1*55114Storek /* 2*55114Storek * Copyright (c) 1992 The Regents of the University of California. 3*55114Storek * All rights reserved. 4*55114Storek * 5*55114Storek * This software was developed by the Computer Systems Engineering group 6*55114Storek * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7*55114Storek * contributed to Berkeley. 8*55114Storek * 9*55114Storek * %sccs.include.redist.c% 10*55114Storek * 11*55114Storek * @(#)fpu_mul.c 7.1 (Berkeley) 07/13/92 12*55114Storek * 13*55114Storek * from: $Header: fpu_mul.c,v 1.2 92/06/17 05:41:34 torek Exp $ 14*55114Storek */ 15*55114Storek 16*55114Storek /* 17*55114Storek * Perform an FPU multiply (return x * y). 18*55114Storek */ 19*55114Storek 20*55114Storek #include "sys/types.h" 21*55114Storek 22*55114Storek #include "machine/reg.h" 23*55114Storek 24*55114Storek #include "fpu_arith.h" 25*55114Storek #include "fpu_emu.h" 26*55114Storek 27*55114Storek /* 28*55114Storek * The multiplication algorithm for normal numbers is as follows: 29*55114Storek * 30*55114Storek * The fraction of the product is built in the usual stepwise fashion. 31*55114Storek * Each step consists of shifting the accumulator right one bit 32*55114Storek * (maintaining any guard bits) and, if the next bit in y is set, 33*55114Storek * adding the multiplicand (x) to the accumulator. Then, in any case, 34*55114Storek * we advance one bit leftward in y. Algorithmically: 35*55114Storek * 36*55114Storek * A = 0; 37*55114Storek * for (bit = 0; bit < FP_NMANT; bit++) { 38*55114Storek * sticky |= A & 1, A >>= 1; 39*55114Storek * if (Y & (1 << bit)) 40*55114Storek * A += X; 41*55114Storek * } 42*55114Storek * 43*55114Storek * (X and Y here represent the mantissas of x and y respectively.) 44*55114Storek * The resultant accumulator (A) is the product's mantissa. It may 45*55114Storek * be as large as 11.11111... in binary and hence may need to be 46*55114Storek * shifted right, but at most one bit. 47*55114Storek * 48*55114Storek * Since we do not have efficient multiword arithmetic, we code the 49*55114Storek * accumulator as four separate words, just like any other mantissa. 50*55114Storek * We use local `register' variables in the hope that this is faster 51*55114Storek * than memory. We keep x->fp_mant in locals for the same reason. 52*55114Storek * 53*55114Storek * In the algorithm above, the bits in y are inspected one at a time. 54*55114Storek * We will pick them up 32 at a time and then deal with those 32, one 55*55114Storek * at a time. Note, however, that we know several things about y: 56*55114Storek * 57*55114Storek * - the guard and round bits at the bottom are sure to be zero; 58*55114Storek * 59*55114Storek * - often many low bits are zero (y is often from a single or double 60*55114Storek * precision source); 61*55114Storek * 62*55114Storek * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word. 63*55114Storek * 64*55114Storek * We can also test for 32-zero-bits swiftly. In this case, the center 65*55114Storek * part of the loop---setting sticky, shifting A, and not adding---will 66*55114Storek * run 32 times without adding X to A. We can do a 32-bit shift faster 67*55114Storek * by simply moving words. Since zeros are common, we optimize this case. 68*55114Storek * Furthermore, since A is initially zero, we can omit the shift as well 69*55114Storek * until we reach a nonzero word. 70*55114Storek */ 71*55114Storek struct fpn * 72*55114Storek fpu_mul(fe) 73*55114Storek register struct fpemu *fe; 74*55114Storek { 75*55114Storek register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 76*55114Storek register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m; 77*55114Storek register int sticky; 78*55114Storek FPU_DECL_CARRY 79*55114Storek 80*55114Storek /* 81*55114Storek * Put the `heavier' operand on the right (see fpu_emu.h). 82*55114Storek * Then we will have one of the following cases, taken in the 83*55114Storek * following order: 84*55114Storek * 85*55114Storek * - y = NaN. Implied: if only one is a signalling NaN, y is. 86*55114Storek * The result is y. 87*55114Storek * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN 88*55114Storek * case was taken care of earlier). 89*55114Storek * If x = 0, the result is NaN. Otherwise the result 90*55114Storek * is y, with its sign reversed if x is negative. 91*55114Storek * - x = 0. Implied: y is 0 or number. 92*55114Storek * The result is 0 (with XORed sign as usual). 93*55114Storek * - other. Implied: both x and y are numbers. 94*55114Storek * The result is x * y (XOR sign, multiply bits, add exponents). 95*55114Storek */ 96*55114Storek ORDER(x, y); 97*55114Storek if (ISNAN(y)) { 98*55114Storek y->fp_sign ^= x->fp_sign; 99*55114Storek return (y); 100*55114Storek } 101*55114Storek if (ISINF(y)) { 102*55114Storek if (ISZERO(x)) 103*55114Storek return (fpu_newnan(fe)); 104*55114Storek y->fp_sign ^= x->fp_sign; 105*55114Storek return (y); 106*55114Storek } 107*55114Storek if (ISZERO(x)) { 108*55114Storek x->fp_sign ^= y->fp_sign; 109*55114Storek return (x); 110*55114Storek } 111*55114Storek 112*55114Storek /* 113*55114Storek * Setup. In the code below, the mask `m' will hold the current 114*55114Storek * mantissa byte from y. The variable `bit' denotes the bit 115*55114Storek * within m. We also define some macros to deal with everything. 116*55114Storek */ 117*55114Storek x3 = x->fp_mant[3]; 118*55114Storek x2 = x->fp_mant[2]; 119*55114Storek x1 = x->fp_mant[1]; 120*55114Storek x0 = x->fp_mant[0]; 121*55114Storek sticky = a3 = a2 = a1 = a0 = 0; 122*55114Storek 123*55114Storek #define ADD /* A += X */ \ 124*55114Storek FPU_ADDS(a3, a3, x3); \ 125*55114Storek FPU_ADDCS(a2, a2, x2); \ 126*55114Storek FPU_ADDCS(a1, a1, x1); \ 127*55114Storek FPU_ADDC(a0, a0, x0) 128*55114Storek 129*55114Storek #define SHR1 /* A >>= 1, with sticky */ \ 130*55114Storek sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \ 131*55114Storek a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1 132*55114Storek 133*55114Storek #define SHR32 /* A >>= 32, with sticky */ \ 134*55114Storek sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0 135*55114Storek 136*55114Storek #define STEP /* each 1-bit step of the multiplication */ \ 137*55114Storek SHR1; if (bit & m) { ADD; }; bit <<= 1 138*55114Storek 139*55114Storek /* 140*55114Storek * We are ready to begin. The multiply loop runs once for each 141*55114Storek * of the four 32-bit words. Some words, however, are special. 142*55114Storek * As noted above, the low order bits of Y are often zero. Even 143*55114Storek * if not, the first loop can certainly skip the guard bits. 144*55114Storek * The last word of y has its highest 1-bit in position FP_NMANT-1, 145*55114Storek * so we stop the loop when we move past that bit. 146*55114Storek */ 147*55114Storek if ((m = y->fp_mant[3]) == 0) { 148*55114Storek /* SHR32; */ /* unneeded since A==0 */ 149*55114Storek } else { 150*55114Storek bit = 1 << FP_NG; 151*55114Storek do { 152*55114Storek STEP; 153*55114Storek } while (bit != 0); 154*55114Storek } 155*55114Storek if ((m = y->fp_mant[2]) == 0) { 156*55114Storek SHR32; 157*55114Storek } else { 158*55114Storek bit = 1; 159*55114Storek do { 160*55114Storek STEP; 161*55114Storek } while (bit != 0); 162*55114Storek } 163*55114Storek if ((m = y->fp_mant[1]) == 0) { 164*55114Storek SHR32; 165*55114Storek } else { 166*55114Storek bit = 1; 167*55114Storek do { 168*55114Storek STEP; 169*55114Storek } while (bit != 0); 170*55114Storek } 171*55114Storek m = y->fp_mant[0]; /* definitely != 0 */ 172*55114Storek bit = 1; 173*55114Storek do { 174*55114Storek STEP; 175*55114Storek } while (bit <= m); 176*55114Storek 177*55114Storek /* 178*55114Storek * Done with mantissa calculation. Get exponent and handle 179*55114Storek * 11.111...1 case, then put result in place. We reuse x since 180*55114Storek * it already has the right class (FP_NUM). 181*55114Storek */ 182*55114Storek m = x->fp_exp + y->fp_exp; 183*55114Storek if (a0 >= FP_2) { 184*55114Storek SHR1; 185*55114Storek m++; 186*55114Storek } 187*55114Storek x->fp_sign ^= y->fp_sign; 188*55114Storek x->fp_exp = m; 189*55114Storek x->fp_sticky = sticky; 190*55114Storek x->fp_mant[3] = a3; 191*55114Storek x->fp_mant[2] = a2; 192*55114Storek x->fp_mant[1] = a1; 193*55114Storek x->fp_mant[0] = a0; 194*55114Storek return (x); 195*55114Storek } 196