xref: /csrg-svn/sys/tahoe/if/if_enp.c (revision 35383)
1 /*
2  * Copyright (c) 1988 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Computer Consoles Inc.
7  *
8  * Redistribution and use in source and binary forms are permitted
9  * provided that the above copyright notice and this paragraph are
10  * duplicated in all such forms and that any documentation,
11  * advertising materials, and other materials related to such
12  * distribution and use acknowledge that the software was developed
13  * by the University of California, Berkeley.  The name of the
14  * University may not be used to endorse or promote products derived
15  * from this software without specific prior written permission.
16  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
18  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19  *
20  *	@(#)if_enp.c	7.3 (Berkeley) 08/19/88
21  */
22 
23 #include "enp.h"
24 #if NENP > 0
25 /*
26  * CMC ENP-20 Ethernet Controller.
27  */
28 #include "param.h"
29 #include "systm.h"
30 #include "mbuf.h"
31 #include "buf.h"
32 #include "protosw.h"
33 #include "socket.h"
34 #include "vmmac.h"
35 #include "ioctl.h"
36 #include "errno.h"
37 #include "vmparam.h"
38 #include "syslog.h"
39 #include "uio.h"
40 
41 #include "../net/if.h"
42 #include "../net/netisr.h"
43 #include "../net/route.h"
44 #ifdef INET
45 #include "../netinet/in.h"
46 #include "../netinet/in_systm.h"
47 #include "../netinet/in_var.h"
48 #include "../netinet/ip.h"
49 #include "../netinet/ip_var.h"
50 #include "../netinet/if_ether.h"
51 #endif
52 #ifdef NS
53 #include "../netns/ns.h"
54 #include "../netns/ns_if.h"
55 #endif
56 
57 #include "../tahoe/cpu.h"
58 #include "../tahoe/pte.h"
59 #include "../tahoe/mtpr.h"
60 
61 #include "../tahoevba/vbavar.h"
62 #include "../tahoeif/if_enpreg.h"
63 
64 #define ENPSTART	0xf02000	/* standard enp start addr */
65 #define	ENPUNIT(dev)	(minor(dev))	/* for enp ram devices */
66 /* macros for dealing with longs in i/o space */
67 #define	ENPGETLONG(a)	((((u_short *)(a))[0] << 16)|(((u_short *)(a))[1]))
68 #define	ENPSETLONG(a,v) \
69    { register u_short *wp = (u_short *)(a); \
70      wp[0] = ((u_short *)&(v))[0]; wp[1] = ((u_short *)&(v))[1];}
71 
72 int	enpprobe(), enpattach(), enpintr();
73 long	enpstd[] = { 0xfff41000, 0xfff61000, 0 };
74 struct  vba_device *enpinfo[NENP];
75 struct  vba_driver enpdriver =
76     { enpprobe, 0, enpattach, 0, enpstd, "enp", enpinfo, "enp-20", 0 };
77 
78 int	enpinit(), enpioctl(), enpreset(), enpoutput(), enpstart();
79 struct  mbuf *enpget();
80 
81 /*
82  * Ethernet software status per interface.
83  *
84  * Each interface is referenced by a network interface structure,
85  * es_if, which the routing code uses to locate the interface.
86  * This structure contains the output queue for the interface, its address, ...
87  */
88 struct  enp_softc {
89 	struct  arpcom es_ac;           /* common ethernet structures */
90 #define es_if		es_ac.ac_if
91 #define es_addr	es_ac.ac_enaddr
92 	short	es_ivec;		/* interrupt vector */
93 } enp_softc[NENP];
94 extern	struct ifnet loif;
95 
96 enpprobe(reg, vi)
97 	caddr_t reg;
98 	struct vba_device *vi;
99 {
100 	register br, cvec;		/* must be r12, r11 */
101 	register struct enpdevice *addr = (struct enpdevice *)reg;
102 	struct enp_softc *es = &enp_softc[vi->ui_unit];
103 
104 #ifdef lint
105 	br = 0; cvec = br; br = cvec;
106 	enpintr(0);
107 #endif
108 	if (badaddr((caddr_t)addr, 2) || badaddr((caddr_t)&addr->enp_ram[0], 2))
109 		return (0);
110 	es->es_ivec = --vi->ui_hd->vh_lastiv;
111 	addr->enp_state = S_ENPRESET;		/* reset by VERSAbus reset */
112 	br = 0x14, cvec = es->es_ivec;		/* XXX */
113 	return (sizeof (struct enpdevice));
114 }
115 
116 /*
117  * Interface exists: make available by filling in network interface
118  * record.  System will initialize the interface when it is ready
119  * to accept packets.
120  */
121 enpattach(ui)
122 	register struct vba_device *ui;
123 {
124 	struct enp_softc *es = &enp_softc[ui->ui_unit];
125 	register struct ifnet *ifp = &es->es_if;
126 
127 	ifp->if_unit = ui->ui_unit;
128 	ifp->if_name = "enp";
129 	ifp->if_mtu = ETHERMTU;
130 	ifp->if_init = enpinit;
131 	ifp->if_ioctl = enpioctl;
132 	ifp->if_output = enoutput;
133 	ifp->if_reset = enpreset;
134 	ifp->if_start = enpstart;
135 	ifp->if_flags = IFF_BROADCAST;
136 	if_attach(ifp);
137 }
138 
139 /*
140  * Reset of interface after "system" reset.
141  */
142 enpreset(unit, vban)
143 	int unit, vban;
144 {
145 	register struct vba_device *ui;
146 
147 	if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
148 	    ui->ui_vbanum != vban)
149 		return;
150 	printf(" enp%d", unit);
151 	enpinit(unit);
152 }
153 
154 /*
155  * Initialization of interface; clear recorded pending operations.
156  */
157 enpinit(unit)
158 	int unit;
159 {
160 	struct enp_softc *es = &enp_softc[unit];
161 	register struct vba_device *ui = enpinfo[unit];
162 	struct enpdevice *addr;
163 	register struct ifnet *ifp = &es->es_if;
164 	int s;
165 
166 	if (ifp->if_addrlist == (struct ifaddr *)0)
167 		return;
168 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
169 		addr = (struct enpdevice *)ui->ui_addr;
170 		s = splimp();
171 		RESET_ENP(addr);
172 		DELAY(200000);
173 		es->es_if.if_flags |= IFF_RUNNING;
174 		splx(s);
175 	}
176 }
177 
178 /*
179  * Ethernet interface interrupt.
180  */
181 enpintr(unit)
182 	int unit;
183 {
184 	register struct enpdevice *addr;
185 	register BCB *bcbp;
186 
187 	addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
188 #if ENP == 30
189 	if (!IS_ENP_INTR(addr))
190 		return;
191 	ACK_ENP_INTR(addr);
192 #endif
193 	while ((bcbp = (BCB *)ringget((RING *)&addr->enp_tohost )) != 0) {
194 		enpread(&enp_softc[unit], bcbp);
195 		(void) ringput((RING *)&addr->enp_enpfree, bcbp);
196 	}
197 }
198 
199 /*
200  * Read input packet, examine its packet type, and enqueue it.
201  */
202 enpread(es, bcbp)
203 	struct enp_softc *es;
204 	register BCB *bcbp;
205 {
206 	register struct ether_header *enp;
207 	struct mbuf *m;
208 	int s, len, off, resid;
209 
210 	es->es_if.if_ipackets++;
211 	/*
212 	 * Get input data length.
213 	 * Get pointer to ethernet header (in input buffer).
214 	 * Deal with trailer protocol: if type is PUP trailer
215 	 * get true type from first 16-bit word past data.
216 	 * Remember that type was trailer by setting off.
217 	 */
218 	len = bcbp->b_msglen - sizeof (struct ether_header);
219 	enp = (struct ether_header *)ENPGETLONG(&bcbp->b_addr);
220 #define enpdataaddr(enp, off, type) \
221     ((type)(((caddr_t)(((char *)enp)+sizeof (struct ether_header))+(off))))
222 	enp->ether_type = ntohs((u_short)enp->ether_type);
223 	if (enp->ether_type >= ETHERTYPE_TRAIL &&
224 	    enp->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
225 		off = (enp->ether_type - ETHERTYPE_TRAIL) * 512;
226 		if (off >= ETHERMTU)
227 			return;
228 		enp->ether_type = ntohs(*enpdataaddr(enp, off, u_short *));
229 		resid = ntohs(*(enpdataaddr(enp, off+2, u_short *)));
230 		if (off + resid > len)
231 			return;
232 		len = off + resid;
233 	} else
234 		off = 0;
235 	if (len == 0)
236 		return;
237 
238 	/*
239 	 * Pull packet off interface.  Off is nonzero if packet
240 	 * has trailing header; enpget will then force this header
241 	 * information to be at the front.
242 	 */
243 	m = enpget((u_char *)enp, len, off, &es->es_if);
244 	if (m == 0)
245 		return;
246 	en_doproto(&es->es_if, enp, m);
247 }
248 
249 enpstart(ifp)
250 	struct ifnet *ifp;
251 {
252 	int error = 0;
253 	int s = splimp();
254 
255 	if (enpput(ifp))
256 		error = ENOBUFS;
257 	splx(s);
258 	return (error);
259 }
260 
261 /*
262  * Routine to copy from mbuf chain to transmitter buffer on the VERSAbus.
263  */
264 enpput(ifp)
265 struct ifnet *ifp;
266 {
267 	register BCB *bcbp;
268 	register struct enpdevice *addr;
269 	register struct mbuf *mp;
270 	register u_char *bp;
271 	register u_int len;
272 	int unit = ifp->if_unit;
273 	u_char *mcp;
274 	struct mbuf *m;
275 
276 	addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
277 again:
278 	if (ringempty((RING *)&addr->enp_hostfree))
279 		return (1);
280 	IF_DEQUEUE(&ifp->if_snd, m);
281 	if (m == 0) return (0);
282 	bcbp = (BCB *)ringget((RING *)&addr->enp_hostfree);
283 	bcbp->b_len = 0;
284 	bp = (u_char *)ENPGETLONG(&bcbp->b_addr);
285 	for (mp = m; mp; mp = mp->m_next) {
286 		len = mp->m_len;
287 		if (len == 0)
288 			continue;
289 		mcp = mtod(mp, u_char *);
290 		enpcopy(mcp, bp, len);
291 		bp += len;
292 		bcbp->b_len += len;
293 	}
294 	bcbp->b_len = MAX(ETHERMIN+sizeof (struct ether_header), bcbp->b_len);
295 	bcbp->b_reserved = 0;
296 	if (ringput((RING *)&addr->enp_toenp, bcbp) == 1)
297 		INTR_ENP(addr);
298 	m_freem(m);
299 	goto again;
300 }
301 
302 /*
303  * Routine to copy from VERSAbus memory into mbufs.
304  *
305  * Warning: This makes the fairly safe assumption that
306  * mbufs have even lengths.
307  */
308 struct mbuf *
309 enpget(rxbuf, totlen, off, ifp)
310 	u_char *rxbuf;
311 	int totlen, off;
312 	struct ifnet *ifp;
313 {
314 	register u_char *cp, *mcp;
315 	register struct mbuf *m;
316 	struct mbuf *top = 0, **mp = &top;
317 	int len;
318 	u_char *packet_end;
319 
320 	rxbuf += sizeof (struct ether_header);
321 	cp = rxbuf;
322 	packet_end = cp + totlen;
323 	if (off) {
324 		off += 2 * sizeof(u_short);
325 		totlen -= 2 *sizeof(u_short);
326 		cp = rxbuf + off;
327 	}
328 
329 	MGETHDR(m, M_DONTWAIT, MT_DATA);
330 	if (m == 0)
331 		return (0);
332 	m->m_pkthdr.rcvif = ifp;
333 	m->m_pkthdr.len = totlen;
334 	m->m_len = MHLEN;
335 
336 	while (totlen > 0) {
337 		if (top) {
338 			MGET(m, M_DONTWAIT, MT_DATA);
339 			if (m == 0) {
340 				m_freem(top);
341 				return (0);
342 			}
343 			m->m_len = MLEN;
344 		}
345 		len = min(totlen, (packet_end - cp));
346 		if (len >= MINCLSIZE) {
347 			MCLGET(m, M_DONTWAIT);
348 			if (m->m_flags & M_EXT)
349 				m->m_len = len = min(len, MCLBYTES);
350 			else
351 				len = m->m_len;
352 		} else {
353 			/*
354 			 * Place initial small packet/header at end of mbuf.
355 			 */
356 			if (len < m->m_len) {
357 				if (top == 0 && len < max_linkhdr + m->m_len)
358 					m->m_data += max_linkhdr;
359 				m->m_len = len;
360 			} else
361 				len = m->m_len;
362 		}
363 		mcp = mtod(m, u_char *);
364 		enpcopy(cp, mcp, (u_int)len);
365 		*mp = m;
366 		mp = &m->m_next;
367 		totlen -= len;
368 		cp += len;
369 		if (cp == packet_end)
370 			cp = rxbuf;
371 	}
372 	return (top);
373 }
374 
375 enpcopy(from, to, cnt)
376 	register u_char *from, *to;
377 	register u_int cnt;
378 {
379 	register c;
380 	register short *f, *t;
381 
382 	if (((int)from&01) && ((int)to&01)) {
383 		/* source & dest at odd addresses */
384 		*to++ = *from++;
385 		--cnt;
386 	}
387 	if (cnt > 1 && (((int)to&01) == 0) && (((int)from&01) == 0)) {
388 		t = (short *)to;
389 		f = (short *)from;
390 		for (c = cnt>>1; c; --c)	/* even address copy */
391 			*t++ = *f++;
392 		cnt &= 1;
393 		if (cnt) {			/* odd len */
394 			from = (u_char *)f;
395 			to = (u_char *)t;
396 			*to = *from;
397 		}
398 	}
399 	while ((int)cnt-- > 0)	/* one of the address(es) must be odd */
400 		*to++ = *from++;
401 }
402 
403 /*
404  * Process an ioctl request.
405  */
406 enpioctl(ifp, cmd, data)
407 	register struct ifnet *ifp;
408 	int cmd;
409 	caddr_t data;
410 {
411 	register struct ifaddr *ifa = (struct ifaddr *)data;
412 	struct enpdevice *addr;
413 	int s = splimp(), error = 0;
414 
415 	switch (cmd) {
416 
417 	case SIOCSIFADDR:
418 		ifp->if_flags |= IFF_UP;
419 		switch (ifa->ifa_addr.sa_family) {
420 #ifdef INET
421 		case AF_INET:
422 			enpinit(ifp->if_unit);
423 			((struct arpcom *)ifp)->ac_ipaddr =
424 			    IA_SIN(ifa)->sin_addr;
425 			arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
426 			break;
427 #endif
428 #ifdef NS
429 		case AF_NS: {
430 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
431 			struct enp_softc *es = &enp_softc[ifp->if_unit];
432 
433 			if (!ns_nullhost(*ina)) {
434 				ifp->if_flags &= ~IFF_RUNNING;
435 				addr = (struct enpdevice *)
436 				    enpinfo[ifp->if_unit]->ui_addr;
437 				enpsetaddr(ifp->if_unit, addr,
438 				    ina->x_host.c_host);
439 			} else
440 				ina->x_host = *(union ns_host *)es->es_addr;
441 			enpinit(ifp->if_unit);
442 			break;
443 		}
444 #endif
445 		default:
446 			enpinit(ifp->if_unit);
447 			break;
448 		}
449 		break;
450 
451 	case SIOCSIFFLAGS:
452 		if ((ifp->if_flags&IFF_UP) == 0 && ifp->if_flags&IFF_RUNNING) {
453 			enpinit(ifp->if_unit);		/* reset board */
454 			ifp->if_flags &= ~IFF_RUNNING;
455 		} else if (ifp->if_flags&IFF_UP &&
456 		     (ifp->if_flags&IFF_RUNNING) == 0)
457 			enpinit(ifp->if_unit);
458 		break;
459 
460 	default:
461 		error = EINVAL;
462 	}
463 	splx(s);
464 	return (error);
465 }
466 
467 enpsetaddr(unit, addr, enaddr)
468 	int unit;
469 	struct enpdevice *addr;
470 	u_char *enaddr;
471 {
472 
473 	enpcopy(enaddr, addr->enp_addr.e_baseaddr.ea_addr,
474 	    sizeof (struct ether_addr));
475 	enpinit(unit);
476 	enpgetaddr(unit, addr);
477 }
478 
479 enpgetaddr(unit, addr)
480 	int unit;
481 	struct enpdevice *addr;
482 {
483 	struct enp_softc *es = &enp_softc[unit];
484 
485 	enpcopy(addr->enp_addr.e_baseaddr.ea_addr, es->es_addr,
486 	    sizeof (struct ether_addr));
487 	printf("enp%d: hardware address %s\n",
488 	    unit, ether_sprintf(es->es_addr));
489 }
490 
491 /*
492  * Routines to synchronize enp and host.
493  */
494 #ifdef notdef
495 static
496 ringinit(rp, size)
497 	register RING *rp;
498 {
499 
500 	rp->r_rdidx = rp->r_wrtidx = 0;
501 	rp->r_size = size;
502 }
503 
504 static
505 ringfull(rp)
506 	register RING *rp;
507 {
508 	register short idx;
509 
510 	idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
511 	return (idx == rp->r_rdidx);
512 }
513 
514 static
515 fir(rp)
516 	register RING *rp;
517 {
518 
519 	return (rp->r_rdidx != rp->r_wrtidx ? rp->r_slot[rp->r_rdidx] : 0);
520 }
521 #endif
522 
523 static
524 ringempty(rp)
525 	register RING *rp;
526 {
527 
528 	return (rp->r_rdidx == rp->r_wrtidx);
529 }
530 
531 static
532 ringput(rp, v)
533 	register RING *rp;
534 	BCB *v;
535 {
536 	register int idx;
537 
538 	idx = (rp->r_wrtidx + 1) & (rp->r_size-1);
539 	if (idx != rp->r_rdidx) {
540 		ENPSETLONG(&rp->r_slot[rp->r_wrtidx], v);
541 		rp->r_wrtidx = idx;
542 		if ((idx -= rp->r_rdidx) < 0)
543 			idx += rp->r_size;
544 		return (idx);			/* num ring entries */
545 	}
546 	return (0);
547 }
548 
549 static
550 ringget(rp)
551 	register RING *rp;
552 {
553 	register int i = 0;
554 
555 	if (rp->r_rdidx != rp->r_wrtidx) {
556 		i = ENPGETLONG(&rp->r_slot[rp->r_rdidx]);
557 		rp->r_rdidx = (++rp->r_rdidx) & (rp->r_size-1);
558 	}
559 	return (i);
560 }
561 
562 /*
563  * ENP Ram device.
564  */
565 enpr_open(dev)
566 	dev_t dev;
567 {
568 	register int unit = ENPUNIT(dev);
569 	struct vba_device *ui;
570 	struct enpdevice *addr;
571 
572 	if (unit >= NENP || (ui = enpinfo[unit]) == 0 || ui->ui_alive == 0 ||
573 	    (addr = (struct enpdevice *)ui->ui_addr) == 0)
574 		return (ENODEV);
575 	if (addr->enp_state != S_ENPRESET)
576 		return (EACCES);  /* enp is not in reset state, don't open  */
577 	return (0);
578 }
579 
580 /*ARGSUSED*/
581 enpr_close(dev)
582 	dev_t dev;
583 {
584 
585 	return (0);
586 }
587 
588 enpr_read(dev, uio)
589 	dev_t dev;
590 	register struct uio *uio;
591 {
592 	register struct iovec *iov;
593 	struct enpdevice *addr;
594 
595 	if (uio->uio_offset > RAM_SIZE)
596 		return (ENODEV);
597 	iov = uio->uio_iov;
598 	if (uio->uio_offset + iov->iov_len > RAM_SIZE)
599 		iov->iov_len = RAM_SIZE - uio->uio_offset;
600 	addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
601 	if (useracc(iov->iov_base, (unsigned)iov->iov_len, 0) == 0)
602 		return (EFAULT);
603 	enpcopy((u_char *)&addr->enp_ram[uio->uio_offset],
604 	    (u_char *)iov->iov_base, (u_int)iov->iov_len);
605 	uio->uio_resid -= iov->iov_len;
606 	iov->iov_len = 0;
607 	return (0);
608 }
609 
610 enpr_write(dev, uio)
611 	dev_t dev;
612 	register struct uio *uio;
613 {
614 	register struct enpdevice *addr;
615 	register struct iovec *iov;
616 
617 	addr = (struct enpdevice *)enpinfo[ENPUNIT(dev)]->ui_addr;
618 	iov = uio->uio_iov;
619 	if (uio->uio_offset > RAM_SIZE)
620 		return (ENODEV);
621 	if (uio->uio_offset + iov->iov_len > RAM_SIZE)
622 		iov->iov_len = RAM_SIZE - uio->uio_offset;
623 	if (useracc(iov->iov_base, (unsigned)iov->iov_len, 1) == 0)
624 		return (EFAULT);
625 	enpcopy((u_char *)iov->iov_base,
626 	    (u_char *)&addr->enp_ram[uio->uio_offset], (u_int)iov->iov_len);
627 	uio->uio_resid -= iov->iov_len;
628 	iov->iov_len = 0;
629 	return (0);
630 }
631 
632 /*ARGSUSED*/
633 enpr_ioctl(dev, cmd, data)
634 	dev_t dev;
635 	caddr_t data;
636 {
637 	register unit = ENPUNIT(dev);
638 	struct enpdevice *addr;
639 
640 	addr = (struct enpdevice *)enpinfo[unit]->ui_addr;
641 	switch(cmd) {
642 
643 	case ENPIOGO:
644 		ENPSETLONG(&addr->enp_base, addr);
645 		addr->enp_intrvec = enp_softc[unit].es_ivec;
646 		ENP_GO(addr, ENPSTART);
647 		DELAY(200000);
648 		enpinit(unit);
649 		/*
650 		 * Fetch Ethernet address after link level
651 		 * is booted (firmware copies manufacturer's
652 		 * address from on-board ROM).
653 		 */
654 		enpgetaddr(unit, addr);
655 		addr->enp_state = S_ENPRUN;
656 		break;
657 
658 	case ENPIORESET:
659 		RESET_ENP(addr);
660 		addr->enp_state = S_ENPRESET;
661 		DELAY(100000);
662 		break;
663 	default:
664 		return (EINVAL);
665 	}
666 	return (0);
667 }
668 #endif
669