs_cstotal.cs_nifree--; 742 fs->fs_cs(fs, cg).cs_nifree--; 743 fs->fs_fmod++; 744 if ((mode & IFMT) == IFDIR) { 745 cgp->cg_cs.cs_ndir++; 746 fs->fs_cstotal.cs_ndir++; 747 fs->fs_cs(fs, cg).cs_ndir++; 748 } 749 bdwrite(bp); 750 return (cg * fs->fs_ipg + ipref); 751 } 752 753 /* 754 * Free a block or fragment. 755 * 756 * The specified block or fragment is placed back in the 757 * free map. If a fragment is deallocated, a possible 758 * block reassembly is checked. 759 */ 760 free(ip, bno, size) 761 register struct inode *ip; 762 daddr_t bno; 763 off_t size; 764 { 765 register struct fs *fs; 766 register struct cg *cgp; 767 register struct buf *bp; 768 int cg, blk, frags, bbase; 769 register int i; 770 771 fs = ip->i_fs; 772 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 773 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 774 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 775 panic("free: bad size"); 776 } 777 cg = dtog(fs, bno); 778 if (badblock(fs, bno)) { 779 printf("bad block %d, ino %d\n", bno, ip->i_number); 780 return; 781 } 782 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 783 cgp = bp->b_un.b_cg; 784 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 785 brelse(bp); 786 return; 787 } 788 cgp->cg_time = time.tv_sec; 789 bno = dtogd(fs, bno); 790 if (size == fs->fs_bsize) { 791 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) { 792 printf("dev = 0x%x, block = %d, fs = %s\n", 793 ip->i_dev, bno, fs->fs_fsmnt); 794 panic("free: freeing free block"); 795 } 796 setblock(fs, cgp->cg_free, fragstoblks(fs, bno)); 797 cgp->cg_cs.cs_nbfree++; 798 fs->fs_cstotal.cs_nbfree++; 799 fs->fs_cs(fs, cg).cs_nbfree++; 800 i = cbtocylno(fs, bno); 801 cgp->cg_b[i][cbtorpos(fs, bno)]++; 802 cgp->cg_btot[i]++; 803 } else { 804 bbase = bno - fragnum(fs, bno); 805 /* 806 * decrement the counts associated with the old frags 807 */ 808 blk = blkmap(fs, cgp->cg_free, bbase); 809 fragacct(fs, blk, cgp->cg_frsum, -1); 810 /* 811 * deallocate the fragment 812 */ 813 frags = numfrags(fs, size); 814 for (i = 0; i < frags; i++) { 815 if (isset(cgp->cg_free, bno + i)) { 816 printf("dev = 0x%x, block = %d, fs = %s\n", 817 ip->i_dev, bno + i, fs->fs_fsmnt); 818 panic("free: freeing free frag"); 819 } 820 setbit(cgp->cg_free, bno + i); 821 } 822 cgp->cg_cs.cs_nffree += i; 823 fs->fs_cstotal.cs_nffree += i; 824 fs->fs_cs(fs, cg).cs_nffree += i; 825 /* 826 * add back in counts associated with the new frags 827 */ 828 blk = blkmap(fs, cgp->cg_free, bbase); 829 fragacct(fs, blk, cgp->cg_frsum, 1); 830 /* 831 * if a complete block has been reassembled, account for it 832 */ 833 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) { 834 cgp->cg_cs.cs_nffree -= fs->fs_frag; 835 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 836 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 837 cgp->cg_cs.cs_nbfree++; 838 fs->fs_cstotal.cs_nbfree++; 839 fs->fs_cs(fs, cg).cs_nbfree++; 840 i = cbtocylno(fs, bbase); 841 cgp->cg_b[i][cbtorpos(fs, bbase)]++; 842 cgp->cg_btot[i]++; 843 } 844 } 845 fs->fs_fmod++; 846 bdwrite(bp); 847 } 848 849 /* 850 * Free an inode. 851 * 852 * The specified inode is placed back in the free map. 853 */ 854 ifree(ip, ino, mode) 855 struct inode *ip; 856 ino_t ino; 857 int mode; 858 { 859 register struct fs *fs; 860 register struct cg *cgp; 861 register struct buf *bp; 862 int cg; 863 864 fs = ip->i_fs; 865 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 866 printf("dev = 0x%x, ino = %d, fs = %s\n", 867 ip->i_dev, ino, fs->fs_fsmnt); 868 panic("ifree: range"); 869 } 870 cg = itog(fs, ino); 871 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); 872 cgp = bp->b_un.b_cg; 873 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) { 874 brelse(bp); 875 return; 876 } 877 cgp->cg_time = time.tv_sec; 878 ino %= fs->fs_ipg; 879 if (isclr(cgp->cg_iused, ino)) { 880 printf("dev = 0x%x, ino = %d, fs = %s\n", 881 ip->i_dev, ino, fs->fs_fsmnt); 882 panic("ifree: freeing free inode"); 883 } 884 clrbit(cgp->cg_iused, ino); 885 if (ino < cgp->cg_irotor) 886 cgp->cg_irotor = ino; 887 cgp->cg_cs.cs_nifree++; 888 fs->fs_cstotal.cs_nifree++; 889 fs->fs_cs(fs, cg).cs_nifree++; 890 if ((mode & IFMT) == IFDIR) { 891 cgp->cg_cs.cs_ndir--; 892 fs->fs_cstotal.cs_ndir--; 893 fs->fs_cs(fs, cg).cs_ndir--; 894 } 895 fs->fs_fmod++; 896 bdwrite(bp); 897 } 898 899 /* 900 * Find a block of the specified size in the specified cylinder group. 901 * 902 * It is a panic if a request is made to find a block if none are 903 * available. 904 */ 905 daddr_t 906 mapsearch(fs, cgp, bpref, allocsiz) 907 register struct fs *fs; 908 register struct cg *cgp; 909 daddr_t bpref; 910 int allocsiz; 911 { 912 daddr_t bno; 913 int start, len, loc, i; 914 int blk, field, subfield, pos; 915 916 /* 917 * find the fragment by searching through the free block 918 * map for an appropriate bit pattern 919 */ 920 if (bpref) 921 start = dtogd(fs, bpref) / NBBY; 922 else 923 start = cgp->cg_frotor / NBBY; 924 len = howmany(fs->fs_fpg, NBBY) - start; 925 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start], 926 (caddr_t)fragtbl[fs->fs_frag], 927 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 928 if (loc == 0) { 929 len = start + 1; 930 start = 0; 931 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0], 932 (caddr_t)fragtbl[fs->fs_frag], 933 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 934 if (loc == 0) { 935 printf("start = %d, len = %d, fs = %s\n", 936 start, len, fs->fs_fsmnt); 937 panic("alloccg: map corrupted"); 938 /* NOTREACHED */ 939 } 940 } 941 bno = (start + len - loc) * NBBY; 942 cgp->cg_frotor = bno; 943 /* 944 * found the byte in the map 945 * sift through the bits to find the selected frag 946 */ 947 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 948 blk = blkmap(fs, cgp->cg_free, bno); 949 blk <<= 1; 950 field = around[allocsiz]; 951 subfield = inside[allocsiz]; 952 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 953 if ((blk & field) == subfield) 954 return (bno + pos); 955 field <<= 1; 956 subfield <<= 1; 957 } 958 } 959 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 960 panic("alloccg: block not in map"); 961 return (-1); 962 } 963 964 /* 965 * Fserr prints the name of a file system with an error diagnostic. 966 * 967 * The form of the error message is: 968 * fs: error message 969 */ 970 fserr(fs, cp) 971 struct fs *fs; 972 char *cp; 973 { 974 975 log(KERN_FAIL, "%s: %s\n", fs->fs_fsmnt, cp); 976 } 977