1*55118Storek /* 2*55118Storek * Copyright (c) 1992 The Regents of the University of California. 3*55118Storek * All rights reserved. 4*55118Storek * 5*55118Storek * This code is derived from software contributed to Berkeley by 6*55118Storek * Jan-Simon Pendry. 7*55118Storek * 8*55118Storek * %sccs.include.redist.c% 9*55118Storek * 10*55118Storek * @(#)bsd_openprom.h 7.1 (Berkeley) 07/13/92 11*55118Storek * 12*55118Storek * from: $Header: bsd_openprom.h,v 1.2 92/07/10 06:26:12 torek Exp $ 13*55118Storek */ 14*55118Storek 15*55118Storek /* 16*55118Storek * This file defines the interface between the kernel and the Openboot PROM. 17*55118Storek * N.B.: this has been tested only on interface versions 0 and 2 (we have 18*55118Storek * never seen interface version 1). 19*55118Storek */ 20*55118Storek 21*55118Storek /* 22*55118Storek * The v0 interface tells us what virtual memory to scan to avoid PMEG 23*55118Storek * conflicts, but the v2 interface fails to do so, and we must `magically' 24*55118Storek * know where the OPENPROM lives in virtual space. 25*55118Storek */ 26*55118Storek #define OPENPROM_STARTVADDR 0xffd00000 27*55118Storek #define OPENPROM_ENDVADDR 0xfff00000 28*55118Storek 29*55118Storek #define OPENPROM_MAGIC 0x10010407 30*55118Storek 31*55118Storek /* 32*55118Storek * Version 0 PROM vector device operations (collected here to emphasise that 33*55118Storek * they are deprecated). Open and close are obvious. Read and write are 34*55118Storek * segregated according to the device type (block, network, or character); 35*55118Storek * this is unnecessary and was eliminated from the v2 device operations, but 36*55118Storek * we are stuck with it. 37*55118Storek * 38*55118Storek * Seek is probably only useful on tape devices, since the only character 39*55118Storek * devices are the serial ports. 40*55118Storek * 41*55118Storek * Note that a v0 device name is always exactly two characters ("sd", "le", 42*55118Storek * and so forth). 43*55118Storek */ 44*55118Storek struct v0devops { 45*55118Storek int (*v0_open)(char *dev); 46*55118Storek int (*v0_close)(int d); 47*55118Storek int (*v0_rbdev)(int d, int nblks, int blkno, caddr_t addr); 48*55118Storek int (*v0_wbdev)(int d, int nblks, int blkno, caddr_t addr); 49*55118Storek int (*v0_wnet)(int d, int nbytes, caddr_t addr); 50*55118Storek int (*v0_rnet)(int d, int nbytes, caddr_t addr); 51*55118Storek int (*v0_rcdev)(int d, int nbytes, int, caddr_t addr); 52*55118Storek int (*v0_wcdev)(int d, int nbytes, int, caddr_t addr); 53*55118Storek int (*v0_seek)(int d, long offset, int whence); 54*55118Storek }; 55*55118Storek 56*55118Storek /* 57*55118Storek * Version 2 device operations. Open takes a device `path' such as 58*55118Storek * /sbus/le@0,c00000,0 or /sbus/esp@.../sd@0,0, which means it can open 59*55118Storek * anything anywhere, without any magic translation. 60*55118Storek * 61*55118Storek * The memory allocator and map functions are included here even though 62*55118Storek * they relate only indirectly to devices (e.g., mmap is good for mapping 63*55118Storek * device memory, and drivers need to allocate space in which to record 64*55118Storek * the device state). 65*55118Storek */ 66*55118Storek struct v2devops { 67*55118Storek int (*v2_xxx1)(int d); /* ??? convert fd to something */ 68*55118Storek 69*55118Storek /* Memory allocation and release. */ 70*55118Storek caddr_t (*v2_malloc)(caddr_t va, u_int sz); 71*55118Storek void (*v2_free)(caddr_t va, u_int sz); 72*55118Storek 73*55118Storek /* Device memory mapper. */ 74*55118Storek caddr_t (*v2_mmap)(caddr_t va, int asi, u_int pa, u_int sz); 75*55118Storek void (*v2_munmap)(caddr_t va, u_int sz); 76*55118Storek 77*55118Storek /* Device open, close, etc. */ 78*55118Storek int (*v2_open)(char *devpath); 79*55118Storek void (*v2_close)(int d); 80*55118Storek int (*v2_read)(int d, caddr_t buf, int nbytes); 81*55118Storek int (*v2_write)(int d, caddr_t buf, int nbytes); 82*55118Storek void (*v2_seek)(int d, int hi, int lo); 83*55118Storek 84*55118Storek void (*v2_xxx2)(); /* ??? */ 85*55118Storek void (*v2_xxx3)(); /* ??? */ 86*55118Storek }; 87*55118Storek 88*55118Storek /* 89*55118Storek * The v0 interface describes memory regions with these linked lists. 90*55118Storek * (The !$&@#+ v2 interface reformats these as properties, so that we 91*55118Storek * have to extract them into local temporary memory and reinterpret them.) 92*55118Storek */ 93*55118Storek struct v0mlist { 94*55118Storek struct v0mlist *next; 95*55118Storek caddr_t addr; 96*55118Storek u_int nbytes; 97*55118Storek }; 98*55118Storek 99*55118Storek /* 100*55118Storek * V0 gives us three memory lists: Total physical memory, VM reserved to 101*55118Storek * the PROM, and available physical memory (which, presumably, is just the 102*55118Storek * total minus any pages mapped in the PROM's VM region). We can find the 103*55118Storek * reserved PMEGs by scanning the taken VM. Unfortunately, the V2 prom 104*55118Storek * forgot to provide taken VM, and we are stuck with scanning ``magic'' 105*55118Storek * addresses. 106*55118Storek */ 107*55118Storek struct v0mem { 108*55118Storek struct v0mlist **v0_phystot; /* physical memory */ 109*55118Storek struct v0mlist **v0_vmprom; /* VM used by PROM */ 110*55118Storek struct v0mlist **v0_physavail; /* available physical memory */ 111*55118Storek }; 112*55118Storek 113*55118Storek /* 114*55118Storek * The version 0 PROM breaks up the string given to the boot command and 115*55118Storek * leaves the decoded version behind. 116*55118Storek */ 117*55118Storek struct v0bootargs { 118*55118Storek char *ba_argv[8]; /* argv format for boot string */ 119*55118Storek char ba_args[100]; /* string space */ 120*55118Storek char ba_bootdev[2]; /* e.g., "sd" for `b sd(...' */ 121*55118Storek int ba_ctlr; /* controller # */ 122*55118Storek int ba_unit; /* unit # */ 123*55118Storek int ba_part; /* partition # */ 124*55118Storek char *ba_kernel; /* kernel to boot, e.g., "vmunix" */ 125*55118Storek void *ba_spare0; /* not decoded here XXX */ 126*55118Storek }; 127*55118Storek 128*55118Storek /* 129*55118Storek * The version 2 PROM interface uses the more general, if less convenient, 130*55118Storek * approach of passing the boot strings unchanged. We also get open file 131*55118Storek * numbers for stdin and stdout (keyboard and screen, or whatever), for use 132*55118Storek * with the v2 device ops. 133*55118Storek */ 134*55118Storek struct v2bootargs { 135*55118Storek char **v2_bootpath; /* V2: Path to boot device */ 136*55118Storek char **v2_bootargs; /* V2: Boot args */ 137*55118Storek int *v2_fd0; /* V2: Stdin descriptor */ 138*55118Storek int *v2_fd1; /* V2: Stdout descriptor */ 139*55118Storek }; 140*55118Storek 141*55118Storek /* 142*55118Storek * The following structure defines the primary PROM vector interface. 143*55118Storek * The Boot PROM hands the kernel a pointer to this structure in %o0. 144*55118Storek * There are numerous substructures defined below. 145*55118Storek */ 146*55118Storek struct promvec { 147*55118Storek /* Version numbers. */ 148*55118Storek u_int pv_magic; /* Magic number */ 149*55118Storek u_int pv_romvec_vers; /* interface version (0, 2) */ 150*55118Storek u_int pv_plugin_vers; /* ??? */ 151*55118Storek u_int pv_printrev; /* PROM rev # (* 10, e.g 1.9 = 19) */ 152*55118Storek 153*55118Storek /* Version 0 memory descriptors (see below). */ 154*55118Storek struct v0mem pv_v0mem; /* V0: Memory description lists. */ 155*55118Storek 156*55118Storek /* Node operations (see below). */ 157*55118Storek struct nodeops *pv_nodeops; /* node functions */ 158*55118Storek 159*55118Storek char **pv_bootstr; /* Boot command, eg sd(0,0,0)vmunix */ 160*55118Storek 161*55118Storek struct v0devops pv_v0devops; /* V0: device ops */ 162*55118Storek 163*55118Storek /* 164*55118Storek * PROMDEV_* cookies. I fear these may vanish in lieu of fd0/fd1 165*55118Storek * (see below) in future PROMs, but for now they work fine. 166*55118Storek */ 167*55118Storek char *pv_stdin; /* stdin cookie */ 168*55118Storek char *pv_stdout; /* stdout cookie */ 169*55118Storek #define PROMDEV_KBD 0 /* input from keyboard */ 170*55118Storek #define PROMDEV_SCREEN 0 /* output to screen */ 171*55118Storek #define PROMDEV_TTYA 1 /* in/out to ttya */ 172*55118Storek #define PROMDEV_TTYB 2 /* in/out to ttyb */ 173*55118Storek 174*55118Storek /* Blocking getchar/putchar. NOT REENTRANT! (grr) */ 175*55118Storek int (*pv_getchar)(void); 176*55118Storek void (*pv_putchar)(int ch); 177*55118Storek 178*55118Storek /* Non-blocking variants that return -1 on error. */ 179*55118Storek int (*pv_nbgetchar)(void); 180*55118Storek int (*pv_nbputchar)(int ch); 181*55118Storek 182*55118Storek /* Put counted string (can be very slow). */ 183*55118Storek void (*pv_putstr)(char *str, int len); 184*55118Storek 185*55118Storek /* Miscellany. */ 186*55118Storek void (*pv_reboot)(char *bootstr); 187*55118Storek void (*pv_printf)(char *fmt, ...); 188*55118Storek void (*pv_abort)(void); /* L1-A abort */ 189*55118Storek int *pv_ticks; /* Ticks since last reset */ 190*55118Storek void (*pv_halt)(void); /* Halt! */ 191*55118Storek void (**pv_synchook)(void); /* "sync" command hook */ 192*55118Storek 193*55118Storek /* 194*55118Storek * This eval's a FORTH string. Unfortunately, its interface 195*55118Storek * changed between V0 and V2, which gave us much pain. 196*55118Storek */ 197*55118Storek union { 198*55118Storek void (*v0_eval)(int len, char *str); 199*55118Storek void (*v2_eval)(char *str); 200*55118Storek } pv_fortheval; 201*55118Storek 202*55118Storek struct v0bootargs **pv_v0bootargs; /* V0: Boot args */ 203*55118Storek 204*55118Storek /* Extract Ethernet address from network device. */ 205*55118Storek u_int (*pv_enaddr)(int d, char *enaddr); 206*55118Storek 207*55118Storek struct v2bootargs pv_v2bootargs; /* V2: Boot args + std in/out */ 208*55118Storek struct v2devops pv_v2devops; /* V2: device operations */ 209*55118Storek 210*55118Storek int pv_spare[15]; 211*55118Storek 212*55118Storek /* 213*55118Storek * The following is machine-dependent. 214*55118Storek * 215*55118Storek * The sun4c needs a PROM function to set a PMEG for another 216*55118Storek * context, so that the kernel can map itself in all contexts. 217*55118Storek * It is not possible simply to set the context register, because 218*55118Storek * contexts 1 through N may have invalid translations for the 219*55118Storek * current program counter. The hardware has a mode in which 220*55118Storek * all memory references go to the PROM, so the PROM can do it 221*55118Storek * easily. 222*55118Storek */ 223*55118Storek void (*pv_setctxt)(int ctxt, caddr_t va, int pmeg); 224*55118Storek }; 225*55118Storek 226*55118Storek /* 227*55118Storek * In addition to the global stuff defined in the PROM vectors above, 228*55118Storek * the PROM has quite a collection of `nodes'. A node is described by 229*55118Storek * an integer---these seem to be internal pointers, actually---and the 230*55118Storek * nodes are arranged into an N-ary tree. Each node implements a fixed 231*55118Storek * set of functions, as described below. The first two deal with the tree 232*55118Storek * structure, allowing traversals in either breadth- or depth-first fashion. 233*55118Storek * The rest deal with `properties'. 234*55118Storek * 235*55118Storek * A node property is simply a name/value pair. The names are C strings 236*55118Storek * (NUL-terminated); the values are arbitrary byte strings (counted strings). 237*55118Storek * Many values are really just C strings. Sometimes these are NUL-terminated, 238*55118Storek * sometimes not, depending on the the interface version; v0 seems to 239*55118Storek * terminate and v2 not. Many others are simply integers stored as four 240*55118Storek * bytes in machine order: you just get them and go. The third popular 241*55118Storek * format is an `address', which is made up of one or more sets of three 242*55118Storek * integers as defined below. 243*55118Storek * 244*55118Storek * N.B.: for the `next' functions, next(0) = first, and next(last) = 0. 245*55118Storek * Whoever designed this part had good taste. On the other hand, these 246*55118Storek * operation vectors are global, rather than per-node, yet the pointers 247*55118Storek * are not in the openprom vectors but rather found by indirection from 248*55118Storek * there. So the taste balances out. 249*55118Storek */ 250*55118Storek struct openprom_addr { 251*55118Storek int oa_space; /* address space (may be relative) */ 252*55118Storek u_int oa_base; /* address within space */ 253*55118Storek u_int oa_size; /* extent (number of bytes) */ 254*55118Storek }; 255*55118Storek 256*55118Storek struct nodeops { 257*55118Storek /* 258*55118Storek * Tree traversal. 259*55118Storek */ 260*55118Storek int (*no_nextnode)(int node); /* next(node) */ 261*55118Storek int (*no_child)(int node); /* first child */ 262*55118Storek 263*55118Storek /* 264*55118Storek * Property functions. Proper use of getprop requires calling 265*55118Storek * proplen first to make sure it fits. Kind of a pain, but no 266*55118Storek * doubt more convenient for the PROM coder. 267*55118Storek */ 268*55118Storek int (*no_proplen)(int node, caddr_t name); 269*55118Storek int (*no_getprop)(int node, caddr_t name, caddr_t val); 270*55118Storek int (*no_setprop)(int node, caddr_t name, caddr_t val, int len); 271*55118Storek caddr_t (*no_nextprop)(int node, caddr_t name); 272*55118Storek }; 273