xref: /csrg-svn/sys/sparc/fpu/fpu_sqrt.c (revision 55114)
1 /*
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * %sccs.include.redist.c%
10  *
11  *	@(#)fpu_sqrt.c	7.1 (Berkeley) 07/13/92
12  *
13  * from: $Header: fpu_sqrt.c,v 1.2 92/06/17 05:41:34 torek Exp $
14  */
15 
16 /*
17  * Perform an FPU square root (return sqrt(x)).
18  */
19 
20 #include "sys/types.h"
21 
22 #include "machine/reg.h"
23 
24 #include "fpu_arith.h"
25 #include "fpu_emu.h"
26 
27 /*
28  * Our task is to calculate the square root of a floating point number x0.
29  * This number x normally has the form:
30  *
31  *		    exp
32  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
33  *
34  * This can be left as it stands, or the mantissa can be doubled and the
35  * exponent decremented:
36  *
37  *			  exp-1
38  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
39  *
40  * If the exponent `exp' is even, the square root of the number is best
41  * handled using the first form, and is by definition equal to:
42  *
43  *				exp/2
44  *	sqrt(x) = sqrt(mant) * 2
45  *
46  * If exp is odd, on the other hand, it is convenient to use the second
47  * form, giving:
48  *
49  *				    (exp-1)/2
50  *	sqrt(x) = sqrt(2 * mant) * 2
51  *
52  * In the first case, we have
53  *
54  *	1 <= mant < 2
55  *
56  * and therefore
57  *
58  *	sqrt(1) <= sqrt(mant) < sqrt(2)
59  *
60  * while in the second case we have
61  *
62  *	2 <= 2*mant < 4
63  *
64  * and therefore
65  *
66  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
67  *
68  * so that in any case, we are sure that
69  *
70  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
71  *
72  * or
73  *
74  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
75  *
76  * This root is therefore a properly formed mantissa for a floating
77  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
78  * as above.  This leaves us with the problem of finding the square root
79  * of a fixed-point number in the range [1..4).
80  *
81  * Though it may not be instantly obvious, the following square root
82  * algorithm works for any integer x of an even number of bits, provided
83  * that no overflows occur:
84  *
85  *	let q = 0
86  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
87  *		x *= 2			-- multiply by radix, for next digit
88  *		if x >= 2q + 2^k then	-- if adding 2^k does not
89  *			x -= 2q + 2^k	-- exceed the correct root,
90  *			q += 2^k	-- add 2^k and adjust x
91  *		fi
92  *	done
93  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
94  *
95  * If NBITS is odd (so that k is initially even), we can just add another
96  * zero bit at the top of x.  Doing so means that q is not going to acquire
97  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
98  * final value in x is not needed, or can be off by a factor of 2, this is
99  * equivalant to moving the `x *= 2' step to the bottom of the loop:
100  *
101  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
102  *
103  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
104  * (Since the algorithm is destructive on x, we will call x's initial
105  * value, for which q is some power of two times its square root, x0.)
106  *
107  * If we insert a loop invariant y = 2q, we can then rewrite this using
108  * C notation as:
109  *
110  *	q = y = 0; x = x0;
111  *	for (k = NBITS; --k >= 0;) {
112  * #if (NBITS is even)
113  *		x *= 2;
114  * #endif
115  *		t = y + (1 << k);
116  *		if (x >= t) {
117  *			x -= t;
118  *			q += 1 << k;
119  *			y += 1 << (k + 1);
120  *		}
121  * #if (NBITS is odd)
122  *		x *= 2;
123  * #endif
124  *	}
125  *
126  * If x0 is fixed point, rather than an integer, we can simply alter the
127  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
128  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
129  *
130  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
131  * integers, which adds some complication.  But note that q is built one
132  * bit at a time, from the top down, and is not used itself in the loop
133  * (we use 2q as held in y instead).  This means we can build our answer
134  * in an integer, one word at a time, which saves a bit of work.  Also,
135  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
136  * `new' bits in y and we can set them with an `or' operation rather than
137  * a full-blown multiword add.
138  *
139  * We are almost done, except for one snag.  We must prove that none of our
140  * intermediate calculations can overflow.  We know that x0 is in [1..4)
141  * and therefore the square root in q will be in [1..2), but what about x,
142  * y, and t?
143  *
144  * We know that y = 2q at the beginning of each loop.  (The relation only
145  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
146  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
147  * Furthermore, we can prove with a bit of work that x never exceeds y by
148  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
149  * an exercise to the reader, mostly because I have become tired of working
150  * on this comment.)
151  *
152  * If our floating point mantissas (which are of the form 1.frac) occupy
153  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
154  * In fact, we want even one more bit (for a carry, to avoid compares), or
155  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
156  * this, so we have some justification in assuming it.
157  */
158 struct fpn *
159 fpu_sqrt(fe)
160 	struct fpemu *fe;
161 {
162 	register struct fpn *x = &fe->fe_f1;
163 	register u_int bit, q, tt;
164 	register u_int x0, x1, x2, x3;
165 	register u_int y0, y1, y2, y3;
166 	register u_int d0, d1, d2, d3;
167 	register int e;
168 
169 	/*
170 	 * Take care of special cases first.  In order:
171 	 *
172 	 *	sqrt(NaN) = NaN
173 	 *	sqrt(+0) = +0
174 	 *	sqrt(-0) = -0
175 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
176 	 *	sqrt(+Inf) = +Inf
177 	 *
178 	 * Then all that remains are numbers with mantissas in [1..2).
179 	 */
180 	if (ISNAN(x) || ISZERO(x))
181 		return (x);
182 	if (x->fp_sign)
183 		return (fpu_newnan(fe));
184 	if (ISINF(x))
185 		return (x);
186 
187 	/*
188 	 * Calculate result exponent.  As noted above, this may involve
189 	 * doubling the mantissa.  We will also need to double x each
190 	 * time around the loop, so we define a macro for this here, and
191 	 * we break out the multiword mantissa.
192 	 */
193 #ifdef FPU_SHL1_BY_ADD
194 #define	DOUBLE_X { \
195 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
196 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
197 }
198 #else
199 #define	DOUBLE_X { \
200 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
201 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
202 }
203 #endif
204 #if (FP_NMANT & 1) != 0
205 # define ODD_DOUBLE	DOUBLE_X
206 # define EVEN_DOUBLE	/* nothing */
207 #else
208 # define ODD_DOUBLE	/* nothing */
209 # define EVEN_DOUBLE	DOUBLE_X
210 #endif
211 	x0 = x->fp_mant[0];
212 	x1 = x->fp_mant[1];
213 	x2 = x->fp_mant[2];
214 	x3 = x->fp_mant[3];
215 	e = x->fp_exp;
216 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
217 		DOUBLE_X;
218 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
219 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
220 
221 	/*
222 	 * Now calculate the mantissa root.  Since x is now in [1..4),
223 	 * we know that the first trip around the loop will definitely
224 	 * set the top bit in q, so we can do that manually and start
225 	 * the loop at the next bit down instead.  We must be sure to
226 	 * double x correctly while doing the `known q=1.0'.
227 	 *
228 	 * We do this one mantissa-word at a time, as noted above, to
229 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
230 	 * outside of each per-word loop.
231 	 *
232 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
233 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
234 	 * is always a `new' one, this means that three of the `t?'s are
235 	 * just the corresponding `y?'; we use `#define's here for this.
236 	 * The variable `tt' holds the actual `t?' variable.
237 	 */
238 
239 	/* calculate q0 */
240 #define	t0 tt
241 	bit = FP_1;
242 	EVEN_DOUBLE;
243 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
244 		q = bit;
245 		x0 -= bit;
246 		y0 = bit << 1;
247 	/* } */
248 	ODD_DOUBLE;
249 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
250 		EVEN_DOUBLE;
251 		t0 = y0 | bit;		/* t = y + bit */
252 		if (x0 >= t0) {		/* if x >= t then */
253 			x0 -= t0;	/*	x -= t */
254 			q |= bit;	/*	q += bit */
255 			y0 |= bit << 1;	/*	y += bit << 1 */
256 		}
257 		ODD_DOUBLE;
258 	}
259 	x->fp_mant[0] = q;
260 #undef t0
261 
262 	/* calculate q1.  note (y0&1)==0. */
263 #define t0 y0
264 #define t1 tt
265 	q = 0;
266 	y1 = 0;
267 	bit = 1 << 31;
268 	EVEN_DOUBLE;
269 	t1 = bit;
270 	FPU_SUBS(d1, x1, t1);
271 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
272 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
273 		x0 = d0, x1 = d1;	/*	x -= t */
274 		q = bit;		/*	q += bit */
275 		y0 |= 1;		/*	y += bit << 1 */
276 	}
277 	ODD_DOUBLE;
278 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
279 		EVEN_DOUBLE;		/* as before */
280 		t1 = y1 | bit;
281 		FPU_SUBS(d1, x1, t1);
282 		FPU_SUBC(d0, x0, t0);
283 		if ((int)d0 >= 0) {
284 			x0 = d0, x1 = d1;
285 			q |= bit;
286 			y1 |= bit << 1;
287 		}
288 		ODD_DOUBLE;
289 	}
290 	x->fp_mant[1] = q;
291 #undef t1
292 
293 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
294 #define t1 y1
295 #define t2 tt
296 	q = 0;
297 	y2 = 0;
298 	bit = 1 << 31;
299 	EVEN_DOUBLE;
300 	t2 = bit;
301 	FPU_SUBS(d2, x2, t2);
302 	FPU_SUBCS(d1, x1, t1);
303 	FPU_SUBC(d0, x0, t0);
304 	if ((int)d0 >= 0) {
305 		x0 = d0, x1 = d1, x2 = d2;
306 		q |= bit;
307 		y1 |= 1;		/* now t1, y1 are set in concrete */
308 	}
309 	ODD_DOUBLE;
310 	while ((bit >>= 1) != 0) {
311 		EVEN_DOUBLE;
312 		t2 = y2 | bit;
313 		FPU_SUBS(d2, x2, t2);
314 		FPU_SUBCS(d1, x1, t1);
315 		FPU_SUBC(d0, x0, t0);
316 		if ((int)d0 >= 0) {
317 			x0 = d0, x1 = d1, x2 = d2;
318 			q |= bit;
319 			y2 |= bit << 1;
320 		}
321 		ODD_DOUBLE;
322 	}
323 	x->fp_mant[2] = q;
324 #undef t2
325 
326 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
327 #define t2 y2
328 #define t3 tt
329 	q = 0;
330 	y3 = 0;
331 	bit = 1 << 31;
332 	EVEN_DOUBLE;
333 	t3 = bit;
334 	FPU_SUBS(d3, x3, t3);
335 	FPU_SUBCS(d2, x2, t2);
336 	FPU_SUBCS(d1, x1, t1);
337 	FPU_SUBC(d0, x0, t0);
338 	ODD_DOUBLE;
339 	if ((int)d0 >= 0) {
340 		x0 = d0, x1 = d1, x2 = d2;
341 		q |= bit;
342 		y2 |= 1;
343 	}
344 	while ((bit >>= 1) != 0) {
345 		EVEN_DOUBLE;
346 		t3 = y3 | bit;
347 		FPU_SUBS(d3, x3, t3);
348 		FPU_SUBCS(d2, x2, t2);
349 		FPU_SUBCS(d1, x1, t1);
350 		FPU_SUBC(d0, x0, t0);
351 		if ((int)d0 >= 0) {
352 			x0 = d0, x1 = d1, x2 = d2;
353 			q |= bit;
354 			y3 |= bit << 1;
355 		}
356 		ODD_DOUBLE;
357 	}
358 	x->fp_mant[3] = q;
359 
360 	/*
361 	 * The result, which includes guard and round bits, is exact iff
362 	 * x is now zero; any nonzero bits in x represent sticky bits.
363 	 */
364 	x->fp_sticky = x0 | x1 | x2 | x3;
365 	return (x);
366 }
367