155123Storek /* 255123Storek * Copyright (c) 1992 The Regents of the University of California. 355123Storek * All rights reserved. 455123Storek * 555123Storek * This software was developed by the Computer Systems Engineering group 655123Storek * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 755123Storek * contributed to Berkeley. 855123Storek * 955501Sbostic * All advertising materials mentioning features or use of this software 1055501Sbostic * must display the following acknowledgement: 1155501Sbostic * This product includes software developed by the University of 12*59210Storek * California, Lawrence Berkeley Laboratory. 1355501Sbostic * 1455123Storek * %sccs.include.redist.c% 1555123Storek * 16*59210Storek * @(#)pmap.h 7.4 (Berkeley) 04/20/93 1755123Storek * 18*59210Storek * from: $Header: pmap.h,v 1.10 92/11/26 02:04:40 torek Exp $ 1955123Storek */ 2055123Storek 2155123Storek #ifndef _SPARC_PMAP_H_ 2255123Storek #define _SPARC_PMAP_H_ 2355123Storek 2456538Sbostic #include <machine/pte.h> 2555123Storek 2655123Storek /* 2755123Storek * Pmap structure. 2855123Storek * 2955123Storek * The pmap structure really comes in two variants, one---a single 3055123Storek * instance---for kernel virtual memory and the other---up to nproc 3155123Storek * instances---for user virtual memory. Unfortunately, we have to mash 3255123Storek * both into the same structure. Fortunately, they are almost the same. 3355123Storek * 3455123Storek * The kernel begins at 0xf8000000 and runs to 0xffffffff (although 3555123Storek * some of this is not actually used). Kernel space, including DVMA 3655123Storek * space (for now?), is mapped identically into all user contexts. 3755123Storek * There is no point in duplicating this mapping in each user process 3855123Storek * so they do not appear in the user structures. 3955123Storek * 4055123Storek * User space begins at 0x00000000 and runs through 0x1fffffff, 4155123Storek * then has a `hole', then resumes at 0xe0000000 and runs until it 4255123Storek * hits the kernel space at 0xf8000000. This can be mapped 4355123Storek * contiguously by ignorning the top two bits and pretending the 4455123Storek * space goes from 0 to 37ffffff. Typically the lower range is 4555123Storek * used for text+data and the upper for stack, but the code here 4655123Storek * makes no such distinction. 4755123Storek * 4855123Storek * Since each virtual segment covers 256 kbytes, the user space 4955123Storek * requires 3584 segments, while the kernel (including DVMA) requires 5055123Storek * only 512 segments. 5155123Storek * 5255123Storek * The segment map entry for virtual segment vseg is offset in 5355123Storek * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by 5455123Storek * NUSEG if it is. We keep a pointer called pmap->pm_segmap 5555123Storek * pre-offset by this value. pmap->pm_segmap thus contains the 5655123Storek * values to be loaded into the user portion of the hardware segment 5755123Storek * map so as to reach the proper PMEGs within the MMU. The kernel 5855123Storek * mappings are `set early' and are always valid in every context 5955123Storek * (every change is always propagated immediately). 6055123Storek * 6155123Storek * The PMEGs within the MMU are loaded `on demand'; when a PMEG is 6255123Storek * taken away from context `c', the pmap for context c has its 6355123Storek * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment 6455123Storek * map entry is also made invalid at the same time). Thus 6555123Storek * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever 6655123Storek * the corresponding PTEs are not actually in the MMU. On the other 6755123Storek * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment 6855123Storek * are in core; otherwise it points to a copy of the 32 or 64 PTEs that 6955123Storek * must be loaded in the MMU in order to reach those pages. 7055123Storek * pm_npte[vseg] counts the number of valid pages in each vseg. 7155123Storek * 7255123Storek * XXX performance: faster to count valid bits? 7355123Storek * 7455123Storek * The kernel pmap cannot malloc() PTEs since malloc() will sometimes 7555123Storek * allocate a new virtual segment. Since kernel mappings are never 7655123Storek * `stolen' out of the the MMU, we just keep all its PTEs there, and 7755123Storek * have no software copies. Its mmu entries are nonetheless kept on lists 7855123Storek * so that the code that fiddles with mmu lists has something to fiddle. 7955123Storek */ 8055123Storek #define NKSEG ((int)((-(unsigned)KERNBASE) / NBPSG)) /* i.e., 512 */ 8155123Storek #define NUSEG (4096 - NKSEG) /* i.e., 3584 */ 8255123Storek 8355123Storek /* data appearing in both user and kernel pmaps */ 8455123Storek struct pmap_common { 8555123Storek union ctxinfo *pmc_ctx; /* current context, if any */ 8655123Storek int pmc_ctxnum; /* current context's number */ 8755123Storek #if NCPUS > 1 8855123Storek simple_lock_data_t pmc_lock; /* spinlock */ 8955123Storek #endif 9055123Storek int pmc_refcount; /* just what it says */ 9155123Storek struct mmuentry *pmc_mmuforw; /* pmap pmeg chain */ 9255123Storek struct mmuentry **pmc_mmuback; /* (two way street) */ 9355123Storek pmeg_t *pmc_segmap; /* points to pm_rsegmap per above */ 9455123Storek u_char *pmc_npte; /* points to pm_rnpte */ 9555123Storek int **pmc_pte; /* points to pm_rpte */ 9655123Storek }; 9755123Storek 9855123Storek /* data appearing only in user pmaps */ 9955123Storek struct pmap { 10055123Storek struct pmap_common pmc; 10155123Storek pmeg_t pm_rsegmap[NUSEG]; /* segment map */ 10255123Storek u_char pm_rnpte[NUSEG]; /* number of valid PTEs per seg */ 10355123Storek int *pm_rpte[NUSEG]; /* points to PTEs for valid segments */ 10455123Storek }; 10555123Storek 10655123Storek /* data appearing only in the kernel pmap */ 10755123Storek struct kpmap { 10855123Storek struct pmap_common pmc; 10955123Storek pmeg_t pm_rsegmap[NKSEG]; /* segment map */ 11055123Storek u_char pm_rnpte[NKSEG]; /* number of valid PTEs per kseg */ 11155123Storek int *pm_rpte[NKSEG]; /* always NULL */ 11255123Storek }; 11355123Storek 11455123Storek #define pm_ctx pmc.pmc_ctx 11555123Storek #define pm_ctxnum pmc.pmc_ctxnum 11655123Storek #define pm_lock pmc.pmc_lock 11755123Storek #define pm_refcount pmc.pmc_refcount 11855123Storek #define pm_mmuforw pmc.pmc_mmuforw 11955123Storek #define pm_mmuback pmc.pmc_mmuback 12055123Storek #define pm_segmap pmc.pmc_segmap 12155123Storek #define pm_npte pmc.pmc_npte 12255123Storek #define pm_pte pmc.pmc_pte 12355123Storek 12455123Storek #ifdef KERNEL 12555123Storek 12655123Storek typedef struct pmap *pmap_t; 12755123Storek #define PMAP_NULL ((pmap_t)0) 12855123Storek 12955123Storek extern struct kpmap kernel_pmap_store; 13055123Storek #define kernel_pmap ((struct pmap *)(&kernel_pmap_store)) 13155123Storek 13255123Storek #define PMAP_ACTIVATE(pmap, pcb, iscurproc) 13355123Storek #define PMAP_DEACTIVATE(pmap, pcb) 13455123Storek 13555123Storek /* 13655123Storek * Since PTEs also contain type bits, we have to have some way 13755123Storek * to tell pmap_enter `this is an IO page' or `this is not to 13855123Storek * be cached'. Since physical addresses are always aligned, we 13955123Storek * can do this with the low order bits. 14055123Storek * 14155123Storek * The ordering below is important: PMAP_PGTYPE << PG_TNC must give 14255123Storek * exactly the PG_NC and PG_TYPE bits. 14355123Storek */ 14455123Storek #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */ 14555123Storek #define PMAP_VME16 2 /* etc */ 14655123Storek #define PMAP_VME32 3 /* etc */ 14755123Storek #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */ 14855123Storek #define PMAP_TNC 7 /* mask to get PG_TYPE & PG_NC */ 14955123Storek 15055123Storek #endif KERNEL 15155123Storek 15255123Storek #endif /* _SPARC_PMAP_H_ */ 153